
DOCUMENT RESUME

ED 362 212 IR 016 368

AUTHOR Williams, Michael D.; Dodge, Bernard J.
TITLE Tracking and Analyzing Learner-Computer

Interaction.
PUB DATE Jan 93
NOTE 16p.; In: Proceedings of Selected Research and

Development Presentations at the Convention of the
Association for Educational Communications and
Technology Sponsored by the Research and Theory
Division (15th, New Orleans, Louisiana, January
13-17, 1993); see IR 016 300.

PUB TYPE Reports Evaluative/Feasibility (142) --
Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS College Students; *Computer Assisted Instruction;

*Computer Software; Data Analysis; Error of
Measurement; Higher Education; Hypermedia;
Interaction; Learning Strategies; *Man Machine
Systems; *Measurement Techniques

IDENTIFIERS *Audit Trails; *HyperCard; San Diego State University
CA

ABSTRACT

Some specific computer-based tools for collecting and
examining audit trails, i.e., data that describe a learner's path
through a computer-based instruction (CBI) lesson, are detailed. Data
analysis and measurement issues related to audit trails are also
discussed. A particular set of embedded computer-based tools
currently being used at San Diego State University (California) is
described. These tools assess the what, where, and when of learner
actions. The examples are developed in HyperCard. Researchers may
attempt to interpret student responses by looking at the audit trail
output file, but are probably better served by replaying the lesson
to experience CBI as the learner did. Data from large numbers of
learners may be aggregated for analysis. Issues of measurement error
and concerns in dealing with aggregated data are reviewed. Audit
trails can provide a great deal of understanding of how students
experience CBI. Three figures illustrate the discussion. An appendix
presents some scripts for audit trail handlers in HyperCard. (SLD)

Reproductions supplied by EDRS are the best that can be made
from the original document.

U.S. DEPARTMENT Of EDUCATION
Office ot Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

0 This document has been reproduced as
received from the person or organization
originating it

0 Minor changes have been made to improve
reproduction quality

Points ol view o opinions stated in this docu-
ment do nol necessarily reprefient official
OERI position or policy

Title:

Tracking and Analyzing Learner-Computer Interaction

Authors:

Michael D. Williams
Bernard& Dodge

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Michael Simonson

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Introduction

The last twenty-five or so years have shown an explosion of research and development in
computer-assisted and computer-managed learning environments. Academics investigating the
nature of the learner-computer interaction, as well as software producers interested in developing
higher quality,,response-sensitive computer-based learning tools, have been seeking more and
better means of collecting, managing, and analyzing the particular responses students make during
their time at the computer keyboard.

When a learner interacts with instructional software, a complex set of processes takes
place. Capturing this rich data for study is important if we are to advance the art and science of
CBI design. But as the research questions have become more complex, there has also come a
proliferation of options for data collection and analysis in these environments (Johnson, 1982).

The reasons for wishing to monitor student responses during instruction are myriad.
Misanchuk and Schwier (1992) discuss four categories of reasons for wishing to collect data about
online learner responses. The first category is for formative evaluation in instructional design.
For example, software developers in an alpha testing phase of product creation are often interested
to discover which features of the software could be streamlined or eliminated. Thus, for example,
they may wish to trace the frequency or occasions when students access "help" screens or, maybe,
how often students return to main menus.

A second category relates to basic research in instructional design. For example, basic
researchers such as Clark (1984) suggest the need to try to determine precisely what students are
thinking as they progress through computer-mediated learning systems in order to produce more
efficient or effective instructional designs.

A thirozi, reason discussed by Misanchuk and Schwier (1992) is to collect such data for
usage audits for unstructured or public environments. The purpose here is to unobtrusively peer
"over the shoulders of of groups of usets to determine how they a.. traversing the interactive
media package." This use of online response data combines characteristics of both of the first two
reasons mentioned above.

Last, learner-computer interaction data might be used for counselling and advising
purposes. That is, data from such interactions can be collected into databanks and analyzed with
the intention of informing the learner of their relative skills, knowledge, learning styles, and so on.
The idea is to involve the learner as a full partner in instructional decision-making.

But whether the investigator is a software developer concerned with the formative
evaluation or the rapid prototyping of a new product, or is a researcher exploring the whys and
wherefores of student responses during CBI, there is a clear need to have a toolkit of data
collection and analysis techniques which can provide an accurate and useful record of student
navigation routes.

