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ABSTRACT

Most of the multivariate statistical techniques rely
on the assumption of multivariate normality. The effects of
non—normality on multivariate tests are assumed to be negligible when
variance-covariance matrices and sample sizes are equal. Therefore,
in practice, investigators do not usually attempt to remove
non-normality. In this simulation study, the effects of non-normality
on skewed multivariate data in terms of power were examined by
manipulating the factors such as distribution, sample size, number of
variables, and variance—covariance matrix. The number of replications
was set to 500, and sample sizes of 10, 15, and 20 were used, with 2
sets of variables, and 2 variance-covariance matrices. The
multivariate Box—Cox transformation was applied to remove
non-normality. The power of multivariate analysis of variance
(MANOVA) was then calculated after the transformation. The results
were compared with the power calculated before The multivariate
Box—Cox transformation was applied. In conclusion, even when
variance-covariance matrices and sample sizes were equal, small to
moderate increases in power were observed. (Author/SLD)
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Abstract

Most of the multivariate statistical techniques rely on the assumption of
miltivariate normality. The effects of ncnnormality on multivariate tests are
assumed to be negligible when variance-covariance matrices and sample sizes
equal. Therefore, in practice, investigators usually do not attempt to remove
nonnormality.

In this simulation study, the effects of nonnormality on skewed
multivariate data in terms of power were examined by manipulating the factors
such as distribution, sample size, number of variables, and variance—-covariance
matrix. The multivariate Box-Cox transformation was applied to remove
nonnormality. ‘The power of MANOVA was then calculated after the transformation.
The results were compared with the power calculated before the multivariate Box-
Cox transformation applied. In conclusion, even variance—covariance matrices and

sample sizes were equal, small to moderate increases in power were observed.
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Introduction

Most of the univariate and multivariate statistical techniques assume
additivity, hamogeneity of variances, normality, and independence of
cbservations. 1In practice, it is difficult to attain all these assumptions
similtanecusly. Therefore, most investigators face the issue of assumption
violations in their research. To counter the issue, Tukey (1977) propased two
basic solutions to deal with possible violations of the first three assumptions:
(a) to employ a non-linear or linear transformation to data to meet the
assumptions, or (b) to develop a new statistical technique that fits data better.

The first option generally gets higher acceptance in practice because the
second option involves greater investment of time and effort. Therefore,
numerous transformation techniques have been extensively studied and reviewed by
several researchers for univariate cases (eg., Hoyle, 1973). Furthermore, the
effects of violations on normality, additivity, and hamogeneity of variances were
also investigated (e.g., Box, 1954; Tiku, 1971; Harwell, Rubinstein, Hayes &
0lds, 1992). Fortunately, the tests developed for univariate linear models are
quite robust to violations of assumptions in most of the cases (Glass, Peckman
& Sanders, 1972). However, the violations of assumptions in multivariate case
have not been studied as extensively as those in univariate case. Mardia (1971)
examined the effects of nonnormality on miltivariate regression tests and one-way
MANOVA. He concluded that when variance—covariance matrices and group sample
sizes were equal, the effects of nonnormality on miltivariate tests were
considerably negligible. However, Mardia (1971) did not investigate the
robustness of the multivariate general linear models in depth for different

distributional assumptions. Therefore, the effects of nonnormality on the




multivariate general linear models desexrve a further study.

The purpose of this similation study was to investigate the effectiveness
of the multivariate Box-Cox transfcrmation in normalizing the distribution of
miltivariate data and its effect on the power of MANOVA under various sample
sizes, number of variables, variance-covariance structures, and distributional
assumptions.

Theoretical Perspective

Box and Cox (1964) have suggested a family of transformation to normalize
cbeervations, to stabilize variance, and linearize the relationship between
dependent and independent variables in regression. The notable examples of this
family of transformations are (a) square-root transformation to stabilize
variance and to remove non-normality, (b) cube-ruct transfomﬁtion to remove
nonnormality, and (c) logarithmic transformation to stabilize variance and to
remove nonnormality.

Pox and Cox considered a family of transformations for 0"
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= logx if A=0
to similtanecusly satisfy all three assumptions. The coefficient A can be
estimated by using the maximum likelihood method. The maximm likelihood
estimate of A maximizes the likelihood function IL(A). Furthermore, to test
whether maximm likelihood estimate A is statistically equal to 1, that denctes

a normality, the following likelihood ratio test have been proposed:

17he gox-Cox power transIormation technique can also be used for both positive and negative numbers if
y(a)=(x-{)* is replaced for x*. The joint maximum likelihood estimates of { and 1 then will be estimated by
maximizing Likelihood function of ({,1).
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2{ Ly (M) =L (1)} < X7 4 (@)

where y*,(a) denote the upper 100a% point of ¥* with 1 degree of freedam. To
avoid the correlation effect between A and 6 where E(y(A))=X8, X is a vector of
cbservations of x's and 8 is an unknown parameter, Box and Cox (1982) later
modified the above transformation and proposed to use the following formula:
x-1
y(A) = —— if A#0
A0
= Xlog X if A=0
where % is a geametric mean of all abservations. Box, Hunter and Hunter (1978)
provided an example how to use the Box-Cox transformation for univariate case
with a graphical demonstration. Since it reguires an extensive calculations,
Hinkley (1977) and Emerson and Stoto (1982) suggested to estimate A by using
transformation plot for symmetrizing and straightening the relationship between
dependent and independent variables. Hines and Hines (1987) also presented a
chart tc calculate A approximately.

