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Introduction

One of the major classes of statistical methods for dealing with

relationships between variables in a prediction context is multiple

regression. A difficulty that researchers often encounter when they

initially decide to use multiple regression is the potentially large number

of competing models or approaches for using the methods. For example,

possible regression models might include least squares and its many

variations (e.g., forward, backwards, all subsets), ridge regression,

reduced rank regression, or one or more of many structural model

approaches (e.g., LISREL or EQS). Additionally, least squares (OLS),

perhaps the most common of these regression methods, as evidenced by

major texts in the area (e.g., Darlington, 1990; Dillon & Goldstein, 1984;

Pedhazur, 1982), has as an underlying tacit assumption the observed

variables contatin no measurement error.

One common type or variable contamination that the researcher

using OLS regression -- or any regression method -- is acquainted with is

the outlier. The issue of what constitutes an outlier precedes decisions

concerning the identification and analytical judgments regarding their

handling, and is often net without dialogue (e.g., Gnanadesikan &

Kettenring, 1972). While it could be argued that outliers are distinct from

measurement error, or are a special kind of measurement e:ror, their

presence in observational studies can hardly be debated. Indeed, one

might argue that their presence -- and thus, influence -- is generally

greater in observational studies because of lack of researcher control. For
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Regression Methods in the Presence of Outliers

purposes of this study, outlier contamination is viewed as a phenomenon

that is not unlike measurement error in fundamental ways and the

strategies for the conduct of this research were based on that central idea.

The purpose of the present study was to examine several

regression methods within the framework of Weighted Structural

Regression (WSR, Pruzek & Lepak, 1992), comparing both their regression

weight stability and score estimation accuracy in the presence of outlier

contamination. The specific regression methods to be compared are:

Ordinary Least Squares, WSR Ridge Regression, Minimum Risk

Regression, Minimum Risk*2, GFI, and WSR Reduced Rank Regression

(cf. Pruzek & Lepak, 1992 for the latter five methods).

Method

Data Set Selection and Creation

This study used three "population" covariance matrices, in the form

of correlation matrices, that have been drawn from applied behavioral

science literature as the basis for generating samples -- some of which

were "contaminated." All simulated raw data were, in turn, used to

compare selected regression methods. Specifically, the population

systems used for this study are identified with the terms Hauser' (1973),

Language (Fuller, 1987), and Pitprop (Jeffers, Chap. 6, p. 176, in Mardia,

Kent, & Bibby, 1980).

1 This problem set was used by Rabinowitz (1990) and will, therefore, provide a linkage
to recent work related to WSR as a class of methods.

2
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Regression Methods in the Presence of Outliers

Construction of the Contaminated Data

The contamination data generation process is begun first by

constructing a matrix that is both multivariate normal and stochastically

consistent with the chosen population system. This is done by performing

a complete principal component factoring to obtain a coefficient matrix

Fppc , of order p x p, and premultiplying this by a matrix, of order n x p,

constructed using a pseudo random normal generator [i.e., xis = iid

N(0,1)]. This results in a matrix, Xsim, that has the appropriate

dimensionality (n x p) and is structurally consistent with the population

system. Following the construction of Xsim a second matrix is

constructed, Xcontam This matrix has an initial sample size considerably

smaller than the population matrix (say only 10% of n, but with the

appropriate p columns), is constructed using the same pseudo random

normal generator, but is not constructed to be structurally consistent with

the population system. This matrix is then premultiplied by a scalar (i.e.,

3) to increase its variance beyond 1. Following this variance modification,

the matrix has added to it the appropriate number of row, all entries

being zero (0) to match the n x p dimensionality of Xsim. This matrix,

Xcontam, is then added to the Xsim matrix. The result is a predetermined

number of rows (i.e., k) of Xsim having added to them some potentially

extreme values from )(contain. The form of the contaminated data

systems, X

(1)

sim I contain/ is thus:

Xsmi:contant = Xsnit + Xcontain

3
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Regression Methods in the Presence of Outliers

where Xcontam has dimensions n x p, with a predetermined number of

contamination rows (k = n*%, % is the desired percentage of rows

contaminated) that have a variance equal to 3. This contaminated data

generation has been found to result in Kurtosis statistics (i.e., normal = 3)

that are now consistently larger than normal.

Three different population models were used for each population:

one normal distribution and two that were contaminated normals (see

Method for details concerning their construction) with heavier than

normal tails. Gleason (1993) states that contaminated normal

distributions (CND) have several virtues, one of which is that they seem

"intuitively plausible as a mechanism for inoculating an otherwise clean

batch of data with the occasional outlier" (p. 327). While he dedicates the

remainder of his paper to outlining that CNDs can be somewhat difficult

to control, the workability and "intuitiveness" of this form of outlier

contamination remains. Therefore, after systematic experimentation with

the percentage of rows (i.e., k) to be contaminated it was decided to utilize

two levels for k with each sample size (i.e., 60 & 120): 2 and 5 percent.

