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Abstract
This Monte-Carlo study compared modified Newton (NW), expectation-maximization
algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate

parameters of univariate mixtures of two components. Data sets were fixed at size 160 and
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manipulated by mean separation, variance ratio, component proporton, and non-normality.
Qur results indicate that NW is the poorest estimation procedure. EM is less sensitive to

different initial inputs and produced the lowest singularity rate. MD is most robust to non-

rermality and to incorrect model assumption of variance. In practice, MD is

recommended. The singularity problem is not severe enough to be a practical concem.

Kev Words: Cluster Analysis, EM Algorithm, Mixtures, Modified Newton.

1. Introduction

Mixture modeling is one of the non-hierarchical clustering approaches. It is usually
expressed as a superposition containing k components with a density functon, fy, and

proportion, T, i.€.
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where x is an independent observaron and 6( ) is a vector of parameters of subpopulation,

k. In this article, we discuss literature findings and issues regarding the application of the
model in section 2. The algorithms adopted and their background materials are provided in
section 3. Methodology of the simulation study is described in section 4. Results and

conclusions are presented in section 5. Finally section 6 presents discussion and suggests

implications for fuiure work.

2. Research Issues

Various methods have been developed and used to estimate the parameters of finite
mixture distributions, such as the method of moments by Pearson (1894), maximum
likelihood (ML) by Hasselblad (1966), fussy c-means i)arﬁdon by Davenport, Bezdek, and
Hathaway (1988), moment generating function by Quandt and Ramisey (1978), a least
square procedure by Fowlkes (1979), minimum distance method by Woodward, Parr,
Schucany, and Lindsey (1984), quasi-Baysian approach by Hamilton (1991). The
superiority of ML over the other methods for exploratory studies under normal
distributions with sufficient sampie sizes (say, 300) was confirmed by Day (1969), Tan
and Chang (1972), Fryer and Robertson (1972), Kumar, Kicklin and Paulson (1979),
Fowlkes (1979), and Woodward et. al. (1984). Within ML, the EM algorithm developed
by Dempster, Laird, and Rubin (1977) is preferred (Everitt, 1984) and has been
dominantly used as a representative method of ML in both practical and simulation studies.

Redner and Walker (1984) have given a regularity conditions that need to be satisfied in

order to have identifiable likelihood estimation for a muxture distribution as follows.
Condition 1: For the parameter matrix 6, the partial derivatives up to 3 orders,of /00;, d

%£/30;98;, and 3°f / 30 ;38 ;90 exist and are bounded.

Conditon 2: The Fisher information matrix I(0) is positive definite at the wue parameter

*
values, 6 .




According to Redner and Walker (1984), if conditions 1 and 2 are satisfied and any
sufficient small neighborhood of 8 is given, then with probability 1, there is, for all
sufficiently large sample size, N, a unique solution N of the likelihood equations in that
neighborhood, and this solution locally maximizes the log-likelihood function. Its
distribution is,

JN@©eN-6% ~ N 0,16%]) as N - =

2.1 The Problem of Siagularity

Although the maximum likelihood (ML) approach to mixture distributions has been
preferred since the advent of advanced computing equipment, the estimation procedure
contains a problem of singularity which tends to discourage the use of L. As one of the
variances tends to zero and . is set equal to ary observed value of x , convergence to a
singularity occurs. The likelihood function breaks down and becomes infixite at this point.
To avoid the problem of singularity, the assumption of homogeneity of variance/covariance
matrices between subpopulations can be assumed (Day, 1969). However, in empirical
studies, this assumption seems to be very restrictive. Some researchers have found that
with the heterogeneity assumption the problem of singularity does not occur under certain
conditions, such as large sample size and good initial values (Fryer and Robertson , 1972;
Hosmer, 1974), and well separated samples (Everitt, 1984).

On the other hand, Hathaway (1985, 1986) demonstrated that a constraint, such as
min(cy / 0p) 2 &> 0, imposed on standard deviations will eliminate all the singularites
caused by small numbers of observations and poor separation. Hathaway, Huggins, and
Bezdek (1984) , and Davenport, Bezdek, and Hathaway (1988) have reported improvement
using the constrained EM algorithm by comparing it with uncc istrained EM and other
algorithms. Hamilton (1991) proposed a quasi-Bayesian approach which covers maximum
likelihood estimation as a special case. The common characteristic of both methods is that

they need pricrs.
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Leytham (1984) pointed out that although there might be singularities in seeking a
maximum likelihood estimate from a mathematical point of view, it has been found that in
practice, they do not prasent serious difficulties. However, it is worth noting that the
studies reporting frequencies of singularity (such as Leytham, 1984, and Hamilton, 1991)
used true parameter values as initial starting points.

