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Abstract

Current omnibus procedures for the analysis of interaction effects in repeated

measures designs which contain a grouping variable are known to be nonrobust

to violations of multisample sphericity, particularly when group sizes are

unequal. An alternative approach is to formulate a comprehensive set of

contrasts on the data which probe the specific nature of the interaction. Six

interaction contrast procedures 7,re compared via Monte Carlo methods. Two

test statistics are considered, one relying on a estimate of the standard error of

the contrast formed by pooling across levels of the groups and trials factors,

-nd the other employing a nonpooled estimate based on only that data used in

defining a contrast. A Scheffe, Studentized maximum modulus, and Hochberg

step-up Bonferroni critical value are paired with each statistic. Only the

Studentized maximum modulus and Hochberg nonpooled procedures provided

acceptable rates of familywise Type I error control under departures from

multisample sphericity when the data was nonnormal.
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Interaction Contrasts in Repeated Measures Designs

A common experimental design in the fields of education and

psychology is one in which successive measurements are obtained from the

same subjects under each of K treatments. Frequently a grouping factor is

employed in the design, so that n; subjects in J independent groups (En; = N)

are exposed to all levels of the within-subjects variable. The observations NA,

i = 1 ,..., j = 1 ,..., J; k = 1 K are assumed to be independent,

normal, and identically distributed within each level j of the grouping factor,

with common mean vector pi and covariance matrix

It is well known that unless the data from such a groups by trials

design satisfy certain parametric conditions the ANOVA F-test will produce

invalid results for tests of hypotheses on the within-subjects trials and

interaction effects. Specifically, it is assumed that a set of orthononnalized

contrasts on the K trials exhibit a common variance. This assumption is

known as sphericity or circularity (Huynh & Feldt, 1970). Furthermore, this

variance must be coustant across all levels of the between-subjects factor.

Jointly, these assumptions are referred to as multiaample sphericity (Huynh,

1978).

4
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Recent evidence suggests that educational and psychological research

will rarely, if ever, conform to the multisample sphericity assumption (Green

& Barcikowski, 1992). Consequently, it is recommended that researchers

adopt either an adjusted degrees of freedom (df) univariate F-test or a

multivariate test for examining the trials main effect.

However, no such recommendations are forthcoming from the literature

with respect to the interaction effect. Recent research conducted by Belli

(1988) and Keselman and Keselman (1990) indicates that tlIese univariate and

multivariate procedures are sensitive to violations of multisample sphericity,

particularly when group sizes are unequal. Both studies found that in

situations where there was a positive relationship between group sizes and

covariance matrices, in which the group with the largest sample size also

exhibited a covariance matrix with the largest element values, the statistical

tests produced empirical Type I error rates which were less than the nominal

level of significance, a. Furthermore, this conservatism increased as the

degree of group size inequality and/or covariance matrix heterogeneity

increased for these positive pairings. In the case of a negative pairing, where

the group with the largest sample size also exhibited a covariance matrix with

the smallest element values, the empirical Type I error rates were excessively

5
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large, attaining values as high as .40 for a nominal a of .05. As well, the

liberalness of these statistical procedures hicreased as the degree of group size

inequality and/or covariance heterogeneity increased.

At present then, there are neither valid nor robust parametric tests of

the interaction effect in mixed designs when the data do not conform to the

assumption of multisample sphericity and the design is unbalanced. This

represents a significant gap in methods available for the analysis of mixed

designs, as researchers are typically most interested in testing for the presence

of an interaction effect. The use of existing univariate and multivariate

methods may lead researchers to draw unreliable, and even erroneous

conclusions about their data.

The purpose of this study was to examine, via Monte Carlo methods,

alternatives to existing parametric tests of the interaction effect in mixed

repeated measures designs, in order to identify procedures which may be

robust to departures from multisample sphericity in unbalanced designs.

Defmition of Test Statistics

Two techniques frequently adopted for examining interaction effects are

simple main effect tests and tetrad contrasts. The latter are considered to be a

better choice for two reasons: (a) the null hypothesis under consideration for a
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particular contrast is consistent with that of an omnibus test of the interaction

effect (Boik, 1975; Marascuilo & Levin, 1970), and (b) tetrad contrasts may

provide the researcher with specific information regarding the combinations of

factor levels which contribute to the interaction effect (Gabriel, Putter, &

Wax, 1973).