These choices of k regularly resulted in kurtosis levels of 3.5 and 7.00,

respectively (kurtosis is 3.00 for a normal). Therefore, in order to

maintain data contamination levels that both simulated outliers, as

evidenced by the increased kurtosis, while not overtly destroying the

distributional characteristics of the data beyond a reasonable level (see

Gleason, 1993), the contamination levels were set at 2 and 5 percent.

4
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Bootstrap Method

In order to compare regression methods normal sampling

procedures were used to generate 100 Xsim I contam matrices for each

population Z. Efron and Tibshirani (1986) would describe this as a

contaminated normal bootstrap procedure and this language will be used

hereafter. Each of the 100 Xsim I contain, for each E, was constructed in

the same manner for two different sample sizes -- 60 and 120. This

method, which is essentially equivalent to Monte Carlo sampling, and

sample sizes were also used by Rabinowitz (1990) Lnd Datta (1992) and

will, therefore, provide an additional linkage to extant WSR literature.

Regression Methods

Six different regression methods were examined using the

aforementioned methodology and within the Weighted Structural

Regression framework (Pruzek & Lepak, 1992, here after referred to as P

& L). These six methods are: Ordinary Least Squares, WSR Reduced

Rank Regression, Minimum Risk Regression, Minimum Risk*2, WSR

Ridge Regression, and GPI. These six methods are briefly described in

Appendix A (cf. P & L for more specific details).

Weighted Structural Regression as a Class of Methods

As described by P & L, Weight Structural Regression (WSR) uses a

empirical Bayes covariance estimator taking the form:

(2)
A A A

EITSR cfa Env' + (1 14' ) mbsd

5
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Regression Methods in the Presence of Outliers

Given the familiar OLS model for the calculation of regression

weights,

A A -1 A
13 = (5,.

and making the necessary substitution using the empirical Bayes matrix

of equation (2), the general form of the WSR regression weight matrix

km_cli, can be shown to take the form:

(3)
A A

= ImfAx+ (1 ) (11' ay. + (1 w)Cinibsdxy)

(See P & L for details). From (3) it can be seen that if w is set to 1, then the

regression weights are equivalent to OLS and if w is set to 0, the

regression weights become a Reduced Rank solution. It is, therefore, by

specifying w and selecting a particular common factor model (i.e., choice

of m) that one can derive the desired set of regression methods. The

adaptive forms of WSR Minimum Risk Ridge, Minimum Risk,

Minimum Risk*2, and CFI -- utilize an empirical approach to determining

w in which a squared error loss precedure (cf. Pruzek, 1993) is used to

determine the relative goodness-of-fit of the cfa model, for the purpose of

assigning the relative weights of the two population covariance estimators

(model free & cfa model). That is, the better a cfa model "fits," the smaller

w becomes, giving more weight to the cfa estimator of the convex sum,.

However, note that if m = 0, the result is not a cfa model, but a form of

Minimum Risk Ridge Regression (cf. Appendix A). Equation (3) makes

explicit how each set of regression weights is generated. It is from these

6
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regression weights that the evaluative criteria of Accuracy of Prediction and

Stability of Beta Weights data were obtained (see below).

It should be noted that the joint population criterion-predictor

covariance matrices were resealed using he uniqueness variance

estimation procedure suggest by P & L. Additionally, the number of

factors used for each population covariance matrix (correlation matrix)

was specified according to an information-theoretic criterion (Bozdogan,

1990), but details of this procedure are omitted here (cf. Pruzek, 1993). In

this presentation results are given for only a single value of m, but a larger

simulation study involves two other values of in for each combination of

population system, contamination level, and sample size (Rule, In

progress).

Specific Forms for the Methods

Ordinary Least Squares: If w = 1 in (1), thus giving model free

estimator component full weight within the covariance empirical Bayes, it

can be shown that (3) reduces to:

OLS

WSR Reduced Rank: By setting w = 0 in (1), a WSR Reduced Rank

version (for any particular value of in) of (3) is obtained having the form:

11/ Re dR

Minimum Risk (MinR): Minimum Risk Regression IWSR 07A /Ink (P

& L) is a regression model that focuses upon the weighting function of the

WSR formula (i.e., w), providing an adaptive procedure for its

determination. Using procedures outlined within their paper, P & L have

7
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developed a means of using information from the sample (size = n) to

derive the statistic gamma, 7, (cf. p. 104). In brief, gamma is computed in

such a fashion as to adjust w in relation to how well the common factor

structure fits the extant data. That is, the better the common factor

structure (as defined by the selection of in) is supported by the data, the

larger gamma becomes and the more emphasis will be placed upon the

model based estimator within the empirical Bayes (i.e., -171--bSCI ) See

Appendix A and P & L (cf. p. 104) for more specific details.

