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The use of Likert items on questionnaires is very popular in sociological and
psychological measurement. In the typical analysis of data from such a questionnaire,
frequencies of endorsements to points on the scale are tabulated and percentages are
computed separately for each item and point of the scale. These descriptive statistics are
inconvenient when we try to compare and interpret subjects’ responses as measures on the
construct we are assessing. Comparisons among items become more cumbersome as the
number of items or the number of points on the scale is increased. The points on the scale
are frequently assumed to constitute an equal interval scale and subjects’ scores are treated as
constituting a continuous variable. This assumption is hard to justify if the frequency
distribution of scores is highly skewed. Item response theory (IRT) models have provided a
solution to problems such as these in other contexts.

Item response theory models applicable to scales made up of dichotomously-scored items
measuring one proficiency dimension have been developed and are now in widespread use.
The distinct feature of IRT models as compared to other statistical models for categorical
variables, such as logistic and log-linear models, is the inclusion of latent traits as variables.
The model that is the subject of this paper is based on two extensions of the basic IRT
model. Models that can incorporate polytomously-scored items have been proposed and used
by several researchers (Andrich, 1978, 1982, 1988; Bock, 1972; Masters, 1982; Muraki,
1990, 1992a; Samejima, 1969, 1972). Bock and Aitkin (1981) extended IRT models for
dichotomously-scored items to the multidimensional case (several proficiency dimensions)
and developed an EM algorithm (Dempster, Laird, & Rubin, 1977) to estimate the
parameters of the model based on the normal ogive. McKinley & Reckase (1983) proposed a
logistic-distribution-based multidimensional model. In this paper a multidimensional IRT
“'model for polytomously-scored items, based on Samejima’s graded response model and
using the normal ogive, is developed, and an EM algorithm that may be used to estimate the
parameters of the model, is also discussed.

Development of the Model

Bock, Gibbons, and Muraki (1988) assume that the interaction of person i and item j
results in a response process variable, y;, that is a linear combination of M latent traits.
Using vector notation in which § is an M-dimensional vector of latent traits (common factors)
and g a vector of factor loadings:

ﬂ{i = (9“, 9“, c s e g ﬁ,u»)

ﬁg - (ujll Ciar oo vy C..”‘)

we may write this combination as




Yig =y 8, + ey
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where ¢; is an unobserved random variable (a unique factor in factor analytic terms) which is

assumed to be distributed N(0, ¢;). Conventionally in factor analysis it is assumed that the

distribution of § is N(Q, ¥) and that y; is distributed with mean O and variance 1. Hence the
unique variance is

M
o5=1-Y aip=1-gla 12}
n=l

Classical factor analysis for continuous variables is based on the assumption that the
response process is directly observable. In contrast, the factor analytic model for categorical
variables is based on the assumption that the response process variable, ¥;» is latent and
realized into a vector of polytomous item responses for J items,

W= (Wygs Wizo ooy Wyg)
according to the psychological mechanism

Wig =k If ;40 235 < Yi

Yjo = —%®
Yig = ®
(k=1,2, ..., K

where v, is a threshold parameter associated with category k of a K-category Likert-type
item, j. The process generates a categorical response of k for person i to item J when y;
equals or exceeds the threshold, ¥;,.,, but does not exceed the threshold Yx- Assuming a
normal ogive model the probability of categorical response k by person i to item j given
his/her M-dimensional latent trait is expressed as

Yok 1| Yiz ~ a8, 2
P(Wij = K I 'Q.i) = f eXp "—2‘ l—ou dy (3]
¥Yi, k1 7

Introducing a change of variable, we may re-write the item response model in [3] by defining
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and when
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and when
Yi; = Y4,k i8]l
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Following Bock, Gibbons, and Muraki (1988) we define slope and item-category
parameters:
ajp, = %j—f" [10]
J
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and define the following functions:

zjk(ﬂ) = a’jﬂ + bjk

[12]
(k=1,2, .... K-1)
k
Pi(0) =Y P, (8) [13]
c=1l
Pjo = 0. , [14]
Pig = 1. [15)]
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t) = —— -= [16]
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then the model in [3] may be written as
Py (8) = Py(8) - Pj 4, (8) [17]
which can be written as
Z4,(8) 2y, 51 (0)
P () = f- b (t) dt - _[ o (t) dt (18]
(k=1,2, ..., K)