A tetrad contrast is defmed as

= (ljk ) (/ )
(1)

where j j', k k', and Fp, is estimated by X, the jkth sample mean. In

other words, a tetrad contrast involves testing for the presence of an

interaction between rows and columns in a 2 x 2 submatrix of the J x K data

matrix. Given the likelihood of an incorrect conclusion regarding an omnibus

test of the interaction in mixed designs, one may address specific interaction

questions by adopting a data analysis strategy of bypassing the omnibus test in

favour of conducting all possible tetrad contrasts.

Two choices of a test statistic exist for performing these interaction

contrasts in the mixed design. One statistic employs an estimate of the

standard error of the contrast formed using MS Kxsn, the error mean square for

the omnibus F-test of the interaction. The test statistic is

7
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(2)

which follows Student's t distribution with df v = (K 1)(N .1). However, if

multisample sphericity is not present in the data, the error term for this

statistic, which involves pooling over both the within-subjects and between-

subjects factors, will produce a biased estimate of the standard error of the

contrast.

An alternate statistic employs a standard error derived only from that

data used in forming the contrast and is defined as

t
(X;_, Xik,) (Xj,k Xj,k,)

C CT C
4-

n. ni,

(3)

where Si is the sample covariance matrix for the jth group, and c is a K x 1

vector of coefficients which contrasts the kth and klh levels of the within-

subjects factor. In other words, the standard error of the tetrad contrast is

formed using only four cells of the J x K data matrix. The nonpooled statistic

does not follow a t distribution, but can be approximated by Student's t with

Satterthwaite (1946) estimated df
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(4)

Keselman, Keselman, and Shaffer (1991) examined the robustaess of

four simultaneous procedures for pairwise contrasts on repeated measures

means in a mixed design when the multisample sphericity assumption was

violated and group sizes were unequal. The procedures all relied on a test

statistic which employed a nonpooled error term [i.e. equation (3)], but

utilized different critical values. The authors demonstrated that the probability

of committing one or more Type I errors, otherwise known as the familywise

error rate (FWR), could be controlled for pairwise contrasts when this test

statistic was used in combination with either a Bonferroni, Studentized range,

or Studentized maximum modulus critical value.

To limit the FWR for the set of all possible tetrad contrasts, Marascuilo

and Levin (1970) suggest adopting a Scheffe (1953) critical value (CV),

v1F[a; v, v2i, where v1 = (J - 1)(K - 1) and v2 is the error df. However,

given that Scheffe's method is likely to produce conservative results, Gabriel

et al. (1973) recommend a Bonferroni CV (Dunn, 1961), t[a/(2C); v2], where

9
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C = J*Ks, J* = J(J - 1)12, and K* = K(K 1)12. Furthermore, Hochberg and

Tamhane (1987, p. 299) suggest that a Studentized maximum modulus CV,

M[a; C, vz], is more likely to maintain the FWR at its upper bound than a

Bonferroni CV.

An alternative to adopting one of thes: simultaneous multiple

comparison procedures (MCPs), is to select a stepwise procedure. Hochberg

(1988) developed a step-up procedure which is based on the Bonferroni

inequality, and hence can provide control of the FWR. However, since a

different CV is used at each stage of hypothesis testing, Hochberg's method

may provide greater power to detect treatment effects than the Dunn-

Bonferroni method.

Hochberg's (1988) procedure is also an attractive choice because it is

one of the simpler stepwise procedures available. Under this method, one

begins by rank ordering the p-values corresponding to the statistics used for

testing the hypotheses H(1) ,..., }In (i.e. = 0), so that

p(1) pc2) ... p(c.) represent the ordered p-values. Testing begins with

the hypothesis corresponding to the largest p-value, p(c). If p(c) 5 a, all C

hypotheses are rejected; if not, H(c) is retained and testing moves to H(.1). If

p(c.1) 5 a/2, 11((4) is rejected, as are all remaining hypotheses; if not H(0.1) is

1 0
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also retained, and p(c_2) is compared to a13, and so on. This continues, if all

previous hypotheses have been retained, until pm is compared to a/C.

