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Abstract

Since university enrollment forecasting is very important, many different methods and models

have been proposed by researchers. This paper introdw.:es two new models for enrollment forecasting:

the fuzzy time series model and the artificial neural networks model. Fuzzy time series has been

proposed to deal with forecasting problems under a fuzzy environment. In this model, the uncertainty

encountered in the forecasting process is taken as being produced by our incomplete understanding of

nature. Hence, it is different from any stochastic methods. Artificial neural networks are new

technology applied in engineering. When applied in forecasting, uncertainty is ignored and thus the

model is a deterministic one. In spite of this, because of the ability to generalize once trained, the

network model has robustness. Through examples, this paper will indicate how these models are applied.
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1. Introduction

It is of importance to have reasonably accurate estimate of the future enrollment for a university.

For this reason, researchers have proposed many different methods for forecasting enrollments. Many

factors influence university enrollments as can be seen from the different models developed by various

authors. The key point of developing a forecasting model is to clarify the important factors and their

relationships with enrollments. Different factors and relationships will lead to different models or

methods. Classifications of, and comments on forecasting methods and models can be found in Gardner

(1981) and Shaw (1%4).

Hoenack and Weiler (1979) developed a forecasting model which had 11 equations and considered

19 factors. The model was used for a case application with good accuracy. This model was, in essence,

an econometrics model used primarily in economic analysis.

Weiler (1980) used growth curve models, often used in the analysis of the sales of newly

developed products, to forecast enrollments for the short-period between the beginning of the application

and the start of the fall semester. The models were used to forecast enrollments of the University of

Minnesota with forecasting errors' ranging from 2.4% to 16%, with an average error" of 9.7%.

The double exponential smoothing method can be used to forecast enrollments by applying a

weighing factor. Obviously, the main weakness of this method is the question of how to determine an

appropriate value for the weight. Gardner (1981) discussed how to select this weight factor.

Warrack and Russell (1983) developed a forecasting model usinf a motivational index and a

demand index. These indices were tested with surveys of more than 13,000 high school students and

validated with respect to actual outcomes by surveying more than 5,000 students about their post-high

school plans. Forecasted enrollments of the four universities considered in their study had forecasting

errors that ranged from 3.7% to 14.4%. The main drawback of this model is the costly survey which
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is its foundation.

Pope and Evans (1985) developed a Decision Support System for forecasting enrollments. In

their study, the enrolling freshmen were classified into four divisions, and for each division, a different

model was derived. However, forecasting errors were not reported, precluding comparisons with errors

from other models.

Chatman (1986) applied regression to the accumulative number of accepted students to forecast

ersollments. Not only the number, but also the scholastic ability (SAT scores) of the enrolling students

could be forecasted. His study yielded forecasting errors ranging from 2.8% to 23%.

Paulsen (1989) proposed a step-by-step method that was conceptually similar to those by Weiler

(1980), Pope and Evans (1985), and Chatman (1986). This method achieved an average forecasting error

of 2.4% which is the smallest of all the short-term forecasting models reviewed in this paper.

From the literature review, one can perceive that researchers have been looking for new methods

to achieve a unique goal: forecasting enrollment for universities. Therefore, the purpose of this paper

is to introduce two new models for enrollment forecasting: the fuzzy time series model and the artificial

neural networks model.

The fuzzy time series model was developed based on fuzzy logic invented by Dr. Zadeh (Zadeh,

1965,1975a-d) of The University of California at Berkeley. As we know it, any forecasting model

utilizes historical data to make a good guess at future events. Because of the noise or uncertainty existing

in the data, any prediction of the future also has this kind of uncertainty in it. In stochastic models, the

uncertainty is treated as being caused by random factors, while in the fuzzy time series model the

uncertainty is taken as being caused by our incomplete understanding of nature. Thus, historical data can

Forecasting ern:v=(0 forecasted value - actual valued /actual value)*100%

es Average forecasting error=(sum of forecasting errors)/(total I of errors)
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be fuzzy. Since historical data have fuzzy characteristics, nothing but fuzzy logic can be applied.

