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Abstract

This Monte-Carlo study compared modified Newton (NW), expectation-maximization

algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate

parameters of univariate mixtures of two components. Data sets were fixed at size 160 and

manipulated by mean separation, variance ratio, component proportion, and non-normality.

Our results indicate that NW is the poorest estimation procedure. EM is less sensitive to

different initial inputs and produced the lowest singularity rate. MD is most robust to non-

normality and to incorrect model assumption of variance. In practice, MD is

recommended. The singularity problem is not severe enough to be a practical concern.

Key Words: Cluster Analysis, EM Algorithm, Mixtures, Modified Newton.

I. Introduction

Mixture modeling is one of the non-hierarchical clustering approaches. It is usually

expressed as a superposition containing k components with a density function, fk, and

proportion, Irk, i.e.

ry-, -7 r- .":"; "'",f; rr
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where x is an independent observat'on and 0
(k)

is a vector of parameters of subpopulation,

k. In this article, we discuss literature findings and issues regarding the application of the

model in section 2. The algorithms adopted and their background materials are provided in

section 3. Methodology of the simulation study is described in section 4. Results and

conclusions are presented in section 5. Finally section 6 presents discussion and suggests

implications for future work.

2. Research Issues

Various methods have been developed and used to estimate the parameters of finite

mixture distributions, such as the method of moments by Pearson (1894), maximum

likelihood (ML) by Hasselblad (1966), fussy c-means partition by Davenport, Bezdek, and

Hathaway (1988), moment generating function by Quandt and Ramsey (1978), a least

square procedure by Fowlkes (1979), minimum distance method by Woodward, Parr,

Schucany, and Lindsey (1984), quasi-Baysian approach by Hamilton (1991). The

superiority of ML over the other methods for exploratory studies under normal

distributions with sufficient sample sizes (say, 300) was confirmed by Day (1969), Tan

and Chang (1972), Fryer and Robertson (1972), Kumar, Kick lin and Paulson (1979),

Fowlkes (1979), and Woodward et. al. (1984). Within ML, the EM algorithm developed

by Dempster, Laird, and Rubin (1977) is preferred (Everitt, 1984) and has been

dominantly used as a representative method of ML in both practical and simulation studies.

Redner and Walker (1984) have given a regularity conditions that need to be satisfied in

order to have identifiable likelihood estimation for a mixture distribution as follows.

Condition 1: For the parameter matrix 0, the partial derivatives up to 3 orders,af iaoi, a

2f / aeiaej, and a3f / a0 iae jaem exist and are bounded.

Condition 2: The Fisher information matrix I(0) is positive definite at the true parameter

values, 0*.
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According to Redner and Walker (1984), if conditions 1 and 2 are satisfied and any

sufficient small neighborhood of 0* is given, then with probability 1, there is, for all

sufficiently large sample size, N, a unique solution ON of the likelihood equations in that

neighborhood, and this solution locally maximizes the log-likelihood function. Its

distribution is,

8 *) N (0, I(0*)-1) as N

2.1 The Problem of Singularity

Although the maximum likelihood (ML) approach to mixture distributions has been

preferred since the advent of advanced computing equipment, the estimation procedure

contains a problem of singularity which tends to discourage the use of 14L. As one of the

variances tends to zero and pic is set equal to any observed value of xn, convergence to a

singularity occurs. The likelihood function breaks down and becomes infinite at this point.

To avoid the problem of singularity, the assumption of homogeneity of variance/covariance

matrices between subpopulations can be assumed (Day, 1969). However, in empirical

studies, this assumption seems to be very restrictive. Some researchers have found that

with the heterogeneity assumption the problem of singularity does not occur under certain

conditions, such as large sample size and good initial values (Fryer and Robertson , 1972;

Hosmer, 1974), and well separated samples (Everitt, 1984).

On the other hand, Hathaway (1985, 1986) demonstrated that a constraint, such as

min(cyi / 62) > 0, imposed on standard deviations will eliminate all the singularities

caused by small numbers of observations and poor separation. Hathaway, Huggins, and

Bezdek (1984) , and Davenport, Bezdek, and Hathaway (1988) have reported improvement

using the constrained EM algorithm by comparing it with uncc. strained EM and other

algorithms. Hamilton (1991) proposed a quasi-Bayesian approach which covers maximum

likelihood estimation as a special case. The common characteristic of both methods is that

they need pricrs.
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Leytham (1984) pointed out that although there might be singularities in seeking a

maximum likelihood estimate from a mathematical point of view, it has been found that in

practice, they do not present serious difficulties. However, it is worth noting that the

studies reporting frequencies of singularity (such as Leytham, 1984, and Hamilton, 1991)

used true parameter values as initial starting points.

