
DOCUMENT RESUME

ED 357 369 CS 213 824

AUTHOR LeBlanc, Paul J.
TITLE Writing Teachers Writing Software: Creating Our Place

in the Electronic Age. Advances in Computers and
Composition on Studies Series.

INSTITUTION Michigan Technological Univ., Houghton.; National
Council of Teachers of English, Urbana, Ill.

REPORT NO ISBN-0-8141-5911-7
PUB DATE 93
NOTE 205p.; Foreword by Hugh L. Burns.
AVAILABLE FROM National Council of Teachers of English, 1111 W.

Kenyon Rd., Urbana, IL 61801-1096 (Stock No.
59117-3050: $10.95 members, $24.95 nonmembers).

PUB TYPE Reports Descriptive (141)

EDRS PRICE MF01/PC09 Plus Postage.
DESCRIPTORS *Computer Assisted Instruction; Computer Literacy;

*Computer Software Development; English Instruction;
Higher Education; *Writing (Composition); *Writing
Instruction; Writing Teachers

IDENTIFIERS Computer Interfacing; Writing Contexts

ABSTRACT

Presenting a comprehensive look at (and critical
history of) computer-aided composition (CAC), this book focuses on
faculty development of software for composition studies. The book
describes who is building these writing tools, how they are doing so,
how their work is being received, and what is likely to affect their
efforts in the future. Chapters in the book are: (1) Introduction;
(2) Understanding Computer Software; (3) The "Who" and "How" of CAC
Software Development; (4) Forces that Impact CAC Software Design; and
(5) CAC Software Design and the New Literacy. A brief description of
13 software programs mentioned in the book and samples of program
interfaces are appended. (Contains over 200 references.) (RS)

Reproductions supplied by EDRS are the best that can be made

from the original document.

-....

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Lin

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

cc

cJ

U DEPARTMENT OF EDUCATION
Otke of Educational Research and Improvement

EDUCATIONtL RESOURCES INFORMATION
CENTER (ERIC)

O This document has been reproduced as
received from the parson or organization
originating it

0 Minor changes have been made to improve
reproduction Quaid),

Points of view or opinions stated in this dour
mint do not necessarily represent official
OERI position or policy

orer onnv Ann r 2

Writing Teachers
Writing Software

Advances in Computers and Composition Studies

Series Editors:

Gail E. Ha-wisher
University of Illinois at Urbana-Champaign

Cynthia L. Selfe
Michigan Technological University

Series Design Editor:

James R. Kalmbach
Illinois State University

Creating a Computer-Supported Writing Facility:
A Blueprint for Action

Evolving Perspectives on Computers and Composition Studies:
Questions for tine 1990s

Writing Teachers Writing Software:
Creating Our Place in the Electronic Age

4

Writing Teachers
Writing Software
Creating Our Place
in the Electronic Age

Paul J. LeBlanc
Springfield College

With a foreword by
Hugh L. Burns
University of Texas at Austin

/VIE
Ohem17--- a/kd 47heas.,

5

NCTE Editorial Board: Rafael Castillo, Gail Hawisher, Joyce Kinkead,
Charles Moran, Louise Phelps, Charles Suhor, Chair, ex officio, Michael
Spooner, ex officio

Interior Design: Adapted from James R. Kalmbach

Production Editor: Michelle Sanden Joh las

Manuscript Editor: Robert A. Heister/Humanities & Sciences Associates

Cover Design: Barbara Yale-Read

NCTE Stock Number: 59117-3050

© 1993 by the National Council of Teachers of English, 1111 W. Kenyon
Road, Urbana, Illinois 61801-1096, and by Computers and Composition,
Michigan Technological University, Houghton, Michigan 49931, Uni-
versity of Illinois at Urbana-Champaign, Urbana, Illinois 61801. All
rights reserved. Printed in the United States of America.

Michigan Technological University and the University of Illinois at
Urbana-Champaign are equal opportunity educational institutions/
equal opportunity employers.

It is the policy of NCTE in its journals and other publications to provide
a forum for the open discussion of ideas concerning the content and
the teaching of English and the language arts. Publicity accorded to
any particular point of view does not imply endorsement by the Executive
Committee, the Board of Directors, or the membership at large, except
in announcements of policy, where such endorsement is dearly specified.

Library of Congress Cataloging-in-Publication Data

LeBlanc, Paul, 1957 -
Writing teachers writing software : creating our place in the

electronic age / Paul J. LeBlanc ; with a foreword by Hugh L. Burns.
p. cm. (Advances in computers and composition studies)

Includes bibliographical references and index.
ISBN 0-8141-5911-7
1. English languageRhetoricStudy and teaching. 2. English

languageComputer-assisted instruction. 3. Computer-assisted
instructionAuthorship. I. Title. II. Series.
PE 1404.L43 1993
808'.042'0285416dc20 93-16808

CIP

For Emma and Hannah,
and especially for Pat

I.,

Contents

Foreword

Acknowledgments

1. Introduction 1

Technology Takes Hold 3

Of Teachers and Their Tools 5

The Emergence of Computers and Writing Studies 5

Faculty-Based Software Development in Composition 6

Collecting Stories 8

2. Understanding Computer Software 11

Turning Knowledge into Software 12

Procedural Knowledge 14

Declarative Knowledge 16

Qualitative Knowledge 16

3. The "Who" and "How" of CAC Software
Development 20

The Lone Developer Model 25

The Small Design Group Model 34

The Entrepreneurial Design Group 42

Professional Software Development 52

The Research-Based Design Team 57

vii

r
L.)

viii Contents

4. Forces That Impact CAC Software Design

Technology

Programming Languages

Object-Oriented Programming

Hypermedia

System Architecture

Networking

CD-ROM

Artificial Intelligence

Reward and Recognition

Funding

Software Publication

The Future of CAC Development Models

The Lone Developer

The Small Design Group

The Entrepreneurial Design Group

The Research-Based Design Team

An Overall View

66

67

67

68

72

76

79

81

82

87

96

98

108

109

112

115

117

120

5. CAC Software Design and the New Literacy 124

Relying on Corporate Creativity 127

Forging Alliances 130

Military Funding 133

The Ascendancy of Cognitive Theory in CAC Design 134

Diversity in Composition Studies 135

Cognition, Computers, and Composition Studies 137

(-
1

Contents ix

The Influence of Cognitive-Based CAC Programs 141

Diversity in Cognitive Approaches 143

Giving Shape to the Future: Some Reflections 146

Appendix 153

Works Cited 161

Author 177

Index 179

Foraword

To some things we by art must needs attain,
Others by destiny or luck we gain.

Agathon, cited by Aristotle, Rhetoric

For years, the charge for the computer-assisted composition
community has been to envision state-of-the-future educational
technologies. But did we really know the full significance of
what we were about as a community? Most likely we still do
not realize how fast the world is changing. These are the best
of quantum times; these are the worst of quantum times.

If we olought about how wonderful it would be to provide
all schools with a literacy infrastructure upon which to build
successful learners, thinkers, and writers, it was accidental. If
we wondered how universal connectivity and communication
would mean nothing if learners were not equipped well enough
to be able to write or read, it was in those long daydreams in
our private, computerized inner sanctums, when we were one
with the code.

We may not have always realized that the software we were
developing would empower students who would need, in their
lifetimes, the ability to seek out and retrieve information from
any source in the global village. Today, our writers have the
capability to link up with other writers who are working on
similar projects, either across the hallway or across the globe.
They have the capability to write in a community of writers
from other countries, only satellite-seconds away. Carpe tech-
nologia.

Paul LeBlanc's romantic quest makes us all seem smarter than
we were. At least, this is how I felt as Paul told me of his

xi

xii Foreword

wanderings to meet many of youhis friends, all. Here is the
most definitive "who's who" in the development of computer-
assisted composition over the past fifteen years. Just at the
moment when computers and composition studies are gaining
more and more popularity and scholarly respect, here comes a
scholar who is interested in examining and telling the story so
that software dev elopers and teachers of composition can begin
to remember.

Here are the powerful patterns and portraits. These are the
roots of rhythm in computers, technology, and composition.
When Paul asked me to write a foreword for his excursion into
the world of software development in composition and the craft
of technology-assisted writing, I was curious how his journey
would turn out. Now, I know.

Before reading, I would prescribe a dose or two of self-
examination. How have you been developing software? How
will you develop software in the future? What barriers have you
overcome to marry technology and the humanities? Why is it
important that composition teachers have a view or an appre-
ciation of software development? Who designs composition
software? What trends are emerging in composition software?
How can faculty participate in the design and the development
of software for composition studies? What are your own models
for software development? Can you personally afford or risk
tenure in your department? What are the implications for the
field of composition and computers? Such an honest self-inven-
tory will better prepare you for a conclusion of connections.
LeBlanc will tell you in the end how computer technology "relies
on the diminution of its physical presence and is mostly expe-
rienced through software, which is created through intellectucl
endeavor and imaginationthe currency of academic life." He
is right! "We thus have a rare opportunity" he concludes, "to
play a part in our own destiny, to help shape the revolution:'
The vision is one we must share, as Aristotle recalled Agathon's
words: "To some things we by art must needs attain / Others
by destiny or luck we gain:' In software development, art is
better than luck.

The several, revolutionary agendas in this book are grounded
in the pursuit of knowledgefor computer technology has a

Foreword

nasty, consistent liztlit of providing us only enough knowledge
to realize what we could be doing with even more technology.
The biggest misconception in the arena of current design and
development is that we develop finished products. Software
does not allow itself to be finished. Software is never finished.
That is why software is soft. I like to think that many of the
people featured here have visions dancing in their headsabout
teaching with technology as well as a sometimes unexplainable
motivation for building tools for composing, when, in fact, they
know better. They know their current tools will not fulfill their
future instructional potentials. But they s.lso realize that this is
the only road. Happily, others are on the journey as well,
although we have not had to worry about a gridlock of scholars.

Let me present three goals for bringing technology into any
educational environment and for developing software for com-
position. What do we want writers and learners to be able to
accomplish?

To use technology to perform some tasks, such as writing
a pap(- sending a message, responding to an audience.

To learn about and understand technology, such as how
desktop publishing works or how to write the software that
implements a grammar-checking program.

To employ the technology to support instructional goals,
such as the use of an integrated writing environment to
teach composition in a local-area network classroom.

In tight fiscal times, developers have also had to deal with
issues of cost and availability, but the software developers
featured here have identified and prioritized educational system
needs with a potential for cost-effective resolution through
technological innovations. Reaching the three goals of technol-
ogyusing, learning, and employingmust inform all aspects
of our computer-assisted composition designs.

What are the strategies for reaching these goals ? Strategies
should be designed for students, teachers, and communities by
students, teachers, and communities. Here are some to consider:

First, teach how to learn in today's information society

'3

xiv Foreword

the key objective of education. Computers are the new
medium of knowledge. Through readily accessible computer
networks, students can use the electronic libraries of the
future.

Second, achieve instructional gains through the application
of technology. The benefits of one-on-one instruction are
supported by the research. A composition teaches role
increases significantly as facilitator, coach, and mentor, as a
result of increased teaching time. Collaborative learning and
writing environments on local area networks are enabling
dramatic increases in class participation, by empowering
students to become aware of very real audiencesthem-
selves.

Third, create a global focus through enhanced technological
capabilities. Use of technology brings the world into the
classroom, breaking down barriers of ethnocentricity and
prejudice. Technologies will support distance learning and
teleconferencing, providing a means of connecting students
and writers across geographical, political, and cultural
boundaries.

Developers have had in mind an insertion of technology into
the learning environment which emphasizes technology's ability
to help improve the teacher-to-student ratio, making one-on-
one instruction and team cc Ilaboration the standard approaches
to teaching and learning. This is strategically possible.

Let me offer a brief reflection on the possible and the impos-
sible. In Book II, Chapter 19 of the Rhetoric, Aristotle speaks of
the "Possible and Impossible." He argues that, "If it is possible
for one of a pair of contraries to be or happen, then it is possible
for the other" (1392a, 9-10). He illustrates:

That if a thing can come into being in a good and beautiful
form, then it can come into existence generally; thus a
house can exist more easily than a beautiful house. That if
the beginning of a thing can occur, so can the end; for
nothing impossible occurs or begins to occur. . . . That if the
end is possible, so too is the beginning.

Beginnings have compelled the many software developers you

Lk

Foreword xv

will meet in the following chapters. Our computer-assisted
composition programs have come into being generally, but their
goodness and their beluty have yet to be truly achieved. That
is what we've begunand if the beginning of a thing can occur,
so too can the end.

If LeBlanc has written of past facts, how should we be
encouraged to address questions of the future? How should they
be argued? Aristotle would have us consider:

That a thing will be done if there is both the power and
the wish to do it; or if along with the power to do it, there
is a craving for the result, or anger, or calculation, prompting
it. (1392a, 1-3).

If there is a foundation, there will be a house. LeBlanc's notions
about computers and writing "redesign" are worth examining
in detail. Are we in an age of evolution or revolution in design?
These stories illustrate the power and the wish to change the
way technology works for us in our composition courses. There
continues to be a craving for tools that will empower each
individual writer. These teacher-developers are angry about the
massive illiteracy. Many have had to resort to political calculation
to make their technologically enriched learning places exist. But
now there is a foundation. Their mantra: Develop it and they
will come.

If these are the stories of how we begin to remember, then
what are the lessons for future developers? Here are three I find
most promising; you will find others throughout this book:

Specify a bold technology-support infrastructure. Consider
the complete set of information/communication systems
technologies such as availability of computers, use and need
for local-area networks, availability of word-processing soft-
ware, extent of satellite and wide-area networks, even
television and radio studios, etc. Then design software that
will allow access to shared resources with other writers,
developers, teachers, schools, communities, and countries.

Design for overall technology awareness. Develop software
that enable individuals to achieve the literacies we will need
in the twenty-first century. Especially within the school's

xvi Foreword

own community, provide role models who are working in
and developing the technologies, and acquaint students with
common technologies for the new communication age (e.g.,
networks, common software applications, FAX machines,
photocopiers, CD players, video technologies, laser discs,
and so on, through hands-on experience).
Solicit community support and real audiences for computer-
assisted writers. For example, writing about a judicial process
is best done where the action is. Identify places where
situated learning and writing experiences are appropriate
and best handled in the real worldthen connect.

My hope is that tools such as those dreamt of by the developers
in this book will provide avenues for global literacies and
universal understandings. If I am disturbed about the future, it
is because we may not be able to develop their ideas fast enough
to keep pace with the changes in hardware. The gap we
experience between just being and just becoming will continue
to broaden. These are the evolutions in design and development
of computer-assisted composition, and they are to be expected
and somehow compensated for.

This book reflects and rexindles many memories. Software
development finally boils down to a list of qualities you want
to see developed in people. As a teacher, you will not have time
to do it all, to do it one-on-one, to do it with swank and gusto
and enthusiasm and guts. In my case, I still want to have writers
talk about "idea" as a pluralitya great chain of associations,
memories, experiences, knowledge, and information. Technology
allowed me to get there. We can all build such unique foundations
for our writers.

Can you remember the first time you allowed your students
to work on a computer in the writing workshop? Were you like
me at first, trying to pry into their writing zone and help? When
were you brave enough to leave the room and look back in
through a windowwondering if the software you had devel-
oped was powerful enough to be useful? Are you part of the
generation that helped switchboard operators listen to the high-
pitched sounds of mainframe computers yearning to be called?
Are you part of the generation who told colleagues the differences

1 G

(

Foreword xvii

between hardware and software, bits and bytes, word processing
and data processing, hypertension and hypermedia? Can you
remember when your composition students began enjoying the
composition of an essay, even laughing aloud at different times
while writing? Have you noticed, in these settings, how you
have provided a place and pace for writing and thinking that
honors each student's learning and writing styles? Do you have
college-age children who come home at Christmas break and
blurt out with excitement, "You would really like the literature
class I'm taking. It's cool. We write all at once on a local-area
network. Then we share the transcripts!"

Yes, software development is cool.
Yes, we have been and are a community of possibilities. "Good

enough" is no longer plausible. Intrepid development. Relentless
patience. Whoever thought that electrons and microchips could
be such good friends to humanists?

Yes, this is a book about the importance of connecting.
Yes, these are the stories of how we begin to remember the

evolution.
Yes, these are the roots and rhythms of the quiet revolution

of technology in our composition classrooms.
Yes. Thank you, Paul.

Hugh L. Burns
San Antonio, Texas

Acknowledgments

I began interviewing faculty software designers in 1988, and
this work has undergone many changes in the years since. Much
of that revision was due to the gentle guidance and wisdom of
those wonderful teachers with whom I studied at the University
of Massachusetts at Amherst. Charles Moran, who has been a
great mentor, brought me into my very first computer writing
classroom and has remained at my side ever since, exploring
technology and education with the most humane of perspectives.
He has been a wise, generous, and good friend. Anne Herrington
taught me about research and high standards, and forced me to
do my best work for herand she did so with grace, a sense
of humor, and considerable patience. Finally, Peter Elbow brought
his wide range of knowledge and native curiosity to my project,
and with his characteristic smile of benevolence, urged me to
write on.

Gail Hawisher and Cynthia Selfe chose my work for the
Computers and Composition series, and while that act, alone, was
fortunate, even greater for me was the opportunity to work with
two of the very best minds in the field. They have been terrific
editors, offering guidance, insight, and great positive energy. I
would also like to thank Michael Spooner, senior editor at NCTE,
for his support of this project and his kind mediation between
readers, editorial board members, and me. He helped improve
this book without ever making me feel like the process was out
of my hands.

My greatest thanks go to the many computer and writing
people who gave me their time, thoughts, and comments. In
sharing with me their research and their experiences designing
or working with software, they made me feel deeply what it is
to belong to a community of scholars. They include Mimi
Schwartz, Wayne Butler, Fred Kemp, Paul Taylor, Hugh Burns,

xix

xx Acknowledgments

Helen Schwartz, Nancy Kaplan, Chris Neuwirth, Earl Woodruff,
Dan Burns, Molly Hepler, Bill Wresch, Kim Richardson, Jim
Par lett, John Smith, Ron Fortune, and many others.

A person who knows the material in this book at least as
well as I do is my student aide, Mary Lonergan, who typed
hundreds of pages of transcripts and outlasted one heavy duty
transcription machine. Mary shaved ten years off the process of
preparing this work and thus saved it from obsolescence.

Most of all, I must acknowledge my wife, Pat, and my
daughters, Emma and Hannah. They have been patient and
supportive and witness to ever. si.3ge of this project. I remember
holding three-month-old Emma and coding interview transcripts,
Hannah joyfully coloring over what was to be a draft sent out
in that day's mail, and Pat knowing when to come in, sit, and
just listen to the day's progress or frustrations. I will have special
fondness for this book and the memories that are bound with
its creation.

Paul J. LeBlanc
Springfield College

Chapter 1

Introduction

There is a trap in talking about writing and computers. The
trap is to consider writing as a "natural" activity and the computer
as a technology that merely serves it. The fallacy asserts that
writing is writing, whether it be done with pencil, pen, typewriter,
or computerthe intellectual act of composing remaining fun-
damentally unchanged by the various composing tools we pos-
sess. However, as Walter Ong (1982) points out, writing is itself
a technology, one that initiated "the reduction of dynamic sound
to quiescent space, the separation of the word from the living
present, where alone spoken words can exist" (p. 82). The
movement from orality to literacy was driven by the adoption
of a new technologywritinga technology no more natural
or fixed than any other. Now, with the rapid proliferation of the
microcomputer, the technology we know as writing is itself
undergoing a transfonnation, the scope of which might be as
important and far-reaching as the earlier shift from spoken to
written communication. As Ellen McDaniel (1987) says, in dis-
cussing composition software:

The truly substantial influences of printing, like those of
writing, were long in developing but ultimately affected
human thought, learning, and expressionthe text-maker
and the making, not simply the text itself. Now, technology's
effect on literacy concerns us again as we inspect the densest
technology yet to come between idea and expression, imag-
ination and form, thinker and composer. (p. 139)

In other words, writing is being redesigned by the computer in
much the same way that the Gutenberg press was said to have
redesigned it, with similarly profound implications (Eisenstein,
1979).