Minimum Risk 2 (MinR*2): Within the framework of Minimum

Risk there may be instances when the researcher wishes to weight the

structural model more heavily than what the data system would normally

suggest during the calculation of gamma (i.e., y,) in the determination of

wminR. In such instances the relative emphasis given to the structural

model can be increased by pre multiply y, by a scalar -- 2 in the present

case. The result is to down weight the model free estimator, inv., and

increase the influence of the model based estimator mbsd in the empirical

Bayes Elf 'SR fmR 2

WSR Ridge: By setting the number of factors, m, to zero the matrix
A

A

lmbsd becomes diagonal and will be denoted Dm-bsd-Rdg The contribution

of D mbsdRdg will be determined by using the same weighting function

described for IIf 'SR GOAft:IR

GFI: Called "Goodness of Fit Index" (GFI) by P & L, this method,

like Minimum Risk and Minimum Risk 2, adjusts the weighting function

within (2). Briefly, GFI is an index based on joreskog & Sorbom (1986)
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adjusted goodness of fit measure as detailed by P & L in their paper (see

Appendix A for more details).

1A2alydia

Stability of Beta Weights

The assessment of beta weight stability was assessed for each

combination of I, 11, k, and w (i.e., as above). Following each analysis

cycle the sample betas (i.e., ,) for each regression method that are stored

were used for the calculation of the average mean squared errors of

sample (MSEbeta). The computation of MSEb,eta took the following form:

MSEhQ,., = Avg(3 3 )2

where k are the betas which result from each analysis cycle (i.e., using

Xsim I contam) and rim, are the OLS '09tas produced directly from Z.

Additionally, the average of the estimable parts of the predictive

mean squared errors (EPMSEbeta) was also calculated (P & L).

Computation of EPMSEbeta took the following form:

EPMSEbe, = Avgal, j31, 13h )

where 11, is the weight for each bootstrap sample, Ls represents the

population system regression weights, and R represents the population

correlation matrix. According to P & L (1992, p. 113) The logic of the
A A

PMSE is that repeated use of ys from samples in place of y from the

population to predict y will result in a mean squared prediction error, per

prediction, of a2 + E(EPMSE) where the latter term is the expected value
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of EPMSE and & represents the residual population variance (Browne,

1975)."

Furthermore, a measure of bias was obtained for the different

regression methods by averaging the stored R, values across the

contaminated normal bootstraps and comparing these values to the

population with (Avg((3, ) ) .

Accuracy of Prediction

Following each analysis cycle -- the creation of Xsirn I contam, the

contaminated normal bootstrap sample, and the passing of the different

regression methods over each simulated data set -- regression results wee

stored and summarized for each combination of E, n, k, and w.

As described in (1), the construction of Xsim I contam has as one of

its compinents an uncontaminated data system, Xsim. It was therefore

possible to use the original simulated data before contamination as a

target for assessing prediction accuracy of y's generated by each method.

Following the generation of each regression method's sample

regression weights (i.e., the weights were used to generate the

predicted values of the criterion variable (i.e., y). Indeed, the y statistics

were always based on independent samples of the same size, always

applying the weights to simulated data before contamination. The mean

squared errors of prediction, MSEpred= AVG Cy , served as the

criteria by which score accuracy was judged. This statistic was computed

for every one of the 100 contaminated normal bootstrap samples by using

a 'bootstrap cross-validation' procedure.

10
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Results

The analysis of this study resulted in four sets of 100 bootstrap

samples for each of the population systems; i.e., two sets corresponding to

the two varying levels of outlier contamination for each of the two sample

sizes utilized for the three data sets -- twelve sets in all. Although the

procedures utilized for this study yielded information for all variables

simultaneously, information is presented for only the criterion variable in

order to simplify this presentation. In the case of the Hauser (Hauser,

1973) and Pitprop (Jeffers, Chap. 6, p. 176, in Mardia, Kent, & Bibby, 1980)

the criterion variable was selected by the original author. In the case of

the Language (Fuller, 1987) data set the first variable was arbitrarily

chosen as the criterion. Results will be presented for each of the three

populations in turn.