In order to find out whether researchers in empirical studies encountered the problem of
singularity and how they dealt with it, a literature search using CD-ROM databases of
Agricola, Eric, Life Science, Mathsci, Medline, Psychlic, and Sociofile was conducied.
Thirteen empirical studies were found from 1983 to 1990. All of them adopted maximum
likelihood approach. One of them did not specify which algorithm was used. Among the
other twelve, nine adopted EM algorithm developed by Dempster, Laird and Robin (1977),
two adopted Day's Newton method (1969), and one adopted quasi-Newton. It seems that
singularity has not appeared as a practical problem, but the fact that only published literature
is available could have suppressed the reporting of estimation difficulties. The percentage of
singularity in various kinds of data distributions under different algorithms with inaccurate

initial values is worth of investigating.

2.2 Assumption of Homoscedasticity

Because the assumption of homoscedasticity was first introduced to eliminate the
problem of singularity (Day, 1969), it seems unnecessary for researchers to continue to
require the assumption. Among the thirteen empirical studies mentioned in 1.4, seven
adopted a heteroscedastic model, four adopted a homoscedastic model and the other two
did not estimate variances. None of these studies mentioned the association of singularity
with model assumption of variance. However, the principal of model parsimony was
ignored when homoscedasticity could have represented a more parsimonious model.

Basford and McLachlan (1985) indicated ihat the adoption of a homoscedastic normal

modeli in the presence of some heteroscedasticity can considerably influence the likelihood
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estimates, in particular of the mixing proportions, tnus resulting in a higher rate of
misallocation. However, there is no study so far that has investigated the adoption of a
heteroscedastic model in the presence of homogeneous data. The degree of bias when

homoscedastic as well as heteroscedastic models are imposed on the same data set is also

of concern.

2.3 Non-Normal Mixtures

ML estimation has been demonstrated to be efficient and consistent under normal
mixture distributions if regularity conditions are satisfied (Redner and Walker, 1984).
When non-normality is presented as difficult distributions, Woodward, Parr, Schucany
and Lindsey (1984) found that minimum Cramer-von Mises distance provide better
estimates than those of ML under heavy-tailed densities. However, they simulared
mixtures of two components with identical shapes. For example, two double exponential
components composed a mixture, a;d two student’s t(4y components composed another
form of mixture. The situation wh.ex..a a normal component is mixed with a non-normal
component or different non-normal éomponcnts are mixed was not considered. Skewed
distributions also were not investigated but they have suggested such simulation would be
useful. Itis expected that mixtures of various types of distributions will provide more

insight about performance of estimation procedures.

2.4 Purpose

The purpose of the present study is to explore the effects of variation of mixture
distribution parameters and non-normality of two component density functions on the
accuracy of parameter estimates with estimation procedures assuming either
heteroscedasticity or homoscedasticity. Seven independent variables are manipulated:
algorithms, model assumption of variance, initial input, mean separation, variance ratio,

component proportion, and shape combination (normality/non-normality).




Three algorithms are evaluated: E(expectation) M(maximization) algorithm developed by
Dempster, Laird, and Rubin (1977), a modified Newton approach (Dennis and Schnabel,
1983), and the minimum Cramer-von Mises distance algorithm (Parr and Schucany,
1980). Modified Newton is compared against EM to test how well ti-e simple IMSL
subroutine BCOAH performs. Cramer-von Mises distance is used as a contrast to EM and
modified Newton to detect how robust these estimation procedures are to non-normality.
Four research questions were investigated:

1. The percentage of samples that were failed due to a singularity problem were
reported under various data distributions such as mean separation, variance ratio, initial
input, and algorithms. The explicit form of a singularity problem is that estimates of
component variance and proportion going to boundary. This is designed to evaluate
whether the problem of singularity can be expected to occur in practice.

2. Asymptotic variances were calculated and correlated with the absolute distance of
corresponding estimates from their true parmeter values to investigate the degree to which
asymptotic variances can be used to decide how reasonable an estimation event is.

3. The three algorithms mentioned above were compared for sensitivity to mean
separation, variance ratio, and initial input. The effect of imposing heterogeneous model
for homogeneous data was considered. Criteria for comparison inciuded mean squared
error (MSE) and bias of parameter estimates.

4. The robustness of maximum likelihood (ML) estimates to non-normal mixtures was
investigated by comparing its performance with that of the minimum distance method.
Various degrees of non-normality including positive skewness, negative skewness,
leptokurtosis, and platykurtosis were combined to form various shape of a component.

Dependent variables used were bias index and MSE.

3. Three Estimation Procedures Adopted in the Present Study
3.1 EM Algorithm




The procedure of EM algorithm is briefly described given a univariate distribution of
two components as an example. Suppose P (k| x ;) is the posterior probability that

observation x, belongs to component k, then we have

P(klxn) = nk*fk(xn;uk,ok,)/f(xn;e) (3.1

The likelihood equation solution can be formulated in the context of EM algorithm
(Dempster, Laird, and Rubin, 1977) as described in Everitt (1981, p. 37).