In summary, six procedures were selected to investigate the viability of

conducting tetrad contrasts in mixed designs. Since no information currently

exists comparing the behaviour of a test statistic employing a pooled error

term [equation (2)] versus one which is based on a nonpooled error term

[equation (3)] under violations of multisample sphericity, both were utilized in

1 the current study. The pooled and nonpooled statistics were considered in

combination with either a Scheffe, Studentized maximum modulus, or

Hochberg step-up Bonferroni CV. Although a Scheffe CV will he larger than

either of the other two CVs, this method was selected in case the other two

procedures could not limit the number of Type I errors under violations of the

multisample sphericity assumption. Furthermore, Jaccard, Becker, and Wood

(1984) found that psychologists often adopt Scheffe's method for pairwise

comparisons of means. Thus, it was considered desirable to determine if this

is an acceptable choice for conducting interaction contrasts. Finally,

Hochberg's (1988) procedure was selected instead of the Dunn-Bonferroni

method for the reasons previously enumerated.

1 i
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Monte Carlo Study

Although some results could be obtained analytically, the complexity

and number of conditions to be considered necessitated a Monte Carlo study.

The six procedures for testing interaction hypotheses were compared for a two-

way mixed design containing a single between-subjects grouping factor and a

single within-subjects factor. The number of levels of the between-subjects

factor was held constant at three across all conditions. Total samr:e size was

fixed at 30.

Seven variables were manipulated to investigate the behaviour of the

selected statistical procedures. These were: (a) the number of levels of the

within-subjects factor, (b) the sphericity pattern, (c) equality/inequality of the

between-subjects covariance matrices, (d) group size equality/inequality, (e)

the nature of the pairings of unequal covariance matrices and unequal group

sizes, (f) population shape, and (h) the nature of the null hypothesis.

Keselman and Keselman (1990) found that the adjusted df univariate

and multivariate procedures for interaction tests in mixed designs were more

sensitive to violations of multisample sphericity as the number of levels of the

within-subjects factor increased. Hence, the six procedures were studied when

the number of within-subjects levels was set at four and eight.
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Box's (1954) correction factor, e, was used to quantify the degree of

departure from the assumption of sphericity. When sphericity is satisfied, E

attains a value of one. With increasing departures from sphericity, e decreases

in value to a minimum of 1/(K - 1). Without loss of generality, a covariance

matrix formed by pooling across levels of the between-subjects factor

contained element values of ten and five on the diagonal and off-diagonal

respectively when sphericity was satisfied (e = 1.00). Matrices with e values

of .75 and .40 were chosen to represent nonspherical conditions. The

elements of these pooled covariance matrices were chosen such that the

average variance and covariance were equal to ten and five respectively, in

order to achieve comparability across the simulation conditions. The pooled

matrices for the K = 4 and K = 8 conditions are contained in Tables 1 and 2

respectively.

Insert Tables 1 and 2 about here

The effects of heterogeneity of between-subjects level covariance

matrices was investigated by creating two sets of matrices. For one set, a

given element in a particular between-subjects level matrix was equal to the
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corresponding element in each of the other two matrices, so that the elements

of the matrices were in a 1:1:1 ratio. For the second set, corresponding

elements in the between-subjects level covariance matrices were not equal to

one another. Each element in the j = 2 covariance matrix was three times

that of the j = 1 matrix and each element in the j = 3 matrix was five times

that of the j = 1 matrix. Thus the elements in these between-subjects

covariance matrices were in a 1:3:5 ratio.

The six procedures were investigated when the number of observations

per between-subjects level were equal or unequal. When sample sizes were

equal, there were ten observations per group. Two cases of group size

imbalance were considered: nj = 8, 10, 12 and nj = 6, 10, 14. The

coefficient of group size variation is .163 for the former condition, and .327

for the latter.

For those conditions involving both unequal group sizes and unequal

covariance matrices, both positive and negative pairings of these group sizes

and covariance matrices were investigated. In the former case, the largest

was associated with the covariance matrix containing the largest element

values; while in the latter, the largest 'I; was associated with the covariance

matrix containing the smallest element values.