For k=1 the last term i3 zerc and for k=K the first term is the definite integral of a

probability density function from negative infinity to infinity and therefore equals one.
Hence we may write these two cases as

le (Q) = P;l (9)

. [19]
ij(ﬁ) 1.0 - Pj, K-]_(ﬂ)




Equation 17 is referred to as the operating characteristic of the graded response model by
Samejima (1972).

Once we obtain the estimates of slope and item-category parameters, we can compute the
corresponding factor lnadings and threshold parameters from relationships derived from [2],
[10], and [11], as follows:

@y = 2 ' [20]
Jj
and
b,
Yo = - [21]
3
where
M
6‘27 = 1+E a?m = 1+3'a [22]

m=l

Interpretation of Parameters in Multidimensional IRT Models

Reckase (1985, 1986) developed "multidimensional” parameters that serve as an aid in
understanding the nature of items generated according to the multidimensional logistic model
and Carlson (1987) further elaborated on their meaning. Here we apply similar ideas to
items generated by multidimensional models for polytomously-scored items and, in
particular, the normal ogive model in [17] and [18].

Following Reckase’s (1985, 1986) definition, the multidimensional discrimination of a
polytomously-scored item can be defined as

M
2
n; =Y ai = a’jaj [23]
m=1

and the multidimensional item-category parameter can be defined as




Pix = -k [24]
n;

Reckase (1985) found the direction of steepest slope of the response surface can expressed in
terms of angles with the latent trait axes as

COSw,, = %ﬁ’ = Ay [25)]
j

The slope in the direction specified by angles w,, is at its maximum when the item response
surface (IRS) of P, *(6) crosses the .5 probability hyperplane.

The item-category parameter of the cumulative probability in [13] is the proficiency
value at the point of .5 probability of the kth or below kth categorical response where

M
Y a8, = -by [26]

m=1

If we denote a particular dimension as m’ (1 < m’< M), we obtain the following equation
because of the symmetric relation:

0, = —a,, [27]

Equations [26] and [27] can be solved from the points in the proficiency dimensions locating
the item-category parameter:

0y = - i

(28]
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From [25] and [28], we obtain the following equations:




Ajp = NCO8 Wy, [29])

and

Tim = PjCO80;, [30]

Since the direction cosine is cos(w,) for both the multidimensional discrimination #; and the
multidimensional difficulty 8, they must reside along the same axis. The slope parameter
a,, is the mth coordinate of the point where the slope of IRS is the steepest. The value Tam
indicates the mth coordinate of the point on the line. In other words, it is the projection of
By onto the mth @ dimension. Thus, the parameter, 7,,,, can be referred to the mth
component of the multidimensional item-category parameter, §;.

The concepts discussed above can be best explained in the context of two dimensions.
Figures 1 and 2 show a two-dimensional response surface and contour plot, respectively, for
Py*(9) in [13] with g-parameters of .8 and .6 and by-parameter of .5. Note that the locus of
all points for which ,=0. defines a line in the response surface (Figure 1) which is a
unidimensional item characteristic curve above the 6, axis. Similarly, for 6,=0. there is a
two-parameter unidimensional item characteristic curve over the 6, axis. The v for the
example item j in the figures is therefore equal to 1.0 and the B is -0.5. The direction
cosines of the line of maximum slope in reference to 6, and 6, are .8 and .6, respectively.
Since these § axes are orthogonal, cos’w; + cos’w,=1.
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Consider the geometry in Figure 3. The 6, and 8, are two orthogonal axes representing
the two dimensions underlying item j. The linear combination in [12] indicates the
combination of the two 0s that the item can be considered to be measuring:

The equation of the line defining the direction of measurement, as is shown in Figure 3, can
be written as