As Ong (1982) argues, technologies effect "interior transfor-
mations of consciousness, and never more than when they affect

1

2 Writing Teachers Writing Software

the word" (p. 82). When individuals adopt a new tool for
writing, they may very well be adopting a new way of thinking
about writing, and even a new way of thinking, generally. This
is not a new idea. Consider Quintilian's advice to his students
in the first-century Institutio Oratoria:

It is best to write on wax, owing to the facility which it
offers for erasure, though weak sight may make it desirable
to employ parchment by preference. The latter, however,
although of assistance to the eye, delays the hand and
interrupts the stream of thought, owing to the frequency
with which the pen has to be supplied with ink. (Graves,
1984, p. 226)

Our writing tools have always mattered in the way we compose.
Technological determinists such as Havelock, Eisenstein, Mc-
Luhan, and Ong have illustrated the power of technology to
reshape the nature of knowledge and knowledge making.

On the other hand, Nancy Kaplan (1991a) points out that
technological determinism can fail to recognize the matrix of
social, economic, and ideological forces within which technol-
ogies arise, are shaped, and then distributed:

Tools of inscription embody and construct ideological prac-
tices, redefining what exists, what is good, and what is
possible to do. But understanding the opportunities and
transformations that the tools themselves may offer cannot
fury explain or predict their effects on the world. Technol-
ogies, after all, arise out of and operate within already
existing social, political, and economic relations. (p. 21)

She reminds us that the relationship between technology, with
its power to shape culture and society, and society itself and its
ideologies, within which technologies are themselves shaped, is
a recursive one. We are simultaneously the shapers and the
shaped, proactive and reactive. As teachers and researchers of
writing, we need to be as sensitive to the development and
implementation of writing technologies as was Quintilian; as a
field we need to pay much closer attention to, and assert our
role in, the development and widespread adoption of the mi-
crocomputer as the primary tool for writing in the next xnillen-

Introdu,'ion 3

nium. Doing so allows us and our students to be users of
technology rather than its victims.

Technology Takes Hold

While precomputer writing technologies developed slowly,
their impact occurring over a long period of time, computers
have invaded the classroom, workplace, and home with dizzying
speed. Just four years after the commercial introduction of the
microcomputer, computer-based learning programs were in use
in 50 percent of U.S. educational institutions (Chambers and
Lewis, 1988, p. 31). According to the Second National Survey
of Instructional Uses of School Computers, in the two-year
period from 1983 to 1985, the number of computers used in
elementary and secondary schools quadrupled from 250,000 to
over one million. During that same period, the number of schools
introducing computers into the curriculum tripled (Herrmann,
1989, p. 111). Over 95 percent of all public schools now have
computers, and the ratio of students to computers continues to
close from 92 to 1 in 1983, to a current ratio of about 26 to 1
(COTA 31-4). Fortune 500 companies are already predicting
"saturation": one computer per white-collar employee (Debs,
1988, p. 5). And a recent poll revealed that 25 percent of
American households now own personal computers and that 70
percent of those computers are being used for schoolwork (Lewis,
1992, p. 48). In educational and work settings, and increasingly
at home, the number one use of the microcomputer continues
to be for writing. As Charles Moran (1991) asserts, "Computers
are here; very few writers would return to the old ways, even
if they could do so. Because computers are here, we can't not
teach student writers in on-line environments" (p. 1).

Software programs designed or appropriated for writing in
an on-line environment have, appropriately, seen a correspond-
ing increase in number and slphistication. Simple word-pro-
cessing programs, their roots in the rudimentary line editors of
programming software, have evolved into complex programs
that can include spelling, grammar, and style checkers; on-line

4 Writing Teachers Writing Software

handbooks; desktop publishing features; and electronic mei:
capabilities. These programs often have windowing capabilities
that allow work on multiple documents, electronic note taking,
and easy movement between word processing and other types
of programs such as database or graphics software. Comple-
mentary programs to aid in writingsuch as invention, peer
editing, instructor feedback, and outlining programsare widely
available. Moreover, as we struggle to understand the effects of
these innovations, at the same time, we see breakthrough
developments occurring in hypertext and hypermedia which
allow the creation of multimedia documents that link text, video,
graphics, and sound in multii,:e, nonlinear ways. Networking,
telecommunications, and large database storage media are pro-
viding writers vith new, powerful possibilities for collaboration
and immediate access to vast amounts of information.

As specialists in writing, in the production and study of texts,
we, as a field, must come to grips with the profound changes
in written communication which are taking place because of the
adoption of the microcomputer as a writing tool. Increasingly,
we are able to discern the characteristics of the emerging literacy.
Andrea Lunsford, in a paper presented at the 1991 MLA con-
vention, indicates some of these changes:

In speaking of electronic literacies, I take it as a given that
print literacythe traditional technologies of reading and
writingis in the process of being transformed into a literacy
or set of literacies in which text is never fixed or definitive;
in which authors are not single authorities (much less stable
selves), but always polyvocal; in which "reader" and "writer"
as well as "creator" and "critic" regularly merge; in which
intellectual property as we have known and defined it is
challenged and exclusionary "ownership" impossible; and
in which new arts and genres will emerge. (p. 4)

While we remain in the transition period between traditional
print literacy and electronic literacy, the speed of that transition,
if the last ten years are any indication, will be infinitely faster
than the hundreds of years that attended the movement from
oral to written literacy.

Introduction 5

Of Teachers and Their Tools

Anyone working in composition today must pay at least
nodding acceptance to the impact of electronic technologyand
ironically, even the most recalcitrant are probably working on
computers. That has always been the implicit (and often explicit)
message of journals like Computers and Composition and confer-
ences such as the annual Computers and Writing Conference.
That message has been increasingly echoed elsewhere. Alan
McKenzie (1991), for example, urges humanist scholars to get
on-line in the MLAs Profession 91. Lunsford (1991) stressed this
point in her MLA address:

Video and electronic literacy will affect the way we think
about and act in the world. I also believe, however, that it
is up to us to help decide exactly how these new literacies
will affect us. Yet our community has, by and large, refused
to accept this responsibility for literacy, leaving it instead to
those who want to use electronic literacies for their own
endsprimarily business, entertainment, and military pur-
poses. (p. 5)

The need for composition and English studies to play a powerful
role in the shaping of electronic literacy is the underlying
argument of this book.

The Emergence of Computers and Writing Studies

For more than ten years, a small but growing number of
composition researchers and teachers have been attempting to
assert their role in shaping electronic literacy. As computers
found widespread use in college and university writing programs
in the 1980s, composition specialists began studying the rela-
tionship between writing and technology. My work, for example,
had its roots in my experience as a teacher of writing in a new
computer-supported environment. My interest was first sparked
by something which I had not seen before in my writing classes:
students rushing into the lab, a full ten minutes before the
scheduled starting time, and lingering on after class until the
next eager cudents forced them to vacate their work sessions.

6 Writing Teachers Writing Software

Before almost anyone conducted research on the effects of
computers on the writing process, everyone working with com-
puters knew one thing: most students are highly motivated to
write with computers, good effects or not. Computer -Aided
Composition (CAC) instructors like me began to watch more
closely the writing behaviors that took place in our computer
classrooms, and we began to publish our results in the new
computer and writing journals that began to spring up.

In retrospect, those of us who were interested in CAC were
looking at tools that were new, powerful, and continually evolv-
ing. As Gail Hawisher (1989) noted, our research reflected the
confusion and contradictions of an emerging field (p. 64). Take,

for example, the contradictory research on the quality of revision
when performed on a computer. Burnett (1984), Dalton and
Hannafin (1987), Howard Kaplan (1986), Moore (1987), and
others argued that the quality of student revision is better when
performed on a computer. However, Beesley (1986), Coulter
(1986), Du ling (1985), Woolley (1985), and others disagreed.
Some, such as Cirello (1986), Daiute (1985), and Haas aril Hayes
(1986) reported mixed results. And yet others, myself included,
argued that a writer's predisposition toward revision influences
the quality of that revision much more than the computer
(LeBlanc, 1988; Hawisher, 1989). Yet, underlying this small but
growing body of research was a sense that we were all working
with a tool that, when widely adopted, might have a dominant
influence on our concepts of text and text production.

Faculty-Based Software Development in Composition

While those cited above were reacting to their students' use
of computers for writing, other, perhaps braver, souls were
working to make the tool their own. They were the first com-
position teachers and researchers to design and develop their
own software. Their numbers included Hugh Burns, who, as a
graduate student at the University of Texas at Austin, wrote an
invention program based on Aristotle's topoi, Burke's pentad,
Young, Becker, and Pike's tagmemics. James Strickland wanted
a computer program that would enact some of Peter Elbow's
prewriting strategies, found none, and then wrote FREE in 1982.

J

Introduction 7

Others, scattered about the country, were also engaged in pro-
ducing composition software. Their efforts often went unnoticed
and unrewarded by their institutions, but they pointed to the
one area where the field can actively shape the tools it uses,
and thus shape the conception of writing implicit in those tools
the design of software.

The focus of this book is faculty development of software for
composition studies. It attempts to describe who is building
these writing tools, how they are doing so, how their work is
being received, and what is likely to affect their efforts in the
future. The discussion, however, does not include a survey of
current computer writing programs. While such a survey would
be useful, it would not clarify the future of faculty-based software
development, for the pace of technological change almost always
makes a close look at the present an immediately outdated
perspective. There is also little discussion of hardware, a reflection
of both the minor role writers' needs have played in hardware
development and the fact that hardware development is beyond
the reach of even the best-funded and most expert computer
and writing specialists. FLIwever, these conditions are not true
for software.

We may have to live with the hardware produced by Apple,
IBM, and other corporate manufacturers; software, however, can
be written with far fewer resources. Moreover, it is software that
gives hardware its final shape, in the sense that software defines
how hardware is used. It is software, for example, that makes
a computer network a tool for collaboration or a tool for control
and exertion of authority. This is what that small nt mber of
faculty software developers have always realized. Finding no
published studies of their work, I set out to talk with them about
the development of CAC software.

My discussions with faculty software developers confirmed
an early notion that how a tool gets built, and who is building
that tool, will have important implications for how that tool
looks and works. The people who build tools, and their methods
for doing so, have great power to define their use. This is
particularly true for the computer. The manufacturer ofa hammer
may intend it to be used for building, 'out it can be used just as
easily for a weapon. A software designer, on the other hand,

0

8 Writing Teachers Writing Software

knows that the grammar-checking program he or she designs
can be used for little else. If the designer of a networked
collaboration program decides not to include a function which
allows the in structor control of or access to students' screens,
that designer has limited the use of the network as a social
control mechanism.

Collecting Stories

At the heart of my research is a collection of stories that
describe the design and development of composition software
by CAC specialists. Those interviewed ranged from researchers
working in well-supported, well-staffed university settings, to
untenured instructors with heavy teaching loads, to academic
entrepreneurs attempting to combine their teaching and research
with the commercial sale of their software. In each case, their
accounts addressed five key areas of inquiry:

1. Who Designs CAC Software? Who is involved in the devel-
opment of the software? If more than one person is
involved, how does the group interact? In group efforts,'
how are the respo-.sibilities and work delegated, if at all?

2. How Are Programs Completed within a Development Model?
For example, does the effort to develop a program start
with a model of writing behavior? Is there field testing
during and/or after the development of the program?

3. What Are the Forces That Impact the Development of CAC
Software? What are the key technological components of
software development? How are development projects
usually funded? What role, if any, do English departments
play in the development effort? Does marketing influence
design decisions?

4. What Trends, if Any, Are Emerging in CAC Software Devel-
opment? Are new technologies fundamentally altering soft-
ware development? Are developer profiles changing? Is the
increasing interest in software shown by publishing houses
proving supportive or problematic?

5. What Are the Implications of the Aforementioned Areas of

'2 7

Introduction 9

Inquiry for the Field of Composition, Generally? Can we begin
to see ways in which CAC software might challenge
accepted beliefs about good writing and writing behaviors?
Do emerging trends in CAC software development favor
certain theories of writing over others? What should the
role of English departments be in supporting the future
development of software programs?

While a wide range of models, or approaches, exists for devel-
oping software, four principal ones emerged from the interviews:

the Lone Programm.

the Small Design Group;

the Entrepreneur;

the Research-Based Design Team.

Accounts illustrating each model answer many of the questions
posed above, suggest strengths and weaknesses in each approach,
and, taken as a group, offer an overview of the state of software
development within our profession.

Moreover, the accountswith all their drama of people being
fired for developing software, or staying up late into the night
working on programs, or winning national recognitionbring
into sharp focus the larger issues facing English studies and
composition professionals as we move toward virtual-age literacy.
In chapter 4, I use the collected accounts to identify what seem
to be the predominant forces shaping software development
within composition. Some of these are technicalfor example,
the availability of easy-to-use software authoring programs or
the impact of object-oriented programming languages. Others
include the politics of English departments and their attitudes
toward technology, generally, and computers and writing re-
search, specificallyfor example, the availability of release time
and the treatment of software development in promotion and
tenure decisions. Software development is often expensive, and
the sources of funding for such efforts may also shape the final
product. Some of these forces seem to encourage the faculty
development of software; others seem to work against it.

10 Writing Teachers Writing Software

If software development is indeed a primary way for com-
position specialists to help shape the emerging literacy, we, in
the field, must understand these influencing forces, and in some
cases, address growing problems related to them. These problems
are examined in the final chapter of the book, as the scope of
the discussion widens to encompass the larger changes in literacy
that are taking place due to the force of technological innovation
and the role of composition studies in accommodating and
guiding those changes.

This work is an attempt to shed light on where we are and
where we might go in the development of composition software.
It is an understanding that we lack at present. Composition may
become more reactive to technologynotice the increasing num-
ber of related journal articles and conference panels, and the
job advertisements that include computer and writing experience
as desired qualifications. By contrast, there continues to be almost
no discussion of software design within the field, and there are
alarming indications that the number of faculty software de-
velopers in composition is declining, thus making us less proac-
tive in shaping the technology. Such a phenomenon raises
Lunsford's (1991) key concerns:

Who will create and control the programs, the networks
(on which many are, ironically, silenced and excludea), the
architecture of interactive fiction, the prototypes of virtual
reality? And who will train not only the creators but the
interpreters of these electronic literacies? I want to urge that
the answer to these "who" questions had better include us.
(p. 6)

If we wish to take a proactive role in the shaping of electronic
literacy, software design should be as mainstream an activity for
composition professionals as teaching a writing class, conducting
a research study, or writing an article. Otherwise, we risk leaving
the new electronic literacy in the hands of "IBM, Disney, and
the U.S. Air Force," as Lunsford warns (p. 5), and relinquishing
our proper role as central players in shaping the writing spaces
of the future.

Chapter 2

Understanding Computer
Software

When writing teachers want to create textbooks, they begin
almost immediately by examining the marketplacewhat has
come before and what is out there now Key elements in any
textbook prospectus are the author's recognition of the compe-
tition and her accompanying analysis of how the prospective
book will allow the publisher to meet that competition head-
on.' This sensitivity has a basis in market analysis (i.e., the
number of copies that a text is likely to sell), but it also speaks
to a tradition in the textbook trade that, in the case of compo-
sition, stretches back to the nineteenth century and the shift in
focus from oral to written discourse (Connors, 1986, pp. 186-
187). The prospective textbook writer might start by walking to
a shelf and pulling down textbook after textbook, surveying
what has already been done, discovering the conventions of the
medium, and so on. The writer might also choose to consult the
body of critical literature on textbooks, for example, the work
of Stewart, de Beaugrande, Welch, Connors, and Winterowd.
Moreover, unlike colleagues in other disciplines, whose training
may have included much less writing, the writers of composition
textbooks are themselves likely to be competent writers and feel
comfortable working with text.

In contrast, consider the challenges confronting the writing
teacher who wants to develop software. Computers have only
seen extensive use in writing instruction for less than a decade.
While there exist dozens of writing-related software programs,
their distribution has been spotty and tied to particular hardware
configurations. These programs have often gone without up-
dating and no longer run under new operating systems, and
much of this software is either uninteresting or of poor quality.

11

3i;

12 Writing Teachers Writing Software

Reviews of software are often hard to find; in particular, there
is almost no extant body of critical writing about CAC software
development. Indeed, one major aim of the present volume is

to help establish a context in which future software developers
can situate their efforts. Moreover, those involved with software
development in recent years report less camaraderie and sharing
among faculty developers than that which characterized the
early days of such work (Wresch, 1992, interview; H. Schwartz,
1992, interview).

In addition to a lack of tradition or a body of self-reflective
research, prospective CAC software developers must work either
directly or indirectly with programming languages in which most
have had no training. Joseph Bourque (1983) speaks to this
challenge in one of the earliest articles examining the faculty
software developer in the humanities:

In addition to mastery of subject matter and methods, the
CAI specialist must learn one or more computer languages,
a time-consuming process . . . It often means brushing up
on math for people who have had most of their education
in the humanities, and, as programmers know, writing
programs demands attention to detail. A single period out
of place can create a "bug" that may take hours to trace.
(pp. 69-70)

While newer authoring programs such as HyperCard or ToolBook
are much easier to master than programming languages such as
PASCAL or C, the developer still needs to learn a tremendous
amount of technical material to fully develop any substantial
application. Also, while not underestimating the importance of
good textbook design, the CAC software developer must work
with interface design in a medium for which few English faculty
are trained and for which there is much less readily available
help from publishers. Finally, in developing software, there is
the central challenge of outlining concretely what one believes
to happen when writers engage in the process of creating text.

Turning Knowledge into Software

At the heart of even the most ambitious computer program
whether it be a NASA navigational program or, closer to home,

Understanding Computer Software 13

John Smith's Writing Environment (WE)there is the simplest
on/off action of electronic current. This most essential fact of
computer operations has a powerful influence on the writing of
software and the way knowledge is embodied within program-
ming code. This discussion offers a brief examination of the
ways in which knowledge is classified and represented in soft-
ware design, and of the implications that inform how software
is written. Understanding this connection provides a context for
this examination and helps explain why some approaches to
composition are more likely than others to be computationally
rendered.

There were, properly speaking, three progenitors of the mod-
ern digital computer. The idea of the computer was first conceived
by Charles Babbage, venerable British mathematician and in-
ventor, in 1833. His "analytical engine" was never built due to,
what were then, insurmountable engineering problems (Johnson,
1987, p. 61). Just over one hundred years later, in 1936, English
mathematician and logician Alan M. Turing (1937) set out to
prove some esoteric results in symbolic logic and wrote one of
the most innovative, yet little-known, documents of the twentieth
century: "On Computable Numbers, with an Application to the
Enischeidungsproblem." In what Joseph Weizenbaum (1976) has
called "one of the greatest triumphs of the human intellect;'
Turing laid out the theoretical foundation for all digital computers
up to the present time, showing how to build one a full decade
before his design would actually be realized in working form
(p. 58). It was left to John Van Neumann to build the first
computer and to set up its basic design configuration.

Like so many machines of our age, the computer does not
convey physical powerit has almost no moving mechanical
parts. The computer redefined the term machine to include those
devices which are transformers of "information," usually through
electronic impulse. The distributor of the modern automobile
ignition system, a mechanical configuration of gears, a shaft,
and cams, which timed the firing of spark plugs, has been
largely replaced with the nonmechanical "control module" or
"on-board computer," which consists of silicon chips controlling
electronic impulses to the spark plugs as well as controlling a
host of other functions. Those electronic impulses, traveling at
the speed of light, represent and convey information.

14 Writing Teachers Writing Software

The representation and processing of information in the form
of electronic impulse is simply more difficult to do for some
kinds of information, because it demands a descriptive precision
that is not always so available. We can describe precisely, for
example, the cognitive steps in determining the square root of
a number, but who would purport to know precisely the steps
that lead to a poem, a short story, or a freshman essay?