Dealing with fuzziness of historical data is the most important characteristics of fuzzy time series models.

Artificial neural networks are an advanced technology applied in engineering and have achieved

fruitful application results (Freeman et al, 1991). Yet, in educational researzh, we have not found any

applications of this technology, and it is our belief that neural networks will be a competitive model in

forecasting enrollments if we assume that neural networks can function as a mapping between influencing

factors and enrollments. To verify this, we will use a 3-layer back-propagation network as the forecasting

model using original data, and explore the possibility of improving the results by deriving a simple

equation for forecasting.

2. Fuzzy Time Series Models

2.1 Fuzzy time series

Fuzzy time series was proposed by the authors (Song and Chissom, 1993a,1993b) to deal with

forecasting problems in which historical data are fuzzy sets or linguistic values. Generally, a fuzzy time

series can be defined as follows:

Fuzzy Time Series. Let Y(t) (t= ,0,1,2, ), a subset of RI, be the universe of discourse on which

fuzzy sets f1(t) (i= 1,2, ) are defined and F(t) is a collection of fi(t), ..., then F(t) is called

a fuzzy time series defined on Y(t) (t= ,0,1,2,....).

In the above definition, F(t) is a linguistic variable and (i= 1,2, ) is the possible linguistic

values of F(t). It can be seen that no hints can be found explicitly from the definition about how to model

fuzzy time series, thus leaving the possibility of different models. Of all fuzzy time series models, the

simplest one is the first-order time-invariant model, which can be expressed as:

F(t) =F(t-1)0R(t,t-1) = F(t- 1)oR(t,t-1) (1)

where R(t,t-1)=R is the fuzzy relation between F(t-1) and F(t), and "o" is the min-max operator. Since
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R(t,t-1) is independent of time t, and only two consecutive times are involved in the model, it is called

the first -order time invariant model. In forecasting applications, one might encounter two situations: One

is when historical data are linguistic values and the other when data are numerical. In the second case,

the data need to be fuzzified first in order to apply fuzzy time series models. In the following section,

a step-by-step forecasting procedure will be introduced to indicate how to set up and utilize a first-order

time-invariant model to forecast enrollments. Specific example data from The University of Alabama will

be given to make the procedure more understandable.

2.2 Procedures of using fuzzy time series to forecast

Step 1. Define a range U on which the historical data are and upon which the fuzzy sets will be

defined. Usually, when defining U, you must find first the minimum enrollment Awn and the maximum

enrollment D,,x of known historical data. Based on D." and D., define U as [Dinin-D1, D.+D2]

where D1 and D2 are two proper positive numbers. In our example, we have on hand the enrollment data

of the university from 1971 to 1990 with Dmin= 13055 and D.= 19328. For simplicity, we choose

D1 =55 and 132=672. Thus, the range of the interval U= [13000,20000].

Step 2. Partition U into several equally lengthy intervals. In our example, we divide U into 7

intervals of equal length. We use u1, u2, u3, u4, u5, u6 and u7 for each interval, i.e., u1= [13000, 14000],

u2= [14000, 15000], u3= [15000, 16000], u4= [16000, 17000], us= [17000, 18000], u6= [18000, 19000]

and u7= [19000, 20000].