Hauser Data Set

Preliminary analysis (using an information-theoretic analysis,

Bozdogan, 1990) showed that three common factors would be most

appropriate for this population. (See Appendix B, Table I, for the

Product-Moment Correlation Matrix and the Eigen values.) This value of

three was used for all results for this population. For each combination of

n (60 & 120), m (0 in the case of Minimum Risk Ridge), and k (2 & 5

percent) six different values of w and m were used to generate the desired

regression methods (see Appendix A).

11
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Stability of Beta Weights - Hauser Data Set

Table 1 summarizes the overall MSE and EPMSE results for the

Hauser population.

Table 1
Ratios of Average Mean Squared Errors of Beta -- Hauser Data Set (m = 3)

(First Variable was the criterion, all others predictors)

Methodc

Mean Squared Errorsa Pred. Mean Squared Errorsb

k = 2% k= 5% k = 2% k= 5%

n=60 n=120 n=60 n=120 n=60 n=120 n=60 n=120
OLS .29 .22 .51 .33 .15 .10 .27 .16
MR Ridge 1.76 1.31 1.80 1.36 1.52 1.20 1.56 1.23
MinR 2.00 1.49 1.68 1.39 1.64 1.29 1.47 1.24
MinR*2 2.29 1.67 1.98 1.59 1.73 1.33 1.60 1.31
GFI 2.38 1.74 2.20 1.81 1.67 1.21 1.60 1.22
RedR 2.12 1.61 2.10 1.62 1.41 1.06 1.28 .95

a The first row is the actual OLS Mean Squared Error (MSE). Subsequent rows give the
ratios of the overall OLS MSEbeta to the MSEbeta of the given method. Ratios greater
than 1.00 indicate advantages of the alternative methods.

b The first row is the actual OLS Predicted Mean Squared Error (EPMSE) followed by
the EPMSE ratios for the other methods. PMSEbeta ratios are calculated in a manner
identical to that of the MSEbeta ratios.

c OLS - Ordinary Least Squares, MR Ridge -- Minimum Risk, scale free, Ridge
Regression, MinR (m = 0) - Minimum Risk, MinR *2 -- Minimum Risk *2, GFI --
Goodness of Fit, and RedR - Reduced Rank (w = 0).

As can be seen in Table 1, in all cases the non-OLS regression

methods yielded greater regression weight stability than least squares

regression -- the bold faced result indicates the "best" method for each

condition. The greatest advantage for the empirical Bayes methods

appeared with the smaller sample size (i.e., n =60). The three WSR
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methods that weighted structural information most heavily (i.e., MiliR*2,

GFI, & RedR) consistently out-performed the methods using less

structural information (i.e., WSR Ridge & MinR). In all cases the OLS

method produced the highest overall MSE's and EPMSE's. Interestingly,

only the Minimum Risk Ridge method showed a consistent improvement

in the higher contamination conditions. Additionally, the average (across

the four n and k conditions 100 samples each) w for GFI was .21 and for

MinR*2 the average w was .48. (Smaller w's signifying a greater reliance

on the CFA model in the empirical Bayes convex sum).

Regression weight bias was obtained for the different regression

methods by averaging the squared difference for the (Pi Pp,,) values

across the 100 contaminated normal samples. As one would expect, with

an increasing reliance upon structural information (i.e., smaller w's) a

corresponding increase in regression weight bias results, with OLS

displaying the least average squared bias and Reduced Rank displaying

the greatest. This trend remained constant across both sample sizes and

contamination conditions. (See Appendix C, Table I, for details of this

analysis.)

Accuracy of Prediction -- Hauser Data Set

Mean squared errors of prediction, MSEpred= AVG(y are

summarized in Table 2.

As can be seen in Table 2, with one exception (Reduced Rank, n =

120, k = 5%) all non-OLS regression methods examined resulted in an

increased prediction accuracy. Further, the prediction accuracy again
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showed the expected pattern. That is, the advantage of regressions that

utilized structural information in an adaptive form, via WSR (i.e., MinR,

MinR*2, & GFI), was greatest when sample sizes were small (i.e., n =60)

and outlier contamination was relatively high (i.e., 5%). The Minimum

Risk* 2 method tended to work best across both sample sizes and

contamination levels, but all of the non-OLS methods worked relatively

well with regards to the criterion.