This paper builds on the work of Misanchuk and Schwier (1992) by detailing some specific
computer-based tools for collecting and examining what they call "audit trails," that is, data which
describe a learner's path through a CBI lesson. (Incidentally, the term "audit trail" was also found
in a remarkable early paper by Grubb, 1968, who presents a computer-based instructional system
which in many respects presages the current hypermedia systems.) Additionally, data analysis and
measurement issues relating to the use of data from these audit trails are also discussed.

Williams & Dodge, 1993

0

Tracking & Analyzing...

1116
Page 2

Essential User Information to be Captured

If we are to track a learner's path through a piece of software, what kinds of data are
important? In a graphic user interface (GUI) environment, the kind used most often today, there
are three majot categories of useful data which determine the learner's path through a computer
experience:

1. ...the identity of each user interaction with the software. This information answers the
question, "What action did the student take?" and may include:

mouse clicks on buttons, fields and cards
responses typed into the keyboard
menus pulled down

2. ...the specific screen location of each mouse event. This data answers the question,
"Where did the action take place." and includes:

where the mouse was clicked
where the cursor was when the mouse button was released

3. ...the time at which each learner interaction occurred. From this data can be calculated
any specific instance of what is sometimes called "latency," that is, the time spent
between actions of the learner. The time taken to understand a screen or to answer a
question can be used to study the learner's cognitive processing (e.g., see the work of
Tennyson and associates).

In journalistic terms, these What, Where and When of learner actions will also be important
to track in the new pen-based interfaces as they emerge. A few years from now, when voice-based
interfaces become more common, the What and When factors will continue to be of interest to
researchers and designers while the Where will become less relevant.

What follows is an in-depth presentation of a particular set of embedded computer-based
tools currently being used at San Diego State University which assess the What, Where and When
data types. Although the programming statements are idiosyncratic to the particular software used,
the programming constructs represented are generalizable to other platforms and authoring
systems, as well.

Structure of HyperCard

The examples that follow are developed in HyperCard, a tool-building environment for the
Macintosh computer. Programming of a similar type could be done in any graphic-oriented
environment on any platform, including Authorware, Plus, Director, Tool Book, and Super Card.
To clarify the descriptions of programming logic, some explanation of HyperCard's structure may
be useful.

HyperCard is used to create stacks which are collections of individual cards. Cards can
share common backgrounds and can contain buttons (active areas of the screen which can respond
to input from the mouse) orfields (areas of the screen holding text, which can also respond to
mouse or keyboard input). Stacks, cards, backgrounds, buttons and fields are collectively known
as objects, and any object can contain a script or program consisting of one or more handlers.
Each handler handles events as they occur, such as the click of a mouse within the boundaries of a
button, or the pressing of the Enter key within a field.

Programming in HyperCard is oriented around these objects. Unlike some environments
in which the intelligence is contained in a single program listed all in one place, a HyperCard stack

Williams & Dodge, 1993
4

Tracking & Analyzing...

1117
Page 3

can contain many programs in the form of handlers within individual buttons, fields and cards.
The handlers for tracking learner actions are described in the next section.

explanation of the Handlers

There are four major handlers needed to t7ck learner actions in a HyperCard stack:

StartTrail - initializes the trail variable which stores each action
AddToTrail - adds a specific event to the trail
SaveTrailFile - saves the trail variable to disk
ShowTrail - shows all mouseclicks accumulated in a given trail file

Each of these is described in more detail below. The ShowTrail handler is discussed
within the section on analysis options.

5tartTrail. HyperCard makes use of global variables to store information while a stack is
executing. Global variables retain their values anywhere in a stack, even across stacks, until the
user quits the HyperCard application. Because the variable exists in random access memory,
writing to it is quick enough to be practically undetectable. This allows the program to track user
actions without slowing down the stack noticeably. In this instance, the startTrail handler sets up a
global variable called "Trail". This variable contains separate lines of data for each learner action,
and begins with a header consisting of bullets (*) to mark the beginning of a new run of the stack.
This header is followed by a line containing the starting time and date on which the stack was run.