Procedural Knowledge

Weizenbaum (1976) asserts that if we understand a phenom-
enon in all its behavioral rules, we can express it in the form
of a computer program. To understand and program a phenom-
enon, one must break it down into its smallest parts, or in the
parlance of programming, its procedures. A set of procedures is
called an algorithm. The set of procedures for finding out if a
number is prime, for example, is pretty straightforward and
might be mapped out like this:

1. Determine the number to be tested (computer user gives
the information).

2. Call that number A.
3. Set the number to divide by, X, equal to 2.
4. Divide A by X.
5. If there is no remainder, go to step 8. Otherwise proceed

to the next step.
6. Add 1 to X.
7. Is X now equal to A? If so, go to step 9; otherwise return

to step 4 and repeat the loop.
8. Print "The number is not prime" and end.
9. Print "The number is prime" and end. (Johnson, 1987, p.

84)

The activity of finding prime numbers is logical and mathematical
from the start. Writing a simple word-processing program is
relatively easy, since text use has prescribed rules that the
programmer can follow.

3 3

Understanding Computer Software 15

For phenomena which are not wholly or inherently rule-
boundthe activity of writing, and much of life, for example
the task becomes much more difficult. If we were to attempt to
write a program that could diagnose even a fairly limited
problem, such as a car not starting, we would have a terrific
challenge setting out the procedures involved. We would be
facing what has become known as the "knowledge-acquisition
bottleneck" (Johnson, 1987, p. 164). We could prioritize a list of
problem-solving questions which the user could answer and for
which she could write appropriate algorithms: "Is charge in
battery 12 volts? If yes, proceed to the next question. Are the
battery terminal leads securely fastened to the terminals? If no,
tighten the leads. If yes, proceed to the next question" (and so
on). But how do we program a mechanic's years of experience
(e.g., "The points are always closing up on that year of VW
Beetle") or intuition (e.g., "I'm not sure why, but this sounds
like the fuel pump isn't working")?

Reducing expert behaviors to procedural steps has been the
challenge for researchers who work with Intelligent Tutoring
Systems (ITS), computer programs that teach students what
experts do when confronted by a given problem. The answer
to the problem has been "knowledge engineering." Martha
Polson (Polson & Richardson, 1988) explains:

A knowledge engineer interviews an expert and designs a
computational representation for delivering the knowledge,
usually a rule-based formalism. This implementation does
not necessarily correspond to the way the human expert
reasons, especially in novel, unfamiliar situations or when
providing explanations .. . However, knowledge-engineer-
ing tools and techniques, that is, ways of extracting and
codifying information, are becoming more and more useful
for ITS development as attention is paid toward making
representations more faithful to the breadth and depth of
expert reasoning. (p. 4)

Knowledge engineers, through intensive interviews with many
experts, attempt to identify the problem-solving strategies which
those experts employ and which underlie other, more difficult-
to-identify processes, such as intuition.

In the example just givendiagnosing an ignition problem

16 Writing Teachers Writing Software

in an automobile one might not be able to produce algorithms
for intuitive knowledge; but the general task still lends itself to
description in procedural terms. Similar tasks have been repre-
sented successfully in computational form at the Intelligent
Systems Branch of the Air Force Human Resources Lab, where
programs walk the user through the diagnosis for a broken-
down tank or the process for changing the orbit of a satellite.
In CAC programming, programs that analyze text for grammatical
"correctness" are examples of such procedural programs. The
speed and vast memory of the computer help to make up for
its lack of experience or intuition.

Declarative Knowledge

Finding out whether a number is prime or checking on subject-
verb agreement are considered types of "procedural knowledge."
A second level of knowledge might be called "declarative
knowledge," general knowledge about a particular area, for
example, South American geography. The Scholar project, an
early attempt to program information about South American
geography, required an elaborate, semantic net representation of
the knowledge base involved, one that consisted of various
nodes which represented a wide range of concepts, such as
countries, products, capitals, latititdes, forms of government, and
so on (Carbonell, 1970, pp. 190-202). Programs in the area of
declarative knowledge have tended to employ Socratic dialogue
between the program and the user. The key to successful
programming of declarative knowledge is to firmly establish the
boundaries of that knowledge area and to keep the user within
that domain. For example, in the area of CAC programming,
Confer would be an example of such a program. The program
interacts with the user in the analysis of a single short story,
and it focuses entirely on text-based questions and responses
a highly defined knowledge base.

Qualitative Knowledge

In terms of computational representation, the ability to reduce
information and procedures to mathematical representation

Understanding Computer Software 17

the most challenging area for programmers and the one most
relevant to composition studiesis "qualitative knowledge," tile
knowledge that allows us to operate in dynamic and changing
environments. This is the knowledge base that allows us to
process all of our knowledge to find the best ways to solve a
problem or to create a piece of art such as a short story or essay.
Sheldon Klein and his associates have attempted to write this
type of program, an "automatic novel writer," which produces
passages such as the following:

The day was Monday. The pleasant weather was sunny.
Lady Buxley was in a park. James ran into Lady Buxley.
James talked with Lady Buxley. Lady Bux ley flirted with
James. James invited Lady Burley. Lady Buxley was with
James in a hotel. Lady Buxley was near James. James caressed
Lady Buxley with passion. James was Lady Buxley's lover.
Marion following them saw the affair. Marion was jealous.
(Qtd. in Boden, 1977, p. 300)

This passage reveals the ability of a programmer like Klein to
extract from a qualitative knowledge base some system of
procedural knowledge, which in this case provides what might
be a skeleton of a murder mystery, but not the knowledge base
that underlies style and subtlety, and in the instance of a murder
mystery, surprise. A complex activity like writing clearly draws
upon procedural, declarative, and qualitative knowledge bases
how the mind "processes" that knowledge in the completion of
the writing task is something about which we know very little.
Intelligent Tutoring Systems (ITS) experts continue to work on
the problem of representing all three knowledge bases and their
interactions. Polson (Poison & Richardson, 1988) says that "one
of the most challenging issues will be constructing a metatheory
that unifies and shows the relationships between procedural,
declarative, and qualitative knowledge" (p. 5). The need in
programming for a clear mapping out of knowledge operations
makes cognitive approaches to composition, with the highly
defined cognitive models offered by researchers like Linda Flower
and John Hayes, appealing to many who work in CAC pro-
gramming. In fact, the best-funded and most technically ambi-
tious CAC projects have been cognitive-based research projects.

G

18 Writing Teachers Writing Software

The alliance of cognitive science and computers is not a new
one. The close link between cognitive science and computer
technology forms the basis for the work of composition cogni-
tivists. In their landmark "Empirical Explorations of the Logic
Theory Machine: A Case Study in Heuristics," Newell and Simon
(Newell, Shaw, & Simon, 1957) made an assertion that is the
basis for a cognitive approach to writing theory: "that pro-
grammed computer and human problem solver are both species
belonging to the genus 'Information Processing System' (Qtd.
in Weizenbaum, 1976, p. 169). This is a profound declaration
of equality between computer and humanone that elevates
the computer, at least in its potentialities, and that abases
humanity, so that Newell and Simon can even talk of our
"programmability" (Weizenbaum, 1976, p. 169). While much
vehement debate has occurred in the field of computer science
over the validity of Newell and Simon's equating of human and
machine, the comparison of the two in computer programming
is hard to avoid. As Bolter (1984) points out:

Man can solve problems in one way, machines in another.
But in fact, the analogy remains firm in the minds of
programmers. Computer programs are open to inspection,
and human ways of thinking are not. When a programmer
devises an algorithm for playing chess or for analyzing
English grammar, he can hardly avoid regarding human
performance by analogy with his invisible, intelligible al-
gorithm. As one psychologist has put it, the computer model
of the mind is the only working model available and even
a bad model is better than none. (pp. 193-194)

In a sense, the strength and appeal of Newell and Simon's
General Problem Solving (GPS) theory is its ability to schematize
human thought (or its model) in a way that has eluded other
theorists of cognitive activities. This has, in effect, put the onus
on humans to think like computers, instead of forcing computers
to think like humans.

As teachers of writing who use CAC programs, we need to
be sensitive to this dynamic. For example, Smith's WE program,
which will be discussed later in more detail, attempts to aid the
student writer in all parts of the writing process (as Smith
understands them)except for the "social aspects of writing,"

Understanding Computer Software 119

as he puts it. Why the omission of that important, some might
say key, area? It is the one area of his model that falls within
the qualitative knowledge areaas we have seen, the most
diffic ilt to program for. The result of its exclusion from the
program is that students using WE will not address those
concerns, will be practicing a model of writing, and will pre-
sumably adopt that model at some cognitive level. The important
question is to what degree does their thinking start to reflect
the program and what it is able to do, rather than the inverse.

Computers are not flexible. That is, either one uses them and
plays by their rules, or one does not use them. As we have
seen, the computer is being widely adopted as a tool for writing.
Anyone debating whether computers are good or bad for us is
missing the point, for computers and CAC programs are here to
stay and are quickly becoming universal in the classroom and
workplace. New CAC programs are being released almost every
day. This technologythe computer and the software we run
on ithas the power to redefine not only what we consider
text, but more importantly, how we mentally produce text. If the
demands of binary language require knowledge to be reduced
to precisely defined procedures and algorithms, and if that favors,
and even in a sense validates, cognitive models of writing, and
if the CAC programs that are most widely used are cognitively
based, then our practice and our thinking about writing will
follow suit. In that very important sense, computer-aided com-
position has the power to be a defining force in composition
studies.

Chapter 3

The "Who" and "How" of
CAC Software Development

To put it simply, much of my research was the gathering of
stories. I grew up in a family of construction workers, and I
have always loved the stories behind the building of edifices
houses, skyscrapers, dams, stone walls. My father was a stone-
mason, and he remembers all his wallsthe one where he
forgot an anchor stone and was called back, a year later, to pick
up the washed out section of wall and rebuild itthe one where
the customer was running out of money and insisted that my
father complete the job by using oversize stone in the backcourses
(my father still sees the bulges in the wall where those stones
shifted and marred the lovely field-stone front of his wall). In
each of those stories is a lesson about building stone walls, if
one cares to listen closely and learn. Computer programs are
edifices, tooedifices of the mind. This chapter describes the
"who" and "how" of their constructionthe builders and
methodsand in these stories, there is much to learn, too.

Each account illustrates an approach for the design and
development of CAC software. In that sense, the accounts
provide and illustrate development models, and while there is
certainly overlap between and exceptions to those suggested
models, my review of the literature, my discussions with CAC
specialists, and the interviews that form the heart of this study
show the accounts to be reasonably typical descriptions of the
primary approaches to current CAC software development. From
the analysis of the data, five areas of concern emerged for
structuring and illuminating the narrative accounts. They are as
follows, and in the accounts they share the titles listed below:

1. Getting Started/Origins and Models: Identifies the roots of

20

The "Who" and "How" of CAC Software Development 21

the development effort, the inception of the program: seeing
and reacting to other programs, attending a conference,
wanting to program an exercise, responding to a research
problem, or attempting to model certain writing behaviors.
This discussion also attempts to identify models of the
writing process or behavior, if any, on which the designer
based her programming effort.

2. Design and Development: Describes the people involved in
the development effort, how they worked together, and
the way the program was designed. For example, if the
project was a group effort, was responsibility divided up,
or was the collaboration less structured? Did the designer
also write the program code?

3. User Input and Program Revision: Examines the way user
feedback is utilized during the development and revision
stages of the development effort. This discussion also
examines the way revision of the program takes place.
Some of the issues covered include field testing, methods
of evaluation, types of user feedback, and impediments to
revision.

4. Funding: Examines the funding for the development effort.
This discussion includes such areas as the benefits of for-
profit software marketing, the role of defense-related fund-
ing, and the general lack of funding for some models of
software development.

5. Institutional Reward and Recognition: Examines the response
of academic institutions to the design efforts of faculty,
especially in terms of acknowledgment, release time, and
the treatment of CAC software in tenure and promotion
deliberations.

Woven into this fabric are the idiosyncratic details of individual
lives and the contexts that influenced the software. This chapter
also provides insight into the people who are creating CAC
programs. Each model description ends with a brief review of
its most important characteristics.

Taken as a group, the four principal models for software
development in this study offer a rich diversity of approaches

22 Writing Teachers Writing Software

and aims, a diversity not suggested by the scarcity of literature
devoted to the subject of academic software development. In
their general survey of institutional models for softwarr. ievel-
opment, Jack Chambers and Dorothy Ohl Lewis (1988) simply
divide those development projects into sole designer and team
design approaches (pp. 95-97). In fact, there is something like
a continuum that reflects finer and more important differences
between development approaches than a simple delineation
based on the number of participants involved.

At one end of the continuum is what I term the Lone Developer
Model. In this model, we find a writing teacher whose classroom
experience suggests a need for a certain kind of program that
does not seem available in the marketplace. With little access to
funding, the teacher adopts a practical approachshe uses
whatever equipment she has available to her and enlists the aid
of any willing volunteer. She most likely tries out the program
on her own students and makes changes based on what she
sees them doing with it. If the program gets complicated, perhaps
she hires a programmer. In terms of technical sophistication, the
program is modest. Yet, it fills a niche, finds its way into the
classroom immediately, and becomes, hopefully, a useful tool
for that part of the writing process which it addresses. That is
:he best reward the designer is likely to receive, for these are
the kinds of efforts that English departments prefer to lump in
with general class preparationwith the nitty gritty of pedagogy.
As such, little notice is likely to be taken of the program.

At the other end of the continuum is the Research-Based Design
Team, a group of CAC researchers and specialists from various
fields (education, psychology, possibly computer science) who
work on programs that advance research interests. They work
from highly defined and empirically based models of the writing
process, and their programs are structured around those models.
These programs are likely to make use of very sophisticated and
expensive technology, and they require a great deal of funding.
Thus, government agencies, defense-related concerns, and cor-
porate sponsors are often part of the funding picture for these
projects. Perhaps for that reason, or because of the competition
for limited funding, the individuals interviewed for this model
were reluctant to discuss exactly who is funding their work or

41

The 'Who" and "How" of CAC Software Development 23

the dollar amounts of their project budgets. It is clear, however,
that those funding sources c :cert some influence on the devel-
opment process and on the final program design. These are
programs that may not make their way into most classrooms
for many years, which is par for the course in this development
model, given that the primary aim of the work is research
oriented. It is their research focus that gives these projects their
value within the institution. This work, as long as it results in
publishable research, is viewed favorably in the reward structure
of the university. In this model, CAC design weighs favorably
in decisions about tenure and promotion.

Along the continuum, closer to the lone programmer end, we
find the Small Design Group Model. In this model, one finds a
small group of writing teachers, pooling their energies and
talents, to produce software. Like the lone programmer, they
are likely to base their program on their classroom experience
and their observation of students; yet their program is likely to
be more ambitious in its pedagogical goals and technical so-
phistication than those in the lone programmer model. The
developers usually pursue funding at the institutional level or
through lower-level grant programs (say $10,000 versus the
$450,000 figure that a researcher like John Smith uses as an
example of a project budget; J.B. Smith, 1989, interview). Much
of this funding will be used to hire programmers. The work of
these designers is likely to receive little reward or recognition
from their departments and institutions, even if the program
enjoys praise from others in the field.

Further along the continuum from the small design group is
another group of academics, but in this scenariothe Entrepre-
neurial Design Group Modelthe designers form a private com-
pany for the development and distribution of their software.
These designers see themselves as CAC specialists, and as sach,
they are likely to have more technical expertise than their peers
in the previous two models. For example, they are likely to do
their own programming and to see that task as more enjoyable
and valuable than do nonprogrammer-designers. Their combi-
nation of expertise, their power over their own work agenda,
and the profits they derive from the sale of their software allow
these designers more time for "playing" with program design

24 Writing Teachers Writing Software

and for revision of the program itself. Because their programming
efforts exist outside the university, issues of departmental reward
and recognition do not obtain.

Related to the entrepreneurial model and included in that
discussion as a sort of subset is the Professional Software Devel-
opment Model. In this model, software is developed for profit,
but the designers are not academics. While they may have
experience as teachers of writing, these designers are now full-
time software developers and therefore must be more sensitive
to the marketplace than the designers in the other models. That
marketplace is likely to include the classroom as only part of a
larger target group, usually the business sphere. Because they
design for a business market that, in general, possesses more
powerful hardware and larger pocketbooks than do writing
programs, they can design more technically sophisticated and
demanding programs than the developers who sell for the writing
classroom.

Each approach is illustrated and explored through the accounts
and comments of designers like Mimi Schwartz, Nancy Kaplan,
Taylor, and Smith. Their stories help define the approaches, yet
this is not to say that the experience of any one designer
encompasses the experience of. all other designers within the
model. There is no logical reason, for example, why a designer
in the lone programming model could not work with a more
formal design protocol than Schwartz did. Yet, the accounts
reveal a number of reasons why most designers in that model
would not. In that sense, in the exploration of why the stones
were placed in the way they were, if you will, the accounts are
both illustrative and representative of each model.

The development models address the first two of the five
areas of inquiry outlined in chapter 1: the who and how of
current program design. Through the stories of the designers,
one learns how CAC software tools are built, as well as the
fundamental relationship of that process to their final shape.
Before exploring the future direction of CAC software devel-
opment, we must take this first step and find out where we are
today.

The "Who" and "How" of CAC Software Development 25

The Lone Developer Model

This model for program development is closest to the one
John Kemeny and the developers of BASIC imagined in 1958, a
model in which classroom teachers would have the skills and
resources to create their own computer programs. James Strick-
land's 1981 program, FREE, is an example of such an effort in
CAC programming. Strickland was inspired by the model of
writing in Peter Elbow's Writing without Teachers (1973) and
knew that no CAC program existed which reflected the pedagogy
suggested in Elbow's book. Strickland wrote his freewriting
program in BASIC on an Apple microcomputer with 48k memory.

My research suggests that Strickland's example is now an
exception in the field of CAC development, for two important
reasons. One is the development of higher-level programming
languages which more easily meet the complex programming
demands of increasingly sophisticated CAC programs, but which
are often beyond the ken of classroom writing teachers. These
languages, such as Turbo Pascal, C, and a new generation of
object-oriented program languages such as C++, often mean
enlisting the aid of a hired programmer. BASIC has been rewritten
in an attempt to meet more sophisticated needs, but none of
the program developers I spoke with now uses BASIC. The
second reason, as just suggested, is the increasing sophistication
of CAC programs. When Strickland was asked for a copy of
FREE, he hesitated and expressed embarrassment at what he
called its "primitiveness" (Strickland, 1988, interview). He pointed
out that "any word processing program can now do what I was
trying to do with FREE." By way of contrast, a recently developed
program like Dan Burns's Thoughtline requires substantial com-
puter memory, processing speed, and hard drive space. Also, it
was written in LISP, a programming language designed for
artificial intelligence programs. Programs like Thought line require
not only more technological knowledge on the part of the
designer, but also a great deal more development time, as much
as three to four years (Selfe, 1989a, interview), as well as
technological resources. As Selfe argues, "These are beyond the

4.4

26 Writing Teachers Writing Software

reach of the everyday classroom teacher:' Mimi Schwartz's
experience in the development of Prewrite is perhaps a more
accurate representation of the "lone" programming model as it
exists today.