1 4
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To summarize, six pairings of covariance matrices and group sizes

were investigated: (a) equal ni; equal ;, (b) equal nj, unequal ;, (c/c')

unequal ni; unequal ; (positively paired), and (d,d') unequal nj, unequal ;

(negatively paired). The cVd` conditions denotes the more disparate r tequal

group sizes case, while the c/d conditions designates the less disparate unequal

group sizes case.

.Micceri (1989) investigated the distributional properties of 440

educational and psychological data sets, and found that few could be

characterized as following a normal distribution. Thus, it was deemed

important to examine the operating characteristics of the selected procedures

when the underlying population distribution was normal and nonnormal. For

the normal distribution, pseudorandom observation vectors

[Xij1 Xij2 y XV] with mean vector Ff. = ru r-j2 Aid and

covariance matrix ; were generated using the International Mathematical and

Statistical Library (IMSL) subroutine GGNSM (IMSL, 1989).

Sawilowsky and Blair (1992) investigated the robustness of Student's t-

statistic, for both independent and correlated samples, using eight nonnormal

distributions identified by Micceri (1989) as representative of those found in

educational and psychological data. They found that the Type I error rates for
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the t-statistics were affected only under conditions of extreme skewness, that is

when -yi 1.64. Therefore, the nonnormal data for the current study were

obtained from a x2 distribution with 3 df, for which 71 = 1.63 and 72 -= 4.00.

The IMSL subroutine GGCHS (IMSL, 1989) was used to generate deviates

following a univariate x2 distribution, which were then standardized to have a

mean of 0 and a variance of 1. The corresponding multivariate observations

were obtained by a triangular decomposition of ; [often referred to as the

Cholesky factorization or the square root method (Hannan, 1976)], that is,

Xij = + L Zij , (5)

where L is a lower triangular matrix satisfying the equality ; = LLT and Zu

is an K x 1 vector of x2 variates.

Finally, empirical familywise Type I error rates for the six procedures

were obtained under a complete null hypothesis, when all of the p.;,:s were

equal, and under a partial null hypothesis, when not all ILA's were equal. The

familywise error rate was defmed as the probability that at least one tetrad

contrast was statistically significant when the corresponding population contrast

was null. Seaman, Levin, and Serlin (1991) investigated the FWRs for a

number of independent sample MCPs procedures, and found that the error

rates were generally lower under a partial null than under a complete null

1 6
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hypothesis. Keselman (1993) reported similar findings for repeated measures

mean comparisons in a mixed design. Since a researcher can never know the

nature of the null hypothesis under investigation for a given set of data, it is

advisable to select a procedure which can maintain the FWR close to its upper

bound across all population mean configurations.

Five thousand replications of each condition were performed using a

.05 significance level.

Results

In discussing the results of the Monte Carlo study, Bradley's (1978)

liberal criterion will be used to help identify robust tetrad contrast procedures.

According to this criterion, a test may be considered robust if its empirical

Type I error rate (&) falls within the range .5a 5 te 5 1.5a. Hence, for the

.05 significance level selected for this zaidy, a robust procedure is defined as

one having an empirical familywise Type I error rate between .025 and .075.

The Type I error rates for the six procedures under a complete null

hypothesis are reported in Tables 3 through 6. Those values which do not

satisfy Bradley's (1978) criterion are marked with an asterisk (*). Herein, the

Scheffe, Hochberg, and Studentized maximum modulus pooled and nonpooled

7
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procedures will respectively be refeued as the SP, SNP, HP, IINP, MP,

and MNP procedures.

Insert Tables 3 and 4 about here

Tables 3 and 4 contain the results for the six procedures when the

number of levels of the within-subjects factor was set at four. The results for

the normal data found in Table 3, reveal that those procedures schich utilized a

test statistic based on a pooled estimated of error variance for a contrast (i.e.

SP, HP, and MP) could not control the rate of Type I errors under violations

of the multisample sphericity assumption. This finding holds for balanced

(conditions a and b), as well as unbalanced designs (conditions c, c', d, and

d'), with the discrepancy between the nominal and empirical values being

greatest for unbalanced designs. Both the HP and MP procedures were very

liberal under extreme departures from sphericity ( = .40), attaining Type I

error rates as high as .24.