Step 3. Define fuzzy sets on U. First, determine some linguistic values. For the linguistic

variable "enrollment", let A1= (not many), A2= (not too many), A3= (many), A4= (many many),

As =(very many), A6= (too many), and A7= (too many many) be the possible values. There is no

restriction on the number of fuzzy sets defined. Second, define fuzzy sets on U. All the fuzzy sets will

be labeled by the possible linguistic values. In our example, u1, u2, , and u7 are chosen as the
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elements of each fuzzy set. To determine the memberships of u1, u2, and u7 to each Ai (1=1 to

7), make a judgment of how well each uk (k= 1 to 7) belongs to Ai. If a uk belongs to Ai completely,

the membership will be 1; if uk does not belong to Al at all, the membership will be 0; otherwise, choose

a number from (0,1) as the degree to which uk belongs to Ai. From our experience, we have determined

the membership for each element in the respective fuzzy sets. Thus, all the fuzzy sets Ai (1=1 to 7) are

expressed as follows:

Ai = {u1/1, u2/.5, u3/0, u4/0, u5/0, u6/0, u7/0};

A2= {111/.5, u2 /1, u31.5, u4/0, u5/0, u6/0, u710 };

A3= 411/0, u21.5, u3 /1, u41.5, u510, U6/0, u710);

A4= {U1/0, u2 /0, u31.5, u4/1, u5/.5, u6/0, u7/0}; (2)

A5= {U1/0, u210, u310, u4/.5, u5 /1, U6/.5, u710 };

A6= (111/0, U2/0, u310, u410, u51.5, U6/1, u71.5 };

A7= {U1/0, u210, u310, U4/0, U5/0, u6/.5, u7 /1 }.

where u1 (i= 1 to 7) is the element and the number below "/" is the membership of ui to Ai (j =1 to 7).

For simplicity, we will also use A1, A2, , and A7 as row vectors whose elements are

the corresponding memberships in (2).

Step 4. Fuzzify the historical data, i.e., finding an equivalent fuzzy set for each year's enrollment.

To do this, the degree of each year's enrollment belonging to each Ai (i = 1 to 7) is determined. The

process is the same as that of determining the memberships of Ili to Aj in Step 3. The equivalent fuzzy

sets for each year's enrollment are shown in Table 1 with each fuzzy set containing seven elements.

Step 5. Obtain the fuzzy logic relations from Table 1 about the evolution of the enrollment of this

university to set up the forecasting model. To do so, assume that if the maximum membership of one

year's enrollment is under Ak, then we treat this year's enrollment as Ak. For example, for 1982, the

maximum membership is under A3, then we say that the enrollment of 1982 is A3, or many. We can do
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the same for the rest. Thus, we can transform historical data into linguistic values. Since we are looking

for the laws governing any two successive years' enrollments, in terms of fuzzy sets and fuzzy conditional

statements, we will develop such logical relationships as "If the enrollment of year i is Ak then that of

year i + 1 is Ai ", and so on. Thus, we can obtain all the fuzzy logic relations as follows (Note: the

repeated relationships are counted only once):

A1-->A1, A1>A2, A2-> A3, A3-> A3, A3->A4, A4-> A4, A4->A3, A4->A4, A6-> A4 and A6-> A7.

Next, let us define an operator "x" of two vectors. Suppose C and B are row vectors of

dimension m and D=(do)=CTxB. Then the element do of matrix D at row i and column j is defined as

d. =min(Ci,Bi) (i,j =1 to in) where C, and Hi are the and the ith elements of C and B respectively.

Let R1= ATIXA1, R2=ATIXA2, R3=AT2XA3, R4=AT3xA3, R5=AT3xA.4, R6=AT4xA4,

R7=AT4XA3, Rg=AT4xA6, R9=AT6- XH and Rio= AT6xA7. Then, we get

10
R(t,t-1)= R = U It;

i =1
(3)

where R is a 7x7 matrix and "U" is the union operator. Using formula (3), some calculation

yields:

R=

1 1 .5 .5 0 0 0

.5 .5 1 .5 .5 0 0

0 .5 1 1 .5 .5 .5

0 .5 1 1 .5 1 .5

0 .5 .5 .5 .5 .5 .5

0 0 0 0 .5 1 1

0 0 0 0 .5 .5 .5

Thus, the forecasting model is:

Ai= Ai_loR (4)

where Ai..1 is the enrollment of year i-1 and A; the forecasted enrollment of year i in terms of fuzzy sets.