Mimi Schwartz is an associate professor and director of the
writing program at Stockton State College in New Jersey. Schwartz,
possessing the energy of her native New York City, engages in
a wide range of professional activities. She teaches a variety of
writing courses, has authored the texts Writing for Many Roles
(1985) and Writers' Craft, Teachers' Art (1991), a forthcoming
memoir entitled Swimming above the Black Line, a guide to writing
college entrance essays, and, at present, is completing a novel.
She seems to possess a natural inquisitiveness. As a result, the
impetus to create a software program was, for her, a mix of
curiosity, challenge, and a nose for the market niche. She recalls:

I guess the software program . . . I just sort of had an idea.
I've done a number of these kinds of things. I wrote a
booklet, How to Write Your College Application Essay, that
did very well. I'm still getting good royalties from that. So
I was thinking, the software thing intrigued me, so I decided
to see what I could do with that. (M. Schwartz, 1989,
interview)

The inspiration for the actual program, according to Schwartz,
came from seeing a presentation by Hugh Burns and from a
desire to humanize the prewriting programs then available. She
says:

I [wanted] to write a program that was very uncomputerese.
That was the challenge. I didn't like all the jargon that was
built into some of the early prewrite programs. (M. Schwartz,
ibid)

Schwartz set out to design a prewriting program that would
"get things out on the page, to look and see what's there that
looks interesting:'

She claims that the program was not based on a formal model
of the writing process; however, the structure of the program
corresponds closely with her later description of how she believes
writing takes place:

4 5

The "Who" and "How" of CAC Software Development 27

Writing is, well, the aim is to try to get a lot of stuff out,
to see what's there that looks interesting, and build from
that. The process of building is, well, you build and you
expand out, and then you come back, and it's much more
of a holistic process. (M. Schwartz, ibid)

Interestingly, the structure of the program follows three cycles
of expansion and compression which are similar to her descrip-
tion of the writing process quoted in the passage above. Following
is one such cycle from the program:

One way to find a topic is by freewriting. Just type in the
first five ideas that come to mind and don't think about
whether they're good or not. Try it! Okay. Are you interested
in writing about any of these ideas? (A "Yes" answer
produces "Which one?" A "No" answer sends you back to
freewriting or allows you to exit the program.)

Think about a working title for your piece (less than one
line).

When you've moved through this cycle from freewriting to title,
you begin the next cycle with another expansive question
"Why did you choose to write about 7 (Answer as fully
as you can)" and the cycle is repeated. Even though Schwartz
asserts that the program was not based on a formal model, the
"building out and coming back" she describes as taking place
in the writing process are indeed reflected in the structure of
Prewrite. It is interesting to note that Schwartz seemed at first
unaware that the structure of her program should so closely
parallel her own model of the writing process. She sees the
program as a more unstructured and creative way to "get over
the blank page;' yet an analysis of the program reveals it to be
highly structured, and her interview comments suggest that her
sense of the writing process acted as at least a subconscious
model in the design of the program.

The complexity of the programming effort dictated that
Schwartz, unlike Strickland before her, could not work alone.
Indeed, my research turned up very few examples of teachers
truly working alone in the development of a CAC program.
While Schwartz is solely responsible for the design of the

28 Writing Teachers Writing Software

program, she collaborated with a series of programmers to create
its actual working substantiation. Working with her high-school-
age son, Alan, who could program in BASIC, Schwartz developed
a prototype of Prewrite that she used in the computer writing
lab at Stockton State, receiving positive student response. Re-
alizing that developing a final version of the program was
beyond her son's abilities, she hired a programmer. Even though
Prewrite is a relatively unsophisticated program in terms of itF,

structureit is a straightforward prewriting heuristic that prompts
for user response, but does nothing with those responses beyond
printing themthe programmer whom Schwartz hired to rework
the prototype version, written in BASIC, rewrote the program
in a higher-level language.

While Schwartz did not explain, in her interview, why the
programmer used a higher-level language, there are a number
of rationales for doing so. Such a rewrite may have offered the
programmer more modularized code, making subsequent revi-
sions easier. He may have rt written the code to make it more
economical in size, reducing i s memory requirements and mak-
ing it attractive to more of the "low-end" users, those with less
powerful machines. One of the positive results of rewriting
Prewrite was that the program could then allow teacher-users
to customize and monitor the program itself.

The difference between Strickland's experience, doing his own
programming, and Schwartz's, working with a programmer,
might seem rather insignificant, but in fact, the collaboration of
program designer and programmer is one that can directly affect
the final design of the program and even compromise the
designer's original aims. Schwartz recalls working with her
programmer:

I put an ad in the paper for a programmer. I was looking
for someone who was not into computerese, so I hired
someone who was a programmer, but had a Ph.D. in
psychology. I figured he would be humanistic. Which was
wrong. The battle was always that I kept on saying I wanted
it [Prewrite) to be a program that people who knew nothing
about computers could use. And programmers just don't
think that way. His problem with me was that I had
absolutely no idea how programming worked, so I had no

41

The "Who" and "How" of CAC Software Development 29

idea what things were easy for him to do and what things
were hard. (M. Schwartz, ibid)

For example, Schwartz remembers her negotiations with the
programmer over the initial user sign-on. In keeping with her
desire for a more humane voice in the program, she wanted the
program to say, "Hi! What's your name?" The programmer
needed to have the full name with a verification (i.e., "Your
name is John Doe. Is that correct? [Y /N "J). His argument was
that, without verification, the user might have a typo in her
name and would be unable to recall her file in future work
sessions. In addition, according to Schwartz, the programmer
saw the language of the verification request as appropriate for
the discourse of computers: "He couldn't see that this discourse
wasn't appealing to people who didn't buy into it," she asserts.
Schwartz's argument had to do with her theory of writing:

In my writing process . . . the thing that I realized is that
all ny writing begins with a voice. So that if I can't get the
voice right, I can't write it. So, that initial confrontations
over the opening screens were very important to me, because
I couldn't see the rest of it coming out. (M. Schwartz, ibid)

The final result was a compromise in Prewrite's opening, with
the humane voice Schwartz demanded, followed by a slightly
more computerized voice asking for the verification the pro-
grammer needed:

Hi! What's your full name?
Your name is Is this correct? (Y/N)

The program then goes on to address the user by his or her first
name. A sense of disjointedness seems to result from the
informality of the enthusiastic "Hi!" followed by the formality
of a request for a full name which is then repeated back to the
user. The verification could have taken place during a later save
function and not impinged upon the opening of the program.
This is a case where the designer's aims were needlessly com-
promised by a programmer's strict adherence to what he felt
was good programming practice, putting his criteria for the
program ahead of the designer's.

-1 5

30 Writing Teachers Writing Software

Recalling her work with a hired programmer during the
development of Wordswork (formerly Wordsworth II), Cynthia
Selfe echoes Schwartz's experience. Like Schwartz, she had to
negotiate with her programmer:

I finally said, "Hey, look! You're making the technology
constrain the writer. You have to settle for some of these
things [design characteristics the programmer disagreed
with):' It was a p-ocess of negotiation. So it was really
frustrating when we were in it, but in retrospect, it was
almost funny. I know that we learned things through the
experience of coding. (Selfe, 1989a, interview)

The gap between a designer's original vision of a program and
its final shape may be unnecessarily widened when the designer
lacks programming experience. As Helen Schwartz, creator of
the award-winning CAC program SEEN, says of her experience
with a hired programmer, "I was not in a position to evaluate
his work. For example, choosing what language to program in.
I had no way of knowing if that decision was correct or not"
(H. Schwartz, 1992, interview). This situation leaves a great deal
of power in the hands of the non-content expert collaborator.
Selfe agrees, and she suggests that designers should know at
least some programming, even if they are not going to write
their own code. Having had some PASCAL, she recalls, "I was
at least able, when the programmer had a failing of imagination,
to say, 'Yes, you can do it!' But I was not able to direct or
guide" (Selfe,, 1989a, interview). Her sentiments were echoed
by many of the program developers I interviewed; but even
Helen Schwartz, who had a good working knowledge of BASIC,

finally concluded about working with hired programmers: "I
never want to do it again."

Fred Kemp argues for a return to program designers who also
write their own code. He believes that the act of actually writing
the code for a program generates new ideas for the design of
that program and allows for quick and easy revisions:

There is something in the actual process of writing the
program that acts as an invention heuristic itself. It generates
ideas, it generates paths for you to take, which when filtered
through your professional training in composition and rhet-

4 ;9

The "Who" and "How" of CAC Software Development 31

oric, can generate new ways of handling a program that a
nonprogrammer just wouldn't discover. (Kemp, 1989, in-
terview)

The combination of programming expertise and the classroom
teacher's immediate access to classroom use and observation
quickens the design-revision cycle. As Kemp notes:

The second thing is that the teacher-programmer can observe
the programs in action, and when something happens in
the program, whether it's an interface screen situation or
some part of the central mechanism of the program, the
teacher is sitting there evaluating it in terms of pedagogy
and instructional approach . .. When I see things happen
on the screen, in my mind I'm thinking "program lines;'
and this, I think, is important. (Kemp, ibid)

Without having to negotiate program revisions or having to
follow more structured design protocols, the teacher-programmer
can substantially reduce the time lag between user input and
revision: "The next class comes in and you've already dumped
the programthe revisionin" (Kemp, ibid).

Unfortunately, the faculty member who decides to design and
develop a CAC program will most likely work with a program-
mer-collaborator, despite the limitations of such an approach.
The complexity of higher-level programming languages and the
time it takes to become expert in their use make the training
time prohibitive for practicing classroom teachers or imposing
to newcomers. The demands of writing, compiling, and debug-
ging thousands of lines of complicated program code are likely
to keep the number of practitioner-programmers small.

On the other hand, new hypertext and hypermedia authoring
systems like HyperCard and ToolBook, which are based on object-
oriented programming languages, allow even nonprogrammers
to create highly sophisticated software programs. These programs
have the potential to revive the lone faculty-developed software
program, at least from a technical perspective (see chapter 4).

Schwartz completed a "rough" version of Prewrite and made
changes in the program on the basis of user response, specifically
the input of high school teachers who were using the program

32 Writing Teachers Writing Software

in their writing courses. That input, combined with the informal
observation of her own students in the Stockton State computer
writing lab, led to the removal of a number of the program's
audience-based questions. Schwartz did no formal testing of the
program. This use of user input and informal observation for
program revisions was the common method of testing programs
in three of the four design models suggested by my research.
Only the large design teams, following highly structured devel-
opment protocols, did formal testing of programs during the
development process; the other subjects cited a lack of necessary
staff and funding.

Soon after completing Prewrite, Schwartz entered into dis-
cussions with CONDUIT, the software marketing consortium.
They requested a number of revisions in the program that
included new functions and would require substantial amounts
of programming. Schwartz broke off those discussions, refusing
to conduct such a complete reworking of the program. She
comments, "It's not like someone asking you to rewrite a piece
of writing. For that, you can sit down and do it. With software,
you need to find a programmer and begin the process again.
It's a much bigger . . . it's a different psychological thing" (H.
Schwartz, 1992, interview). Later, when her eventual software
publisher, MindScape, saw a potential elementary school market
for Prewrite, Schwartz did revise the program. In this case,
revising the software meant merely changing and decreasing
the number of prompts. The former activity was built into the
original program and required no real reprogramming.

Schwartz received no outside funding for the development
of Prewrite. She paid her son two hundred dollars for his
programming work in the development of the prototype; the
informal sales of the prototype paid for the programmer she
eventually hired to write the final version of the program. Since
the program was written on an Apple and was designed for the
Apple microcomputers in her computer lab, the hardware re-
sources Schwartz needed were readily available. In terms of
funding and resources, this model for program development
falls at the least expensive end of the design and development
continuum, the sphere characterized by the least amount of
institutional support and recognition for such efforts. Aside from

The "Who" and "How" of CAC Software ven.dopment 33

watching her students use the program in the lab, all the
development was done off campus, without the aid of college
computing resources. While she enjoyed recognition for her
instrumental role in acquiring the first computer writing lab in
New Jersey, she received no formal recognition for her software
work from either her department or her college.

However, Schwartz would not overemphasize the value of the
program or even of computers in general. Of all those interviewed,
she was the least enthusiastic about technology and the least
willing to acknowledge its deeper noetic implications:

It's a useful tool . . . There are certain people that definitely,
you know, people who have spelling, handwriting problems,
writer's blockI will push them more toward the computer.
It's like a good typewriter; it's a good tool. I'm not hooked
on it as anything more than a convenient technology. (H.
Schwartz, 1992, interview)

Indeed, Schwartz would have done no more work in software
development regardless of institutional reward: "I think it can
help people, and there are certain people it can help a lot, but
I don't think it's worth the extra pedagogy to do this." In this
sense only, Schwartz's experience is not typical of other single-
person program designers. While most others using this approach
attempted no more in the way of new program design, they all
remained committed to using technology and convinced of its
significant impact on composition theory and pedagogy.

What can be termed the defining characteristics of the lone
program developer model? First, the effort is seldom, if rarely,
the work of a single practitioner/programmer. It is more likely
to be a partnership between an expert, usually the writing
teacher who is also a computer enthusiast, and a programmer.
This collaboration seems to require lengthy negotiation and may
ultimately constrain some of the creativity in design concepts.
Program development in this model is informal. The idea for
the program is likely to come out of classroom practices and
needs, perhaps the desire to computerize a favorite pedagogy,
as in the case of Strickland's FREE and Schwartz's Prewrite.
Revisions of the program are more likely to be based on user
feedback and informal observation of its use than formal site

r.- ,-
, ' 4.

34 Writing Teachers Writing Software

testing. In part, this may be a result of the inadequate funding
these efforts are likely to receive, as well as the general informality
of the development model. Because these programs are designed
for existing classroom technology (for example, microcomputers
like the Apple lie, instead of expensive Sun terminals common
to engineering departments) technological resources tend to be
readily available. The expense of a programmer, a relatively
modest onr: ,iven the type of programs developed in this model,
is the greatest cost in the development effort. My research
suggests that there is little institutional support for these kinds
of programming efforts.

The Small Design Group Model

Moving up the continuum, the next model suggested by my
research is what might be termed the small design group. The
small design group is usually a collaboration between two or
three practitioners and often a hired programmer, though one
of the designers may also know some programming. There are
numerous examples of such small design group programs: Valerie
Arms and Jim Gibson's Create/Recreate, Ray and Dawn Rod-
rigues's Creative Problem-Solving, Donald Ross and Robert Rasche's
Eyeball, Helen Schwartz and Louis Nachman's Organize, and
Cynthia Selfe and Billie Wahlstrom's Wordswork. Of the programs
included in this study, the development of Prose is a good
example of this design model. It was the creation of Nancy
Kaplan, Stuart Davis, and Joseph Martin, all lecturers in the
writing program at Cornell University at the time of the program's
creation.

The design and development of Prose, a program designed to
facilitate instructor feedback on student texts, followed a much
more formal track than did Prewrite. The original idea developed
out of classroom practice, specifically the observation of instructor
feedback on student texts and a desire to improve the quality
of that feedback. Kaplan recalls:

Part of my interest in the project, to begin with, was not
so much how it was going to have an immediate impact

r
..)

The "Who" and "How" of CAC Software Development 35

on students' writing behavior or their sense of their own
autonomy and authority over their texts, because I've always
known that instructors are far too intrusive in their students'
work and that students are far too docile in that pro-
cess . . . In my particular position, you see all kind ; of horrors
whe: you mark student papers; and it [the program] seems
like a waya fairly nonthreatening wayof handing in-
structors a new mechanism for doing their work that will
encourage them to think about that work in new and
different ways. (N. Kaplan, 1989, interview)

To effect such an impact on instructors, the design team envi-
sioned a hypertextual program that would allow nonsequential
creation of instructor comments through flagging and window-
ing, as well as layered handbook and workbook screens for
mechanical errors.

The program has a twofold goal. It offers instructors mech-
anisms for giving useful feedback on student papersmodeling,
in effect, the designers' sense of what feedback should look like.
The way that feedback is presented to students offers them an
alternative model of revision from the one the designers believed
they saw in the classroom. Kaplan describes students' poor
revision behavior:

What I used to see, or thought I used to see, was a student
who looked at the piece of paper on which his text and my
responses were written, and who then went to whatever
was closest to the top and made a change, and then moved
on and worked from the top down, word by word. You
saw a lot of tinkering at the word and phrase levels, and
almost no conception of revision in any domain other than
the word or phrase. (N. Kaplan, ibid)

The model that underlies Prose provides a global view of the
text, first, and a prescribed order of revisions that may only
address word- and phrase-level changes, last. Kaplan describes
this model in terms of the program:

To us it seems really important that the summary comment
[the overall commentary that instructors typically append
to the end of a student essay] actually sort of lay out the
whole project [the revision of the student paper] as we
envision it. But I also use the work-order feature to help

36 Writing Teachers Writing Software

students get a sense of the priorities, partly by making a
very dear distinction for my students between comments
and "please revise" remarks, and occasionally by setting a
work order to first take a student some place other than
the head of the document. (N. Kaplan, ibid)

The design of Prose is built on this model, which the designers
hoped students would adopt as a more effective approach to
revision.

A program of this sophistication requires a great deal of
programming and revision, which requires funding. Therefore,
before the development of the program could proceed very far,
the group was faced with writing a funding proposal. A funding
proposal requires, early on, a clear articulation of design goals.
If the design of a program can be likened to the creation of
written text, then these "writers" had to consider audience
(members of the grant committee) needs early in the design
process; they could not proceed very far into the development
of the program by just "playing" with the design, at least in its
broad parameters and stated goals.

Once the proposal for Prose was accepted, the development
process started in earnest. The collaboration of Kaplan, Mntin,
and Davis was unstructured; that is, each member had input
into all the important design decisions, and the group worked
toward some form of consensus. Kaplan says:

We worked pretty well together. Yes, I would have to say
that, overall, it was smooth, and we did a lot of talking
through of the design issues. I mean, we always talked
about this stuff anyway, so in a sense, the collaboration
wasn't new But there were some difficult momentsac-
tually, some really bad moments. But those usually occurred
when we were feeling some deadline pressure, some pres-
sure to produce. Then things got pretty heated; for example,
when we were trying to finish up the documentation before
sending the program off to Kinko's. (N. Kaplan, ibid)

While Kaplan characterizes the collaboration as "smooth," her
interview response suggests the difficulties that can come with
collaboration among equals. Helen Schwartz speaks to this issue
in recalling her collaboration with Jack Nachman, Organize: "It's
a problem. We were two colleagues working together, so I

r'7

The "Who" and "How" of CAC Software Development 37

couldn't prod him, and he couldn't prod me. If you have unequal
passion for a project, it's a problem" (H. Schwartz, 1992,
interview). Kaplan said about the Prose project, "We don't talk
about it anymore. We're still friends and we want to keep it
that way!" (N. Kaplan, ibid)

For most writing teachers who want to create software, the
development effort takes place outside of their salaried institu-
tional work. The long hours and necessary meetings must then
impinge upon their personal lives, and that can create stress
both within the group and within their individual spheres:

I'm a single parent, but neither of my two collaborators
have any children. So, there were times when we were
working on something, and I just had to up and leave
because I had to pick up kids from daycare, or just go home
and cook a meal, or whatever it might have been. (N.
Kaplan, 199 lb, interview)

While much collaboration within the group took place around
the coffeepot in the writing workshop conference room, or in
the suite of offices the three colleagues shared, there were also
many 10 p.m. meetings after Kaplan's four- and seven-year-old
daughters, Erica and Eva, were tucked into bed. She remembers,
"Oh, 10 p.m. to 2 a.m. were prime-time Prose work hours." The
two children, who once earned a dollar an hour to repeat the
same combination of keystrokes on the computer until a hard-
to-track-down bug occurred, expressed considerable resentment
at the time Kaplan had to spend working on Prose. Kaplan now
suggests that software development, when it takes place outside
of professional duties, is almost impossible for anyone acting as
a primary parent.

While the development effort was informal, by the later stages
of the project, the individual strengths of the group members
emerged. Each of the designers started taking responsibility for
specific areas of the work:

I did most of the program debugging, mostly because I had
more patience, and I turned out to be better at it. So I did
most of the negotiating with the programmers. Meanwhile,
someone else would take over writing the documentation.
(N. Kaplan, 1989, interview)

C

38 Writing Teachers Writing Software

Because none of the three designers was an expert programmer,
the group hired five student programmers during the course of
the program's development and wrote none of the actual code
themselves. But because the designers had some programming
experience, when they had to negotiate design decisions with
their programmers, they could do so with a sense of what was
possible and reasonable, similar to the experience Selfe described
earlier. Kaplan argues that hiring a programmer may mean losing
the heuristic value of writing code, but this gives the designers
substantially more time to work on other project concerns, such
as writing documentation, negotiating with distributors, revising
the program, and so forth (N. Kaplan, ibid).