L N
"= p TPkl k=12 (3.2)
1 I; k 2 33
W = P(kix)x. , k=1, (3.3)
k n*nk =1 n’ *n
 — NP Kl 2 k=12 3.4
e e P G w2, k=L (3.4

The EM algorithm proceeds iteratively by two steps, E (expectation) and M
(maximization) . In the E step, initial values of =, Hies and oi are used to obtain first

estimate of P(k | xn). In the M step, given the posterior probabilities from E step, involves

calculation of revised estimates of &, U , and oi by inserting the posterior probabilities

into the right hand side of (3.2) - (3.4). The intent is to maximize likelihood with tentative
estimates from E step to give revised parameter estimates. The E step and M step are
repeated alternately until some convergence criterion is satisfied. In the present study, an
EM source code developed by McLanchlan and Basford (1988) was used as the basic

algorithm with some changes to fit the simulation design.

3.2 Modified Newton




The modified Newton method is a line-search algorithm varying step size, AL, where 0

<A <1 at each iteration r. The iteration procedure of the modified Newton is described as

follows,

6+ = 6 _ o * Ay * GFH () *G ()

where a € (0,0.5). Note that the method presented here is a function minimization

procedure; therefore, the log likelihood function of the mixture distribution is multiplied by
-1 in order to locate a maximum . The strategy is to start with A.= 1 given o« bounded by

0 and 0.5. The algorithm according to Dennis and Schnabel (1983, p.126) is given below,

Givena e (0,0.5), O<l<ux<]l
Ar =1

while f(t 1) > £t ) + o * Ay * G * (H.) * Gy, do

A =z* X, forsome ze [Lu] (zis chosen at each time by the line

search);
try] =t +AL ¥ 25 (tp, is revised with the revised A.).

The search for A is named line search. Details about obtaining A, can be found in Dennis

and Schnabel (1983, chapter 6). The IMSL (International Matliematical and Statistical
Libraries, 1989) subroutine BCODH was implemented in the present study using the

algorithm.

3.3 Cramer-von Mises Distance

A minimum-distance measure is a method to estimate an unknown parameter vector 6

by minimizing 6(G,;, Fg), where G, is the empirical distribution function baszd on




X1,X9,....X, and Fg is the mixture distribution function. The Cramer-von Mises distance

is given by

8(Gp, Fe) = | (Fx; 8)-G(x))2 3 F(x; 6)

N
= (2N) L4 [ 3 (Flrry®)-o -5 /N)21/N
n=

where X(n) denotes the nth order statistic (n = 1,2,...N). The IMSL subroutine UNLSF

that adopted Marquardt's (1963) method was used in the present study to minimize the

function, as did Woodward et al. (1984). The IMSL special function, NORDF , was used
to calculate integral function, F(x).

4. Methodology

4.1 Parameter Values

Since we are using univariate mixtures of two components to investigate the research

questions described section 2, there are 5 parameters to be varied, T, Hi» K- Oy and Cs.

Respectively, Hy and G, were fixed at 0 and 1.

The number of modes of a mixture distribution depends on the separation between two

component densities. Behboodian (1970) derived a sufficient condition for a mixture to be
unimodal,
lul-uzl < 2mm(<51,02).

Eisenberger (1964) nas shown that a sufficient condition for a mixture to be bimodal is
2 2 2 2
(1, 'Hz)z > (806;05)/0)+0,
We studied the size of K at ¢)) u2=0.5, 2) u2=2.6 to test the relative performance of

each algorithm from unimodal and bimedal distributions. The size of og, was studied at

by (1) cizl with a variance ratio of 1 (reflecting homogeneous components), and (2) c% =

i0




4 with a variance ratio equal 4 (reflecting heterogeneous components). We considered
three choices of &, (1) * = 0.5, (2) ®t =0.3 and (5) ®* =0.7 to represent even and uneven

distributions.

4.2 Starting Values

Two methods were utilized to get starting values. One of them, cluster analysis, is

implemented by IMSL subroutine KMEAN to obtain the estimates by the principle of

minimizing the total within-cluster sums of squares. Initial values of ci was set as cluster

variances, and the one of component proportion was set 0.5. The other method, called the
range method, was suggested by Davenport, Bezdek, and Hathaway (1988) when prior
information about a mixture is not available. The range method assumes initial inputs of ©
and 1 to be evenly spread within the range of possible values. In another worde, u1(0) =
X+ (X -%1)/3,u0) = x; +2 (xp-x )/ 3, and p(0) = 0.5, where x1 is the smallest
observation and xj, is the largest observation in a data set. Since Davenport et al. did not

report how to set initial values si(O) for o'2k, we set it as s;‘:(O) =52 - (Xmedian - X1)/ 3)2

for both 0:12 and (5%. Note that ul(O) and u,(0) from the range method were also used as

initial inputs of cluster means in the cluster method.