The error rates for those procedures which employed a nonpooled

estimate of error variance in estimating the standard error of a contrast (i.e.

SNP, HNP, and MNP) were never liberal. The empirical values for the

1
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Studentized maximum modulus procedure were consistently larger than those

obtained for the Hochberg procedure. However, both procedures occasionally

resulted in conservative values, most notably when unequal covariance

matrices were positively paired with unequal sample sizes (conditions c and

c'). On the other hand the error rates for the Scheffe nonpooled procedure,

with few exceptions, were conservative.

.The results for the nonnormal data, contained in Table 4, reveal

generally lower Type I error rates for all six procedures, as compared to the

values obtained for normal data when K = 4. The pooled procedures

produced similar results for nonnonnal and normal data, and hence will not be

considered further. In terms of the nonpooled procedures, the SNP values were

conservative for all 18 of the conditions investigated. The IMP and MNP

procedures provided Type I error control for E > .40. Under extreme

departures from sphericity (e = .40) both procedures were largely

conservative, only exceeding the lower bound of Bradley's (1978) criterion for

negative pairings of sample sizes and covariance matrices. The minimum

values attained by the IINP and MNP procedures under norliormality were

.0132 and .0158 respectively.

S
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Insert Tables 5 and 6 about here

The K = 8 results for the six tetrad contrast procedures are contained

in Tables 5 and 6. Consistent with the Table 3 results, none of the pooled

procedures could control the Type I error rate under violations of sphericity

the data was sampled from a normal distribution. Moreover, the empirical

values were more extreme than those obtained when there were four levels of

the repeated measures factor.

The SNP procedure was very conservative under all of the conditions

investigated for normal data, with a mean FWR of .0045. For the most part,

the IINP and MNP procedures provided good Type I error control when the

repeated measures factor had eight levels. However, the latter wls liberal for

all values of e when the more disparate gruup sizes were negatively paired

with unequal covariance matrices (condition d'), attaining a maximum value of

.1056. The empirical FWR for the HNP procedure was only slightly greater

than the upper bound of Bradley's (1978) criterion when e = 1.0 for this same

negative pairing condition (i.e. a = .0756).

20
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The Type I error rates for the six procedures were generally lower for

nonnormal data than for normal data when K = 8, consistent with the fmdings

for K = 4. The MNP procedure was slightly liberal for negative pairings of

the more disparate group sizes and unequal covariance matrices when e < 1.0,

attaining a maximum value of .0810, but otherwise provided good FWR

control. The HNP procedure was slightly conservative for all values of A

when the design was balanced and covariance matrices were equal, and for

positive pairings of unequal group sizes and unequal covariance matrices.

The minimum HNP value obtained was .0200.

By comparing the results found in Tables 3 and 4 to those in Tables 5

and 6 it is apparent that the farnilywise Type I error rates for both the IMP

and MNP procedures increased as the number of levels of the within-subjects

factor increased from four to eight. For normal data, the average values were

.0362 and .0419 respectively for the HNP and MNP procedures when K = 4,

and rose to .0417 and .0571 for K = 8. For the nonnormal data, the

corresponding values were .0300 and .0353 when K = 4, and .0315 and

.0436 for K = 8.

The data obtained for the six tetrad contrast procedures under a partial

null hypothesis has not been tabled, since the empirical Type I error rates for

21
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the Hochberg and Studentized maximum modulus nonpooled procedures were

consistently lower than the .05 level of significance. As expected, and

consistent with previous fmdings for partial null hypotheses (Keselman, 1993,

Seaman et aL , 1991), the error rates were generally either less than the lower

bound of Bradley's (1978) criterion, or approached it in value. However, in

contrast with the fmdings for the complete null hypothesis, the IINP values

were marginally larger than the MNP values across several conditions, for

both normal and nonnormal data when K = 4. This pattern was not evident

when K = 8, for which the Studentized maximum modulus procedure always

produced larger Type I error rates than the Hochberg procedure.