As in the case of Prewrite, the primary mechanism for eval-
uating the program's design was informal observation of students
who were using the program. For example, Kaplan observed
many students who used Prose to read their instructor's revision
comments, but who then moved to another word processor to
actually rewrite the document. Moving out of the program often
meant circumventing the guided revision effected by the instruc-
tor through the program's "work order" function. (This function
forces students to make textual changes in a prescribed order.)
Kaplan blames this phenomenonof students leaving the pro-
gram to make their actual revisionson a technical constraint
which the developers had to ccept:

Well, part of the reason for that is one of the disabilities of
Proseand it's something we are absolutely, at least for
now, stuck withnamely, that you can't do face and font
changes, that you lose a lot of formatting. In a well-designed
computer environment, that wouldn't be . . . Now when we
started this project, Apple kept promising a different core
editor. The editor we're using comes supplied with the
machine, so to speak. And it's pretty goodby IBM stan-
dards it's a "wowser"but it's not good enough, because
we're spoiled by face and font changes, and ruler changes,
and other things. And they kept promising us that they
were going to replace the thing at the heart of it, which is
called "text edit," with something else called "core edit,"
which would allow us what is called a "rich-text format"
But it never happened, and they abandoned it. So we were
pretty well stuck with what we had. (N. Kaplan, ibid)

The "Who" and "How" of CAC Software Development 39

This is a good example of the way a technological limitation
can impair program design and encourage some users to ignore
one of a program's central functions. Kaplan believes the work-
order function effectively forces the student to follow and thus
learn effective revision strategies. Kaplan's conclusionthat the
program's poor editor is driving the switch from Prose to another
word processor during the actual revisionsreveals the way a
technological factor can have a very real impact on program
design and effectiveness.

While there was little the designers could do to rectify the
problem, other problems they observed were addressed during
program revisions. Throughout the program's three versions,
revisions in design were often substantial, with a major overhaul
of the file structure occurring between the second and third
versions. The goal of these revisions was to give instructors and
students more flexibility in the program, allowing students, for
example, a "skip" function that allows them to skip over an
instructor's "Please Revise" and "Comments" messages. As in
the case of Prewrite, the revisions were largely based on user
feedback and the informal observation of student users in the
university writing program. As far as evaluating the program's
success in meeting its main design goals, no formal testing was
performed:

Nobody's had the time to actually look at how instructors
use it and whether their practiceusing this kind of tool
to respond to student gradingdiffers from their practice
when they're using other tools, other ways of representing
their work. (N. Kaplan, ibid)

In fact, not only has testing not occurred, but there are no
current plans for future revisions to the program. Pre e is now
in the hands of McGraw-Hill, who is marketing it, but who has
not implemented any program revisions.

A lack of formal funding is the primary reason for the lack
of formal field testing and revision that the program now needs.
The proposal for Prose was one of three computer project
proposals the group submitted to Cornell University's College
of Arts and Sciences and the one which was selected for funding.
Additional funding came from an anonymous donor, from the

r

40 Writing Teachers Writing Software

Cornell writing program, and from Apple Computer, Inc. While
the program was funded, it was, for a program of this complexity,
only adequately so. Kaplan points out: "We [received] from the
institution a total of about $10,000 over three years,
which . . . hardly [constitutes] massive support for a project of
this sort" (N. Kaplan, ibid).

While the funding saw the designers through the three-year
development period and its three successive versions of the
program, the designers had to compromise the design of the
program, due largely to a lack of additional funding. To illustrate,
Kaplan explains that in the original design, the preprogrammed
examples could be changed by any given instructor:

That was something which we had designed to be flexible
when we first wrote the design script for it. We weren't
sophisticated enough at that stage to know that you were
supposed to write out specifications for [quadrules] and
things. So we actually wrote it out, but with the time and
money available, it just didn't happen. (N. Kaplan, ibid)

The implication of that limitation for the program, according to
Kaplan, is that the examples become stale for the student users
and might not translate well into other learning environments
at Cornell (N. Kaplan, ibid). However, the project budget simply
did not allow for changes to the program's examples.

Kaplan explains that the group's reluctance to do any further
work with Prose stems not only from the rigors of the task ("It's
really the hardest work I've ever done"), but largely from the
lack of institutional support from Cornell. She points to the
meager funding for the project, and to the university's lack of
interest in the group's work. In terms of the encouragement the
group did receive, the following excerpt is illuminating:

Kaplan: Occasionally, someone said a nice word or two.
LeBlanc: How about in terms of recognition since then?
Kaplan: None. No release time. The three of us did this in

addition to our full-time jobs [as lecturers in the writing
program]. The only thing we got formally from the
university was acknowledgment that the thing itself
[Prose] belonged to us, so that if we could market it, we'd
get the money. There's been an award [1987 NCRIPTAL/

The "Who" and "How" of CAC Software Development 41

EDUCOM Distinguished Software Award]. That wasn't
even announced ... frankly, the writing program has
invested very little in computer-aided instruction. It has
no demonstrable interest. (N. Kaplan, ibid)

It is interesting to note that even the Writing Project, which
operates separately from Cornell's English department, failed to
appreciate the importance of the group's work. That recognition
has come from elsewhere, most notably in the NCRIPTAL/
EDUCOM award the program earned in 1987.

To review, the small group model of CAC program develop-
ment is a common one, accounting for 35 percent of the programs
listed in Ellen McDaniel's 1987 bibliography of CAC software.
The groups normally include two to four designers, usually
working with one or more programmers. The cost of program-
ming normally demands the pursuit of outside funding, often
through the home institution, as in the case of Prose. While
inspiration for such programs might come from the classroom-
based experience of the practitioner-designers, the requisites of
proposal writing and group collaboration demand a highly
articulated set of goals early in the development process, allowing
for less of the "play" described by program developers in two
of the four models under study.

Because the program designers are writing teachers, first, and
program designers, second, the development of a program,
despite its rigors, must take place after the demands of a full
teaching schedule. Indeed, 60 percent of the faculty program
developers responding to EDUCOM's Academic Software De-
velopment Survey cite the lack of release time as the greatest
barrier to program development (Keane & Gaither, 1988, p. 56).
Mirroring

members
experience, Keane and Gaither report that

"faculty members expending considerable effort were not sure
that administrators appreciated the importance of their work in
software development" (p. 56).

This lack of support, both in terms of time and money, has
design implications for this development model. It might mean
not being able to make improvements in program design, or it
might mean a lack of formal testing. In the case of Prose, it
certainly means that desired improvements will not be made

C I
1 , 1

42 Writing Teachers Writing Software

and that the pedagogical effectiveness of the program may be
impaired.

The Entrepreneurial Design Group

"Entrepreneurial design," a term used by Chambers and Lewis
to describe the efforts of the single faculty programmer, is an
increasingly rare approach to software design. It is used here,
more aptly, to describe program design teams that operate as
private, profit-making companies. The Daedalus Group, producer
of both Mindwriter and Interchange, is one such company, highly
respected by those in the CAC field, and useful for illustrating
this approach to software development. Paul Taylor, Locke Carter,
Wayne Butler, and Fred Kemp are members of this group. Hugh
Burns and Jim Par lett both act in an advisory capacity to the
group, with the former holding the title of chairman of the
board.

Interchange is a real-time conversation program designed for
use on a standard file-transfer microcomputer network to create
on-line classroom discussion. Unlike asynchronous systems such
as bulletin boards or electronic mail, Interchange allows a group
of users to be on-line at the same time and to converse on
screen while displaying everyone's contributions. The program
has five main components:

1. The individual student writes on a "scratch pad;' and when
ready, can send the comment into the main display window
on the screen of every participant signed-on to the con-
ference.

2. Comments appear on the main window as they arrive in
chronological order, and the screen scrolls to make room
for new incoming comments. Students can move through
the text to reread what has been sent. In the latest version
of the program, a hypertext component has been added
which allows students the option of placing their new
comments anywhere in the ongoing discussion, allowing
for the elaboration of dialogues within the framework of
the overall conversation.

6 i

The "Who" and "How" of CAC Software Development 43

3. Users can break off from the main conference and create
subconferences to pursue new topics or lines of conver-
sation.

4. The program has a split-screen capability that allows a
conversation to take place in one window while the text
under discussion appears on another.

5. The program can provide a hard-copy transcript of the
conversation at the close of the session.

The hypertextual component of the software allows strings of
responses to be reconstructed from the overall conversation.
Participants might, for example, ask for all the responses that
included a given word or phrase.

The program was developed in the windowless basement
offices of the English department's Computer Research Lab at
the University of Texas at Austin. On one side of the hall leading
to the lab was a networked classroom of IBM PCs, and on the
other side was the lab office, a messy and disorganized place
full of computers in various states of repair, piles of programming
manuals, errant floppy disks, and the constant flicker of computer
screensin short, a computer hacker's playground. Yet the
hackers in this case were not computer scientists or engineering
students. They were a group of English graduate students who,
in 1984, took over the then new facility because no regular
English faculty member knew what to do with it. In little time,
this group of graduate students and self-taught programmers
began to produce high-quality software that would eventually
be integrated into something called the Daedalus Instructional
System, which would win a 1990 NCRIPTAL/EDUCOM Award
for Outstanding Software.

The leader of that group was Fred Kemp, now an assistant
professor of English at Texas Tech University. In 1984, after
years of teaching in the secondary schools, he went to the
University of Texas to complete a doctorate in literary studies.
In the summer of 1983, Kemp and his wife had sold their house,
preparing to move to Austin and begin his studies. With part
of the proceeds from the sale of their home, he purchased a
TRS Model 4. With little to do that summer, Kemp taught himself

44 Writing Teachers Writing Software

how to program in BASIC. During his second semester in the
program, Kemp heard that two faculty members had received
a grant for new IBM computers but had then accepted teaching
positions elsewhere. With no one capable of assembling the
soon-to-arrive computers, Kemp volunteered, and Jerome Bump,
then head of the English department and responsible adminis-
tratively for the facility, promptly named Kempwho had never
used an IBMassistant director of the lab.

Kemp readily admits that his initial interest had more to do
with idle curiosity than vision:

Jerry didn't know anything about computers, and he kind
of wanted to play with them. That was my motivationto
play. None of us really expected much to come out of this;
we were just trying to see what we could come up with.
Jerry, because he was interested in the computers, encour-
aged that exploration. (Kemp, 1991, interview)

Kemp soon saw the pedagogical potential of the computers, and
though he received little initial support for his ideas ("Even Jerry
said I was a little crazy at first," he notes), Kemp had one very
important predecessor at the university, someone whose work
would prove influential and supportive. Hugh Burns, an Air
Force officer who completed a doctorate in education at the
university some five years before, had used as a germinal part
of his dissertation research a computer-based invention program
based on Aristotle's topoi, Burke's pentad, and the tagmemics
of Young, Becker, and Pike. James Kinneavy, one of Kemp's
professors and a member of Burns's original dissertation com-
mittee, alerted Kemp to Burns's work. Kemp remembers:

I got that dissertation and started looking at it, and it was
the first time I realized that anything that small had ever
been done about computers. That was in the summer of
1984, and I decided then that we could take Hugh's pro-
gramsTOPOI and TAGIoff the mainframe and put them
onto a PC and run a study on them. (Kemp, ibid)

Bump gave the project validity by dubbing it "Project Invention
Heuristics" and left Kemp to program all day. Kemp was unhappy
with the work of the computer science students who were hired

P. 3

The "Who" and "How" of CAC Software Development 45

to assist him, so he spent hours by himself, working with his
self-taught skills in BASIC, to make the original memory-inten-
sive program operate on a simple PC.

His efforts culminated in the event that moved him away for
good from literary studies and into computer-based rhetoric: his
delivery of a paper at the 1986 Conference on College Com-
position and Communication. Actually, Bump had written a
paper on his and Kemp's initial studies with the program they
had entitled Idea log (later to become Mindwriter), but he was
unable to attend the conference and asked Kemp to deliver the
paper instead. Kemp is a big man physically. He is known to
speak up and at length on the subject of computers and writing;
yet, this was his first paper and he was, in his own words,
"terrified." Adding to his state of anxiety was the fear that Burns
might be in the audience and might object to some of the
criticisms Kemp had of Burns's original program. He recalls that
presentation:

This was the first session at the 4Cs, and everybody kept
telling me, "You'll be lucky to get five people." We had
about 120 in there. People were standing along the back
wall and outside into the hall, and I was scared to death.
You couldn't miss this tall guy in the back of the room in
a blue Air Force uniform. My wife Jan, the night before,
found the 4Cs' letter and the part where they said they
don't like papers read. So I had stayed up all night mem-
orizing the thing When I delivered the paper, it ap-
peared that all these beautiful sentences were coming off
the top of my head without my ever looking at the pages.
It went very well, and afterwards Hugh came up and really
congratulated me. We talked for about thirty minutes, and
he offered to be on my committee, and at that pointif
we are going to talk about an epiphanyI realized this was
important stuff, and I could participate as a colleague in
this venture. (Kemp, 1989, interview)

Kemp was the right person to undergo this conversion, for his
personality and expertise helped draw other talented graduate
students to the lab; not long after his CCCC paper, Paul Taylor,
Wayne Butler, and Locke Carter joined the staff.

The formation of that original group was more propinquity
than process. At a regional conference in Corpus Christi, Kemp

46 Writing Teachers Writing Software

and Taylor ran into other University of Texas graduate students,
including Butler and Valerie Balister. The latter pair had been
doing research and presenting papers on social constructivist
theory, and at dinner, as Butler puts it, "theory met computers"
(Butler, 1991, interview). Butler recalls:

It was kind of funny. The Computer Research Lab at that
time had Fred and Paul and thirty or forty computersand
no students. It was at that dinner that we said, "Well, let's
see if we can turn it [the Computer Research Lab] into a
classroom!" The next summer we started bringing students
over. It wasn't an official thingstudents didn't know the
course was computer assisted when they signed up for it.
We just sort of embarked on our own initiatives to do this
team-teaching, collaborative learning, 'n the network's class-
room environment. (Butler, ibid)

The strong connection between theory and software design,
begun at a happenstance dinner, continues to characterize the
development efforts of the group. In the case of Interchange,
Butler's work in social constructivist theory would play a key
role in the development of the program.

Paul Taylor is actually the principal developer of Interchange,
though as typical of development in the Daedalus Group, many
of its members would influence the final shape of the program.
Taylor, recently hired as an assistant professor of English at
Texzs A&M University, is in many ways Kemp's opposite. Where
Kemp is large and friendly, Taylor is almost ascetic in appearance;
where Kemp is familiar and outgoing, Taylor is rather shy and
softspoken; and where Kemp enjoys all levels of the Daedalus
Group's work, the design, the marketing, the research and
conference papers, Taylor's first love is the solitude and exactitude
of writing program code. Indeed, in the last pursuit he is probably
the best programmer of the group. For example, the inspiration
for Interchange came from an academic conference, the 1987
Conference on College Composition and Communication, where
Fred Kemp saw a demonstration of a rudimentary real:time
conversation program designed by Trent Batson at Gallaudet
University. Kemp returned to Austin and described what he saw;
Taylor made it happen.

At the time, the Daedalus Group had not formally come into

The "Who" and "How" of CAC Software Development 47

being, though all its future members were working together in
the research lab. Taylor recalls:

Fred came back [from the conference] and started talking
to the staff members in the lab, primarily Locke Carter and
myself, about the possibility of our writing such a pro-
gram ... We tossed the idea around for a month or two,
and together we actually worked out some of the technical
problems, as well as some of the enhancements that we
felt were important for the program to actually be useful.
And then, after we had kicked that around for a month or
two, I actually sat down and wrote the program. (Taylor,
1989a, interview)

Like Kemp, Taylor was a self-taught programmer, learning BASIC
on a Texas Instruments PC he had bought in 1984. He and
Locke Carter spent the better part of a day talking through some
of the large technical obstacles in writing the program. Indeed,
they talked so long that Taylor became hoarse and had to take
the next two days off, too sick to teach or to attend class. It was
a fortuitous illness. When he returned to the lab two days later,
he came carrying the largely completed program code for Inter-
change (the program was then known as Forum but would be
renamed later).

Unlike the programs from Kaplan's group, Daedalus Group
programs are developed first by a principal designer, who then
calls upon other group members for input, which he can draw
upon as the need arises. For example, Taylor gives Kemp credit
for introducing the idea and elaborating on Batson's design, and
he cites Carter's technical expertise and working through of
major design questions. He admits that he wrote the program
without any formal knowledge of social- epistemic theory:

That [social-epistemic theory] was all new to me
then .. . That's why it's so important to emphasize that this
has been a collaborative effort, because others in the lab
who were talking about this were familiar with the social
epistemic. Fred certainly was, and another one was Wayne
Butler, who was around the lab at this time. (Taylor, ibid)

Instead, Taylor, who others in the group describe as a program-
mer-perfectionist, admits he wrote the program for the "fun"

F'

48 Writing Teachers Writing Software

of overcoming the technical challenges: "I enjoy programming,
and I enjoy problem solving." He admits that he did not see
much use for the program and credits Kemp with the vision of
its classroom value. Kemp, on the other hand, gives Taylor credit
for being able to handle the tough programming problems posed
by Interchange's design: "He's a much more meticulous pro-
grammer and much more thoughtfulI'm a very slapdash,
hacker-type programmer" (Kemp, 1989, interview).

All of those involved in the Daedalus Group stress the
importance of programming knowledge and collaboration. Be-
cause each person involved in the development of the Daedalus
Instructional System could program in PASCAL, with its easily
transportable blocks of code, each could contribute to parts of
an individual program. Kemp explains:

PASCAL allows you to take twenty-five or thirty lines of
code and dump them right into a program in a way that
you can't in BASIC. So, we can use the same editor with
Mindwrite7; Interchange, and Descant, and in every other
aspect of the larger system. Being able to work together in
PASCAL encouraged a whole group of things that we were
able to do, which I wasn't able to do working for a whole
year and half by myself. When those guys came on board
and we started using PASCAL, the production in that lab
increased twentyfold. (Kemp, 1991, interview)

Part of that productivity came from a hacker-like sense of play
that characterized the group. Taylor says, "We just jumped in
and tried things out. By programming, we could see possibilities.
We'd write the program, put it in the classroom to try it out,
and go from there" (Taylor, 1989b, interview).

The informal collaboration of the Daedalus developers is
similar to that in the small-group design work of Kaplan and
her colleagues; yet the lack of outside deadlines, the fact that
overall design goals do not have to be so clearly articulated at
any early stage (as they must be in grant-funded programs such
as Prose), and the programming expertise of all group members
give this development model an air of high creativity. It seems
that ideas can "cook" longer in this model, and the program's
shape can evolve more gradually. In the case of Interchange, an

;

tiZ

The "Who" and "How" of CAC Software Development 49

idea comes from an academic conference and is discussed over
time by a groyp of people who are trained both in composition
and programming. Each member of the group contributes in
different ways: Kemp with the inspiration for the idea and his
pushing for its completion, Butler with his theoretical back-
ground, Carter with his technical expertise, and Taylor as the
principal writer of the actual program. Because the Computer
Research Lab included a microcomputer network, the developers
could test the program and subsequent changes through actual
classroom use. Butler recalls, "We'd come back from class and
say, 'We need a larger window here' or 'It needs to be quicker
this way; and then we'd make the changes and try it out again
the next day" (Butler, 1991, interview).