In order to find out whether researchers in empirical studies encountered the problem of

singularity and how they dealt with it, a literature search using CD-ROM databases of

Agricola, Eric, Life Science, Mathsci, Med line, Psych lic, and Sociofile was conducted.

Thirteen empirical studies were found from 1983 to 1990. All of them adopted maximum

likelihood approach. One of them did not specify which algorithm was used. Among the

other twelve, nine adopted EM algorithm developed by Dempster, Laird and Robin (1977),

two adopted Day's Newton method (1969), and one adopted quasi-Newton. It seems that

singularity has not appeared as a practical problem, but the fact that only published literature

is available could have suppressed the reporting of estimation difficulties. The percentage of

singularity in various kinds of data distributions under different algorithms with inaccurate

initial values is worth of investigating.

2.2 Assumption of Homoscedasticity

Because the assumption of homoscedasticity was first introduced to eliminate the

problem of singularity (Day, 1969), it seems unnecessary for researchers to continue to

require the assumption. Among the thirteen empirical studies mentioned in 1.4, seven

adopted a heteroscedastic model, four adopted a homoscedastic model and the other two

did not estimate variances. None of these studies mentioned the association of singularity

with model assumption of variance. However, the principal of model parsimony was

ignored when homoscedasticity could have represented a more parsimonious model.

Basford and McLachlan (1985) indicated that the adoption of a homoscedastic normal

model in the presence of some heteroscedasticity can considerably influence the likelihood
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estimates, in particular of the mixing proportions, thus resulting in a higher rate of

misallocation. However, there is no study so far that has investigated the adoption of a

heteroscedastic model in the presence of homogeneous data. The degree of bias when

homoscedastic as well as heteroscedastic models are imposed on the same data set is also

of concern.

2.3 Non-Normal Mixtures

ML estimation has been demonstrated to be efficient and consistent under normal

mixture distributions if regularity conditions are satisfied (Redner and Walker, 1984).

When non-normality is presented as difficult distributions, Woodward, Parr, Schucany

and Lindsey (1984) found that minimum Cramer-von Mises distance provide better

estimates than those of ML under heavy-tailed densities. However, they simulated

mixtures of two components with identical shapes. For example, two double exponential

components composed a mixture, at-d two student's t(4) components composed another

form of mixture. The situation whet: a normal component is mixed with a non-normal

component or different non-normal components are mixed was not considered. Skewed

distributions also were not investigated but they have suggested such simulation would be

useful. It is expected that mixtures of various types of distributions will provide more

insight about performance of estimation procedures.

2.4 Purpose

The purpose of the present study is to explore the effects of variation of mixture

distribution parameters and non-normality of two component density functions on the

accuracy of parameter estimates with estimation procedures assuming either

heteroscedasticity or homoscedasticity. Seven independent variables are manipulated:

algorithms, model assumption of variance, initial input, mean separation, variance ratio,

component proportion, and shape combination (normality/non-normality).
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Three algorithms are evaluated: E(expectation) M(maximization) algorithm developed by

Dempster, Laird, and Rubin (1977), a modified Newton approach (Dennis and Schnabel,

1983), and the minimum Cramer-von Mises distance algorithm (Parr and Schucany,

1980). Modified Newton is compared against EM to test how well the simple IMSL

subroutine BCOAH performs. Cramer-von Mises distance is used as a contrast to EM and

modified Newton to detect how robust these estimation procedures are to non-normality.

Four research questions were investigated:

1. The percentage of samples that were failed due to a singularity problem were

reported under various data distributions such as mean separation, variance ratio, initial

input, and algorithms. The explicit. form of a singularity problem is that estimates of

component variance and proportion going to boundary. This is designed to evaluate

whether the problem of singularity can be expected to occur in practice.

2. Asymptotic variances were calculated and correlated with the absolute distance of

corresponding estimates from their true parameter values to investigate the degree to which

asymptotic variances can be used to decide how reasonable an estimation event is.

3. The three algorithms mentioned above were compared for sensitivity to mean

separation, variance ratio, and initial input. The effect of imposing heterogeneous model

for homogeneous data was considered. Criteria for comparison included mean squared

error (MSE) and bias of parameter estimates.

4. The robustness of maximum likelihood (ML) estimates to non-normal mixtures was

investigated by comparing its performance with that of the minimum distance method.

Various degrees of non-normality including positive skewness, negative skewness,

leptokurtosis, and platykurtosis were combined to form various shape of a component.

Dependent variables used were bias index and MSE.