AddroTrail. Once the Trail variable has been set up, this handler stores data about each learner
action. It is called up by including the name of the handler in the script of every button, field, and
background in the stack. The illustration below shows how this might be done on a sample card:

WiIliam & Dodge, 1993 Tracking & Analyzing... Page4

1118

on mouseUp
AddToTrall
visual Ids open
go to card "Main Menu"

end mouseUp

utton crpt
.4,11101110.I.:44../11.....4.11111

on mouseUp
AdefroTrall
show cd fld clumsehelp
walt 4 sec
hide cd fld choosehelp

end mouseUp

Ns`cbef VA? .Nei;

on mouseUp
AddToTrall
vlsual checkerboard slow
go cd credits

end mouseUp

"Sayonara" Button Script

on mouseUp
AddToTrall

end mouseUp

Background Script

SaveTrailFile. When the stack is closed, this handler takes the Trail variable from memory, adds
the end time and total elapsed time, and stores it in a text file on disk.

6
Williams & Dodge, 1993 Tracking & Analyzing...

1119 REST CRY AVAILItlire

Sample Audit Trail

All of these handlers work together to create a record of learner actions stored on disk for
later analysis. Here is a short sample trail:

MIMS*

Stack opened at 8:25:25 AM on Saturday, January 9, 1993

1,29.53,card id 109271,card button "Next",29.53,255,311,259,313,
2,33.18,Choice,card button "Study Hiragana".3.65,397,39,397,39,
3,42.53,Main Menu,card button " Historical Stuff',9.35,394,59,397,62,
4,51.42,Historical,card button "Take a Look",8.88,447,202,447,204,
5,59.27,Kanji,card button "Take a Look",7.85,445,201,446,202,
6,62.33,Historical,bkgnd button "Menu",3.07,43,283,45,287,
7,65.38,Main Menu,card button " Outta Here",3.05,371,239,371,239,
8,68.35,Choice,card button "Sayonara",2.97.40,305,54,300,
9,90.77,L.ast Card,card button "Quit",22.42,371,203,370,203,
10.00,90.90,Last Card,card button "Quit",0.13,371,203,363,203,Mena item: quit hypercard
Stack closed at 8:26:56 AM
Total elapsed time = 91.20 seconds
QQQQQQ

This trail repreP,zats a very short run of the stack in which the learner passed through 6
different cards and .;;icked on 9 buttons to navigate among them. Each mouse click, menu
operation, or keyboard input is stored as a single line in the trail, with each part of the data
separated by commas.

Event Number

Elapsed time in seconds since the stack was opened
Card on which the event occurred

II, The target of the mouse click

5, 59.27, Kanji, card button "Take a Look", 7.85, 445,201, 446,202

Elapsed time since last event t
Location of mouse click

Location of mouse release

Williams & Dodge, 1993

7

Tracking & Analyzing... Page 6

1120

Analyses of Audit Trails

The investigator has many decisions to make about what to do with the data from audit
trails of student responses. This section will suggest methods which can help to make sense of the
often times overwhelming volume of data generated.

As can be seen from the previous section on how to collect audit trails, if the investigator
wishes to collect enough information to completely determine each student's path, actions, andtime spent, the number of data points generated from a typical computer lesson can quickly run intothe hundreds or thousands for just one student! Misanchuk and Schwier (1992), too, point out,audit trail data collected from multimedia/ hypermedia lesson structures can be extremely difficult tomake sense of. This is because data for individual students are voluminous and data betweenstudents do not have a consistent or parallel format amenable to standard spreadsheet-orienteddataanalysis tools (including most commercial statistical packages, such as SPSS and SAS). Rarely isthe investigator able to use, without convoluted data transformations, such standard statistical toolsas repeated measures or time series analyses. Too oftenthe volume of variables or the frequency
of contingent missing data (that is, not all students experience the same instructional events)
prevent adequate statistical interpretation of the data.

As it turns out, there is no "right" way to interpret such data. In general, though, there is
one trade-off the investigator must make early in the data analysis process which will guide
subsequent analyses: analyzing the intactdata in its original and complete format, or analyzing thedata which has been aggregated into summary, averaged, or otherwise collapsed variables.
Finally, some pertinent measurement issues will be discussed.

Qualitative analyses of original (non-aggregated) data

One option for investigators is to not even attempt to aggregate the data into reduced sets ofrecords and variables. Indeed, there are many instances when investigators might wish to foregostatistical analysis of audit trail dataaltogether. For example, instructional developers may wish tolook at the data record from a manageably small sample of individual students to boost the validityof a formative evaluation. (A small n is usually required for such analyses because thereareseldom enough resources available to conduct analyses on a large number of students.)