Step 6. Calculate the forecasted outputs. Suppose the enrollment of year t is known and can be
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found from Table 1, to forecast the enrollment of year t+ 1, let A1.1 in (4) be the enrollment at year t and

apply formula (4). Then Ai will be the forecasted enrollment of year t+ 1. For 1972 to 1991, the

forecasted outputs are shown in Table 2.

Step 7. Interpret the forecasted outputs. The calculation results of formula (4) are all fuzzy sets.

If the results in the form of fuzzy sets can satisfy the requirement for forecasting, just stop here. But in

many cases, an equivalent scalar is desired. Therefore, translating the fuzzy output into a regular number

is indeed a necessary step. Sometimes, this si,ep is called defuzzification (Kosko,1992). For

defuzzification in this procedure, we suggest to use the following steps:

1). If the membership of an output has only one maximum, then select the midpoint of the

interval corresponding to the maximum as the forecasted value;

2). If the membership of an output has two or more consecutive maximums, then select the

midpoint of the corresponding conjunct intervals as the forecasted value;

3). Otherwise, standardize the fuzzy output and use the midpoint of each interval to calculate the

centroid of the fuzzy set as the forecasted value.

Following the above steps, we have obtained predicted values for enrollments from 1972 to 1991.

The results are listed in Table 2 and shown in Fig.1 where the solid line is the actual enrollment and the

dashed line is the forecasted enrollment. Note that we did not use enrollment data of 1991 to develop

the forecasting model. The forecasting errors range from 0.1% to 8.7% with the average error being

3.18%. For 1991, the forecasting error is 1.7%. For a mid-term forecasting model, an average error

of 3.18% is quite satisfactory.

3. The Artificial Neural Network Model

3.1 A Brief Introduction to Artificial Neural Networks

Technically, an artificial neural network is composed of a set of artificial neurons. Each neuron

7
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is a computational unit and has some inputs and output(s). Generally, the output of the neuron is a
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13000
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YEAR

Fig.1 Forecasting results with fuzzy time series

nonlinear function of the weighted sum of all the inputs. There are connections among some of the

neurons, and because of this, neural networks can process informati,., in parallel. By connectionism and

parallelism, neural networks have gained remarkable computational powers in some areas that digital

computers cannot match. In engineering, neural networks have been successi illy applied in signal

processing, pattern recognition, phoneme recognition and many other areas (Widrow et al, 1988; Freeman

et al, 1991; Kong et al, 1991; Kosko, 1992). Of all the various networks, the simplest and most

fundamental might be the 3-layer backpropagation network. A typical 3-layer backpropagation network

has the following structure:

8
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f°k (net °k)

a M Output layer

Hidden layer

Input layer

Fig.2 A typical structure of 3-layer neural networks

In the structure shown .1n Fig.2, the first layer is called the input layer, the second the hidden

layer and the last the output layer. The input of the network is fed into each neuron of the input layer.

The output of the neuron is the same as the input. The output of the input neuron, multiplied by the

weight of the connection between the input neuron and the hidden neuron, is fed into the neurons of the

hidden layer. Mostly, the output of hidden neuron j is a function of the weighted sum of all the inputs

to the neuron and the function has the following form:

P(nethi)= (1+ exp(-net hi))-1 j =1 to L (5)

N
where nethi= E whp*xi, whji is the weight of the connection from input neuron i to hidden

i=1

neuron j and xi is the ith element of input X. Similarly, the output of hidden neurons, multiplied by the

9
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weighi. :A the connection between hidden neurons and output neurons, is fed into the output neurons. The

output of output neuron k is a function of the weighted sum of all the inputs to the neuron. Normally,

the function has the form of (6):

Pk(net°,3= (1+ exp(- netek))4 k= I to M (6)

L
where net°k= E w°,4*Pj(nethj) and w°14 is the weight of the connection from hidden neuron

j=1

j to output neuron k.