The prototype of Interchange was completed in 1987, using
Computer Research Lab hardware and Taylor's programming
expertise. At about the same time, the group, led by Kemp,
entered into negotiations with the university over rights of
ownership for the software which the group was designing on
their own time but on university property. The university claimed
exclusive ownership of the software developed by Kemp, Taylor,
and the others, and offered no portion of potential sales to the
graduate students. Butler says, "I can't remember the details,
but it was quite intimidating, and we realized, at that point, that
anything we did on university property belonged to them"
(Butler, ibid). The disagreement over ownership led to the actual
formation of the Daedalus Group and the relocation off campus
of all development efforts. The question of software copyright
and distribution of royalties is an ongoing one for faculty software
developers. Very few institutions have a set policy regarding
software ownership, and there are no universal standards among
the few that do (Keane & Gaither, 1988, pp. 56-57). In this
case, the university argued that it had principal ownership of
the software developed in the Computer Research Lab. As a
result, the members of the Daedalus Group, which was formed
in 1988, renamed all the software they had developed while
working in the Computer Research Lab (this is when Forum
became Interchange), rewrote all the program code, and cea::,:c1
their software work at the Computer Research Lab. Development
efforts moved to a room in Paul Taylor's modest suburban home,

f' (--(...

50 Writing Teachers Writing Software

as did all the operations of the newfound company, though they
still used their software in the classes they taught at the university.

Their observations of student users led to further revisions of
Interchange, with a complete overhaul of the code in 1988. Based
on their observations, Taylor and the others simplified the
interface and made the message editor a full editor. The latter
change was an attempt to make a stronger link between the on-
line conversation sessions occurring on Interchange and the
students' subsequent writing sessions:

A full editor allows you to load in text that you've already
written, or to save parts of the ongoing conversation to a
file. The students have always had the ability, after a Forum
session was over, to get the program and call it up and look
at it. But sometimes it's nice to say, "Well, now, this particular
chunk, here, I'm going to want later when I'm writing my
paper." With the new interchange, they can take that chunk
and save it to a file right there, while they're participating
in the session, and they'll be able to call it up later. (Taylor,
1989b, interview)

The hypertext component in the program, completed in March
1989, came from students' desire to place their new comments
in those parts of the ongoing conversation where they best
fitted, as opposed to their only being able to add comments to
the conversation chronologically as the comments arrived.

The Daedalus Group members depend on the sale of their
programs for funding of their software development efforts and
the continued revision of existing programs. As suggested before,
this allows them freedom from some of the constraints of grant-
funded programs like Prose. Because profits from the sale of
Daedalus Group software can sustain continued development
efforts, the group has been able to continue revising programs
in a way that neither Schwartz nor Kaplan has been able to do.
The company made its first sale in 1989, but survived on a
combination of capitalization (mostly from friends and family)
and custom programming jobs for other parties. With the Dae-
dalus Instructional System now installed at about thirty-five sites,
sales of its programs have allowed the company to move into
a four-room office suite on the outskirts of Austin, hire pro-

The "Who" and "How" of CAC Software Development 51

grammers and a half-time administrative assistant, fund a full-
time position for Wayne Butler, who is completing his doctorate,
and even pay modest dividends to its shareholders. Butler jokes,
"I think we surprised even ourselves. I think some of our
shareholders were investing for the tax write-off" (Butler, 1991,
interview). The group was able to pay Taylor enough of a salary
for him to give up his teaching assistantship at the university
and devote that time instead to program development.

As a for-profit operation with overhead costs, the Daedalus
Group has incentive for producing improved, and hopefully
more marketable, versions of its programs. Indeed, its continued
success depends in part on Daedalus Group's sensitivity to
market needs:

There's something about a free market. I think we were
much more elitist in the beginning, saying, "This is the way
we see it needs to be done, and this is the way we'll do
it;' while we remained in isolation with our twenty or so
students. Now, we're becoming much more sensitive to
what people want and need and use. . . . There are features,
for instance, in the new Macintosh version that are very
sensitive to the market's needsspell checking, style check-
ing, all the stuff we pretty much ignored in the DOS
environment. We've got a concordance maker and some of
the stuff that is proven and popular; that's what people
know about computers and English. Well, we need to meet
them [potential customers] halfway, because they're not
going to buy the most radical part of Daedalus without
something they can start with that they already know.
(Butler, 1991, interview)

This is a different dynamic than for Prose, for example, which
was sold by the designers to McGraw-Hill, effectively removing
from their hands the future of the program. Even though the
Daedalus Instruction System is being bundled with Helen
Schwartz's SEEN and William Wresch's The Writer's Helper in
one of IBM's hardware/software packages, the Daedalus Group
retains control over the fate of its programs and continues to
develop and market them on its own. In contrast, Kaplan
expressed great frustration at McGraw-Hill's failure to produce
a promised IBM version of Prose, which would have opened up
the vast IBM-based market for the program.

7t)

52 Writing Teachers Writing Software

On the other hand, their software development work has
garnered Taylor and the others no recognition or reward from
the university or the English department. When asked if he
received any recognition from the university for his program-
development efforts, Taylor merely laughed. He then said:

It would be very difficult to say that I had received any
formal recognition as a result of that. I have been given
travel money '.o go to conferences to present papers about
the software. I presumably would have been given that
money regardless of what I was going to the conference
forwhether it was to present about software or Milton or
anything else. I really cannot say that the graduate program
has recognized that particular work in any fashion, no.
(Taylor, 1989a, interview)

While it might be argued that conference travel is a form of
reward, Taylor and the other Daedalus Group subjects made it
clear that they felt the English department, with a few notable
exceptions, largely saw their interest in CAC work as a nuisance.
This view is in keeping with the experience of Schwartz, Kaplan,
and most respondents to the EDUCOM survey.

Professional Software Development

Professional software development by private companies like
Dan Burns's Xpercom take the entrepreneurial approach wholly
outside of academe. While these design groups operate in similar
fashion to the Daedalus Group, a key difference is that the
members of the Daedalus Group are academics, first, and pro-
gram developers, second; members of professional software
development teams undertake the task as their sole professional
pursuit. It is an evolution that is not out of the question for
some members of the Daedalus Group, as Butler admits, and it
is a phenomenon common to other disciplines. As such, the
professional development of software invites brief examination
for the way it illuminates the entrepreneurial approach.

Profits from sales of their software must not only sustain the
development effort of the professional developers, but also

The "Who" and "How" of CAC Software Development 53

provide salaries and all of the operating expenses. Those expenses
are higher for this design group because it must market products
more aggressively, produce more polished packaging, and meet
the support needs of a generally more demanding clientele.

Because they have usually severed their ties to academe, the
developers, in this approach, enjoy fewer ties to academic
research and expertise. While academically based development
models derive user feedback from classroom use and observation,
the revisions in professionally developed software are more
likely to come from customer feedback and market reviews, the
latter of which can exert particularly strong pressure on product
revisions. Although software for the academic marketplace is
reviewed, those reviews are not a prominent part of the journals
directed to the computers and writing audience. For example,
Computers and Composition has not include d many software
reviews. Academic Computing, which is now defunct, did not
always include software reviews, and when it did, it buried
them in the less-often-read first eight pages of the magazine. In
contrast, the trade publications directed to the corporate sector,
magazines such as Info World, highlight their product reviews,
which tend to be lengthy, detailed, and thorough.

Thoughtline's origins, like so much of CAC software, are rooted
in the classroom. Dan Burns, the program's sole designer of its
original versions, was completing a Ph.D. in English (creative
writing) at Oklahoma State University and teaching composition.
He also began working for private industry as a speechwriter.
While interviewing executive clients for the preparation of their
speeches, Burns found himself using a technique that he also
used with student writers at the university. He describes this
method of student conferencing as "directed discussion":

This was a heuristic technique for helping students develop
essays by asking questions, challenging assumptions, re-
quiring supporting evidence, and then critiquing a final
draft. . . . I found that the technique could be applied not
only to topics that I knew of, but also to topics that I knew
nothing about. For example, one freshman wanted to do a
paper on a rock star I'd never heard of. But I could sit
down with her, ask questions, and stimulate her thinking
and direct it in such a way that she had something to write.

54 Writing Teachers Writing Software

These same techniques I used with students can be applied
to executive speech writing. (D. Burns, 1989, interview)

While using this method as a speechwriter, Burns came across
a 1986 Business Week article that discussed uses of artificial
intelligence (AI) and its principal programming language, LISP.

The Business Week cover storyits photo of the scarecrow
from the Wizard of Oz poised ready to finally get a brain
promised a revolutionary future, and Burns was hooked. He set
out to teach himself LISP:

For six months, all I did was play with it. I wrote a program
that would write poetry and Shakespearean sonnets, and I
wrote one that would write erotic fictionyou know, just
having fun. And then I began to think about how this could
be developed for speechwriters. Now, at first, my goal was
to write a program that would write the entire speech
just give it a topic and let it go, a speech machine. (D.
Burns, ibid)

Bringing together his teaching experience, his work as a speech-
writer, and his play with LISP programming, Burns came up
with the initial design for Thoughtline.

He soon realized, however, that the idea of a "speech machine"
was beyond his reach, so he went to work on the more modest
goal of creating a writing aid, one that would help writers
develop ideas through a direct-discussion interface. In the de-
velopment of this first version, Bums operated as a lone program
developer. His prototype of that program was completed in
1985, and commercial marketing of the program began in 1986.
Thoughtline provoked a great deal of interest through reviews
in PC Week, Executive Communications, The Washington Post,
Manufacturing Week, MIS Week, and a host of other publications.
Unfortunately, many of the reviews were negativecriticism
ranged from displeasure with the program interface, to the print
format, to its mishandling of "to be" verbsso Burns pulled
the program off the market.

Given the sophistication of the program and his early failures,
Burns knew he needed more technological expertise for a revision
of the program. He therefore enlisted the aid of AI specialist
Robert Giansiracusa, a graduate of MIT's Artificial Intelligence

ri
t)

The "Who" and "How" of CAC Software Development 55

Laboratory and an employee of Neurotronics Research Corpo-
ration, a Washington, D.C., AI development firm. In a ten-day
marathon session of twenty-hour days, Giansiracusa and Burns
rewrote the program. In subsequent sessions, the pair changed
the program interface, switching to easy-to-use pop-up menus,
adding color, and working on the program's editor to allow word
wrap. Burns feels, for the most part, that these revisions were
superficial but necessary for marketplace acceptability and suc-
cess:

We found that reviewers will not focus on what I consider
the substantial points of the program, and they won't take
it seriously unless it looks like a slick, modern, up-to-date
program. So it bothered me that our first task was to make
the program look sharp, which we've pretty much done.
(D. Burns, ibid)

In the development of the revised program, Burns and Giansi-
racusa worked as a team, and in July 1988, the program was
rereleased as Thoughtline II.

In the world of commercial software development, the user
feedback which has the most impact on program revision is the
published review directed at the target market. Burns discovered
this early in the development of Thoughtline, when the program
was released prematurely. This time, the program received more
positive reviews. For example, MIS Week called it a "viable wri-
ter's tool;' and PC Week said, "For the hesitant or inexperienced
writer, the program offers an attractive approach to combating
writer's block." At the same time that Burns and Giansiracusa
were improving the program interface, they were making deep
structural changes in the program:

He [Giansiracusa] wanted to write a program that would
not only conduct a conversation, but that would learn, and
that would do not only syntactic pattern matching, but
semantic pattern matching. We're not there yet, but the
hooks for that are built into the program. We've made it a
lot smarter than its prototype, and so a program like this
is never finished. (D. Burns, ibid)

Indeed, the two developers are continuing to rework the program,

56 Writing Teachers Writing Software

trying especially to reduce its hefty memory requirements, which,
if accomplished, would make it a viable program for that still-
significant market of microcomputer owners who do not have
powerful desktop systems.

Market interest has affected future revision plans for Thought-
line, as academe had shown some interest in the program. The
program came out of a business contextBurns's speech-writing
experienceso its prompts reflect that orientation. Yet Burns has
been getting inquiries about the product from colleges and
universities:

We didn't pay a lot of attention to that market [college]
because, in 1986, there weren't a lot of IBM compatible
computers with hard drives and 640K RAM in the colleges
and universities. And, of course, everybody knows that
public education is not as well funded as private business.
They can't write a check for $300 quite as quickly. So we
thought, "Well, that's fine. If they want to write to us, we'll
sell to them." (D. Burns, ibid)

A recent review of Xpercom's customer base reveals that 20
percent of its sales have been to colleges and university faculty.
As a result, Burns is considering an academically oriented version
of the program for the future.

In contrast to the entrepreneurial model, represented by the
Daedalus Group, the professional model of program develop-
ment, represented by Dan Bums, enjoys the benefit of software
sales in a market that can and is willing to pay a higher price
for that software. In addition, the professional developer's market
allows wider technological boundaries in programming efforts,
given the greater technological resources of the corporate sector
compared with the average computer writing lab for which the
Daedalus Group designs its software. On the other hand, the
business market is, perhaps, a less forgiving one. Professional
software development is more at the mercy of published re-
viewers in an aggressively competitive market, while academi-
cally based development efforts are characterized by greater
collaboration between users, students and teachers, and the
developers.

In both cases, the entrepreneurial model for program devel-

7 5

The "Who" and "How" of CAC Software Development 57

opment is marked by the creativity of people who know com-
position (or who at leist have taught a lot of writing) and who
know programming. Selfe asserts the need for both kinds of
expertise:

I would love to have a programmer who knew as much as
possible about the content area ... that's why Paul Taylor
is so good. But there have to be content specialists, really,
content specialists, not just hackers. English hackers and
computer hackersthere has to be a blend of the two.
(Selfe, 1989a, interview)

Each member of the entrepreneurial design team provides that
blend; thus, their collaboration provides impressive resources
for working out problems of pedagogical and technological
design. In addition, their profits allow them technological re-
sources not available to faculty designers, who most often have
to work with whatever hardware is available to them Those
profits also allow the entrepreneurial design team to operate
independently of the constraints of institutional funding, and
because it does not hire outside programmers, the group's
development costs are significantly lower than those of devel-
opers who are not programmers.

The Research-Based Design Team

At the other end of the continuum from lone programmer
designers like Mimi Schwartz are the large program design teams
whose goals are research oriented. These design and develop-
ment efforts are centered around complex programs constituted
of multiple subprograms. Often, these programs require ad-
vanced and expensive mainframe computers and terminals. Such
efforts are most common in research- and technology-oriented
universities such as Carnegie Mellon, where they receive sub-
stantial funding, often from government agencies and private
industry. The work of John B. Smith of the University of North
Carolina at Chapel Hill, Christine Neuwirth of Carnegie Mellon,
and Earl Woodruff of the Center for Applied Cognitive Science
all follow this model for program design.

58 Writing Teachers Writing Software

While program ideas in the other models often arise from
reflection on classroom practices or from just playing around
with the computer, the generation of program ideas in the
research model comes from a highly structured, cognitive map-
ping of the writing process. These cognitive models are based
on existing theoretical models and/or original investigative re-
search. For example, the development of Neuwirth and her
colleagues' Notes program began with a team member's obser-
vational research on student note-taking. Neuwirth explains:

Cheryl [Giesler] did a lot of observational work in trying to
build up our understanding of what actually went on in
this task. The notion was to identify problem areas in the
task for the expert or novice. (Neuwirth, 1989a, interview)

Or, in the case of their Comments program, they turned to
research on the way students respond to instructor comments
on their texts:

We had an early focus on the users, in which we observed
people at work, doing the tasks the way they currently did
them, and then we tried to form an understanding of . . . tried
to form some representations of that task that we thought
would be useful. And so it was very empirically researched
it tended to draw on the theoretical. We drew on cognitive
theory, and we drew on the writing process, and we tried
to pattern what it war we were seeing. (Neuwirth, ibid)

In each case, design began with a perceived problem in the
student writer's cognitive strategies; the programs were created
to provide "scaffolding" for that part of the composing process;
that is, the programs are meant to help students through those
parts of the writing process that researchers have identified as
being typically problematic areas.

In the case of Smith's University of North Carolina design
team, an elaborate multimodal cognitive model was constructed,
based on a synthesis of research and cognitive models provided
by Flower and Hayes, Bereiter and Scardamalia, and other
researchers in cognitive science (Smith & Lansman, 1987, pp.
5-8). This elaborate cognitive model consists of seven modes,
each constituted by sets of processes, products, goals, and

The "Who" and "How" of CAC Software Development 59

constraints (pp. 11-12). The model became the system blueprint
for an ambitious multimodal writing program called WE, a
program which acts as a writing environment, encompassing
almost the whole cognitive process of writing as mapped out in
the design team's initial research and cognitive theory.

Development of the actual programs in the research-based
model is conducted by teams of researchers, who often represent
a number of disciplines. The design team behind Woodruff's
CSILE program, another "environment" program that seeks to
encompass the whole of "knowledge building" activities, in-
cludes people from psychology, education, computer science,
and cognitive science theory (Woodruff, 1989, interview). At
Carnegie Mellon, a design team is likely to have two principal
investigators, a research associate, two programmers, and a
number of graduate students (Neuwirth, 1989a, interview). Team
members assume responsibility for various parts of the devel-
opment process. The same applies to Woodruff's team at the
Center for Applied Cognitive Science:

It's [CSILE] a huge program; there are probably over a
hundred different files associated with its execution. Its main
heartbeat is the server that manages all user requests for a
note or for the storage of a note. You can imagine all that
traffic. That was really carved off and dealt with in a very
traditional sort of way. We sat down and asked what kind
of functionality did we need, what would we need to
achieve that, and then we turned it over to an extremely
bright CMU graduate, Bob McLean. He took over basic
responsibility for the server. And it has a nicely defined
role, and you don't have to worry too much. I mean, either
it has that functionality or it doesn't, and if it doesn't, you
fix it. (Woodruff, 1989, interview)

The complexity of the overall program design and the need for
each piece of the program to operate smoothly within the greater
program constrain the development style of those team members
responsible for pieces of the larger puzzle. One is less likely to
have the freedom to "play" in the manner described by Kemp
or Taylor. Neuwirth says:

I've seen that occur at Carnegie Mellon. Not in our shop,

rn
.1. L.)

60 Writing Teachers Writing Software

where that really doesn't happen, because I wouldn't let a
programmer do that [laughs]. Typically, we are the principal
investigators on grants. That would represent a huge risk
for us, to have a programmer go off into a closet and maybe
emerge months later. I don't think I'd feel personally com-
fortable under those circumstances, the way my existence
here is constituted. (Neuwirth, 1989a, interview)

An important reason for not allowing a single team member to
go too far off on his or her own in the development process is
the level of user testing typically required at each step of the
development process in this model.

Not only is there less "play" and formalized delegation of
responsibility in the research approach to software development,
but the nature of the team's interaction also differs in dramatic
ways. First, software development is a primary professional
responsibility for those involved, and that means interaction is
a routine part of the work environment (unlike the 11 p.m.
meetings in Nancy Kaplan's dining room). This interaction allows
for close collaboration between all team members (no one off
working alone, as in the Daedalus Group). At Carnegie Mellon,
for example, Neuwirth housed the Notes team in a suite of oak-
trimmed offices in Baker Hall, a lovely, old, renovated building
on the Carnegie Mellon campus. She and David Kaufer, the
team leaders, the research assistant, the graduate students, and
the programmers were all situated in the same place and could
make project discussions part of their daily life:

We had frequent interactions. We could schedule impromptu
meetings as well as our usual weekly meeting. Dave is right
across the hall and we're always bouncing ideas off each
other. (Neuwirth, ibid)

While the organization of the research and design team appears
hierarchal, Neuwirth and Kaufer encourage the team members
to offer and challenge ideas and decisions. Neuwirth describes
these sessions as times of creative argument, where ideas must
be defended vigorously and where people use "every conceivable
tactic of persuasion known to humankind." She laughingly recalls
a recent meeting:

Dave [Kaufer] and I sat down with the programmers and

The "Who" and "How" of CAC Software Development 61

asked, "We want to know whether you believe in this
programming concept we want to implement?" And they
hid their faces behind clasped handsyou know, the sort
of church thing where you go, "I do believe!" We regarded
that as their personal aff4rmation of faith. (Neuwirth, ibid)

At the same time that decisions are open to group scrutiny,
because the team is working on prototype programs, many
decisions, particularly technical ones, are made informally while
implementing design goals and may be revisited in later discus-
sions.