Table 2

Ratios of Average Squared Errors of Prediction
Across Regression Methods -- Hauser Data Set (m = 3)a

k = 2% k= 5%
Methodb n=60 n=120 n=60 n=120

OLS .07 .07 .09 .07

MR Ridge 1.08 1.03 1.12 1.04
MinR 1.09 1.04 1.10 1.05
MinR*2 1.10 1.04 1.12 1.06
GFI 1.10 1.03 1.12 1.04
RedR 1.08 1.02 1.07 .98

a The first row is the actual OLS Mean Squared Error of Prediction (MSEpred)
multiplied by 10 to reduce the number of decimal places. Subsequent rows give the
ratios of the overall OLS MSEpred to the MSEbeta of the given method. Ratios
greater than 1.00 indicate advantages of the alternative methods.

b OLS -- Ordinary Least Squares, MR Ridge Minimum Risk, scale free, Ridge
Regression, MinR (m = 0) -- Minimum Risk, MinR*2 -- Minimum Risk *2, GFI
Goodness of Fit, and RedR -- Reduced Rank (w = 0)

14
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Language Data Set

As with the Hauser (1973) population system, an information-

theoretic analysis indicated that three common factors would be most

appropriate for the Language population system (Fuller, 1987). (See

Appendix B, Table II, for the Product-Moment Correlation Matrix and the

Eigen values.) Again, for each combination of n (60 & 120), in (0 in the

case of Minimum Risk Ridge), and k (2 & 5 percent) six different values

of w and m were used to generate the desired regression methods (see

Appendix A).

Stability of Beta Weights -- Language Data Set

Table 3 summarizes the overall MSE and EPMSE results for the

Language population. As with the Hauser data set results (see Table 1),

in all cases the non-OLS regression methods yielded greater regression

weight stability than least squares regression. The one exception to this

occurred with the EPMSEbeta for Minimum Risk Reduced Rank

regression with n = 120 and k = 2%. The predicted pattern again emerged

with greatest advantage for non-OLS regressions using structural

information appear when sample size is small (i.e., n =60). The WSR

methods of Minimum Risk*2 and GFI consistently out-performed the

methods using less structural information (i.e., larger w's) or none (i.e.,

OLS) in all conditions, there was a drop of regression weight stability

ratios in the higher contamination conditions.
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Table 3
Ratios of Average Mean Squared Errors of Beta Language Data Set (m =
21

Methods

Mean Squared Errorsa Pred. Mean Squared Errorsb
k = 2% k= 5% k = 2% k= 5%

n=60 n=120 ri=60 n=120 n=60 n=120 n=60 n=120
OLS .22 .18 .48 .40 .08 .07 .19 .15
MR Ridge 1.37 1.15 1.33 1.19 1.27 1.11 1.25 1.15
MinR 1.39 1.21 1.21 1.17 1.28 1.14 1.15 1.12
MinR*2 1.48 1.28 1.29 1.25 1.34 1.17 1.18 1.18
GFI 1.50 1.23 1.33 1.36 1.32 1.07 1.18 1.20
RedR 1.40 1.11 1.29 1.32 1.21 .95 1.08 1.14

a Refer to Table 1 for legend. b Refer to Table 1. c Refer to Table 1.

However, the Minimum Risk Ridge Regression showed a consistent

improvement in the higher contamination conditions and resulted in the

"best" EPMSEbeta when n = 60 and k = 5%. The average (across the four n

and k conditions -- 100 samples each) w for GFI was .19 and for MinR*2

the average w was .81. (Smaller w's signifying a greater reliance on the

CFA model in the empirical Bayes convex sum),

Regression weight bias was again obtained for the different

regression methods by averaging the squared d'fference for the (II, (3

values across the 100 contaminated normal samples. Again, as one would

expect (and found with the Hauser data set as well), with an increasing

reliance upon structural information (i.e., smaller w's) a corresponding

increase in regression weight bias results, with OLS displaying the least

average squared bias and Reduced Rank displaying the greatest. Again,

16
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this trend remained constant across both sample sizes and contamination

conditions. (See Appendix C, Table II, for details of this analysis.)

Accuracy of Prediction -- Language Data Set

Mean squared errors of prediction, MSEpred= AVG(y ;)2, are

summarized in Table 4.

As can be seen in Table 4, with one exception (Reduced Rank, n =

120, k = 2%) all non-OLS regression methods examined resulted in an

increased prediction accuracy. Further, the prediction accuracy again

showed the expected pattern, but, unlike the Hauser data set (see Table 2),

remained relatively stabit across sample size and contamination levels.

Interestingly, the relative advantages of the non-OLS methods, as a whole,

do not appear to result in as large gains in prediction accuracy (e.g., a

maximum of 7%), as in the Hauser data (see Table 2) where the gains

were often greater than 10% in magnitude.