4.3 Non--Normality

In the present study, the skewness index was set as 0.0, 0.6, and -0.6 to reflect normal,
positively skewed, and negatively skewed distributions. The kurtosis index was set as -
0.6, 0.0, and 0 5 to reflect platykurtosis, normality, and leptokurtosis. Exhausting all the
combinations of the above two indices, we have 9 kinds of shape regarding a component
distribution. Since two components were needed in a mixture, exhausting 9 conditions of
shape with pairwise combinations, we have 81 (9*9) different mixtures to provide

symmetric variation of the data distributions.
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A non-normal distribution generating method developed by Ramberg, Dudewicz,
Tadikamallz, and Mykyika (1979) was adopted in the study to provide our needed
distributions. Variates (x) in a component were obtained by

x =R (2) = Aq +[23 - (1-2) M) /2,
where z is a uniform random variable on the interval zero to one, while A is a location

parameter, A is a scale parameter, and A3 and A4 are shape parameters.

Distributions with skewness of -0.6 were obtained by multiplying a1 variates with
skewness of 0.5 by -1 before being relocated and rescaled while mean and kurtosis index
remained unchanged. A set of shape ID's from 1 to 9 were given to represent the shape
conditions of components. The nine variations of component shape are depicted in Figure

1, and four examples of mixtures of two componenis are presented in Figure 2.

4.4 Simulated Samples
Altogether we have 972-- 2 (choices of 1) * 2 (choices of c%) * 3 (choices of ) * 81

(shape combinations) -- different combinations o: data distributions. These four variables
are generally named here as data distribution variables. Sample size is fixed at 160, which
is the median size from the thirteen empirical studies mentioned in section 2. Mean of the
sample sizes of the thirteen empirical studies is 1811. The sample sizes range from 28 to
19679 with a single study cc 1ducting four mixtures of size larger than 17000 for each
mixture.

Within each data distribution condition, there were 12 estimation procedures (3
estimation methods - EM, modified Newton (NW), and Cramer-von Mises distance (MD)
* 2 initial inputs - cluster analysis and range method * 2 assumptions of variances -
homogeneous model and heterogeneous model). These three variables are called here

estimation procedure variables. In all, we have 972*%12=11664 cells.

11
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Due to poor performance from certain estimation procedures, the stopping rule for
replications in each of the 972 cells was either (1) the minimum successful replications for
any of ihe procedures attaining 50 or (2) 100 replications having been accomplished.

As for the size of both components to reflect &, a uniform (0,1) distribution of size 160
was first generated. Then the number of observations less than &t was used as the size of

component 1 while 160 minus the size of component 1 was the size of component two.

4.5 Secondary Analyses

The generated raw data were subjected to secondary analyses to investigate the four
research issues raised in section 2.7. The methods of analyzing raw data regarding sach
issue are described below:

1. Three loglinear models were adopted to address the problem of failure to locate a
maximum: one for iteration exceeding rate, another one for singularity rate, and the other
one for failure rate (sum of both rates mentioned above). A dichotomous variable stands
for the performance was formed to represent the frequency of success or failure in each
design. There were 144 cells (3 methods * 2 initial inputs * 2 assumptions of variance * 2
mean separations * 2 variance ratios * 3 proportions) by two levels of performance ). The
purpose of loglinear rodel was to find the categorical variable or combination which
accounts for significant 2 loss in terms of degrees of freedom when introduced to the
model.

2. A meta-analysis (Hedges and Olkin, 1985) design was cond :cted to address the
issue of correlation between asymptotic vaiiance measures and the absolute distance of
~oreesponding estimates from their true parameter values. A valid replication within a cell
was c.fined as a successfu!l replication (i.e. iterations not exceeding preset values, and
none of the parameter estimiates going to boundary values), with asymptotic variances
being positive through five parameter estimates. One correlation coefficient index vas

generated under the condition of valid replications larger than five in each cell.for each

12




estimated parameter. We have six grouping variables. A stepwise regression was
conducted first to identify an order to enter them into the meta-analysis. Roughly
"averaging" the order across the five parameters, we arrived at this order to enter into the
design in an attempt to extract homogeneous groupings: variance ratio, mean separation,
model assumption of variance, estimation method, initial input, and component proportion.
Partitioning is continued until homogeneous grouping is established or until all available
partitioning variables have been exhausted.

3. To compare the three algorithms with respect to miean separation, variance ratio, and
component proportion, a repeated measures analysis was conducted using the three
estimation procedure variables repeated across three of the distribution variables. The
variable of shape combination was temporarily not included in the design. Dependent
criteria were (GN - 8)2 as a measure of MSE and (GN - 0) as a measure of bias for each of
the five parameters, resulting in 10 ANOVAs.