Discussion

As anticipated, those procedures which employed a pooled estimate of

error variance could not control the FWR to a under departures from

multisample sphericity, particularly when the design was unbalanced. As well,

the procedure which relied on a nonpooled test statistic in combination with a

Scheffe critical value was predictably conservative. For the most part, tbe

nonpooled procedures which utilized either a Hochberg step-up Bonferroni or

Studentized IllaXiM11111 modulus critical value provided good control of the

familywise Type I error rate under violations of multisample sphericity in

,2
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unbalanced designs, even when the data came from a nonnormal distribution.

However, both of these procedures became quite conservative under the

combined effects of nonnormality, large departures from sphericity, and small

values of K. This was particularly evident when the configuration of the

population means was such that not all of the means were equal. Nonemetess,

under the majority of the conditions investigated these procedures provided

reasonably acceptable rates of familywise Type I error control, thereby

providing researchers with robust alternatives to omnibus tests of interaction

effects in mixed repeated measures designs.

23
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Table 1. Pooled covariance matrices for K = 4

18.0 8.0 6.0 4.0

8.0 5.0 4.0

E = .75 7.0 3.0

7.0

23.8 11.9 6.4 0.9

9.5 5.7 2.6

E = .40 3.9 2.5

2.8
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Table 2. Pooled covariance matrices for K = 8

28

18.0 8.0 7.0 7.0 6.0 5.0 5.0 5.0

12.0 8.0 7.0 6.0 5.0 5.0 2.0

10.0 6.0 6.0 5.0 5.0 2.0

E = .75 10.0 5.0 5.0 4.0 4.0

9.0 5.0 5.0 3.0

8.0 4.0 4.0

7.0 1.0

6.0

28.8 12.8 10.1 9.8 8.3 7.3 6.0 1.8

17.4 8.1 7.4 6.9 4.1 3.4 -1.0

9.9 7.7 6.5 5.7 3.4 1.4

E = .40 8.3 5.6 4.3 3.9 2.4

5.6 4.4 2.6 1.4

4.3 2.4 1.4

3.2 1.9

2.5
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Table 3. Empirical Percentages of Type I Error Under a Complete Null
Hypothesis for Six Interaction Contrast Procedures when K = 4 (Normal)

SP SNP HP HNP MP MNP

a .0076* .0130* .0368 .0380 .0382 .0432

b .0140* .0132* .0544 .0386 -0566 .0450

.0070* .0112* .0306 .0400 . 0310 .0464

1.0 d .0276 .0188* .0908* .0466 .0940* .0572

c' .0034* .0112* .0230* .0366 .0246* .0428

d' .0546 .0298 .1506* .0546 .1544* .0632

a .0242* .0112* .0710 .0380 .0720 .0422

.0362 .0158* .0942* .0454 .0968* .0532

.0182* .0120* .0580 .0342 .0594 .0408

.75 d .0576 .0194* .1278* .0462 .1316* .0522

c' .0120* .0110* .0364 .0364 .0372 .0416

d' .0730 .0308 .1662* .0524 .1704* .0628

a .0702 .0068* .1506* .0220* .1540* .0250

.0734 .0058* .1460* .0194* .1470* .0226*

.0540 .0072* .1098* .0228* .1124* .0252

.40 d .1110* .0138* .1900* .0280 .1924* .0308

c' .0402 .0064* .0828* .0202* .0850* .0216*

d' .1392* .0176* .2370* .0318 .2408* .0382

NOTE: SP = Scheffe, pooled error; SNP = Scheffe, nonpooled error;
HP = Hochberg, pooled error; HNP = Hochberg, nonpooled error;
MP = Studentized maximum modulus, pooled error; MNP = Studentized
maximum modulus, nonpooled error; a = pairings of equal covariance matrices
and equal sample sizes; b = pairings of unequal covariance matrices and equal
sample sizes; c/c' = positive pairings of unequar covariance matrices and unequal
group sizes [c: nj = 8, 10, 12; c': n = 6, 10, 14]; d/d' = negative pairings of
unequal covariance matrices and unequal group sizes [d: nj = 12, 10, 8; d': nj =
14, 10, 6]
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'fable 4. Empirical Percentages of Type I Error Under a Complete Null
Hypothesis for Six Interaction Contrast Procedures when K = 4 (Nonnormal x2)