The most important characteristic of neural networks is that they are trained instead of

programmed. They have the ability to generalize once they have been trained with some exemplars.

When presented with the input and the desired output called an exemplar at the input layer and the output

layer respectively, the network will produce an output. If the output is compared with the desired output,

an error can he determined. To improve the performance of the neural ietwork, the weights whii and w°4

can be adjusted according to some rules (Freeman et al, 1991) such that the mean square of the error will

be minimal. In neural networks literature, this process is called learning or training. Once a network

has been trained, it has the ability to recall the desired output if the corresponding input is presented.

In practice, a network can learn more than one exemplar simultaneously, and because of this ability,

neural networks have found wide application.

3.2 Forecasting Scheme I: Using Original Enrollment Data

When applying neural networks for forecasting enrollments, there are three practical problems

that should be considered. The first is the selection of the input, the second is how many input neurons

we should choose for the network, and last is the problem of scaling the data.

As discussed above, many factors have influences on enrollments and all these factors can be

taken as the input of the neural network. But, if we take too many influencing factors into account, the
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access to their sources may be a problem. The simplest case might be such that only current and past

enrollment data are chosen as the influencing factor. The advantage of this is the ease with which to

obtain these data. Thus, the input to the neural network will be present and past enrollment data.

Obviously, the output from the network will be the forecasted enrollment.

Since only one factor, current and past enrollments, is considered, to make the forecasting errors

as small as possible we shall use several years' enrollments as the input. In this study, we will use the

current and the past 9 years' enrollments as input to forecast the next year's enrollment.

Since the output of a 3-layer beck propagation network is somewhere between 0 and 1 and the

enrollments are from 0 to a large number, we first transform the enrollments into a number between 0

and 1 by dividing the enrollment by a proper positive number (100,000 in this study). Hereafter, the

enrollments will be the scaled values unless otherwise noted.

When enrollment forecasting is compared with digital signal prediction in engineering, we find

that these two processes share a common characteristic, both of them extrapolate the future by using

present and historical information. Thus, some techniques applied in digital signal prediction can be

borrowed for enrollment forecasting.

In signal prediction, the adaptive filter might be the simplest and the most widely used technique.

A typical scheme of adaptive filters can be found in Widrow and Winter (1988). Nevertheless, it should

be pointed out that adaptive filters are different from neural networks conceptually. To apply neural

networks for enrollment forecasting, we shall adopt the scheme of adaptive filters with some modification.

Instead of the adaptive filter, a 3-layer back-propagation neural network will be used. The scheme is

shown in Fig.3.

In Fig.3, the neural network has 10 input neurons, 5 hidden neurons and only 1 output neuron.
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Fig.3 Forecasting enrollments with neural networks: Scheme 1

The procedure of using neural networks for forecasting enrollments is as follows:

Suppose we have the enrollment data of year t and previous years. To forecast the enrollment

of year t+1, X(t+1), the neural network is trained using the following two exemplars:

(Inputi; Output!) = (X( t-10),X( t-9),X(t-8),X(t-7),X(t-6),X(t-5),X(t-4),X(t-3),X(t-2),X(t-1);X(0)

(Input2; Output.2)=(X(t-11),X(t-10),X(t-9),X(t-8),X(t-7),X(t-6),X(t-5),X(t-4),X(t-3),X(t-2);X(t-1))

where X(t) is the enrollment at year t.

After training the network, the following input data are fed into the network:

( X( t- 9), X( t- 8),X(t- 7),X(t-6),X(t- 5),X(t -4), X(t-3), X(t-2),X(t-1),X(t)).

The output of the network will be taken as the forecasted enrollment of year t+1, X(t+1). Multiply

X(t+1) by 100,000 and we will get the actual forecasted enrollment of year t+1.