Additionally, researchers may want to adopt qualitative methods to examine each student'spath up close. The idea (though far from simple or easy) is to search a fairly small number of audittrails for clues and patterns which might elucidate some phenomenon of interest connected with the.lesson or the student. For example, this approach could unobtrusively give researchers valuableinsight into a student's thought processes as they proceed through some lesson (e.g., Robson,Steward, & Whitfield, 1988). The challenge, of course, is maintain methodological rigor so thatinterpretations of individual audit trail data will be reasonably unbiased, and that findings can bevalidly generalized beyond the small sample involved. Many good sources exist which presenttechniques for qualitative data analysis of data such as this, so such techniques will not be coveredhere.

Rather than attempting to interpret student responses by simply staring at the audit trailoutput file, investigators are perhaps better served by, if possible, "replaying" the lesson so toexperience the CBI just as the learner did. The following example illustrates just such an audit trailplayback routine.

Williams & Dodge, 1993 Tracking & Analyzing...

1121
Page 7

Illustration. The Show Trail handler was developed to represent visually the history of
mouse clicks recorded for one or more users of a stack. It takes a trial file, parses it, and places a
round button on the location of every mouse click stored.

%.

Here are the oddballs of the bunch. The sounds of si, U,
tu, and hu (pronounced like the English words "sea",
"tea", "two", and "who") do not exist in Japanese. So,
they substitute the sounds above. Go ahead and click.

This allows one to see several things at a glance:

Which buttons were clicked most often, least often
Which items on the screen were misinterpreted to be buttons and were clicked on
with no result
Whatpart of a button was clicked on.

In the example above, each button triggers a sound file so that the learner can hear the
pronunciation of a syllable. The sounds on the buttons on the left are harder for the American ear
to distinguish, and were thus clicked more often than the button playing the "hu" sound. In
addition one can see that one learner left the sequence at this point to return to the menu, while the
others clicked the forward arrow to continue.

auftiligiglitAnilism_d_a_gugg_tel j_iia at

When data trails are involved from large numbers of students, itmay not be feasible for the
investigator to closely examine each student's record. In these cases, the investigator might want
to collapse data into simpler categories or variables for analysis. For example, the investigator
might want to average the student's time spentover only a few types of events; or perhaps simply
count the number of times the student returns to, say, a review section of a lesson. These kind of
aggregated data are much more amenable to statistical analysis, in that only a few variables are
created and examined, and there are substantial numbers of students with data to provide statistical
power. The trade-off here is that, whenever data are collapsed, information is lost. That is, the
unique profile of each student's set of responses becomes lost in the aggregation process, and with
it some potentially useful insight.

Williams & Dodge, 1993 Tracking & Analyzing...

in / Page 8

(Certainly, there are many instances when such aggregated data might be interpreted
qualitatively, as in the previous discussion. However, it is recommended here that aggregated data
are most useful when analyzed statistically, on a sample large enough to provide adequate statistical
power.)

Types of variables. When examining aggregated data, the investigator usually has an
agenda of research questions which will presumably be addressed by the data. Operationalizing
these questions, however, is not a trivial matter because of the wide range of experiences students
typically experience during hypermedia CBI. That is, the interpretations we might give to certain
data points from one student might be different from the interpretations we give to another student
on those same data points. Ignoring the span of each student's experiences might result in invalid
conclusions about what occurred during the lesson.

Once the specific variables are decided upon, the researcher needs to decide which data
points are to be included in the aggregated cases and variables. For example, say there is an
embedded quiz which all students must complete. It is a fairly simple matter to aggregate these
data and analyze them according to the research questions of interest. The same applies toany type
of data which is common to all students, and generally fall into a few common types of data:
nominal (e.g., multiple choice, menu selections), counts or totals (e.g., number of times a card is
visited or button is clicked, total elapsed time spent on a lesson), and averages (e.g., average time
spent reading expository material across a number of such events).

However, there is one type of data researchers frequently wish to collect, but which present
some serious problems for analysis. For example, say the researcher wants to see how many
times students visit a specific type of help screen. Certainly, the number of times students would
choose to access the help would be contingent upon how many opportunities they had toaccess
help. If some students had the opportunity to access help only once or twice, how is their help-
selection data to be compared with someone who had many more such help opportunities? Such
contingent data present continual analysis problems for researchers (Misanchuk & Schwier, 1992).
Some statisticians indicate that such proportions are seldom normally distributed and recommenda
number of possible transformations to better represent such data (Cohen & Cohen, 1975,
p. 254-259). Even so, the interpretability of such data is limited.