3. Three Estimation Procedures Adopted in the Present Study

3.1 EM Algorithm

6
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The procedure of EM algorithm is briefly described given a univariate distribution of

two components as an example. Suppose P (k I x i) is the posterior probability that

observation xn belongs to component k, then we have

P(klxn) = 1tic*fk(xn;p.k,crk,)/f(xn;13) (3.1)

The likelihood equation solution can be formulated in the context of EM algorithm

(Dempster, Laird, and Rubin, 1977) as described in Everitt (1981, p. 37).

it = n P(klxn), k =1,2
n=1

1 N P (k I xn)xn , k= 1, 2k *

02 1 P ( k I xn) (xn - }Lk) 2 k = 1, 2
k n * Irk n=i

(3.2)

(3.3)

(3.4)

The EM algorithm proceeds iteratively by two steps, E (expectation) and M

(maximization) . In the E step, initial values of 7r, Ilk, and 02k are used to obtain first

estimate of P(k I xd. In the M step, given the posterior probabilities from E step, involves

2
icalculation of revised estimates of 7C, k, and ak by inserting the posterior probabilities

into the right hand side of (3.2) (3.4). The intent is to maximize likelihood with tentative

estimates from E step to give revised parameter estimates. The E step and M step are

repeated alternately until some convergence criterion is satisfied. In the present study, an

EM source code developed by McLanchlan and Basford (1988) was used as the basic

algorithm with some changes to fit the simulation design.

3.2 Modified Newton
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The modified Newton method is a line-search algorithm varying step size, Xr, where 0

< Xr < 1 at each iteration r. The iteration procedure of the modified Newton is described as

follows,

e(r+1) 0(0 - a * Xr * dr*H-10(r) *Go)

where a e (0,0.5). Note that the method presented here is a function minimization

procedure; therefore, the log likelihood function of the mixture distribution is multiplied by

-1 in order to locate a maximum . The strategy is to start with Xr = 1 given a bounded by

0 and 0.5. The algorithm according to Dennis and Schnabel (1983; p.126) is given below,

Given a e (0,0.5), 0 <1 < u< 1

Xr =1;

-while f(t r+i) > f(t r) + * Xr * * (-Hr
1
) * Gr, do

Xr = z * Xr for some z E [1,u] (z is chosen at each time by the line

search);

tr+i = tr + XT * z; (tT+1 is revised with the revised Xr).

The search for AT is named line search. Details about obtaining Ar can be found in Dennis

and Schnabel (1983, chapter 6). The IMSL (International Mathematical and Statistical

Libraries, 1989) subroutine BCODH was implemented in the present study using the

algorithm.

3.3 Cramer-von Mises Distance

A minimum-distance measure is a method to estimate an unknown parameter vector 0

by minimizing S(Gn, F9), where Gn is the empirical distribution function baf:.:d on
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xi,x2,....xn, and Fo is the mixture distribution function. The Cramer-von Mises distance

is given by

8(Gn, Fo) = f (F(x; 8)--0(x))2 a F(x; 0)

N
= (12N2 ) + [ E [F(x(n);0)(n 1 / N) 2 1/ N

n=1

where x(n) denotes the nth order statistic (n = 1,2,...N). The IMSL subroutine UNLSF

that adopted Marquardt's (1963) method was used in the present study to minimize the

function, as did Woodward et al. (1984). The IMSL special function, NORDF , was used

to calculate integral function, F(xn).

4. Methodology

4.1 Parameter Values

Since we are using univariate mixtures of two components to investigate the research

questions described section 2, there are 5 parameters to be varied, 7C, p.1,11.2 op and o2.

Respectively, ti and al were fixed at 0 and 1.

The number of modes of a mixture distribution depends on the separation between two

component densities. Behboodian (1970) derived a sufficient condition for a mixture to be

unimodal,

I p. 1- 21 5 2 rnin ( o o2).

Eiseriberger (1964) has shown that a sufficient condition for a mixture to be bimodal is
2 2

(111 t2)2 > (8 GI 132 )
2

+
2

We studied the size of p.2 at (1) p.2=0.5, (2) p2=2.6 to test the relative performance of

each algorithm from unimodal and bimodal distributions. The size of a2
2

was studied at

by (1) o2=1 with a variance ratio of 1 (reflecting homogeneous components), and (2) 02 =
2
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4 with a variance ratio equal 4 (reflecting heterogeneous components). We considered

three choices of it, (1) IL = 0.5, (2) it = 0.3 and (S) it = 0.7 to represent even and uneven

distributions.

4.2 Starting Values

Two methods were utilized to get starting values. One of them, cluster analysis, is

implemented by IMSL subroutine KMEAN to obtain the estimates by the principle of

minimizing the total within-cluster sums of squares. Initial values of4 was set as cluster

variances, and the one of component proportion was set 0.5. The other method, called the

range method, was suggested by Davenport, Bezdek, and Hathaway (1988) when prior

information about a mixture is not available. The range method assumes initial inputs of Ir

andµ to be evenly spread within the range of possible values. In another words, ui(0) =

x1 + (xn x1 ) / 3, u2(0) = x1 + 2 (xn - x1 ) / 3, and p(0) = 0.5, where x1 is the smallest

observation and xn is the largest observation in a data set. Since Davenport et al. did not

report now to set initial values si2c(0) for we set it as 4(0) = s2 ((xmedian - x1 ) / 3)2

for both a and 02. Note that u1(0) and u2(0) from the range method were also used as2
1

initial inputs of cluster means in the cluster method.