12
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Following the above procedure, we have forecasted enrollments from 1984 to 1992. The neural

network was simulated on the Pla Net neural network software package (Miyata, 1991). For 1984 to

1991, the forecasting errors range from 1.6% to 9.6% and the average forecasting error is 5.2%. The

results are shown in Fig.4 where the solid line is actual enrollment and the dashed line forecasted

enrollments. For mid-term enrollment forecasting, an average forecasting error of 5.2% is acceptable,

because in this model we have taken into account only one influencing factorthe present and the past

enrollments. But, there is still the potential for improvement of the accuracy. The cause for this error

might be that when using the historical data, the neural network cannot recognize the trend of the

evolution of the enrollment to forecast the future very well. To improve this, we shall derive a simple

equation for forecasting enrollments in the next section.

2100

20000
0 Actua+ -*- Forecasted

19000

Enrollments

18000

17000

18C;

15000

14000

13000 I I I I I I I I I I i l Ili!
1972 1974 1978 1978 1980 1982 1984 1988 1988 1990 1992

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991

YEAR

Fig.4 Forecasting results with Scheme 1.

3.3 Forecasting Scheme II: Using Derivatives of Enrollments
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Suppose the enrollment X(t) is a differentiable function of time t. Given t and t where t>

according to Taylor's Theorem (Lightstone, 1965), the enrollment X(t) can be approximately expressed

as follows:

X(t) X(t)+Xf(t)*(t-t) (7)

where X' (t,,) is the derivative of X(t) with respect to time t at t,. By definition,

Xf(t)= Lim (X(t)-X(t))/(t-to)
t->to

In our case, since we are forecasting next year's en..nllment, let t=t,+1. Thus,

Xf(t,,)=, (X(0-X(t-1))/(t-t,)

=X(t)-X(t-1).

(8)

Therefore,

X(t -1) + (X(t)-X(t-1))

= X(t-1)+Dx(t) (9)

where DX(0= X(t)-X(t-1).

Since X(t)s are historical data, Equation (9) implies that the enrollment at time t is approximately

the sum of the enrollment at t-1 and the difference between the enrollments at t and t-1. This difference

stands for the changing trend of the enrollments. From historical data, we can calculate DX.(t) for each

year. This tells us that if we forecast p_x(t) instead of X(t) using neural networks, the forecasting results

might be improved. To test this hypothesis, we must first use historical enrollment X(t) to calculate

DX(t), and to obtain training exemplars for the network. Then, transform im's into a number within

[0,1] so that they can be applied to the network. The transformation formula is as follows:

DX(t)=022_40+D)/N
(10)

where (t) is the actual value, D= min((t) I and N is a proper positive number (N is 1,000

t
in this study) such that DX(t) will be within the interval [0,1]. In the following, we shall use DX for the

14
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transformed values. Finally, we will train the same network as used in the former section. The process

is still the same.

Suppose we have transformed the enrollment data of year t and the previous years into DX's, to

forecast DX(t+ 1), we should first use the following exemplars to train the network:

(Input,: Output)=(DX(t-10),DX(t-9),DX(t-8),DX(t-7),DX(t-6),DX(t-5),DX(t-4),DX(t-3),

DX(t-2),DX(t-1); DX(t))

(Input2; Output)=(DX(t-11),DX( t-10),DX( t-9),DX(t-8),DX(t-7),DX(t-6),DX(t-5),DX(t-4),

DX(t-3),DX(t-2); DX(t-1)).

And then input the following data into, the network:

( DX( t- 9 ),DX(t- 8),DX(t- 7),DX(t- 6),DX(t- 5),DX(t-4),

DX(t-3),DX(t-2),DX(t-1),DX(t)).

The output of the network will be DX(t+ 1). To get the actual forecasted PX(t+1), use the following

formula:

DX(t+ 1)=N*DX(t+ 1)-D (11)

where N is 1,000 in this study. Using equation (9), the forecasted enrollment X(t+ 1) will be:

X(t+ 1) = X(t) +P_X(t + 1). (12)

Fig.5 is the scheme of using DX's to forecast enrollments.