Andrews, Gnanadesikan and Warner(1973) and Hernandez and Jahnson (1980)
generalized the Box-Cox transformation to multivariate data and its significance
test for A=l or ().1,..,1p)=(1,..,1) where p is a number of variables. For each
given 4, the transformation can be defined as

ri_

Yi;(A) = if ;0

A
= loggx;; if A;=0

where i=1,..,n (r=number of dbservations), j=1,..,p (p=rumber of variables) and
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¥;;>0. The maximm likelihood estimate of A is calculated by maximizing

L(A) = (-n/2) log|2|+{2j=1'p(l.j—1)zm'nlogyij}

where ¥ can be replaced by its maximm likelihood estimate. The corresponding
significance test then is
2 (Lo (M) iy (1)} S 22 5(@) (1)
that is the same as univariate case except yx* distribution has p degrees of
freedam, where p corresponds to the num.er of variables. Rode and Chinchilli
(1988) suggested to use the Newton-Raphson iterative algorithm to cbtain the
maximm likelihood estimate of A.
Method

Data were generated from two independent populations with equal variance-
covariance matrices and sample sizes. However, their corresponding group mean
vectors were assumed to be different by a .50 (medium effect size) (Cohen, 1988)
such that p, ;,~Hajy=-50;; where 1 and 2 denoted group membership and i stood for
a variable i. Type I error rate was set tc 0.05 throughout the study. The number
of replications were limited to 500.

The following factors were manipulated:

(a) Three sample sizes were examined, ns=n,=10, 15, 20.

(b) Two sets of variables were employed, p=2‘ or p=3.

(c) Two variance-covariance matrices were specified:
Case 1. I,=E,=% where variables were uncorrelated, p;=0, isj, for all i and j.

Case 2. Z=%,=% where variables were correlated such that p,,=.60, p43=.55, and

p23=. 35.
(d) The following cambinations of distributions were specified:

Case 1. When p=2, variable 1 was highly skewed and moderately leptokurtic




(skemness=1.75 and Kkurtosis=4.00) and variable 2 was moderately skewed and
slightly leptokurtic (skewness=1.00 and kurtosis=1.00).

Case 2. When p=3, variable 1 and variable 2 were specified as in case 1. Variable
3 was highly skewed and highly leptokurtic (skewness=2.25 and kurtosis=6.50).

Multivariate nonnormal and skewed data were generated by using GENRAW2
(Joreskog and Sorbom, 1989) and ITMGNR (Kirisci, 1992) camputer programs. The
maximm likelihood estimates of A were cbtained by using a Fortran IV camputer
program written by the authors. The maximum likelihood estimate of A was
calculated 500 times for each cambination. The average value along with its
standard deviation score were presented. Furthermore, the significance level of
the likelihood ratio test statistic for normality (A=1, see equation 1) was
camputed and its average significance level was reported. Power and noncentrality
parameter for MANOVA were camputed by using SPSSX and their average scores vwere
presented. Power and noncentrality were calculated by utilizing the following
formilas (Morrison, 1976):

Power = 1-B(8%) = Pr(F'>Fy,0 ntenz-1y-pr1) 7
where F' is a noncentral F distribution and
Noncentrality parameter = &= (n,+n,) (44—k;) 'E"(u,—uz) .
where ©' is a inverse matrix of variance—covariance matrix Z.

Finally, chi-square probability plots of squared radii, that was proposed
by Andrew, Gnanadesikan and Warner (1971, 1973), were drawn by AXUM (TriMetrix,
1992). To draw a chi-square probability plot, Mahaloncbis distances (D;) were
calculated and ranked fram the smallest to the largest. Theoretical chi-square
scores were cbtained for each 100(j-.5)/n percentile from CHIDF (IMSL, 1989),
where n was a sample size and j varied between 1 and n. As a final step, points

(D;, 100(j-.5)/n)) were plotted in two-dimensional space. The plot suggests
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normality, if all points lie closer to a 45-degree straight line.
Results

In this simulation study, the effects of nonnormality on skewed
miltivariate data in terms of power were examined. The factors such as
distribution, sample size, and mumber of variables were manipulated in order to
decide whether normality assumption was crucial in MANOVA when the number of
abservations per variable ranged between m:<':.ate values. Since the variance-
covarience matrices and sanmple sizes were :ssumed equal throughout the study, we
anticipated that improvements in power after the transformation should be
relatively small, if MANOVA is robust to the violation of nonnormality
assumption.