4.3 Non-Normality

In the present study, the skewness index was set as 0.0, 0.6, and -0.6 to reflect normal,

positively skewed, and negatively skewed distributions. The kurtosis index was set as

0.6, 0.0, and 0 3 to reflect platykurtosis, normality, and leptokurtosis. Exhausting all the

combinations of the above two indices, we have 9 kinds of shape regarding a component

distribution. Since two components were needed in a mixture, exhausting 9 conditions of

shape with pairwise combinations, we have 81 (9*9) different mixtures to provide

symmetric variation of the data distributions.
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A non-normal distribution generating method developed by Ramberg, Dudewicz,

Tadikarnalle., and Mykytka (1979) was adopted in the study to provide our needed

distributions. Variates (x) in a component were obtained by

x = R (z) = Xi + [zX3 - (1-z) X'4] / X2

where z is a uniform random variable on the interval zero to one, while Xi is a location

parameter, XI is a scale parameter, and X3 and X4 are shape parameters.

Distributions with skewness of -0.6 were obtained by multiplying a1 variates with

skewness of 0.6 by -1 before being relocated and resealed while mean and kurtosis index

remained unchanged. A set of shape ID's from 1 to 9 were given to represent the shape

conditions of components. The nine variations of component shape are depicted in Figure

1, and four examples of mixtures of two components are presented in Figure 2.

4.4 Simulated Samples
Altogether we have 972-- 2 (choices of t2) * 2 (choices of 0221) * 3 (choices of it) * 81

(shape combinations) -- different combinations o: data distributions. These four variables

are generally named here as data distribution variables. Sample size is fixed at 160, which

is the median size from the thirteen empirical studies mentioned in section 2. Mean of the

sample sizes of the thirteen empirical studies is 1811. The sample sizes range from 28 to

19679 with a single study cc iducting four mixtures of size larger than 17000 for each

mixture.

Within each data distribution condition, there were 12 estimation procedures (3

estimation methods - EM, modified Newton (NW), and Cramer-von Mises distance (MD)

* 2 initial inputs - cluster analysis and range method * 2 assumptions of variances

homogeneous model and heterogeneous model). These three variables are called here

estimation procedure variables. In all, we have 972*12=11664 cells.
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Due to poor performance from certain estimation procedures, the stopping rule for

replications in each of the 972 cells was either (1) the minimum successful replications for

any of the procedures attaining 50 or (2) 100 replications having been accomplished.

As for the size of both components to reflect 7c, a uniform (0,1) distribution of size 160

was first generated. Then the number of observations less than it was used as the size of

component 1 while 160 minus the size of component 1 was the size of component two.

4.5 Secondary Analyses

The generated raw data were subjected to secondary analyses to investigate the four

research issues raised in section 2.7. The methods of analyzing raw data regarding each

issue are described below:

1. Three loglinear models were adopted to address the problem of failure to locate a

maximum: one for iteration exceeding rate, another one for singularity rate, and the other

one for failure rate (sum of both rates mentioned above). A dichotomous variable stands

for the performance was formed to represent the frequency of success or failure in each

design. There were 144 cells (3 methods * 2 initial inputs * 2 assumptions of variance * 2

mean separations * 2 variance ratios * 3 proportions) by two levels of performance ). The

purpose of loglinear model was to find the categorical variable or combination which

accounts for significant x2 loss in terms of degrees of freedom when introduced to the

model.

2. A meta-analysis (Hedges and Olkin, 1985) design was cond. 'cted to address the

issue of correlation between asymptotic vaiiaace measures and the absolute distance of

.:;o7rc-spoilding estimates from their true parameter values. A valid replication within a cell

was ,:.stfined as a successful replication (i.e. iterations not exceeding preset values, and

none csf the parameter estimates going to boundary values), with asymptotic variances

being positive through five parameter estimates. One correlation coefficient index was

generated under the condition of valid replications larger than five in each cell.for each
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estimated parameter. We have six grouping variables. A stepwise regression was

conducted first to identify an order to enter them into the meta-analysis. Roughly

"averaging" the order across the five parameters, we arrived at this order to enter into the

design in an attempt to extract homogeneous groupings: variance ratio,mean separation,

model assumption of variance, estimation method, initial input, and component proportion.

Partitioning is continued until homogeneous grouping is established or until all available

partitioning variables have been exhausted.