Following the above steps, we have forecasted the DX(t)'s for each year from 1985 to 1992 and

applied Equations (11) and (12) to calculate the fbrecasted enrollment for each year. The forecasted

results are shown in Fig.6 where the solid line is actual enrollments and the dashed line forecasted

enrollments. For 1985 to 1991, we have achieved forecasting errors ranging from 0.6% to 4.7% with

the average error being 2.6%. This result is considered to be very satisfactory.

Compared with Scheme 1, i.e., the method using only the original enrollment data, the accuracy

of using (t)'s has been doubled (the average error has been reduced from 5.2% to 2.6%). Very
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interestingly, the forecasted enrollment of 1992 will be lest than the actual enrollment of 1991.

X (t)

Fig.5 Forecasting enrollments with neual networks: Scheme 2

4. Discussions and Concluding Remarks

4.1. About the fuzzy time series model

Compared with any other forecasting methods mentioned in Section I, the method applied he-e

has at least the following 5 advantages:

1. The average forecasting error of this method is smaller and acceptable.

2. Human experience knowledge can be utilized from the very beginning until the end of the

forecasting process. If historical data cannot be obtained but the knowledge of the evolution of the
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university's enrollments of the past can, i.e., the evolution laws in the form of "IF....THEN...." can be

obtained, none of the other methods can be applicable. Nevertheless, in this case with fuzzy time series,

we are still able to establish a forecasting model and make good forecasts. Our method is better than the

others in this aspect;

3. Historical data have less important roles in our method. Note that in Section III, the data

were only used in Step 4 of the procedure where the data were fuzzified. Once fuzzified, they were

21000
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18000
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18000

15000

14000
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13000
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Fig.6 Forecasting results with Scheme 2

never used again. Although in Step 1, the minimum and the maximum of the historical data were used

to define the universe, it is not necessary to do so. In effect, we could define a universe with only our

experience. The principle is that the universe should cover the possible range of the enrollments;

4. Even if historical data are real numbers, since the model has robustness, the requirement for

historical data is not very strict;

5. When historical data are linguistic values, the procedure is almost the same for forecasting
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enrollments except that Step 4 is omitted and Tai .le 1 contains the corresponding fuzzy sets of (2) as row

vectors.

The major problem with this method is that the forecasted values depend to some degree on our

interpretations of the outputs of the forecasting model in Step 7. Different interpretations may lead to

different forecasted results. This makes the process quite subjective. To overcome this shortcoming, an

objective method should be applied.

4.2. About the neural network models

We have used artificial neural networks as a mid-term model to forecast enrollments of the

University of Alabama. Two schemes were applied in which the improved scheme was better than the

original. This indicates that when applying neural networks for forecasting enrollments, we need to

modify the scheme of adaptive filters. The final forecasted results of Scheme II are very satisfactory.

Since only one factor, the present and the past enrollment information, has been considered in the model

and very accurate forecasting results have been achieved, neural networks Scheme 2 is a competitive

model for forecasting.

Also, the results show that using the original data in neural networks for forecasting enrollments

might not be suitable since the neural network cannot recognize the trend of the enrollments very well.

To make up this deficiency, DX's were included in the model and the neural network model actually

forecasts 2X's. We prefer to use Scheme IL Obviously, the neural network scheme in Fig.5 can be

applied to many other areas.

Compared to other models discussed previously, using neural networks to forecast enrollments

has at least the following two major advantages:

(1). The model can be easily programmed in any programming language and run on a PC. When

using this model to forecast enrollments, the administrators in the Admissions Office only need to input
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the current and past nine years' enrollment data, and the model can produce next year's forecasted

enrollment. The administrators need not be involved with the computation process as is necessary in

many other models.