4. To investigate the research question about the robustness of estimates to non-normal
mixtures, repeated measures analysis was conducted again. It was intended to adopt the
design mentioned above but with shape combination factor added. However, due to
memory capacity of the IBM 3180 mainframe (the IBM mainframe has 16 megabyte
memory space while 68 megabytes was reqnired by SAS to run the original design.), the
design had to be reduced by dropping one of the three data distribution variables. Qur
strategy was to run two repeated measures independently: one where mean separation was
0.5 .and the other for mean separation of 2.6. The mentioned repeated designs were run
separately for each of the five parameters for mentioned two measures of MSE and bias,

resulting in 20 ANOVAs.

5. Results and Conclusion

5.1 Failure Rate and Loglinear Model

13
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A saturated loglinear model was imposed on all the mentioned 288 cells. None of the
effects predicted cell frequency significantly. However, when we conducted a similar
model but with boundary rate replaced by iteration exceeding rate, we obtained a significant
effect of method by performance (x2=6.26, df=2, p=0.04) which indicated that cell
frequencies are depended on method. When a third loglinear model where both boundary
rate and iteration exceeding rate were combined as failure rate, we obtained significant
effects for method by performance (x2=10.44, df=2, p=0.0054) and initial input by
performance (x2=6.33, df=1, p=0.0119). Figures 3 and 4 depict the ratio of success rate

to failure ra... by method and by initial guess, respectively.

0.16 — 0.15 o

'%

0.10 A 0.10 o

0.05 - 0.05 —

L

0.00 o 0.00 A
NN MD EM Range Cluster
B Ratio of iteration to success B Ratio of iteration to success
Ratio of boundary to success Ratio of boundary to success

Note: NW=modified Newton, MD=minimum distance, EM=expectation maximization

algorithm

Figure 3. Ratio by Method Figure 4. Ratio by Initial Input

Figure 3 shows that MD had the smallest iteration exceeding rate (0.16%), while EM had
the smallest boundary rate (0.18%). NW ranked poorest for both iteration exceeding rate
and boundary rate. As for the performance of initial inputs, Figure 4 indicates that cluster

initials was the better strategy for initial values in terms of smaller boundary rate and

14
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iteration exceeding rate than range initials. It is concluded that the use of EM with cluster

initials is the preferred method to achieve a successful solution.

5.2 Correlations Between the Distance of Estimates to True Param.ier
Values and the Asymptotic Variances

The size of the correlation coefficient between asymptotic variance and atsolute bias
shared within each homogeneous group was reported as the result after conducting meta-

analysis. There were 11422 correlation coefficients out of 11664 cells for the estimates of
T, L1, M9, and 0%. and 5717 coefficients for the estimates of o%.

First, we tested whether all coefficients share zero as their common correlation
coefficient for each of the 5 parameters. The xz values indicated all the cell's correlations
are not simultaneously zero. The test that these cells share the grand mean of their
correlation coefficients also failed.

Our next step was to hierarchically group the cells according to the levels of the
independent variables until some cells share a common correlation coefficient
homogeneously. Finally we exhausted all the six independent variables and obtained 35
groups (rows in Table 1) which were homogenecus at least for one estimate, out of 144
groups. Each group contained observations of coefficients across 81 shape combinations.
Table 1 shows the grouping variables, correlation coefficient sizes, x2 values, and degrees
of freedom.

In Table 1, under the situation where the variance ratio was equal one, there were 33
coefficients for the five parameters, among which 30 entries were in the range from -0.5 to
0.5. Three particularly large negative coefficients occurred when the estimation metuod
was MD (minimum distance) under initial inputs from the cluster method with the
assumption of homogeneity (rows 1 to 3 in Table 1) imposed on unimodal mixtures of

homogeneous components, implying that in these kinds of mixtures, the larger the

15
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asymptotic variance is, the smaller the MSE for c%. If we look at those cells that have

variance ratio equal four, there were two groups: one with coefficient values less than 0.2
and the other one with values larger than 0.85. The homogeneous assumption seems to
produce large coefficients under all the three methods in bimodal mixtures of heterogeneous
components (VR=4, MS=2.6, and ASS=hom in Table 1), implying that in bimodal
mixtures, a large asymptotic variance could be an indication of misspecification of
variances. Considering the performance of the three estimation methods from the 33
groups, we found seven groups were from EM (expectation-maximization algorithm), four
groups were from NW (modified Newton), and 22 groups were from MD. MD tended to

create more homogeneous groups than the other two methods, and it seems to produce

. 2 . .
large values for the estimates of 1. and small values for the other four estimates, meaning

that the asymptotic variances are not able to predict the stability of estimates except for c%.