SP SNP HP IINP MP MNP

E

a .0064* .0084* .0410 .0286 .0424 .0324

b .0126* .0098* .0518 .0316 .0552 .0368

c .0060* .0084* .0314 .0286 .0330 .0334

1.0 d .0246* .0174* .0826* .0412 .0848* .0494

c' .0026* .0074* .0152* .0288 .0156* .0336

d' .0522 .0240* .1404* .0474 .1442* .0586

a .0214* .0072* .0714 .0264 .0740 .0326

b .0284 .0092* .0786* .0274 .0810* .0326

c .0168* .0088* .0582 .0310 .0598 .0354

.75 d .0480 .0140* .1204* .0336 .1240* .0416
c' .0100* .0082* .0348 .0286 .0360 .0342

d' .0770* .0200* .1708* .0474 .1744* .0550

a .0610 .0050* .1310* .0132* .1344* .0158*

b .0696 .0068* .1418* .0202* .1450* .0234*

c .0516 .0058* .1084* .0184* .1112* .0208*

.40 d .1060* .0136* .1924* .0320 .1958* .0364
c' .0394 .0066* .0826* .0186* .0846* .0208*

d' .1378* .0200* .2278* .0362 .2314* .0426

NOTE: See Table 3 notes
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Table 5. Empirical Percentages of Type I Error Under a Complete Null
Hypothesis for Six Interaction Contrast Procedures when K = 8 (Normal)

SP SNP HP HNP MP MNP

a .0000* .0016* .0362 .0372 .0378 .0498
.0008* .0044* .0680 .0426 .0702 .0554
.0000* .0018* .0380 .0364 .0390 .0504

1.0 d .0026* .0030* .1154* .0474 .1180* .0722
c' .0002* .0020* .0200* .0352 .0206* .0486
d' .0074* .0136* .2078* .0756* .2110* .1056*

a .0016* .0010* .0656 .0354 .0670 .0476
.0042* .0030* .1014* .0458 .1028* .0610
.0010* .0014* .0536 .0328 .0546 .0468

.75 d .0076* .0054* .1450* .0470 .1478* .0668
c' .0004* .0012* .0370 .0362 .0378 .0476
d' .0228* .0120* .2132* .0688 .2180* .0974*

a .0160* .0012* .1678* .0290 .1702* .0364
.0278 .0008* .1754* .0324 .1778* .0432
.0130* .0014* .1230* .0278 .1246* .0368

.40 d .0418 .0040* .2346* .0392 .2366* .0528
c' .0106* .0010* .1024* .0270 .1044* .0346
d' .0706 .0106* .3076* .0550 .3114* .0754*

NOTE: See Table 3 notes
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Table 6. Empirical Percentages of Type I Error under a Complete Null Hypothesis
for Six Interaction Contrast Procedures when K = 8 (Nonnormal x2)

SP SNP HP HNP MP MNP

a .0006* .0004* .0384 .0200* .0398 .0288
b .0010* .0008* .0688 .0272 .0698 .0366

.0010* .0008* .0352 .0236* .0364 .0376
1.0 d .0040* .0018* .1198* .0416 .1232* .0570

c' .0004* .0006* .0242* .0214* .0248* .0310
d' .0138* .0070* .2078* .0500 .2138* .0730

a .0018* .0006* .0764* .0216* .0774* .0288

b .0024* .0008* .0954* .0292 .0978* .C398

c .0016* .0002* .0566 .0288 .0582 .0396
.75 d .0074* .0036* .1442* .0396 .1468* .0542

c' .0008* .0012* .0342 .0212* .0350 .0298
d' .0198* .0070* .2284* .0544 .2326* .0776*

a .0180* .0010* '.1652* .0206* .1678* .0268
b .0192* .0022* .1764* .0286 .1786* .0388
c .0132* .0018* .1328* .0228* .1352* .0294

.40 d .0362 .0042* .2364* .0398 .2396* .0508
c' .0054* .0014* .0914* .0168* .0928* .0250
d' .0662 .0106* .3082* .0606 .3118* .0810*

NOTE: See Table 3 notes
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