(2). There are no factors that need to be determined by human beings in advance and this makes

the forecasting process objective.

Acknowledgement. The material on neural network forecast model was primarily based on a class

project by one of the authors in EE587 at the University of Alabama. We acknowledge our sincere

thanks to Dr. R. E. Smith, the instructor of that course.
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Table 1

Al A2 A3 A4 AS A6 Al

1990 0 0 0 .3 .5 .8 1

1989 0 0 0 .25 .55 1 .8

1988 0 0 .1 .5 .8 1 .7

1987 0 .1 .5 1 .8 .1 0

1986 0 .2 1 .7 .2 0 0

1985 .2 .8 1 .2 0 0 0

1984 .2 .8 1 .2 0 0 0

1983 .2 .8 1 .2 0 0 0

1982 .2 .8 1 .2 0 0 0

1981 0 .2 .8 1 .5 0 0

1980 0 .1 .5 1 .9 .2 0

1979 0 .1 .5 1 .9 .2 0

1978 0 .5 1 .7 .2 0 0

1977 0 .6 1 .6 1.. 0 0

1976 .2 .8 1 .2 0 0 0

1975 .2 .8 1 .2 0 0 0

1974 .8 1 .8 .1 0 0 0

1973 1 .9 .2 0 0 0 0

1972 1 .8 .1 0 0 0 0

1971 1 .5 0 0 0 0 0

2



Table 2

[
output membership standardized membership predicted

value

1972 1 1,.5,.5,.5,0,0 .286, "86, .143, .143, .143, 0,
0

14000

1973 1,1,.8,.5,.5, .1 ,.1 .25, .25, .2, .125, .125, .025,
.025

14000

1974 1,1,.9,.5,.5,.2,.2 .2325, .2325, .209, .116, .116,
.047, .047

14000

1975 .8,.8,1,.8,.5,.5,.5 .163,.163, .204, .163, .102,
.102, .102

15500

1976 .5, .5, 1, 1, .5, .5, .5 .111, .111, .222, .222, .111,
.111. .111

16000

1977 .5, .5, 1, 1, .5,.:;,.5 .111, .111, .222, .222, .111,
.111, .111

16000

.109, .109, .217, .217, .109,

.13, .109
160001978 .5, .5, 1, 1, .5, .6, .5

1979 .5, .5, 1, 1, .5, .7, .5 .106, .106, .213, .213, .106,
.149, .106

16000

1980 .1, .5, 1, 1, .5, 1, .5 .0217, .108, .217, .217, .108,
.217, .108

16813

19S1 .1, .5, 1, 1, .5, 1, .5 .0217, .108, .217, .217, .108,
.217, .108

16813

1982 .2, .5, 1, 1, .5, 1, .5 .0425, .106, .213, .213, .106,
.213, .106

16789

1983 .5, .5, 1, 1, .5, .5, .5 .111, .111, .222, .222, .111,
.111,.111

16000

1984 .5, .5, 1, 1, .5, .5, .5 .111, .111, .222, 222, .111,
.111, .111

16000

1985 .5, .5, 1, 1, .5, .5, .5 .111, .111, .222, .222, .111,
.111, .111

16000

1986 .5, .5, 1, 1, .5, .5, .5 .111, .111, .222, .222, .111,
.111, .111

16000

1987 .2, .5, 1, 1, .5, .7, .5 .045, .114, .227, .227, .114,
.159, .114

16000
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1988 .1, .5, 1, 1, .5, 1, .5 .027, .108, .217, .217, .108,
.217, .108

16813

1989 0, .5, .5, .5, .5, 1, 1 0, .125, .125, .125, .125, .25, 19000
.25

1990 0, .5, .5, .5, .5, 1, 1 0, .125, .125, .125, .125, .25, 19000
.25

1991 0, .5, .S, .5,. S, .8, .8 0, .138, .138, .138, .138, .222, 19000
.222

f

27
24