According to the results summarized in Table 1, the multivariate Box-Cox
transformation had a notable effect on the power of the test as well as on the
noncentrality parameter. The smallest increase in power (.09%) was observed when
2 variables were correlated and the sample size was 15 for each group. The
highest increase (26.1%) was attained when 2 variables were uncorrelated and the

sample size was 20 for each group.

Please insert Table 1 here

To place a broader perspective the effects of the multivariate Box-Cox
transformation on the power of MANOVA, it may be useful to examine the maximumm
1ikelihood estimates of A. Correlated and uncorrelated cases should be examined
separately, since the maximm likelil.ood estimates can be affected if variables
are correlated. When the rnumber of variables was 2 and they were uncorrelated,

the first variable that was specified as highly skewed and moderately leptokurtic




took higher values than those of the second variable that was moderately skewed
and slightly leptokurtic. The maximum likelihood estimates corresponding to the
first variable suggested that, on the average, the maximum likelihood estimate
of A was .16. For the second variable, the values was closer to zero. In
practice, this may suggest that a logarithmic transformation was appropriate for
the second variable that was moderately skewed and slightly leptokurtic. The
results of the likelihood ratio test for normality and their average significance
level indicated that when sample sizes was 10, the transformation for normality
was successful (nonsignificant result) at .05 level. When sample size increased
from 10 to 20, the average significance level dropped to 0.0001. Since yx*-~test
are very sensitive to number of observations and outliers, this is ususally the
case in goodness-of-fit tests. When the number of variables were 3 and
uncorrelated, the maximum likelihood estimates of A were, on the average, 0.10
for the first variable, 0.20 for the second variable, and 0.56 for the third
variable that was highly skewed and highly leptokurtic. This suggested that to
remove nonnormality, A in Box~Cox transformation should be set to 0.10 for the
first variable, 0.20 for the second variable and 0.55 for the third variable
(square-root transformation). The average significance levels followed the same
pattern as before; it dropped from 0.0034 to 0.0000.

When the number of variables were 2 and correlated, the maximum likelihood
estimates of A corresponding to the first variable were closer to 0 that denoted
a logarithmic transformation . For the second variable, it was closer to 0.30,
a cube-root transformation was appropriate. The significance levels changed from
0.0281 to 0.0004. When the number of variables were 3, the maxirmum likelihood
estimates of A corresponding to the first variable suggested a square-root

transformation. The second variable was transformed to remove nonnormality




by setting A=1.17. The third variable required a logaritimic transformation.
The effects of Box-Cox tran: formation on multivariate data can be observed
by examining some of the selected chi-square probability plots that were
presented in Figure 1, Figure 2, and Figure 3. As can be noted, if multivariate
normality holds, all the points to be expected lie on the 45-degree straight
line. By considering that, it is possible to visualize the effects of the

miltivariate Box-Cox transformation on normality.

Please insert Figure 1, Figure 2 and Figure 3 here

Conclusion

In educational research and as well as in behavioral sciences,
investigators heavily rely on multivariate statistical techniques in amalyzing
miltivariate data with complex structures. Multivariate normality is one of the
key assumptions that underlies much of the classical multivariate statistical

techniques. Therefore, to meet this assumption gains greater importance in data
| analysis.

In this study, our attention focused on the violation of normality
assunption for miltivariate data and its effect on power. The multivariate Box-
Cox transformation technique was applied to nonnormal and skewed multivariate
data. Power and noncentrality parameter were calculated for MANOVA in order to
show the effects of the multivariate Box-Cox transformation. ILastly, a chi-
square probability plot of squared radii was employed to transform multivariate
data into unidimensional space to view how successful the multivariate Box-Cox
transformation technique in achieving normality.

Although the miltivariate Box-Cox transformation is laboriocus and time
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consuming, its drawbacks are only a small price to pay for the benefits that can
be obtained fram the information we gain. A camputerized literature survey of
articles in psychology and behavioral sciences since 1988 using PSYGHINFO,
produced by the American Psychological Association, shows that transformation of
miltivariate data for normality has almost never been employed in practice.
Instead, most researchers assume that under the assumptions of equal variance-
covariance matrices and of equal group sanple sizes, the violation of normality
has a small effect on the power of MANOVA. However, the results of this study
showed that even if two groups had same variance~covariance matrices and equal
sample sizes, small to moderate increases in power were abserved. Therefore, It
would be highly advisable to apply the multivariate Box-Cox transformation

technique to rmltivariate data to remove non-normality.
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Figure 1.
Chi-Squared Probability Plot of Squared Radii
Uncorrelated Variables, df=3, n=40
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Figure 2.
Chi—~Squared Probability Plot of Squared Radii
Correlated Variables, df=2, n=40
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Figure 3.
Chi—Squared Prcbability Plot of Squared Radii
Correlated Variables, df=3, n=40
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