On another level, this team approach fosters an interplay of
personalities that, while probably being no more complicated
than in any other collaborative project, is by virtue of the team's
size bound to include a wider mix of personality types. The
team leader in one such group, preferring not to be named,
complained, "I spend half my day, sometimes, putting out fires
and smoothing ruffled feathers that stem from conflicts between
group members." He pointed out that, because such groups tend
to bring together tenured faculty and graduate students, members
of different disciplines, academics and hired programmers, con-
flicts are almost inevitable. For anyone who becomes a chief
developer on a project, attention to personal dynamics can be
a challenge. Neuwirth, who confesses to being painfully shy,
realized on one project that her position as project manager
required her to assume a "booster role." Therefore she read
management books that described :motivational. techniques and,
she says, "I'd study these things and try them. It was something
that didn't come naturally to me" (Neuwirth, ibid). Those
challenges aside, the creative-collaborative energy of the research
design team, though quite unlike the playful creativity of the
Daedalus Group, for example, is indeed one of the major
strengths in this model.

The user testing that takes place here during program devel-
opment is a much more elaborate process than the informal
observation of program use described in the other development
models. The more formal and fundamental integration of user
feedback is called "participatory design." This approach includes
user testing from the program's inception, in the way Neuwirth
described their study of student note taking, through each

62 Writing Teachers Writing Software

revision of the program, through formal field testing. Woodruff's
team members installed their first version of CS1LE in a public
school, where they received feedback from teachers and students.
However, in contrast to Neuwirth's team, they validated this
more informal feedback with protocol studies of selected stu-
dents. He explains:

At that point, we started tracking twelve studentsmeeting
with them every week for an hourtrained them to think
aloud, and they became fairly comfortable with this study.
And we studied whether the system was helping them or
hindering them, and how we could change it in response
to that. At that time, then, the program was changing about
every six weeks. (Woodruff, 1989, interview)

User feedback and study not only prompted design changes,
they also informed the actual shape of those changes:

We would sit down with the kids and mock it up [a design
change] with paper and pencil, trying to see if that was a
reasonable way to go about it. We would sit and watch
them move pieces of paper around a desktop, trying to
simulate the types of connections they were tryitig to make
between pieces of information, and then build, design, a
system that would accommodate what they were trying to
do, with what we were fairly certain they probab./ should
be doing. And then write that up in code and start following
that along with case studies . . . Then from time to time we
moved to full-class studies, much larger studies. (Woodruff,
ibid)

While the research goals and resources of design teams in the
research model allow for extensive rewriting of programs, there
comes a point in program development when the bulk of those
revisions is complete. At that point, the team members can focus
their research efforts on field testing of the program to explore
the viability of their original goals.

Perhaps the most ambitious example of such testing is that
which is being designed for Smith's WE project. Smith's group
included an automatic tracking function in the design of WE
which produces a detailed transcript of a given user session.
That transcript records each action performed by the user, as

The "Who" and "How" of CAC Software Development 63

well as its time and other important structural information, such
as the location of nodes on the user's program-generated outline
(Smith & Lansman, 1987, p. 17). Smith claims that "these data
avoid one of the most serious problems posed by think-aloud
protocolsi.e., distortion of the user's cognitive processes" (p.
17). The protocol data can be used with a session replay program
that allows for the reproduction of the session, unfolding in
time, and that can be speeded up or slowed down as the observer
wishes. Writers can be asked to observe their own session
replayed and to comment on their thinking and intentions for
various actions or sequences (p. 18). Currently under develop-
ment is a "grammar" for parsing the protocols. This grammar
would have five levels of functionality. In essence the grammar
would

1. Offer a symbolic representation of the protocol transcript
produced by the tracker.

2. Take those symbols and map them onto a more abstracted
symbol system that would identify operations, such as the
create node described in their cognitive map.

3. Map these onto a third level of symbols representing
intermediate products, such as isolated concepts, relations,
structures, blocks of text, and so on.

4. Infer the cognitive processes used by the writer to construct
these products, processes such as recalling ideas from
memory, associating them, or encoding them linguistically.

5. Infer the cognitive mode the writer is inhabiting at a
particular time, such as exploring, organizing, or structural
editing. (Smith & Lansman, 1987, p. 18)

Smith argues that the tracking functions of WE address many
of the well-documented problems through the use of think-
aloud protocols. As mentioned above, he argues that the tracking
function avoids the cognitive distortion problem commonly
associated with think-aloud protocols. The grammar would also
solve the problem with inconsistent protocol generation and
analysis, in that all the actions of the writers are recorded and
the grammar offers objective analysis of the data (p. 18). With

ti

64 Writing Teachers Writing Software

the computer doing so much of the work, Smith believes
researchers can work with much larger numbers of protocols
than before.

As one might guess, the technical sophistication of programs
like CSILE, WE, and Notes requires hardware and software
resources usually available only at large universities. They need
the memory and speed of large mainframe computers and the
screen size of workstations like the SUN 3. This type of hardware,
the size of the design teams, the amount of programming
involved, and the degree and kind of testing involved in the
design effort make the research design and development model
very expensive. None of the subjects interviewed would divulge
their project budgets, though Smith spoke in terms of $450,000
budgets for development projects (J.B. Smith, 1989, interview).
These kinds of funds are likely to come from a combination of
government and corporate funding agents, yet the subjects were
mostly reluctant to reveal those sources. When asked about the
funding sources for CSILE, for example, Woodruff said, "I can
tell you that there are many. There are seven, but I can't tell
you the people who are involved" (Woodruff, 1989, interview).
He did say that they included both corporate and educational
sources. Funding sources for WE are identified in the project's
technical reports and include the National Science Foundation,
the Army Research Institute, and IBM. The home institutions
for these projects may assume some portion of the funding but
are more likely to cover overhead costs stz,...it as hardware.

While the home institutions provide only a small portion of
the development funds, they do tend to provide a reward and
incentive structure that encourages participation in such program
development efforts. The Center for Applied Cognitive Science
offers release time to program developers. Neuwirth says Car-
negie Mellon treats software development as they would pub-
lished research:

I don't think Carnegie Mellon would provide any sort of
reward, promotion, or tenure for a program that essentially
implemented yet another text analyzer, only in SNOWBALL
rather than PASCAL. It's held to the same standards [as
traditional research]. I am one of the few people who is a
junior person actually building software tools, and my

The "Who" and "How" of CAC Software Development 65

renewal case went through, and that work was acknowl-
edged as contributing to my case. And so, it was supported
at the department, college, and university levels. (Neuwirth,
1989a, interview)

These developers enjoy a level of recognition and reward not
reported in any other model of program development.

To review then, the research-based design team model of CAC
program development is most likely to take place in a research
university with access to the technological and funding resources
necessary to such a design model. The development effort is
conducted by a large, often interdisciplinary, design team that
follows a highly structured design protocol that includes exten-
sive user testing throughout the development process as well as
after installation of the program in the classroom or computer
writing lab. The programs that emerge from this model are likely
to be based on cognitive theories of the writing process and
may try to account for most, if not all, of that process in their
design.

As Doheny-Farina and Odell (1985) point out, the "present"
that the ethnographer discovers is not static. It is subject to
change, even as it is being described (p. 530). This could be no
more true than in the world of CAC software design, for the
developments of new technology continue to create new pos-
sibilities for software, almost every day. Innovations such as
hypertext, object-oriented programming, and AI-based authoring
languages open up new doors in the design of new programs
and the redesign of existing ones. In addition, the issues of
funding, the role of software development within departmental
reward structures, the marginality of CAC specialists within the
field of composition, and a number of other factors are impacting
the models just described. The next chapter explores these forces
of change in CAC software development and their implications
for the future of program design.

Chapter 4

Forces That Impact
CAC Software Design

It becomes evident in the discussion of development models
that a wide range of factors influence any given development
effort and thus the program which emerges from that effort. As
was seen in the case of Prose, the way the program was
developed, revised, and ultimately used had a lot to do with
factors such as funding, technological constraints, and Cornell's
treatment of the design effort. The idiosyncratic nature of each
program's development was illustrated again and again in the
development histories of the programs examined in this study.
For example, the fact that James Berlin taught for one year at
the University of Texas and greatly influenced Fred Kemp and
Wayne Butler, who then provided a strong theoretical influence
on Taylor's development of Interchange, is a project-specific factor.
That said, a number of forces were repeatedly cited by the
interview subjects as having either an immediate or a forthcoming
impact on software design. In this section, those primary im-
pacting forces will be considered.

While the previous discussion identified the various ways that
writing software tools are built, this discussion will examine the
forces and issues with which the tool builders must grapple in
their respective models. The interview subjects identified three
primary influencing forces in CAC development: techriology, the
reward and recognition systems of institutions and English
departments, and funding. By examining these three forces as
they exert themselves upon the CAC design and development
continuum, both now and in the future, one can begin to
determine the kinds of software tools that will be available to
writers and teachers of writing and to raise questions about the
implications of these tools for the field of composition.

66

5

Forces That Impact CAC Software Design 67

Technology

CAC program designers are faced with a number of choices
in the development of their programs. What kinds of tools will
they use to build their programs? What capabilities do they want
their programs to include? What technological innovations seem
available and reasonable to include in their program's final
shape? By and large those choices will determine a given
program's substantiation, how it will be used, and who is likely
to use it. For the interview subjects, the most important tech-
nological forces are or will be:

programming languages;

system architecture;

networking and telecommunications;

CD-ROM; and

artificial intelligence (AI).

As Paul Taylor says, "What we are able to do will always be
determined by the hardware and, in fact, the programming
languages we have available" (Taylor, 1989a, interview). Most
CAC developers do not have the funds to begin a development
effort by purchasing new hardware and software. This can even
be true for well-funded research design programs. Instead, most
CAC developers work with whatever is available to them at
their institutions. So, for example, if the University of Texas
Computer Research Lab had been given unnetworked Macin-
toshes instead of networked IBMs, Taylor would not have written
Interchange. What software developers eventually end up with
has as much to do with the technology they begin with.

Programming Languages

As was illustrated in the earlier accounts, the need either to
learn programming or to hire and collaborate with programmers
remains a considerable obstacle for writing teachers who want
to develop software. Mimi Schwartz, for example, has considered

68 Writing Teachers Writing Software

developing a revision program to complement Prewrite, but cites
the challenge of finding and working with good programmers
as a primary reason for not doing so (M. Schwartz, 1989,
interview). However, there was general optimism among the
interviewees regarding improvements in programming lan-
guages, particularly in the development of authoring software
that would allow them to develop sophisticated programs with
much less training in programming. The two primary develop-
ments allowing for such progress are object-oriented program-
ming (OOP) languages and hypertext software tools.

Object-Oriented Programming

Object-oriented programming (OOP) is not new It has been
used in research for over fifteen years, known best as "data
abstraction;' but improvements in memory and processing speed
are making OOP viable for microcomputer applications. Selfe
says, "I think object-oriented programming languages are going
to open up programming to nonspecialists" (Selfe, 1989, inter-
view). OOP languages offer a fundamental and efficient alter-
native to traditional programming languages through their sub-
stitution of "objects"blocks of reusable and easily transportable
programming codefor the thousands of lines of code necessary
to create functions in languages like FORTRAN or COBAL.

As a design concept or methodology, object-oriented program-
ming attempts to make programs operate more like the human
mind, at least as the human mind is understood by researchers
such as Marvin Minsky or Philip Johnson-Laird. The objects in
object-oriented programming are like Minsky's "frames," cog-
nitive data structures that define stereotypical situations which
the human mind then combines in order to understand the
world (Minsky, 1981, p. 95). Minsky argues that the mind does
not have to work through the extensive lines of definition that
form a situation. Instead, it possesses frames, which consist of
"default values," blocks of possible responses to external stimuli
(Johnson-Laird, 1983, p. 189). The mind, when confronted by
problematic stimuli, can combine various frames until the ex-
ternal situation is satisfactorily defined. That new definition can
then become part of the mind's storehouse of frames. The more

Forces That Impact CAC Software Design 69

default values with a frame, the more finely tuned the frame
can become in response to a situation.

To illustrate, consider a small child learning to name things
in its world. Assume it has a frame for "bug;' for which the
o, Fault values include "six legs, slightly round body, walks on
the ground, smooth shiny torso, pretty quiet:' Another frame is
"airplane," for which the default values are "a shape that is
long and crossed by another straight part, moves through the
air, and is pretty quiet:' The child sees a butterfly for the first
time and shouts "airplane-bug!" In the naming of the butterfly,
the child has created a new data structure, or frame, finding in
the butterfly some default values of the frame "bug" and some
default values of the frame "airplane," and has combined the
two to create a new frame, "airplane-bug," which combines
characteristics both of form (shape, legs, shiny torso) and of
function (flight).

Rather than creating programs through infinitely lower levels
of definition, object-oriented programming employs reusable
elements, or blocks, comparable to frames in this analogy. Each
block of code, known as an "object;' is a set of definitions and
functions, the default values of Minsky's frames. They can be
recombined in a number of ways to create new "objects;' which
then become part of the program's library of objects. The two
key characteristics of object-oriented programming are the com-
bining of data and function and the use of flexible code modules.
Jane Fitz Simon (1989) explains the former:

Imagine you want to add together two numbers. In tradi-
tional computing, you call up the operation "plus;' feed in
two numbers, and run the operation. With object-oriented
programming, instead of calling up the "plus" operation,
you call up a number "X," and send it a message, "Add Y
to yourself." The data is already imbued with the ability to
carry out the command. (A4)

Data structures that combine form and function remove a whole
level of program functionality from the developer's concerns. In
addition, authoring languages designed with the object orien-
tation offer the user blocks of code. These blocks of code would
make up objects that could be used in a variety of combinations

ri

70 Writing Teachers Writing Software

to solve problems or to write programs without the programmer
having to write code line by line (Simon, 1989, Al). The
advantages to the program developer are that the objects always
remain the same and are therefore reusable; that they are highly
reliable and maintainable; and that they save a great deal of
programming time. Par lett is working on a design for this type
of authoring system, one which would allow users to create
Confer programs for any given piece of text they desired.

While object orientation holds great promise, it has its draw-
backs. Very practical concerns are the high processing speed and
the great amount of memory required to run a program designed
with object orientation. When the computer runs such a program,
it must process each object in its entirety, even though only one
or some of the default values within the object are being called
upon.

Reconsider the airplane-bug example. For a computer to
replicate that child's creation of a new frame, it would process
the default values in the "bug frame" that apply to the new
object it is trying to name, the butterfly in question. The default
values of six legs, slightly rounded body, and shiny torso would
obtain, but it would also process and reject the characteristic of
walking on the ground. With OOP, the computer processes
needless default values. In contrast, a conventionally designed
program would precisely define butterfly, and then the computer
would process only that information. Expand this simple example
to the world of complex computer programs, and what happens
is that programs designed with object orientation have much
slower throughput, the speed at which a computer can process
program code. OOP enthusiasts argue that processing speed will
catch up with the software.

One other concern about object orientation is the question of
refinement in program design. Because OOP designed programs
reuse objects, recombining them and creating new objects, the
programs are employing elements not necessarily designed for
their specific programming tasks. To illustrate, imagine we were
designing a computer that could play racquetball. When we
work on the part of the program that effects a backhand shot,
we know that we need to program in the slight upward turn,
or twist, of the racquet in the hand. Using an OOP approach,

Forces That Impact CAC Software Design 71

we would look through our library of objects and find one that
defines the general action of wrist turning, and within that
object, there would be a series of defining defaults. Included in,
perhaps, a long list of default values that define the turning of
the human wrist, we might find what we need to effect this
action, so we employ the object in the backhand subprogram
we are working on. We have saved a lot of programming time,
because we have not had to write code line by line to effect
this movement. However, by writing the code ourselves, we
could define a more subtle turning of the wrista more finely
tuned action. In other words, we can effect a turning of the
wrist that is exactly where it should be instead of the close
enough position we might get with a preprogrammed block of
code.

If the promise of object orientation is fulfilled, it will have
the general effect of producing more high-quality, reliable, and
easy-to-maintain software at a lower cost. For CAC development,
this could reinvigorate software design by lone faculty program
developers and small-group developers in a number of ways.
Once these developers got over the hurdle of learning an OOP
language like C++, they could develop programs much more
quickly than they could with programming languages such as
Turbo Pascal or Prologue. In fact, some experts argue that people
with little or no programming experience comprehend the con-
cepts behind OOP more quickly than experienced programmers.
A development expert for Asymetrix Corporation, John Wood,
sas, "The initial learning time seems to be quicker for people
who have never programmed before" (Johnston, 1989, p. 25).
Or, if they continue to work with hired programmers, they could
get a lot more programming for their money. In both cases, the
quality of programs would be higher in terms of standardization
(and thus reusability in other programming efforts), reliability,
and debugging (a potentially laborious process in conventionally
designed programs).

Authoring programs, the design of which OOP makes much
easier, would offer powerful development tools to faculty de-
signers. Authoring programs give nonexpert programmers all
the building blocks for designing a program, and allow them to
construct these programs without a lot of technical language or

0

72 Writing Teachers Writing Software

expertise. For example, an authoring program for Parlett's Confer
program (which only works with Walker Percy's "The Loss of
the Creature") would give an instructor the basic structure of
the program and allow her to gear it to any work she wishes
without rewriting the code. In any case, object orientation, and
the authoring systems that may derive from it, could stand to
empower classroom teachers for the creation of their own
sophisticated CAC software, in the same way that BASIC led to
a generation of early CAI programs ten years ago.

Helen Schwartz believes that creating software has to become
as easy as authoring a textbook before writing teachers can
undertake the task in significant numbers. She believes that
authoring programs may be the answer:

It's fairly easy to publish your own textbook. [Publishers]
have reps beating the bushes looking for people to do it.
They [textbook publishers] have got it down so that pro-
ducing a textbook is not very difficult or very expensive.
Developing software is not cheap, and it is not easy. If it
[creating software] can be made as cheap and easy as writing
a textbook, it can workand you can do that with proto-
typing or authoring systems. (H. Schwartz, 1992, interview)

She points out that these programs may not allow novice
developers to do everything they would like to in a program,
but as she says, "They're a heck of a lot easier than learning
programming." Hypermedia authoring systems are beginning to
reinvigorate faculty-based software development, though they
have not yet achieved the ease of use and the affordability that
Schwartz cites as being necessary for widespread faculty devel-
opment of CAC software.

Hypermedia

In terms of programming languages and authoring systems,
hypertext and hypermedia software development programs de-
mand special attention. (While the former term enjoys currency,
the latter is more accurate, since almost no hypertext system
exists which does not include nonprint media.) Hypermedia is
drawing particular attention from CAC researchers because it so

Forces That Impact CAC Software Design 73

profoundly challenges the conventions of print-based literacy
practices. Moreover, and more germane to this discussion, hy-
permedia systems are significantly easier to use and allow
nonprogrammers to create highly complex programs. As such,
these systems address one of the major hurdles to faculty-based
software development: the cost and complexity of writing the
actual program code. As William Wresch says, "The more
transparent you can make the technology, and the lower you
make the development threshold, then the more people will be
willing to spend their nights and weekends developing this stuff.
I think that will be the trend" (Wresch, 1992, interview).