5.3 Comparisons of Three Algorithms in terms of Parameter Estimate
Precision

To address research questions 3 and 4, we described the results from the repeated
measure design conducted over the raw data set. Because replications with missing values
were dropped from the analysis, i.e., only the replications which were successful on all of
the 12 estimation procedures (3 methods * 2 initials * 2 models of assumption) were

included, 32999 valid observations were analyzed out of the total 79424. The values of the

estimates of 0% in the mixtures of homogeneous model were copied from the one of the

estimates of 0%. The test for sphericity for MSE and bias from each of the five parameters,

. . 2 . .
respectively, rendered significant x“ values; therefore Greenhouse-Geisser adjusted
degrees of freedom were used to conduct conservative significance tests. The term,

unimodal mixtures, stands for mixtures of two components that differ by 0.5; while

bimodal mixtures for two components that differ by 2.6. The term, homogeneous
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components, means two components of variance ratio 1; while heterogeneous components
for two components of variance ratio 4.

To address the research question 3, the variable, shape, was not included in the
design, thus the groupings of the replications always contained the ones from the 81 levels
of shape combinations. Regarding the MSE of the three methods under estimation
procedure variables (initial selection and model adoption), and data distribution variables
(mean separation, variance ratio, and component proportion), we have 214 interaction
figures support the following results. Only some of those are presented in this article.

NW and EM were less sensitive to the use of different initials and produced equally
acceptable estimates. MD was sensitive to different initials (see Figure 5). With range
initials, MD performed better than NW and EM in unimodal mixtures and worse than NW
and EM in bimodal mixtures. Nonetheless, cluster initials with MD in most cases
outperformed all the other procedures.

There are two types of incorrect model assumption: homogeneous model imposed upon
heterogeneous data and heterogeneous model imposed upon homogeneous data. For NW
and EM, a homogeneous model imposed on heterogeneous data produced larger MSE for

2
the parameters T, |i1, Oy and 0'% compared to a heterogeneous model imposed on

homogeneous data (see Figure 6). The estimates of i, did not reflect significant difference

by different model assumption. Thus, the better model for NW and EM is heterogeneous

in exploratory studies. MD was less affected by imposing an incorrect model in estimating

T, ly, K9, and o%. However, for the estimates of o, MD with cluster initials produced

the largest MSE among all the estimation procedures if a homogeneous model was
incorrectly imposed on haterogeneous data (see Figure 7). Therefore, the better model for

MD is also heterogeneous. Comparing the twelve estimation procedures (3 methods by 2
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initials by 2 model assumptions) in terms of MSE, the best was MD with cluster initials
when assuming heterogeneous model.

To address the research question 4, we focused on the best etimation procedure, cluster
initiais combined with a heterogeneous model, for the three methods. There are 67
interaction graphs of method by shape combination to support our results. Some
representative ones are depicted in this article. Their performance varied by parameters and

shape combinations. MD performed as well as or better than NW and EM in estimating &
2
and o disregard what shape combinations the mixtures had (see Figure 8). As for the

other three parameters, MD generally was superior to NW and EM in mixtures of

homogeneous components. In mixtures of heterogeneous components, EM was more

sensitive than MD to the presence of positive or negative skewness in estimating K1 B,

and 0% (see Figures 9 and 10). However, the MSE difference was small in the cases
where MD was poorer than EM for the parameters 1 and [y. Generally, MD was most

robust to non-normality and to uneven component proportion.
Under the use of cluster initials, we concluded that the direction of bias is affected by

two factors, the number of modes of mixtures and the component variance ratio. In

unimodal mixtures of homogeneous components, we found that the estimates of i1 and pty

. 2 2 : . :
were overestimated, and 61 and 65 were underestimated. In unimodal mixtures of

heterogeneous components, the estimates of jL and W, tended to be biased in opposite

L . 2 2 .
directions away from each other and the estimates of o] and o, were biased toward each

other. In bimodai mixtures of homogeneous components, bias of the estimates of L1, |19,

2 . .
Sy and 07 fluctuated around zero. It is found that positive skewness tends to cause

negative bias while negative skewness tends to cause positive bias. However, in

2 2
heterogeneous components, |11 and [l were all oveiestimated, and 6 and O, Were nearer

18
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to each other. The above tendency can be applied to the three methods. MD generally
produced estimates with sizes smaller than those produced by NW and EM. Therefore,

MD estimates were less positively biased if the tendency was positive bias such as for x,

M1, and By (see Figure 11), and more negatively biased if the tendency was negative bias

such as for o% (see Figure 12)

6. Discussion and Suggestions

6.1 Discussion

As mentioned in section 2.1, both Leytham (1984) and Hamilton (1991) reported
singularity rate. The common characteristics in both studies were that the largest sample
size was 100, that EM was nced as the estimation procedure, and that true parameter values
were used as initial inputs. However, the two studies led to different conclusions. The
two largest singularity rates in Hamilton's study were caused by either the component
proportion being as large as 0.9, or the two components being identified. In Leytham's
study, all the mixtures were bimodal.