3. To compare the three algorithms with respect to mean separation, variance ratio, and

component proportion, a repeated measures analysis was conducted using the three

estimation procedure variables repeated across three of the distribution variables. The

variable of shape combination was temporarily not included in the design. Dependent

criteria were (ON 8)2 as a measure of MSE and (ON - 8) as a measure of bias for each of

the five parameters, resulting in 10 A NOVAs.

4. To investigate the research question about the robustness of estimates to non-normal

mixtures, repeated measures analysis was conducted again. It was intended to adopt the

design mentioned above but with shape combination factor added. However, due to

memory capacity of the IBM 3180 mainframe (the IBM mainframe has 16 megabyte

memory space while 68 megabytes was required by SAS to run the original design.), the

design had to be reduced by dropping one of the three data distribution variables. Our

strategy was to run two repeated measures independently: one where mean separation was

0.5 and the other for mean separation of 2.6. The mentioned repeated designs were run

separately for each of the five parameters for mentioned two measures of MSE and bias,

resulting in 20 ANOVAs

5. Results and Conclusion

5.1 Failure Rate and Loglinear Model

13
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A saturated loglinear model was imposed on all the mentioned 288 cells. None of the

effects predicted cell frequency significantly. However, when we conducted a similar

model but with boundary rate replaced by iteration exceeding rate, we obtained a significant

effect of method by performance (x2=6.26, df=2, p=0.04) which indicated that cell

frequencies are depended on method. When a third loglinear model where both boundary

rate and iteration exceeding rate were combined as failure rate, we obtained significant

effects for method by performance (x2=10.44, clf=2, p4.0054) and initial input by

performance (x2=6.33, df=1, p0.0119). Figures 3 and 4 depict the ratio of success rate

to failure ra.. by method and by initial guess, respectively.

0.15

0.10

0.05

0.00

NN MD

Ratio of iteration to success
El Ratio of boundary to success

0.15 "

0.10 -

0.05 -

0.00

Range Cluster

Ratio of iteration to success

eg Ratio of boundary to success

Note: NW=modified Newton, MD=minimum distance, EM=expectation maximization

algorithm

Figure 3. Ratio by Method Figure 4. Ratio by Initial Input

Figure 3 shows that MD had the smallest iteration exceeding rate (0.16%), while EM had

the smallest boundary rate (0.18%). NW ranked poorest for both iteration exceeding rate

and boundary rate. As for the performance of initial inputs, Figure 4 indicates that cluster

initials was the better strategy for initial values in terms of smaller boundary rate and

14
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iteration exceeding rate than range initials. It is concluded that the use of EM with cluster

initials is the preferred method to achieve a successful solution.

5.2 Correlations Between the Distance of Estimates to True Paramaer

Values and the Asymptotic Variances

The size of the correlation coefficient between asymptotic variance and ab,;oluteb:s

shared within each homogeneous group was reported as the result after conducting meta-

analysis. There were 11422 correlation coefficients out of 11664 cells for the estimates of
p.i, 112, and a2, and 5717 coefficients for the estimates of 62 .

First, we tested whether all coefficients share zero as their common correlation

coefficient for each of the 5 parameters. The x2 values indicated all the cell's correlations

are not simultaneously zero. The test that these cells share the grand mean of their

correlation coefficients also failed.

Our next step was to hierarchically group the cells according to the levels of the

independent variables until some cells share a common correlation coefficient

homogeneously. Finally we exhausted all the six independent variables and obtained 35

groups (rows in Table 1) which were homogeneous at least for one estimate, out of 144

groups. Each group contained observations of coefficients across 81 shape combinations.

Table 1 shows the grouping variables, correlation coefficient sizes, x2 values, and degrees

of freedom.

In Table 1, under the situation where the variance ratio was equalone, there were 33

coefficients for the five parameters, among which 30 entries were in the range from -0.5 to

0.5. Three particularly large negative coefficients occurred when the estimation metiod

was MI) (minimum distance) under initial inputs from the cluster method with the

assumption of homogeneity (rows 1 to 3 in Table 1) imposed on unimodal mixtures of

homogeneous components, implying that in these kinds of mixtures, the larger the

15
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asymptotic variance is, the smaller the MSE for al. If we look at those cells that have

variance ratio equal four, there were two groups: one with coefficient values less than 0.2

and the other one with values larger than 0.85. The homogeneous assumption seems to

produce large coefficients under all the three methods in bimodal mixtures of heterogeneous

components (VR=4, MS=2.6, and ASS=hom in Table 1), implying that in bimodal

mixtures, a large asymptotic variance could be an indication of misspecification of

variances. Considering the performance of the three estimation methods from the 33

groups, we found seven groups were from EM (expectation-maximization algorithm), four

groups were from NW (modified Newton), and 22 groups were from MD. MD tended to

create more homogeneous groups than the other two methods, and it seems to produce
large values for the estimates of al, and small values for the other four estimates, meaning

that the asymptotic variances are not able to predict the stability of estimates except for cri2 .