More generally, in any hypermedia environment, there are likely to be a great many data
points which 4re in some way conditioned on the student's experiences previously encountered in
the lesson. It is imperative the researcher not jump too quickly to aggregate such data without first
carefully examining the range of experiences the student traversed earlier in the lesson. The old
saw "garbage in - garbage out" definitely applies here.

Data organization and format. Audit trail data generated by routines such as the one
presented in this paper do not readily conform to the usual data input requirements of statistical
programs. Indeed, only the most powerful of such programs (e.g., SPSS) are able to take as input
almost any kind of form of data. Even so, such data may still need to be "cleaned up" prior to
analysis. Such mundane features as commas and quotation marks need to be in the proper format
for input into the statistical program. For example, the sample audit trail presented earlier in this
paper would need to be somewhat modified prior to statistical analysis using SPSS. The string
variables and the embedded quotation marks would need to be brought into conformity with the
requirements of the program's data input routines.

It is very likely that the statistical analyst will need to employ other routines, as well, (such
as SPSS's INPUT PROGRAM, END INPUi PROGRAM routines) to rearrange the input data to
a more acceptable format.

Williams & Dodge, 1993

'CI

Tracking & Analyzing...

1123
Page 9

Some analysis techniques and problems. Of course, the particular statistical routines
employed will be a function of the research questions asked by the investigator. However, given
the wealth of data collected, a number of statistical techniques (in addition to the usual MANOVAs
and repeated-measures analyses) become available and attractive due to the existence for each
sivdent of a rich data "stream":

...multi-way contingency table analysis: related to the problem of contingent data
mentioned earlier, the investigator might wish to create for or/. learner a contingency
table of, say, choices given opportunities; these tables can themselves are able to be
analyzed across the entire sample.
...the continuous supply of data from tne student over time might offer researchers
chances to look for trend patterns over time. Techniques such as time series and non-
linear regression might be useful statistical techniques for such analyses.
...occasionally, researchers are interested in classifying students by "type" or "style."
The idea is to see if students tend to cluster into meaningful groups based upon their
online tendencies collected in the audit trail. While fairly unused in educational circles,
a number of statistical profiling and clustering routines exist to help this sorting task
(e.g., Hartigan, 1975).

Typical problems encountered during such analysis include, for example, choosing the
proper unit of analysis (learner? Or where more than one student sits at a single keyboard, should
the computer be the correct unit of analysis?), and determining whether a within-subjects design is
appropriate and desired, and if so, choosing the proper design and error terms in the model.

Measurement Error

As with any data collection system, errors can occur in the measures which limit the
reliability and interpretability of the information gathered. Although in a computer-based data
collection system the measurement errors are not of the type we usually think of when humans
collect and record data (data entry mistakes, lack of double checking, etc.), there are still a number
of quality control issues which must addressed in order to have confidence in the data. Some of
these potential problems are of concern in all measurement settings; others should be considered
mainly when preserving non-aggregated data for qualitative analysis purposes; still others are of
primary concern when statistical analysis is to be applied to aggregated audit trail data. (In fact, it
is curious to note that what could be labeled a source of measurement error when analyzing
aggregated data can often be pinpointed when looking at the same data in its original non-
aggregated form, that is, by examining each student's audit trail individually.)

General measurement concerns:

General disruptions. Sometimes students kick out a power plug in the middle of a lesson,
or a student receives a bad disk which crashes abruptly, or fire alarms sound. The
investigator must decide how much incomplete data can be tolerated, and whether the
disruption tainted the data collection so as to be invalid or otherwise unusable.

Accidents and carelessness. Students occasionally press the key they did not want.
Sometimes they realize their mistake; sometimes they don't. How the computer can
provide a means for the student to check and/or modify their answer without being overly
intrusive to the overall flow the lesson is a common challenge to researchers.