The two a parameters are the lengths of two sides (ay = OC and a; = OA) of a right
triangle whose hypotenuse (OB) is equal to Reckase’s multidimensional discrimination
parameter, 7;. The angle BOC is w; and the angle AOB is its orthogonal complement, w,.
The two 7 parameters are the lengths of two sides (r;;; = OF and 712 = OD) of a right angle
whose hypotenuse (OE) is equal to the multidimensional difficulty parameter By). The
multidimensional item response surface of the cumulative probability is a two-dimensional
surface above the 6,-9, plane (Figure 1), and a slice through that surface along the line of
measurement of the item is a unidimensional item characteristic curve for an item with
discrimination parameter equal to ; and item-category parameter equal to By (Carlson,

1987).
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By using the multidimensional parameters defined above, the model in [12] can be
rewritten as

Z;(8) = a;,0,+a;.0,+...+a,8,+b,
= N, (co8w,,0, +c080;,0, +. .. +cO5w ,0,~B ;)
=Ny (A58, 4250, +. .. +2,8,-B )

= 1;(05-B )

[31)]

The unidimensional latent trait ;" is a composite of M dimensional latent traits 0, (m=1, 2,
..., M). Reckase pointed out that an item, although being scaled in a multidimensional
context, can be considered to be measuring along a single dimension. That dimension is a
linear combination of the uncorrelated theta dimensions. The test containing the item may,
however, be multidimensional if it consists of items that measure along different directions in
the theta space. Since it is assumed that the distribution of § is N(,)) and the sum of
squared direction cosines in the orthogonal space is 1., the variance of g is also 1.

The model can be also expressed as a linear combination of factor loadings and
thresholds:

Z,,(8) = €j(aj191+¢j292+ K +¢j)ﬁH_YJ'k)

™ 32
- 0; Yk [32)

0y
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Unlike the composite latent trait §;" in [31], the variance of a linear combination of the
weighted individual 0, 6,", in [32] is not 1. The variance of this composite of latent traits is
called the communality, h?. Since

Z,(0) - N(-%H,ng) [33]
J
h2
2,(8) ~ N(-Yik, 2, [34)
% o5 o}
and
£ = 1413, [(35]

the communality is expressed by the parameters in [31] as

nz
i = 2 > [36]
1+n 4
The multidimensional discrimination and direction cosines are expressed by the
parameters in the model [32] as
h, h,
s == =5 [37)
Vi-n 9
and
a, «,
, = 2Jm 2 M 38
vl > [38]

As seen in [10] and [37], the multidimensional discrimination can be interpreted in the same
way as the conversion of factor loadings to the slope parameters. Furthermore, the direction

cosine can be also computed as the ratio of the factor loadings to the square root of the
communality.
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To summarize, the multidimensional parameters defined for the McKinley-Reckase
M2PL model (McKinley & Reckase, 1983; Reckase, 1985) can be adopted for the
multidimensional graded response model in [18] because the cumulative probability of each
categorical response of kth or below kth, P,*(6), is essentially a dichotomous item response
model and the logistic function is only an approximate form of the normal ogive function.
The difference is that the multidimensional polytomous item response model yields a set of
K-1 IRSs of Py *(0) rather than one such surface for the dichotomous item response model.
These IRSs are parallel along the line defined by a set of direction cosines, Aay m=1,2, ...,
M. The probability of the specific middle category k, Py(f) is defined by subtracting P,
17(0) from P, *(0). Since these IRSs of cumulative probabilities are parallel, the
multidimensional parameters are still meaningful even for specific middle categories.

Bock, Gibbons, and Muraki (1988) established the relationships between the parameters
of the factor analysis model and the parameters of the item response model. In this paper,
we have established the relationships between the factor loadings and multidimensional
parameters like those in Reckase’s model. The multidimensional parameters can provide
useful interpretations of parameters of the multidimensional item response models. These
parameters can be computed directly from the factor loadings.