(Continued on Next Page)
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Table 4

Ratios of Average Squared Errors of Prediction
Across Regression Methods -- Language Data Set (m = 3)3

k = 2% k= 5%
Methodb n=60 n=120 n=60 n=120

OLS .04 .04 .05 .05

MR Ridge 1.05 1.02 1.07 1.05
MinR 1.05 1.03 1.05 1.04
MinR*2 1.06 1.04 1.06 1.05
GFI 1.06 1.03 1.06 1.07
RedR 1.05 1.00 1.03 1.05

a Refer to Table 2 for legend. b Refer to Table 2.

Pitprop Data Set

Both of the two previous data sets were selected, in part, because

they represent data typically found within the behavioral sciences. The

final data set, Pitprop (Jeffers, Chap. 6, p. 176, in Mardia, Kent, & Bibby,

1980), relates to the pit prop poles used in mine shafts and was selected as

a challenge to the factor-based WSR methods, particularly since these data

do not appear to be characterized as having non-ignorable measurement

error.

For this population the information-theoretic criterion suggested

six (or possibly 5) factors. All results below were obtained with m = 6.

(See Appendix B, Table III, for the Product-Moment Correlation Matrix

and the Eigen values.)
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Stability of Beta Weights -- Pitprop Data Set

Table 5 gives result' for the Pitprop population. While the

advantage for the adaptive WSR methods is still clearly evident and, at

times, extremely large (i.e., MinR Ridge at k = 5% & n = 60), the methods

that show the greatest gains tended to he those which relied less heavily

upon the structural information (e.g., MinR Ridge & MinR). This result

contrasts with the results from the two previous populations which

generally favored WSR methods that placed more emphasis on the CFA

model (see Tables 1 & 3).

For the MSE and PMSE criteria the Minimum Risk method

emerged as the "best" one here, clearly out performing the other methods

in the low contamination level conditions, particularly for small n. In the

high contamination conditions (k = 5%) the MR Ridge method worked,

best (MSE) with a 5% contamination level, but the Minimum Risk and

Minimum Risk*2 methods were most effective in terms of the PMSE

criteria for both levels and contaminations. The average (across the four n

and k conditions -- 100 samples each) w for GFI was .41 and for MinR*2

the average w was .62. (Smaller w's signifying a greater reliance on the

CFA model in the empirical Bayes convex sum).

Regression weight bias was again obtained for the different

regression methods across the 100 contaminated normal samples. Unlike

the bias results from the behavioral science populations, the bias results

from the Pitprop data sets displayed a pattern that more closely resembles
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the results of the regression weight stability results (i.e., Table 5 and

Appendix C, Table III).

Table 5
Ratios of Average Mean Squared Errors of Beta - Pitprop Data Set (m = 6)

Methods

Mean Squared Errorsa Pred. Mean Squared Errorsb
k = 2% k= 5% k = 2% k= 5%

n=60 n=120 n=60 n=120 n=60 n=120 n=60 n=120
OLS .91 .67 1.61 1.44 .11 .07 .16 .16
MR Ridge 1.00 .91 1.33 1.22 1.07 .94 1.05 1.05
MinR 1.21 1.09 1.23 1.15 1.19 1.07 1.16 1.09
MinR*2 1.18 1.06 1.27 1.21 1.19 1.04 1.16 1.10
GFI 1.13 .89 1.27 1.26 1.13 0.84 1.13 1.07
RedR .88 .69 1.19 1.23 .85 0.59 .88 .87

a Refer to Table 1 for legend. b Refer to Table 1. c Refer to Table 1.

That is, the more able a regression method was to re-capture the

population's predictor beta weight information, the less the resulting bias.

For example, Minimum Risk displayed the lowest MSEbeta at the 2%

contamination level with a sample size of 60 (MSEbeta= 1.21) and

returned the lowest Average Squared Regression Weight Bias for that

condition (i.e., 2.43). Readers are invited to refer to the two tables (i.e.,

Table 5 and Appendix C, Table III) for more details.

Accuracy of Prediction - Pitprop Data Set

The prediction accuracy results are summarized in Table 6.
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Table 6

Ratios of Average Squared Errors of Prediction
Across Regression Methods Pitprop Data Set (m = 6)a

k = 2% k= 5%
Methodb n=60 n=120 n=60 n=120

OLS .04 .03 .04 .04

Ridge 1.03 .98 1.02 1.02
MinR 1.05 1.01 1.05 1.03
MinR"r2 1.05 1.00 1.05 1.03
GFI 1.04 .96 1.04 1.02
RedR .96 .86 .93 .95

a Refer to Table 2 for legend. b Refer to Table 2.