In this study, our main interest is to investigate the relative performances of different
methods in an approximation of typical research situations. Therefore, we conducted

simulations with a sample size of 160 and used by NW, EM and MD with two types of

initial inputs. Our results indicated that EM produced the smallest singularity rate (0.02%)
among the three methods. However, the loglinear model did not show significant
dependency of singularity rate on method, model assumption, mean separation, variance
ratio, and component proportion. Therefore, with a sample size of 160, singularity was
not shown to be a concern in either unimodal or bimodal mixtures of homogeneous or
heterogeneous components with the smallest component proportion not less than 0.3 by the

use of EM method with imprecise initial inputs.
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Imposing of a homogeneous model unto heterogeneous data was discussed by Basford
and McLachlan (1985). They found that the wrong model panicularly affected the

estimates of component proportions. Our results show that other than the component

2
proportion, the wrong model also affected the estimates of Wy, c%, and 63. For the

parameter }ly, the selection of the model for the three methods was not as crucial because

there was no interaction of method by model. For the other four parameters, the
'homogeneous model to heterogeneous components' combination caused the largest MSE

compared to the other three types of model-component combination in most mixture forms.
An exception was for the estimates of c% in unimodal mixtures where the largest MSE

occurred when a heterogeneous model was imposed on heterogeneous data using NW and
EM. This phenomenon implies that in unimodal mixtures, a homogeneous modél is
preferred if component variances are of most interest and either of the estimation
procedures of NW and EM is used. Since the estimates of proportion and location
parameters are of most interest, we consider that the superiority of the beterogeneous model
has been demonstrated and that MD proved to be more robuct to mismatch between model
assumption of variance and data.

Regarding the sensitivity of MD and EM to non-normality, conclusions from our study
may be compared to those of Woodward, Parr, Schucany, and Lindsey (1984). In our
study, we used both unimodal and bimodal mixtures. The normal mixture (shape
combination 22) is one of the 81 manipulated shape combinations. We demonstrated that
MD dominated EM in both unimodal and bimodal mixtures for the estimates of . As for
the other four parameters, the 'u_ueracu'on diagrams of method by shape combination show
that MD fluctuated less than EM and was more robust to various shape combinations, but
the superiority of one method over the other is not absolute through ail the parameters. Our

study, does not support the conclusion that EM is better overall than MD under normal
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mixtures (see Figure 8), and was neither poorer than MD under non-normal mixtures (see

Figure 10).

6.3 Suggestions
6.3.1 Suggestions for Practitioners

For a practitioner, the most important issue is the selection of the most appropriate
estimation procedure. To estimate the parameters of a finite mixture, MD and EM have
their own strengths and deficits. The strengths of EM are the lowest singularity rate and
insensitivity to the choice of initial inputs. The strzngths of MD are its robustness to non-
normality and incorrect model assumption of variance. As for availability, EM is easy to
program yet there is no handy EM program available for general public. However, MD is
installed in popular package IMSL as a general least squares method that only needs a
function to define the least squares as introduced in section 3.3.

If only the component proportion parameter is to be emphasized in a practical situation,
MD performs equally well with poth range and cluster initials and is preferred to EM by
both smaller MSE and iess bias. If both proportion and location parameters are important,
then the availability of initials needs to be considered. With the use of cluster initials which
can be obtained by a regular cluster analysis, MD performs better than EM in terms of both
MSE and bias, but with simple range initials, MD is inferior to EM. When all the

parameters, including scale parameters, are to be estimated, our results suggest the use of

cluster initials. Also, their performances differ by non-normality for the estimates of 0% in

heterogeneous mixtures. Neither MD nor EM was superior over the other through all the
shape combinations. EM is preferred if the second component is sym...etric or positively
skewed while MD is preferred if the second component is negatively skewed. This

suggestion should be considered only when the scale parameters are more important than

the other parameters; otherwise, MD should be preferred.
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Our study found that a homogeneous model irr-posed unto heterogeneous mixtures
produced the largest MSE among the four model-component combinations. Thercfore we
recommend using a heteroscedastic model.

Our study suggests that asymptetic variances are too unstable to predict the bias in
parameter estimates if a heterogeneous model is assumed. If homogeneous model is

2
imposed on a data set and a large value of the asymptotic variance of parameter oy is

found, it could be an indicaton that the wrong model has been used.

6.3.2 Suggestions for Further Research

Woodward et al. (1984) has concluded that the results for n=100 were not
substantially different from n=50 or n=200 based on their bimodal mixtures. In another
words, small sample size did not have a significant effect in bimodal mixtures. In order to
compiete the comparison between ML and EM in terms of non-normality, a side issue
would be how both methods perform with small sample sizes in unimodal mixtures.

Hamilton (1991) has noted the singularity problem occurs when a component
proportion is as small as 0.1. How MD compares with EM for small values of 7 is also
interesting.