Figures 4 through 7 show the IRSs of polytomously-scored three-category item 1 with
parameters: a"=1.0, a,2=l.5, b" ='0.8, and b]2=1.2. In Figure 4, the IRS of P"(Q) is
plotted. This is the same probability as P,,*(6), as given in [19]. In Figure 5, the IRS of
the second cumulative probability Py,*(@) is plotted. These two IRSs are parallel to each
other. The model probability of the second categorical response, Pp,(8)= P,,*(8)-P,;*(0), is
computed and plotted in Figure 6. Finally, the model probability of the third categorical
response, P;;(@)= 1.0 - P;,*(6b), is plotted in Figure 7. If the width of the item-category
parameters is shortened, the probability of the middle categorical response is uniformly
decreased. Consequently, the IRS becomes fiatter. In Figure 8, the IRS of the middle
categorical response of item 2 with the same parameter values as item 1 except that by, =0.8
is shown. Since the width of the item-category parameters becomes narrower given the same
slope parameters, the IRS is pushed to downward. We can expect the observed response
frequencies of the second category to be smaller for item 2 than for item 1. The shape of
the IRS does not change if we rotate the original IRS. In Figure 9, the IRS of the second
categorical response, Py;(f), with slope parameters a;;=1.5 and a;,=1.0 is plotted.
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Insert Figures 4, 5, 6, and 7 here
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Parameter Estimation

Let U;, represent an element in the matrix of the observed response pattern i. Uy =1 if
item j is rated by the ith respondent in the kth category of a Likert scale, otherwise Uy =0.
By the principle of local independence (Birnbaum, 1968) the conditional probability of a
response pattern i, given 8, for K response categories and J items, as denoted by a response
matrix (Uy), is the joint probability:

J K

P (Uy) 18] =}'[ [Py (8) ] (39]
1

=1 k=

For examinees randomly sampled from a population with a multivariate normal distribution
of the latent trait variable, ¢(8), the marginal probability of the observed response pattern i is

Py ] = [Pi1(Uy) 18] ¢(8) B [40]
[}

If an examinee responds to J items with K categories, his/her response pattern i can then
be assigned to one of K’ mutually exclusive patterns. Let r; represent the number of
examinees observed in such a pattern i, and let N be the total number of examinees sampled
from the population. Then r; is multinominally distributed with parameters N and P;(U,).
This probability can be interpreted as the likelihood function of the parameters a;, and by:

N! X I,
L=— q (P (U 1] [41]

Taking the natural logarithm of Equation 41 yields

K7 K7
InL = InN!' =Y Ilnr;t+Y r;1nP; [ (Uy)] [42])
T =1

Bock and Aitkin (1981) applied the EM algorithm (Dempster et al., 1977) to estimate the
parameters for each item individually, and then repeated the iteration process over J items
until the estimates of all the items became stable to the required number of decimal places.
This is in contrast to the Fisher-scoring procedure of Bock and Lieberman (1970). The gth
cycle of the iterative process can be expressed as




= pelaviL [43]

for each item j. The vector of estimates y represents the model parameters. The orders of
parameter vector y and gradient vector t are both M+K-3, and the order of information
matrix V is (M+K-3) x (M+K-3). The information matrix is the negative expectation of the
matrix of second derivatives. When the number of response categories is K, only K-1 item
category parameters can be specified. In addition, two extreme ends of parameter values
need to be fixed to estimate slopes. Furthermore, because the covariance between any
categories that differ by more than two points is simply 0, the partitioned information matrix
for the category parameter estimation becomes a tridiagonal symmetric matrix (Muraki,
1990).

The likelihood equations for &, and by can be derived from the first derivatives of
Equation 42 with respect to each parameter, and respectively set to 0.