5.3 Comparisons of Three Algorithms in terms of Parameter Estimate

Precision

To address research questions 3 and 4, we described the results from the repeated

measure design conducted over the raw data set. Because replications with missing values

were dropped from the analysis, i.e., only the replications which were successful on all of

the 12 estimation procedures (3 methods * 2 initials * 2 models of assumption) were

included, 32999 valid observations were analyzed out of the total 79424. The values of the
.

estimates of a22 in the mixtures of homogeneous model were copied from the one of the

estimates of al. The test for sphericity for MSE and bias from each of the five parameters,

respectively, rendered significant x- values; therefore Greenhouse-Geisser adjusted

degrees of freedom were used to conduct conservative significance tests. The term,

unimodal mixtures, stands for mixtures of two components that differ by 0.5; while

bimodal mixtures for two components that differ by 2.6. The term, homogeneous
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components, means two components of variance ratio 1; while heterogeneous components

for two components of variance ratio 4.

To address the research question 3, the variable, shape, was not included in the

design, thus the groupings of the replications always contained the ones from the 81 levels

of shape combinations. Regarding the MSE of the three methods under estimation

procedure variables (initial selection and model adoption), and data distribution variables

(mean separation, variance ratio, and component proportion), we have 214 interaction

figures support the following results. Only some of those are presented in this article.

NW and EM were less sensitive to the use of different initials and produced equally

acceptable estimates. MD was sensitive to different initials (see Figure 5). With range

initials, MD performed better than NW and EM in unimodal mixtures and worse than NW

and EM in bimodal mixtures. Nonetheless, cluster initials with MD in most cases

outperformed all the other procedures.

There are two types of incorrect model assumption: homogeneous model imposed upon

heterogeneous data and heterogeneous model imposed upon homogeneous data. For NW

and EM, a homogeneous model imposed on heterogeneous data produced larger MSE for
2 2

the parameters it, Ili, 61, and 62 compared to a heterogeneous model imposedon

homogeneous data (see Figure 6). The estimates of µ2 did not reflect significant difference

by different model assumption. Thus, the better model for NW and EM is heterogeneous

in exploratory studies. MD was less affected by imposing an incorrect model in estimating

it, µl, i, 1.1.2, and 61 . However, for the estimates of a22 , MD with cluster initials produced

the largest MSE among all the estimation procedures if a homogeneous model was

incorrectly imposed on heterogeneous data (see Figure 7). Therefore, the better model for

MD is also heterogeneous. Comparing the twelve estimation procedures (3 methods by 2
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initials by 2 model assumptions) in terms of MSE, the best was MD with cluster initials

when assuming heterogeneous model.

To address the research question 4, we focused on the best e-timation procedure, cluster

initials combined with a heterogeneous model, for the three methods. There are 67

interaction graphs of method by shape combination to support our results. Some

representative ones are depicted in this article. Their performance varied by parameters and

shape combinations. MD performed as well as or better than NW and EM in estimating It

and al disregard what shape combinations the mixtures had (see Figure 8). As for the

other three parameters, MD generally was superior to NW and EM in mixtures of

homogeneous components. In mixtures of heterogeneous components, EM was more

sensitive than MD to the presence of positive or negative skewness in estimating p2,
2

and a2 Figures 9 and 10). However, the MSE difference was small in the cases

where MD was poorer than EM for the parameters p1 and p.2. Generally, MD was most

robust to non-normality and to uneven component proportion.

Under the use of cluster initials, we concluded that the direction of bias is affected by

two factors, the number of modes of mixtures and the component variance ratio. In

unimodal mixtures of homogeneous components, we found that the estimates of p.i and µ2
2were overestimated, and al

2
and a2 were underestimated. In unimodal mixtures of

heterogeneous components, the estimates of p1 and p.2 tended to be biased in opposite

directions away from each other and the estimates of a2l and 02
2

were biased toward each

other. In bimodal mixtures of homogeneous components, bias of the estimates of pi, p.2,

2 2
al and a2 fluctuated around zero. It is found that positive skewness tends to cause

negative bias while negative skewness tends to cause positive bias. However, in

heterogeneous components, µ1 and µ2 were all overestimated, and a2l and a2
2

were nearer
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to each other. The above tendency can be applied to the three methods. MID generally

produced estimates with sizes smaller than those produced by NW and EM. Therefore,

MD estimates were less positively biased if the tendency was positive bias such as for

and µ2 (see Figure 11), and more negatively biased if the tendency was negative bias

2
such as for 62 (see Figure 12)

6. Discussion and Suggestions

6.1 Discussion

As mentioned in section 2.1, both Leytham (1984) and Hamilton (1991) reported

singularity rate. The common characteristics in both studies were that the largest sample

size was 100, that EM was need as the estimation procedure, and that true parameter values

were used as initial inputs. However, the two studies led to different conclusions. The

two largest singularity rates in Hamilton's study were caused by either the component

proportion being as large as 0.9, or the two components being identified. In Leytham's

study, all the mixtures We:e bimodal.