MD has been concluded in the study to be the better estimation procedure. However,
its performance in determining the number of components has not been discussed in

literature. Wolfe's (1971) modified likelihood ratio can be used to test the null hypothesis

of component number equal Cg against the alternative hypothesis.of component number

equal C| where Cy > C. A comparison of EM with MD on small sample sizes,

component proportion close to boundary, and robustness of this procedure for various true

number of components would be useful.




Table 1. Correlation Coefficients between the Distance of Estimates from True Parameter
Values and Corresponding Asymptotic Variances from Homogeneous Groups for Five

Parameters by Data Distribution Variables

VIMS TAS [ME [I |P 2 2
R T K1 H2 o1 o5
1710.5 {hom | MD 5 -0.9523
4.4 (80)
110.5 |hom [MD |C 3 -0.8754
9.3 (80)
110.5 |hom [MD |C |7 -0.8575
11.6 (80)
110.5 [het |EM |[R {5 -0.2810
l £5.3(80) .
110.5 [het |EM [R |3 -0.1057
77.0(80)
1{0.5 |het [EM |C]5 -0.2812
68.8(80)
110.5 {het |EM |C {3 -0.1433
87.0(80)
110.5 |het |EM | C|7 -0.1348
99.8(80)
110.5 Thet |[NW]C|3 -0.2025
100.8(80)
110.5 {het [MD [R5 -0.1786 | -0.1047 -0.1834 -0.1969
80.6(67) | 76.4(6T) 61.2(67) 84.8(67)
110.5 [het |MD {R |3 -0.1038 -0.1330
92.3(73) 87.5(73)
110.5 [het |MD [|R |7 -0.0308 | 0.1114
63.8(74) | 75.2(74)
110.5 {het |MD |C {5 0.0260
89.6(80)
112.6 [hom | MD |R |5 -0.1010 | 0.0026 0.1939 | 0.3428
27.2(33) | 35.8(33) 43.4(33) | 32.4(33)
112.6 |hom | MD |R |7 0.4639
85.9(69)
1f{2.6 [het |MD |R {5 -0.1678
54.9(42)
112.6 [het |MD |R |3 -0.0545 -0.0439 | 0.1560
54.3(80) 67.3(80) | 94.9(80)
112.6 [het | MD [R |7 -0.0040
72.2(80)
1126 {het |MD|C{3 1 -0.0758 -0.0711
78.4(79) 87.4(79)
112.6 {het |MD |[C {7 -0.0243
76.0(67)
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Table 1. (Continued)

[\{MS AS JME [T [P ,t ™ ™ c% c%
4105 [hom [MD | C |3 0.0666
64.6(80)
7103 |het |MD[R |7 | -0.1127
82.7(80) i
Z2.6 [hom |EM |R |5 0.9271
51.6(80)
Z173.6 (hom [EM [C |5 0.9262
60.5(80)
412.6 |hom [NW]|R |5 0.9373
4.2(72)
4|2.6 |hom |[NW|R |7 0.9441
1.0(44)
412.6 [hom [NW{C|5 0.9376
8.6(80)
4|26 [hom |MD |C |3 0.8986
7.5(80)
4126 [het [MD IR (3 ~0.0438
97.9(80)
312.6 (et [MD [R|7 20.1014
72.7(56)
412.6 {het [MD |Cl5 | -0.0489
87.7(80)
Z12.6 {het [MD |C|3 | -0.0514
97.9(80)
412.6 [het [MD |C17 0.0385
94.7(78)

Note: ;(2 at the second row. Degrees of freedom in parentheses.
VR=variance ratio
MS=mean separation
AS=assumption of Variance (hom=homogeneity, het=heterogeneity)
ME=method (NW=modified newton, MD=minimum distance)
I=initial inputs (R=range method, C=Cluster method)
P=proportion of the first component (3=0.3, 5=0.5, 7=0.7)
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Figure 1. The Nine Shapes of Components in Mixtures, Represented
by Skewness and Kurtosis. (=0 and 62= 1)
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component in the present study.
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Figure 1 (Continued)
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Note: Shape ID is a digit used to symbolize the characteristic of a
component in the present study.
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Figure 1. (Continued)
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component in the present study.
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Figure 2. Four Examples of Mixtures
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Figure 5. A Five Way Interaction Plot,

of Variance * Mean Separation * Variance Ratio, on MSE
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Figure 6. A Six Way Interacdon Plot, Method * Inidals * Assumpton of
Variance * Mean Separation * Variance Ratio * Proportion,

on MSE index of i, (Mean Separatdon = 0.5)
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Mean Separation = 0.5
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Figure 7. A Six Way Interaction Plot, Method * Initials * Assumption of
Variance * Mean Separation * Variance Ratio * Proportion,
on MSE index of o% ( Variance Ratio = 4)
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