Offline behaviors: Here the investigator is interested in what the student is doing with the
computer besides pressing keys. For example, are students talking with each other or
looking on each other's screens? Are students referring to job-aids, workbooks, or other
offline materials? How interested do the students look? What is the nature of the

Williams & Dodge, 1993

11
Tracking & Analyzing...

1124
Page 10

interactions between students when working cooperatively? Most often, such offline
behaviors are most validly assessed with unobtrusive video or audiotape, but can be
assessed with live observers, as well. These types of data can be examined with traditional
statistical techniques (e.g., Webb, 1984) or might be treated qualitatively.

jvleasurement concerriE when analyzing aggrepined data

Awkward means of responding. If the student is unclear what to do to indicate their
response or if it is awkward for them to do so, students might end up making many
unintended mistakes or even giving up. Multipleor non-standard keystrokes required to
make a simple choice, poorly labeled screen "buttons" or bad screen design distract
students from the matter at hand to focus instead on just making the computer work
correctly. Although awkward response mechanisms presents a source of measurement
error when data are to be analyzed in aggregate, identifying such responses in specific, that
is, non-aggregated audit trails might be of prime interest during a formative evaluation.

Student disinterest. Otherwise known as, "I just want to get through this damn computer
lesson as fast as possible..." Students might want to just hit any key to get through the
lesson because they just don't care what happens. The investigatorwho unquestioningly
trusts all data from the computer risks drawing unwarranted inferences about the data
(Damarin & Damarin, 1983). Again, such a source of measurement error can often be
readily identified when the data are examined on an individual, non-aggregated basis.

Question intrusiveness. This is a thorny issue common to many educational studies. The
investigator should be aware that the very act of collecting data might alter the phenomenon
being studied. Occasionally, researchers will insert into a computer lesson so many non-
critical questions (options, opinions, confirmations, confidences, etc.) that the lesson gets
exhausting to go through. The students are in danger of feeling like, "Let's just get ON
with it!" This intrusiveness is particularly evident in later stages of the lesson, as the
student gets more and more irritated with having to answer seemingly irrelevant questions.
Identification of this phenomenon, too, might best occur when examining individual audit
trails, perhaps through the "playback" technique presented earlier.

Measurement concerns when analyzing individual. non-aggregated data

Individual differences in learners. Say the investigator wants to look at time spent on the
lesson and collects such data online. Such factors as the learner's typical reading speed or
physical coordination level (i.e., their motor skills for handling the input devices) have the
potential to provide false information about the time-on-task the typical student might take.
Additionally, some students have more familiarity with computers (keyboards, cursors,
control keys, etc.) than others. When analyzing aggregate data, these effects can be
considered random, but when looking qualitatively at individual, non-aggregated data the
investigator should be aware of the possibility that these individual differences might
confound or dilute interpretation of the data. That is, it may be difficult to draw any valid
conclusions about the performance of a lesson from only looking at a few students.

Summary

A method for collecting "audit trails" of data generatedby students as they proceed through
computer-based instruction was presented and discussed. Specific HyperCard routines were
delineated which completely capture the student's online experience, and are able to "playback" the
responses to the investigator.

Williams & Dodge, 1993

12
Tracking & Analyzing...

1125
Page 11

Additionally, data analysis issues surrounding the use of audit trails were presented. The
purposes of aggregating or not aggregating such data were compared, some statistical concerns
were offered, and measurement issues potentially affecting the interpretability of the collected data
were reviewed.

In general, it is expected that techniques and issues presented in this paper will go a long
way to improving our understanding of how students experience computer-based instruction, and
how we might improve our instructional designs to reflect these human factors.

Williams & Dodge, 1993

13
Tracking & Analyzing... Page 12

1126

Appendix: Scripts

All of the handlers that follow are to be installed in the stack script of the stack to be audited.
Comments are included in each to make them self-documenting.

on openStack
Start Trail

end openStack

on Start Trail

-- This handler sets up a global variable called Trail.
-- It begins with a header with bullets to indicate the

stan of a new play of the stack, followed by a line
showing the starting time and date.

-- The third line is left blank, but stacks can be scripted
to put the user's name, experimental condition, or other

-- data here.

global startTime,trail,event,lastEventTime
put "" & return into nail
put "Stack opened at' && the long time after trail
put on* && the long date & return after trail
set numberFormat to '0.00"
put the ticks/60 into stanTime
put 0 into event
put startTime into laitEventTime

end StanTrail

on closeStack
SaveTrailFile

end closeStack

on SaveTrailFile
-- This writes the Trail global variable to disk

-- End the trail global with closing time and elapsed time

global startTime,trail
put the ticks/60 into endTime
set numberFormat to "0.00"
put return & "Stack closed at" && the long time & return after trail
put "Total elapsed time =" && endTime - stanTime && "seconds' & return after trail
put "CIS2CIQQQ" & reum after trail