Like the regression weight results in Table 5 the results for the

Pitprop problem show smaller gains. In no situation was the systematic

advantage of any WSR method more that 5% for this criterion, and for the

larger sample size with a low level of contaminatioi. the best WSR method

(MinR) yielded a systemic advantage of only 1%. The Reduced Rank

regression method consistently performed less well than the target OLS

method with respect to this criterion and, in one case, so did the WSR

form of Ridge regression (k = 2%, n = 120).

Discussion

The foregoing results help quantify the merits and possible

demerits of the new WSR adaptive regression methods in three different

populations relative to the ordinary least squares methodon the basis of

three criteria. The results of this study provide evidence supporting the
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notion of the increased efficacy of the adaptive forms of WSR in small

sample applications where the presence of outlier contamination exists.

While showing that the improvement over conventional least squares is

not always substantial, it is notable that adaptive forms of WSR based on

the concept of empirical Bayes covariance estimation can provide

consistent and sometimes substantial improvement over conventional

methods. It is also important to recognize that the nature of the gains or

losses must attend to the specific evaluative criterion as well as the nature

of the parent population. Additionally, one virtue of these methods lies

in the possibility of increased accuracy in the area of outlier detection.

That is, if one is able to more accurately recover both prn, and y, then

these may provide a basis for a re-analysis of data for the express purpose

of outlier detection.

Although not reported in this presentation, ongoing examination of

these WSR methods suggests that the choice of m, the number of factors, is

not as critical as one might expect (Rule, in progress). That is, although

the results do tend to fluctuate when utilizing different values for m (say

± 1), the pattern of results reported here are generally replicated. These

findings suggest that researchers with less than omniscient knowledge

concerning a population system's cfa structure can expect to obtain gains

similar to those reported within this presentation.

In conclusion, the present study provides additional evidence to

support the exploration of the WSR class of methods in the realm of small

sample problems within social science population systems or systems for
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which the use of the underlying empirical Hayes covariance estimation

procedure's use of a cfa model is justifiable.
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Appendix A

The following, detailed within Pruzek & Lepak (1992), provides

the basis for the WSR class of methods. Readers are directed to P & L for

further explanation and examples.

Prior to eigenanalysis, the rescaling of the joint predictor-criterion

correlation matrix takes the form:

S' R S =Q40

where S is the inverse of a diagonal matrix whose non-zero entries take

a form consistent with Muirhead's (1985, cited in P & L) linear estimator

to correct estimates of a function of smc, rescaling R* in the metric of the

compliments of the smc's. The result of this rescaling R4 then provides the

starting point for eigenanalysis.

Empirical Bayes covariance estimation takes the general form:

(1)
A A A

Eft's'? = 11' + (I ) En,-bsd .

A

where w is a scalar weighting function 0 w 1, Ing. is the model free
A A

covariance estimator, and E_m-bsd is the cfa model estimator of Ent'', and

I ISR Cfa is the WSR empirical Bayes estimator of Epos.

If w =1 no information from a cfa model is included in the

empirical Bayes covariance estimator and ordinary least squares

regression results. If w = 0 only information from the cfa model is used

and Reduced Rank regression results.
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Four WSR adaptive forms (MR Ridge, Min Risk, MinRisk*2, and

GFI) use a quadratic loss approach to specifying the value of w. In the

first two of these adaptive methods (MR Ridge and Min Risk)
A A

wm = it/(ii +yn,) where yn, is a function of in, p, rn, (ratio of trace

function). In MinRisk*2 wm =,)/(n+ 2y,) and for GFI w is based on a

wholly different mechansm based on the fit of im-b to in,- (cf. P & L,

1992).

Using (1), setting in = 0, and substituting wm for w a form of

Minimum Risk Ridge Regression empirical Bayes approach in
A A

determining the relative contribution of DnibuiRdg to the resultant ELfISR

which will take the ridge form:
A A A

ZWSR Rdg = Hen, En,% + (1 Wn,) D Rag

Using (1), with some number of factors (cfa model), m, in the

estimator yeilds Minimum Risk Regression. Premultiplying 7, by a

scalar of 2 results in Minimum Risk*2. The GFI method is obtained by

setting:

n -1 n -11 GFI = 1 (d1 I d2)(tr(L,-h,d Liqf 1)2 / tr(E,_bsd E,,- )2)

where (cl, /d2), a term that corrects for the degrees of freedom, is equal to

p(p +1) I ((pm)2 + p + 2) (cf. Joreskog & Sorbom, 1986).