With respect to a,,, the likelihood in [42] can be differentiated as

dlnL _ & OlP; (@) 17  ¢(Q) @
“ay, §‘pi[(u_k)1fp {0 103 T 035, [p,(8)] %

k=1

[44]

Now let the observed score patterns be indexed by 1=1,2,..., S, where S <min(N,K’). If the
number of examinees with response pattern 1 is denoted by r,, then

;=N [45]

The first derivative of the likelihood function in [44] can be approximated by using the
Gauss-Hermite quadrature, such that

-

dlnL
oa,,
_ s Fy LR rlL'l(X)A(Xf )A(Xf) -A(Xfx) i a[ij(X)] T13x 1
s o] B, | =1 day, [Py (X) ] P19
[46]
where
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Fu F, A g X

B=Y I II (20 1%a(x, ) A(X,) A (X,) [47]

t"l tz'l tz'l j-l k=1

and

J K
L&) = JITI [Ps(&) 17 [48)

JI=1 k=1

In Equation 46, A(X)) is the weight of the Gauss-Hermite quadrature, and X; is the
quadrature point (Stroud & Secrest, 1966). The quadrature weight A(X,) is approximately
the standard normal probability density at the point X; for each dimension. Because Uy, can
take only two possible values, 1 and 0, the element of the gradient vector f, can be written as

F, 7, 7, -
" - N 2 1 X rjkflfz--fl aPJk (X)
£F1  f£3=1 fi=1 k=1 ij (X) aajm

a,.

[49]

where

7L (X) A(X, ) A(Xg) A(X,) Upsy

1=1 P1

[s50]

and T, . is called the provisional expected frequency of the kth categorical response
of item j at the fth quadrature point.

The item category parameter, by, is contained in both Py(¢) and P;,,,(8) as shown in
{18]. The first derivative of Equation 39 with respect to by is given by

aPl[ (Ujk) :Q] Ul]k _ U.i,j,k“l ] aP_;k(Q)

3By = Py (Uy) 18] [ij(ﬁ) B, o (8) ~3b,, [51]
Therefore, the element of the gradient vector 4, is numerically computed as
o, - % F, B [F;kt'l(t;.)t'._ f;kq,ti;;:,] 61;_.}; (X) [52]
L=l [3=1 f)=1 Jk F, k41 ik
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The elements of the information matrix are given by

Fy

Py 1 aPJk (X) ank (X)
. ‘ [53]
A O) g:' ’ t"’”"z; Py (X) 02z,  Oayw
Fx P 0P (X)
_ 1 1 Jk 2 [54
Vbjkbjk 241 1?-:1 1’12 Njf:,tz'-t. P (X) * Pj k+1 (X) ] [ abjk ] ]
. Fu P E 1 aP;k (X) 6P§,k+1 (X) [55]
bjkbj,b:. ffl fz-l £ jf:,fz—fl Pj,k‘l (X) abjk abj:k-l-l
and, when |k-k’| = 2,
Vbikbﬁ/ =0 aad
and finally
_ g 7y E 1 ank (X) _ 1 a&. k+1 (X) ] aP;k (X)
aj.bjk £~ La=1 Ly=1 jfltz*t. P (X) aajm PJ v kel (X) aaj n ab]k
(57]

The algorithm presented above was implemented in POLYFACT (Muraki, 1993). The
POLYFACT is a hybrid computer program of PARSCALE (Muraki & Bock, 1993) and
TESTFACT (Wilson, Wood, & Gibbons, 1984). The program computes the factor loadings
by the principal factor analysis based on the product moment correlation matrix, treating item
responses as a continuous variable. Because the factors of the principal factor analysis are -
orthogonal, their loadings are suitable for the full-information solution after conversion to
slopes. Slope estimates based on the full-information method are then converted again into
factor loadings. The resulting full-information factor loadings are then rotated orthogonally
to the varimax criterion (Kaiser, 1958) and, with the varimax solution as target, rotated
obliquely by the promax method (Hendrickson & White, 1964).