The next line specifies the volume and name of the trail file.
-- By default, "TrailFile" will be created in the same folder
-- as HyperCard itself. If you wanted to put it somewhere else
-- you would put the full pathnarne into the variable TrailFile.
-- For example, put "CirrusSys:Data:TrailFile" into TrailFde

would define TrailFile as a file called TrailFile'
in a folder called 'Data' on a drive named 'CirrusSys'

put "TrailFile into TrailFile

-- Next, read to the end of the trail file, if it exists, so
that this latest trail will be appended to it. If there is
no trail file, this line creates one.

open file TrailFile
repeat
read from file TrailFile for 16384
if it is empty then exit repeat

end repeat
write trail to file TrailFile
close file TrailFile

end SaveTrailFile

Williams & Dodge, 1993
14

Tracking & Analyzing...

1127
Page 14

on AddToTrail input

This handler stores data about mouseclicks in a line in a
global called Trail along with the time at which they occurred
and the target of the mouseclick.
Item 1 = the event number, starting with I
Item 2 = the total elapsed time in seconds since the stack opened
Item 3 = the target of the mouseclick (a field, button or card)
Item 4 = the name of the card
Item 5 = the elapsed time :dace the last mouseclick
Item 6 & 7 = the coordinates of the mouseclick
Item 8 & 9 = the coordinates where the mouse button was released
Item 10 = Non-click events such as pulling down menus or

user input to a field. This is a parameter passed
when necessary. See the domenu handler, for example.

global startTime,uail,evenklastEventTime,DontAddToTrail
out the ticks/60 into nowTime
if DontAddToTrail = true then exit AddToTrail
add 1 to event
put event + 3 into trailLine
put trunc(event) into item 1 of line trailLine of trail
set numberFormat to "0.00'
put nowTime - startTime into item 2 of line trailLine of trail
put the short name of this card into item 3 of line trailline of trail
put the name of the target into item 4 of line trailLine of trail
put noWlime - lastEventTime into item 5 of line trailLine of trail
put the clickloc intoltem 6 to 7 of line trailLine of trail
put the mouseloc into item 8 to 9 of line trailline of trail
put input into item 10 of line trailLine of trail
put nourrime into lastEventTime

end AddToTrail

on domenu x
AddToTrail "Menu item:" && a
pass domenu

end domenu

on Shovarail

-- This handler creates a representation of the usage patterns
-- of a stack. It parses a trail file containing data from
-- one or more nuts of a stack and marks the location of

every mouseclick on each card.
To execute this handler, call up the message box,
type "ShoWTrail", and press the return key.
This should be done on a COPY of the stack.
The first section creates a new button named Breadcrumb
in the form of a small shadowed circle.

global DontAddToTrail
put true into DontAddToTratl
domenu new button
get the id of cd btn "New Button'
put it into x
set the showName of cd btn id x to false
set the name of cd btn id x to "Breadcrumb"
set the rect of cd bti id x to 100,100,112,112
select cd btn id x

domenu "Cut Button"

Next we locate the file that captured the trail

answer file 'Where is the trail file?"
if it is not empty then
put it into Trailne

else
choose browse tool
put false into DontAddToTrail
exit Show/Frail

end if .
open file TrailFile
put "0 into TheLine
set lockmessages to true

Williams & Dodge, 1993

15

Tracking & Analyzing... Page 15

1128

Next, we go din each line of the Trail File, looking
for lines representing mouseclicks

repeat until theLine is empty
read from file Trailfile until return

put it into theLine

If it's one of the lines with date, "0, etc., skip it.

if the number of items in theLine < 9 then next repeat

Go to the card where the event occurred

put item 3 of theLine into theCard
if word 2 of theCard = "id' then
do 'go" && theCard

else
do "go card" && quote & theCard & quote

end if

Find the location of the mousecfick, ignoring pull down
menus and inputs into a field, and paste the Breadcrumb

put item 6 to 7 of theLine into theLocation
put item 10 of theLine into nonClick
if nonClick contains "Menu item:" or nonClick contains "Input:" then

next repeat
else
domenu 'Paste Button"
put the number of cd btu into x
set the loc of cd ben x to theLocation

end if

end repeat

Now tidy things up

close file TrailFile
choose browse tool
put false into DontAddToTrail
play harpsichord

end shovarail

Williams & Dodge, 1993

16

Tracking & Analyzing... Page 16

1129