Appendix B

Table I
Population System -- Hauser Data

Matrix of Product-Moment Correlations

1 2 3 4 5 6 7 8 9 10 11 12

1 1.00
2 .51 1.00
3 .49 .32 1.00
4 .39 .29 .52 1.00
5 .24 .23 .21 .20 1.00
6 .15 .15 .13 .12 .59 1.00
7 .16 .14 .14 .15 .35 .44 1.00
8 .30 .27 .29 .29 .37 .34 .42 1.00
9 .28 .26 .28 .29 .32 .32 .33 .42 1.00

10 .31 .27 .30 .30 .43 .47 .44 .54 .50 1.00
11 .29 .25 .30 .29 .46 .47 .41 .51 .47 .77 1.00
12 .34 .29 .33 .32 .48 .55 .41 .49 .49 .66 .59 1.00

Eigen values

1 2 3 4 5 6 7 8 9 10 11 12

5.02 1.63 .86 .77 .68 .59 .53 .51 .43 .42 .34 .22

/



Regression Methods in the Presence of Outliers

Table II
Population System -- Language Data

Matrix of Product-Moment Correlations

1 2 3 4 5 6 7 8

1 1.00
2 .80 1.00
3 .49 .49 1.00
4 .58 .58 .53 1.00
5 .63 .72 .56 .57 1.00
6 .53 .55 .62 .54 .58 1.00
7 .51 .50 .67 .54 .54 .70 1.000
8 .47 .45 .46 .69 .57 .45 .47 1.000

Eigen values

1 2 3 4 5 6 7 8

4.95 .82 .73 .40 .37 .29 .26 .17

29
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Table III
Population System Pitprop Data

Matrix of Product-Moment Correlations
1

14

1 1.00
2 .42

3 .33
4 .73
5 .54
6 .25
7 -0.12
8 -0.11
9 .25
10 .24
11 .10
12 .06
12 .12
14 -0.15

2

1.00
.95

.36

.34

.13

.31

.50

.42

.59

.56
.08

-0.02
-0.13

3

1.00
.30
.28

.12
.29

.50

.42

.65

.57

.08
-0.04
-0.14

4

1.00
.88
.15
.15

-0.03
-0.05

.13

-0.08
.16
.22

-0.13

5

1.00
-0.22

.38

.17
-0.06

.14

-0.01
.10
.17

-0.02

6

1.00
-0.36
-0.30
-0.00

.04

-0.04
.09
.15

-0.21

7

1.00
.81

.09
.21

.27

-0.04
.03

.33

8

1.00
.37
.47
.68

-0.11
-0.23

.42

9

1.00
.48

.56

.06
-0.36

.20

10

1.00
.53

.09
-0.13

.09

11

1.00
-0.32
-0.37

.29

12

1.00
.03

-0.01

13

1.00
-0.184 1.00

Eigen values

1 2 3 4 5 6 7 8 9 10 11 12 13 14
4.33 2.80 1.90 1.13 1.08 0.84 0.60 0.45 0.35 0.20 0.19 0.05 0.04 0.03



Appendix C

Table I
Hauser Data Squared Regression Weight Bias Values (times 10)

Row Sum of Predictor Variables*

k = 2% k= 5%
Method** n=60 n=120 n=60 n=120

OLS .04 .09 .05 .05

MR Ridge .07 .10 .16 .11
MinR .11 .14 .19 .14
MinR*2 .18 .20 .29 .21
GFI .27 .35 .43 .46
RedR .43 .45 .75 .72

* This index is calculated by taking each method's Average Squared Regression Weight
Bias for each predictor variable, multiplying it by 10 in order to bring the values to
within a place or two of the decimal, and taking the average across all predictor
variables.

** OLS Ordinary Least Squares, MR Ridge -- WSR Ridge Regression, MinR
Minimum Risk, MinR*2 Minimum Risk *2, GFI Goodness of Fit, and RedR
Reduced Rank
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Table II
Language Data Squared Regression Weight Bias Values (times 10)

Row Sum of Predictor Variables*

k = 2% k= 5%
Method** n=60 n=120 n=60 n=120

OLS .03 .05 .31 .33

MR Ridge .22 .15 .68 .53
MinR .15 .14 .55 .50
MinR*2 .24 .21 .68 .62
GFI .40 .49 .92 .93
RedR .53 .62 1.19 1.16

* See Above ** See Above

Table Hi
Pit Prop Data Squared Regression Weight Bias Values (times 10)

Row Sum of Predictor Variables*

k = 2% k= 5%
Method** n=60 n=120 n=60 n=120

OLS .55 .63 1.55 4.12
MR Ridge 6.92 5.10 8.15 7.48
MinR 2.43 1.88 3.78 5.24
MinR*2 3.54 2.81 4.89 5.89
GFI 4.47 5.09 5.60 7.09
RedR 7.42 7.73 8.51 8.51

* See Above ** See Above