In this study, our main interest is to investigate the relative performances of different

methods in an approximation of typical research situations. Therefore, we conducted

simulations with a sample size of 160 and used by NW, EM and MI) with two types of

initial inputs. Our results indicated that EM produced the smallest singularity rate (0.02%)

among the three methods. However, the loglinear model did not show significant

dependency of singularity rate on method, model assumption, mean separation, variance

ratio, and component proportion. Therefore, with a sample size of 160, singularity was

not shown to be a concern in either unimodal or bimodal mixtures of homogeneous or

heterogeneous components with the smallest component proportion not less than 0.3 by the

use of EM method with imprecise initial inputs.

19

2 3



Imposing of a homogeneous model unto heterogeneous data was discussed by Basford

and McLachlan (1985). They found that the wrong model particularly affected the

estimates of component proportions. Our results show that other than the component

proportion, the wrong model also affected the estimates of µl, i, oi2, and a2. For the

parameter lt2, the selection of the model for the three methods was not as crucial because

there was no interaction of method by model. For the other four parameters, the

'homogeneous model to heterogeneous components' combination caused the largest MSE

compared to the other three types of model-component combination in most mixture forms.
.

An exception was for the estimates of al
2

in unimodal mixtures where the largest MSE

occurred when a heterogeneous model was imposed on heterogeneous data using NW and

EM. This phenomenon implies that in unimodal mixtures, a homogeneous model is

preferred if component variances are of most interest and either of the estimation

procedures of NW and EM is used. Since the estimates of proportion and location

parameters are of most interest, we consider that the superiority of the heterogeneous model

has been demonstrated and that MD proved to be more robu :t to mismatch between model

assumption of variance and data.

Regarding the sensitivity of MD and EM to non-normality, conclusions from our study

may be compared to those of Woodward, Parr, Schucany, and Lindsey (1984). In our

study, we used both unimodal and bimodal mixtures. The normal mixture (shape

combination 22) is one of the 81 manipulated shape combinations. We demonstrated that

MD dominated EM in both unimodal and bimodal mixtures for the estimates of t. As for

the other four parameters, the interaction diagrams of method by shape combination show

that MD fluctuated less than EM and was more robust to various shape combinations, but

the superiority of one method over the other is not absolute through all the parameters. Our

study, does not support the conclusion that EM is better overall than MD under normal
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mixtures (see Figure 8), and was neither poorer than MD under non-normal mixtures (see

Figure 10).

6.3 Suggestions

6.3.1 Suggestions for Practitioners

For a practitioner, the most important issue is the selection of the most appropriate

estimation procedure. To estimate the parameters of a finite mixture, MD and EM have

their own strengths and deficits. The strengths of EM are the lowest singularity rate and

insensitivity to the choice of initial inputs. The strengths of MD are its robustness to non-

normality and incorrect model assumption of variance. As for availability, EM is easy to

program yet there is no handy EM program available for general public. However, MD is

installed in popular package IMSL as a general least squares method that only needs a

function to define the least squares as introduced in section 3.3.

If only the component proportion parameter is to be emphasized in a practical situation,

MD performs equally well with both range and cluster initials and is preferred to EM by

both smaller MSE and less bias. If both proportion and location parameters are important,

then the availability of initials needs to be considered. With the use of cluster initials which

can be obtained by a regular cluster analysis, MD performs better than EM in terms of both

MSE and bias, but with simple range initials, MD is inferior to EM. When all the

parameters, including scale parameters, are to be estimated, our results suggest the use of
2

cluster initials. Also, their performances differ by non-normality for the estimates of a2
.

heterogeneous mixtures. Neither MD nor EM was superior over the other through all the

shape combinations. EM is preferred if the second component is syrn,etric or positively

skewed while MD is preferred if the second component is negatively skewed. This

suggestion should be considered only when the scale parameters are more important than

the other parameters; otherwise, MD should be preferred.
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Our study found that a homogeneous model imposed unto heterogeneous mixtures

produced the largest MSE among the four model-component combinations. Therefore we

recommend using a heteroscedastic model.

Our study suggests that asymptotic variances are too unstable to predict the bias in

parameter estimates if a heterogeneous model is assumed. If homogeneous model is
2

imposed on a data set and a large value of the asymptotic variance of parameter al is

found, it could be an indication that the wrong model has been used.