Simulation Study

The polytomous item responses of six items and 5000 respondents were generated by the
RESGEN (Muraki, 1992b) computer program. All six items have three categorical

14
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responses. . The values of the original parameters are presented in Table 1. The values of
a=1.2 and a=0.0 correspond to «=0.768 and a=0.0, respect.vely. The communality is the
same for all six items (h?=0.590, j=1,2,...,6).

kA ak A o b3 3222333333333

Insert Table 1 here

Ak g Ak kK ] £33 t '3 e aieale aje 3 e 3k e 3 a3k ¥

The three-dimensional solutions were obtained. Five quadrature points for each
dimension were used for numerical integration. Therefore, 5° total points were used for
integration. The precision for convergence was set 0.001. Nineteen EM cycles were needed
to reach convergence. The estimated slope parameters were converted to factor loadings,
and the communality for each item was computed. The factor loadings were then rotated
with a varimax criteria and they are presented in Table 2. The slope parameters were
recovered from the varimax factor loading, and they are shown in Table 3. The item-
category parameters are also presented in Table 3. Reckase’s multidimensional
discrimination parameter (MDP) and direction cosines were computed based on the varimax
factor loadings and are shown in Table 4.

a3k aje ale 2 3¢ ke e 3k 3k % 2l 3k ake 3 aje ake aje e aje e ake aje ake aje 3k ke 2k
Insert Tables 2, 3, and 4 here
a3k a2k 3k a3k alk aje e e 3k 3¢ e ale 3¢ e 3k 3k ke 3¢ 3k

All of the slope parameters were underestimated, and consequently the varimax factor
loadings are lower than the original ones. The item-category parameters are also
underestimated. The underestimation of these parameters may be eased by increasing the
number of quadrature points. We are currently investigating this possibility. Nevertheless,
the factor structure of the original simulated data is recovered in the estimated parameters.
The process of conversion from the slope parameters into factor loadings and the rotation of
the factor loadings is an efficient way to study the results of the analysis. We can then

recover the slope parameters and compute the multidimensional discrimination parameters
and the directior cosines.

For further research, we are planning the analysis of real data sets of polytomous item
responses. The test of chi-square fit is essential to invest.zation of the appropriateness of the
multidimensional item response models. The interpretation of the multidimensional
parameters in terms of classical factor analysis is also needed. Since increasing the
dimensionality requires an exponential increment in computational time, we need to
investigate adjusting the number of quadrature points to economize the estimation process.

In this research, we attempted to estimate the parameters of the multidimensional graded
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response model. We succeeded in this basic task. This is the first step in expanding the
application of the factor analysis to qualitative data.
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Table 1

Original Model Parameters
Slope Parameter Item-Category Parameter
Item a, a, a, b, b,
1 1.2 0.0 0.0 -1.8 0.8
2 1.2 0.0 0.0 -0.8 1.8
3 0.0 1.2 0.0 -1.8 0.8
4 0.0 1.2 0.0 -0.8 1.8
5 0.0 0.0 1.2 -1.8 0.8
_6 0.0 0.0 1.2 -0.8 1.8
21
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Table 2

Varimax Factor Loadings and Communality

—

Factor Loadings Communality
Item o o, 03 h? h
1 0.709  0.002 -0.007 0.503 0.709
2 0.705 -0.002 -0.014 0.497 0.705
3 10.096  0.699 0.021 0.489 0.699
4 -0.006 0.698 0.003 0.487 0.698
5 0.012 -0.017 -0.723 0.523 0.723
6 0.010 -0.009 -0.729 0.532 0.729
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Table 3

Estimated Model Parameters
Slope Parameter Item-Category Parameter
Item a, a, a, by b,
1 1.005  0.003 -0.010 -1.204 0.492
2 0.994 -0.003 -0.020 -0.546 1.211
3 0.008 0.978 0.029 -1.121 0.505
4 -0.008 0.975 0.004 -0.522 1.161
5 0.017 -0.025 -1.047 -1.149 0.549
L_6 0.015 -0.u13 -1.065 -0.507 1.191
23
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Table 4

Reckase’s Multidimensional Parameters

MDP Direction Cosines

Item ] N A\ A
1 1.005 1.000 0.003 -0.010
2 0.994 1.000 -0.003 -0.020
3 0.978 0.009 1.000  0.030
4 0975 | -0.009 1.000 0.004
5 1.047 0.017 -0.024 -1.000
6 1.065 0.014 -0.012 -1.000
22
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Figure 3. Multidimensional Discrimination for a Two-Dimensional Space.
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