6.3.2 Suggestions for Further Research

Woodward et al. (1984) ham concluded that the results for n=100 were not

substantially different from n=50 or n=200 based on their bimodal mixtures. In another

words, small sample size did not have a significant effect in bimodal mixtures. In order to

complete the comparison between MD and EM in terms of non-normality, a side issue

would be how both methods perform with small sample sizes in unimodal mixtures.

Hamilton (1991) has noted the singularity problem occurs when a component

proportion is as small as 0.1. How MD compares with EM for small values of 1t is also

interesting.

MD has been concluded in the study to be the better estimation procedure. However,

its performance in determining the number of components has not been discussed in

literature. Wolfe's (1971) modified likelihood ratio can be used to test the null hypothesis

of component number equal Co against the alternative hypothesis.of component number

equal C1 where C1 > Co. A comparison of EM with MD on small sample sizes,

component proportion close to boundary, and robustness of this procedure for various true

number of components would be useful.
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Table 1. Correlation Coefficients between the Distance of Estimates from True Parameter
Values and Corresponding Asymptotic Variances from Homogeneous Groups for Five
Parameters by Data Distribution Variables

V
R

MS AS ME I P n gl P-2
2

a1
2

a2.....
1 0.5 horn MD C 5 -0.9523

4.4 (80)

1 0.5 horn MD C 3 -0.8754
9.3 (80)

1 0.5 hom MD C 7 -0.8575
11.6 (80)

1 0.5 het EM R 5 -0.2810
65.3(80)

1 0.5 het EM R 3 -0.1057
77.0(80)

1 0.5 het EM C 5 -0.2812
68.8(80)

1 0.5 het EM C 3 -0.1433
87.0(80)

1 0.5 het EM C 7 -0.1348
99.8(80)

1 0.5 het NW C 3 -0.2025
100.8(80)

1 0.5 het MD R 5 -0.1786 -0.1047 -0.1834 -0.1969
80.6(67) 76.4(67) 61.2(67) 84.8(67)

1 0.5 het MD R 3 -0.1038 -0.1330
92.3(73) 87.5(73)

1 0.5 het MD R 7 -0.0308 0.1114
63.8(74) 75.2(74)

1 0.5 het MD C 5 0.0260
89.6(80)

1 2.6 horn MD R 5 -0.1010 0.0026 0.1939 0.3428
27.2(33) 35.8(33) 43.4(33) 32.4(33)

1 2.6 horn MD R 7 0.4639
85.9(69)

1 2.6 het MD R 5 -0.1678
54.9(42)

1 2.6 het MD R 3 -0.0545 -0.0439 0.1560
54.3(80) 67.3(80) 94.9(80)

1 2.6 het MD R 7 -0.0040
72.2(80)

1 2.6 het MD C 3 -0.0758 40711
78.4(79) 87.4(79)

1 2.6 het MD C 7 -0.0243
76.0(67)
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Table 1. (Continued)
V
R

MS AS I ME P It gl g2
2

(51

22
4 0.5 horn MD C 3 0.0666

64.6(80)
4 0.5 het MD R 7 -0.1127

82.7(80)
4 2.6 horn EM R 5 0.9271

51.6(80)
4 2.6 horn EM C 5 0.9262

60.5(80)
4 2.6 hom NW R 5 0.9373

4.2(72)
4 2.6 horn NW R 7 0.9441

1.0(44)
4 2.6 horn NW 5 0.9376

8.6(80)
4 2.6 horn MD C 3 0.8986

7.5(80)
4 2.6 het MD R 3 -0.0438

97.9(80)
4 2.6 het MD R 7 -0.1014

72.7(56)
4 2.6 het MD C 5 -0.0489

87.7(80)
4 2.6 het MD C 3 -0.0514

97.9(80)
4 2.6 het MD C 7 -0.0385

94.7(78)

Note: x2 at the second row. Degrees of freedom in parentheses.
VR=variance ratio
MS=mean separation
AS=assumption of Variance (hom=homogeneity, het=heterogeneity)
ME=method (NW=modified newton, MD=minimum distance)
I--=initial inputs (R=range method, C=Cluster method)
P=proportion of the first component (3=0.3, 5=0.5, 7=0.7)
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Figure 1. (Continued)
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Figure 2. Four Examples of Mixtures
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Figure 5. A Five Way Interaction Plot, Method * Initials * Assumption
of Variance * Mean Separation * Variance Ratio, on MSE
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Figure 6. A Six Way Interaction Plot, Method * Initials * Assumption of
Variance * Mean Separation * Variance Ratio * Proportion,
on MSE index of p.1(Mean Separation = 0.5)
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Figure 7. A Six Way Interaction Plot, Method * Initials * Assumption of
Variance * Mean Separation * Variance Ratio * Proportion,
on MSE index of (32 ( Variance Ratio = 4)
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