Hypermedi-., a term developed from Ted Nelson's original
coining of "hypertext," describes "the synthesis of diverse forms
of information storage and display based on a single computer
program" (Beck & Spicer, 1988, p. 220). One of the main features
of hypermedia is the nonlinear linking of information, any
information that can be digitalized, without altering the original
data structure from which that information is taken. The units
of information within a hypermedia document or application
are called "nodes!' A node can be a piece of text, a movie clip,
a song or musical passage, a photo image, or a combination of
media. Nodes can have multiple electronic links to each other
and allow potentially endless paths through the data as a whole.
The boundaries between information types are broken down,
and the hypermedia environment gives the user a great deal of
control in how she wishes to link that information.

The most popular hypermedia program in CAC software
design has been Apple Computer's HyperCard, designed by Bill
Atkinson and released in 1987. The program includes a flexible
integrated text; graphical database system, an interpreted close-
to-natural-language programming language to operate the hy-
pertext functions, and built-in program features that allow users
to make links without having to know the programming that
effects those links. Such functionality makes possible the creation
of highly complex applications (at least from a programming
standpoint), but requires little experience or training to use. Beck
and Spicer (1988) report an average learning time of sixteen
hours for novice faculty working with HyperCard (p. 24). There
are many hypermedia authoring systems now available on the

74 Writing Teachers Writing Software

market including Guide (which actually preceded HyperCard),
StorySpace, Folio, VIEWS, Supercard, Hyper Word, Hyper Writer,
Hyper Ties, and Tool Book. Such systems are already finding wide
use in technical writing, and their proliferation is reflected in
their sales: $1.6 million in 1987 and $485 million projected for
1993 (Fersko-Weiss, 1991, p. 242).

In CAC software, hypermedia, but mostly hypertext, is be-
ginning to establish itself. The hypertext component in Inter-
change, for example, has addressed one of the most common
complaints among users of the program: that "lines" of con-
versation were difficult to trace because of the first-come first-
served structure of the main conference. Now the main con-
versation not only builds in a linear fashion as comments are
added on to the end, but also within itself as new comments
are linked within the main conversation.

Anne Di Pardo and Mike Di Pardo are designing a HyperCard-
based CAC program that would allow students to write essays
with built-in buttons which open up windows that would include
the students' asides, further explanations, and other information
they wish to link out from the text. In addition, the stacks (the
name given to information structures linked out from the surface-
level text in a HyperCard document) would include help screens
and exercises to help guide students through assignments; a file
of pictures to help spark brainstorming; a note-taking function
that can be referenced later; an extensive file of sample essays,
with voice recordings of their authors describing their composing
processes; a peer communication function; and an instructor/
student messaging function (Di Pardo & Di Pardo, 1989, p. 30).
Donald Ross (1989) imagines hypermedia text programs that
will allow students to integrate other media in the creation of
their documents:

We will be able to include visual and sound images and
music into our assignments, and expect them to be part of
the students' writing. These will not just be "figures" or
illustrations, but an integral part of the presents 'don. In
effect, then, the student will be producing a multi-media
narrative and commentary. (p. 74)

Aside from the obvious design possibilities suggested in the

Forces That Impact CAC Software Design 75

previous examples, the relatively low cost of hypertext devel-
opment, and even hypermedia development, allows its integra-
tion at all points along the design continuum.

While hypermedia authoring programs have the potential to
reinvigorate faculty-based software development in the lone
programmer and small-group models, it will still be some time
before their full impact is felt. I -'ypermedia systems are still
relatively expensive, though an increasing number of "multi-
media" systems are being announced (though merely adding a
CD-ROM drive to a PC does not make it a hypermedia system)
and the computer industry is decreasing the costs for its products
at an unprecedented level. More importantly, there are significant
technological hurdles to overcome. Storing video clips, for ex-
ample, requires huge amounts of hard disc space (three minutes
of uncompressed video requires about 90 megabytes of hard
disc) and makes networking expensive and difficult. The current
state of the hypermedia market is chaotic, with new products
and support systems being announced almost weekly but with
little standardization among manufacturers. While computer
technology has always posed the risk to consumers of nearly
immediate obsolescence in any purchase (remember those $4,000
Apples with 64K of memory), hypermedia technology is partic-
ularly volatile in this early stage of its development in the
microcomputer environment. Advances are being made in
compression technology and network transmission speeds, sup-
porting hardware is improving, and industry attempts at setting
standards are under way. Jchn Manzelli, technical director for
multimedia development at networking giant Ungermann-Bass,
says, "In about three years the industry will have reached a
stage where software producers can reliably know what they
will be working with. When that happens, we'll see an explosion
of hypermedia software and applications" (Manzelli, 1991, in-
terview).

While there is little actual hypermedia CAC software on the
market, the impact of the technology has been enormous. At
conferences and in computer and writing journals, hypermedia
is one of the most discussed and lauded developments in CAC
software design. Robert J. Beck and Donald Z. Spicer (1988), of

r.

76 Writing Teachers Writing Software

Dartmouth University's "Hyper Team," feel that hypermedia will
revolutionize software design:

Designed for easy handling of multimedia, HyperCard has
been presented as the harbinger of a new dawn of software
engineering by and for the masses. It is a forerunner of so-
called "authoring tools" which enable users, other than
professional programmers, to design and implement their
own information organization and presentation applications.
The rapid prototyping and development possibilities avail-
able with HyperCard suggest that it and similar products to
follow will spark a renaissance in educational software
design. (p. 23)

And unlike the promise of so many hardware and software
advances, which await development of just one more piece of
hardware or one more piece of software, hypermedia is on the
doorstep now

System Architecture

Most often, the computers that developers find in their labs
are IBM PCs, Apples, or Macintoshes, none of which share a
common system architecture. In each case, the system architec-
ture demands different design characteristics in software. Taylor
discovered this when he attempted to use a Macintosh to program
a simple grammar tutorial he had written for the IBM:

If I developed an exercise that had to do with pronouns,
in my ideal version of the exercise, the main loop of the
program would say, "What are we going to do next;' and
when the main loop says, "We're going to do the pronoun
exercise now;' that was called up. I knew that my program,
my section of code, had complete control over the program
and the computer at that point. I started at the beginning
of my section and proceeded until something was keyed
which said either they quit, or they finished the exercise,
or whatever. But I knew that the whole time, I was in
control of the program. The Macintosh has what they call
an "event-driven philosophy." Rather than saying we're
going to set up this sequence of events that are going to
happen, like in the IBM, I can't predict everything that's
going to happen.

. Tees That Impact CAC Software Design 77

[In the IBM] I ask for an answer and I don't know exactly
how an individual is going to answer, but I know that after
that, we're going to move on to the second question and
the third question. In the Macintosh, they have tried to give
the user as much flexibility as possible, so that you can be
in the middle of running your programthe student can
be sitting there doing a tutorial on pronounsand just
pause, right in the middle of that, and go over and click
on an icon that brings something else up. (Taylor, 1989b,
interview)

There are other illustrations of system architecture's impor-
tance. Because Interchange was developed on the IBM, Taylor
was unable to design it so that the user could see multiple
conferences at the same time. On the IBM, the user can participate
in multiple conferences, but must jump from one to another.
This would not have been the case if the program had been
designed for the Macintosh:

Now this [the inability to view multiple conferences] is
primarily a constraint of the operating environment itself.
This is the way that, well, what I'm thinking of is the
difference between an IBM PC and a Macintosh. A Macin-
tosh s set up to handle windows and is designed that way.
The IBM really is not. (Taylor, ibid)

However, had Taylor designed Interchange for the Macintosh,
he would have undercut the program's usefulness as a networked
communication program:

So far, Mac networking has lagged behind that of IBM. I
think that they are catching up. But IBM PC networks are
currently operating faster and more efficiently than networks
on Macintoshes. This kind of program is extremely de-
manding on a network. You have to have one that works
very quickly and efficiently. (Taylor, ibid)

Developers of CAC software are faced with a host of these kinds
of trade-offs and decisions.

Even developers who possess considerable expertise and abun-
dant technological resources work within technological con-
straints. Neuwirth illustrates:

78 Writing Teachers Writing Software

WP haven't reached the point yet where memory is so good
that we don't have to worry about it. I can give you some
instances . . In our own work, in the Notes program, we
had a serious trade-off between, on the one hand, being
able to bring up a note at an unacceptable rate of speed
and put it in its own window, which gave the writer more
flexibility in terms of placement, and, on the other, giving
it its own shape and size, and things like that. We would
have liked to had the best of both worlds. We were working
with the current memory of the machine, which was 1
megabyte I think. When user testing, we decided that the
speed at which it came up was far more importantthat
the whole thing just wasn't going to fly if we couldn't bring
up a note card as quickly as you could in a file index sort
of thing. That was definitely a trade-off due to hardware
limitations that we were banging our heads up against.
(Neuwirth, 1989a, interview)

Because the graphics capabilities (for example, the ability to
move and shape the notes windows) use large amounts of
memory and processing speed, Neuwirth's design team had to
compromise in the program's design and preserve the program's
pedagogical integrity.

While the technological constraints that a Schwartz or a Kaplan
face are most often based on the computers their students are
working with in the lab, the constraints that the research design
team faces, and the choices they make to overcome those
constraints, may greatly increase the lag period between the
development of their programs and their widespread use in
computer writing labs. This is largely due to the fact that the
way to overcome many technological constraints is through more
expensive hardware. To illustrate, consider Smith's WE program.
Because it is a multimodal hypertext program that allows move-
ment through simultaneously displayed windows, it demands a
very large monitor screen (as well as computing speed and
memory). As a result, the program has been designed to operate
on the Sun Microsystems SUN III, a powerful workstation with
a 20-inch screen. The funds for five SUN Ills would cover the
hardware and software expenses of a thirty-workstation IBM
lab, a trade-off that most writing programs could not afford.
Therefore, programs developed by someone like Kaplan might

7

S

Forces That Impact CAC Software Design 79

face technological limitations, but they can be widely used by
student writers; programs like Smith's, on the other hand, can
overcome their technological limitations, but in doing so, create
limitations in their dissemination and use.

Indeed, even though the cost of memory and faster central
processors has continued to decrease, programs are becoming
increasingly complex, with the use of color, graphics, hyper-
media, and networking capabilities making heavy demands on
memory and processing speed. An extreme example would be
Parlett's Confer program, which was actually scaled down for
microcomputer use, but at that time which still required 18
megabytes of hard-drive storage, a then very fast 386 processor,
and at least 3 megabytes of RAM. Or, if one wishes to include
IBM's Interleaf Publisher, a premier desktop publishing program,
in his or her software library, one would need a 386 machine
with 6 megabytes of RAM. To use ToolBook, one should have a
486 system, ZS -megabytes of RAM, and a very large hard drive
to accommodate the program, the Windows operating system it
requires, and the applications one creates with the program.

Unfortunately, none of the interview subjects were very op-
timistic that these hardware constraints would be addressed in
the near future. There was general agreement that screen size
would continue to be a problem for some time to come; that
memory wouk continue to be more affordable, but still a
development constraint as programs become more complex; and
that while IBM's i., .747 0S2 operating system seems to suggest a
convergence with the Macintosh system, the lack of standard-
ization will, most likely, not be rectified very soon. While the
Apple and IBM partnership agreement of 1991 holds some
promise for the future, skepticism runs deep among both CAC
specialists and industry experts.

Networking

While there are numerous networking systems, all of them
effectively do the same thing, which is to link individual work-
stations so that they can transfer and share information. Two
things have happened to make networked application software
more interesting to CAC program designers: (1) the decreased

80 Writing Teachers Writing Software

cost of memory and processing speed has made the networking
of computer writing labs a more affordable proposition; and (2)
the growing influence of social epistemology in composition
theory has moved CAC researchers to explore the ways in which
networking can facilitate collaboration. Local-area networks
(LANs) are not new, but the expense in the past has made them
more feasible for the corporate world than for academia. Collier's
1987 study, "Computer Writing Facilities: The State of Art"
(Collier, Gerand, Parbs, & Morrison, 1987), asked respondents
how they would upgrade their systems, but networking did not
show up in the responses (pp. 11-12), even though a later
question revealed that 75 percent of the respondents considered
networking desirable, while the other 25 percent conceded its
future value (p. 35). One of the primary reasons listed for not
networking was expense (p. 35). Now that LANs are more
affordable even for small schools, there is growing interest in
how to use them in the writing class. Writing teachers have
discovered the efficiency of disseminating information, the shar-
ing of files for peer-editing, and the use of electronic mail
(usually a standard part of the networking software) to facilitate
communication between instructors and students.

Those fairly straightforward uses of networks have sparked
the interest of CAC program designers. There now exists a small
number of first-generation CAC programs designed to take full
advantage of networking capabilities. Taylor's Interchange pro-
gram, along with Trent Batson's ENFI system and Xerox Palo
Alto Research Center's Co lab tools, allows for real-time conver-
sation on the network. As explained elsewhere, these programs
allow for on-line class discussion and can display source texts,
including student texts, as that discussion takes place. CSILE
uses networking to create a classroom database in which all
students' notes in all CSILE sessions can be saved to create a
growing database of community-constructed information. For
example, if a class is reading the same article and will write a
response to it, individual members of the class can access the
database to see what their peers have been thinking and saying
about that article. At one field-test site, two classes contributed
over 12,000 notes to the database (Woodruff, 1989, interview).
Neuwirth's Comments program allows a student to use any

Forces That Impact CAC Software Design 81

workstation on campus to send a paper to another student or
to an instructor, to get it back with comments, and then to make
comments on the comments, and subsequently to begin a
dialogue with the original recipient if both parties wish to pursue
the dialogue further (Neuwirth, 1989a, interview).

A related technology to networking, and one often used in
conjunction with it, is telecommunications. Computers can com-
municate with one another through the use of a modem, the
price of which has come down t9 under $100 in some cases.
Modems allow networks to exist over large geographical spaces.
This means that a student can participate in an on-line writing
class from home or that an instructor can access student texts
from an office or home study. Modems facilitate the formation
of electronic classrooms without spatial limitation, as with
Bread Net students in a New York suburb, who spent a semester
working with their peers on a South Dakota Indian reservation
by using telecommunications (Selfe, 1990). This technology is
in place and needs to be examined for the ways it might be
integrated into CAC program design.

CD-ROM

CD-ROM, which stands for "compact disc-read only memory,"
is a storage medium capable of holding vast amounts of infor-
mation. The compact disc, best known as a medium for the
digitizing of music, can accommodate a far greater amount of
digitized information than the cmventional hard drive. One
compact disc, for example, can hold the whole of the Oxford
English Dictionary. Because it is "read only;' the information
contained on CD-ROM can be accessed but not altered by the
casual user. As a result, it can become an increasingly important
way to store archival information, and it is seeing increased use
in libraries. Indeed, Laub (1986) reports that "CD-ROM, intro-
duced early in 1985, is already the heart of some serious
businesses based on electronic publishing of encyclopedias,
reference works, professional directories, and other large data-
bases" (p. 161).

Now that archival information can be stored more easily in
digitized form, program designers are interested in the ways in

82 Writing Teachers Writing Software

which they can give their programs access to this information.
Robert Alun Jones's Hypermedia Learning Lab, at the University
of Illinois at Urbana-Champaign, is using CD-ROM to support
its networked Macintoshes with a growing library of application
software and data files (Jones, 1988, p. 24). The Brown University
Library catalog is being converted to CD-ROM storagenow
350,000 records with about 20,000 additional records being
converted every monthand is available to any workstation on
campus through the campus-wide network, BRUNET (Hawkins,
1989, pp. 37-38). The prospect of including program access to
archival information is an appealing one for CAC developers.
Dan Burns cites it as one of the major development goals for
future versions of Thought line: "With an $85 modem, the user
could plug into a database and carry on a conversation, and not
just with his own subconscious processes, but with an entire
range of authors and their worksmillions and millions of
articles" (D. Burns, 1989, interview).

While CD-ROMs are not yet common to computer-based
writing environments, their price has plummeted as new mass
storage media have been announced. Compact Disc-Write Once,
Read Many (CD-WORM) and Compact Disc-Read Write (CD-
RW) drives are on the market and will allow for much more
flexible use of CD technology as a storage medium (and go far
in solving the storage demands of hypermedia and other appli-
cations that use sound and video). Optical storage devices are
also available, introducing unprecedented storage capacity, and
while the cost of these newer technologies is still prohibitively
high for most writing environments, there is no reason to believe
that they, like all earlier computer technologies, will not become
more affordable.

Artificial Intelligence

Artificial intelligence (AI) is perhaps the most ambitious goal
of computer research. For some it conjures up images of Fredkin's
"super-machines," which hardly deign talk with humans (John-
son, 1987, p. 30); however, a more reasonable sense of Al is
suggested in its only slightly more modest goal, articulated by
Minsky, of "making machines do things that would require

1(1

Forces That Impact CAC Software Design 83

intelligence if done by men" (Boden, 1977, p. 4). In educational
applications, one might rephrase the goal of artificial intelligence
as making machines do things that intelligent teachers do. These
instructor attributes would include having expert knowledge of
a subject area, the ability to gauge a student's understanding of
that subject, and the ability to "implement strategies" for im-
proving the student's knowledge (Bums and Capps, 1988, p. 1).
These are the three fundamental components behind intelligent
tutoring systems (ITS), or in the area of writing instruction,
intelligent computer-aided composition (ICAC). While the pros-
pect of ICAC excites almost all the interview subjects, only those
three currently working in that area, Hugh Burns, Dan Burns,
and James Par lett, see AI as having an impact on CAC programs
in the near future.

Indeed, only three ICAC programs currently exist, Confer,
MINA, and Thought line, and only the last is available commer-
cially. There are two formidable hurdles in the development of
ICAC programs: (1) the development of natural language pro-
cessing (i.e., allowing a computer to translate English into
machine language); and (2) the problem of defining the knowl-
edge domain. Natural language processing is desirable in any
intelligent tutoring system, simply because users can commu-
nicate with the program in a language they already know.
Indeed, one of the earliest attempts at such an interface, William
Woods's Lunar program, took place because NASA had assem-
bled a mountain of data about the recently arrived Apollo II
moon rocks, but had only a Fortran programmer who could
access the information from the computer. NASA wanted ge-
ologists to be able to dial up the computer and make inquiries
of it in English.

In his effort to create the necessary natural language capability,
Woods developed a parsing device called an augmented transition
network (ATN), a breakthrough in natural language processing
(Johnson, 1987, p. 105). The ATN provided the computer with
a mode for understanding and applying the rules of English
grammar; in other words, the ATN gave the computer syntactic
understanding. That breakthrough was the first important step
in overcoming the natural language barrier. However, sentence
parsing requires semantic processing in order to make meaning

1

84 Writing Teachers Writing Software

of natural language; the two are inextricably intertwined. Terry
Winograd, a leading AI researcher and critic, explains:

People are able to interpret utterances which are not syn
tactically well formed, and can even assign meanings to
collections of words without use of syntax. This list "skid,
crash, hospital" presents a certain image, even though two
of the words are both nouns and verbs, and there are no
explicit syntactic connections. It is therefore wrong to insist
that some sort of complete parsing is a prerequisite to
semantic analysis.

On the other hand, people are able to interpret sentences
syntactically even when they do not know the meanings of
the individual words. . . . Much of our normal conversation
is made up of sentences like "Then the other one did the
same thing to it," in which the words taken individually do
not provide clues to enable us to determine the meaning
without a complete syntactic analysis.

What really seems to be going on is a coordinated process
in which a variety of syntactic and semantic information
can be relevant, and in which the hearer takes advantage
of whatever is more useful in understanding a given part
of a sentence. (Qtd. in Johnson, 1987, pp. 117-118)

Winograd's main point is that the natural language puzzle will
only be solved when our ability to program the syntactic meaning
of words is complemented by our ability to program what AI
researchers call "pragmatics," the semantic meanings of lan-
guage.

Natural language processing has been accomplished more
effectively in some fields; intelligent tutoring programs have
been developed in fields such as physics, geology, and economics.
But in those cases, the knowledge domain can be assigned strictly
defined boundaries. For a program in the field of geology, for
example, the language base is fairly well defined, and the
meanings of that language base are well understood. In com-
position, the whole world of knowledge is the domain, and thus
the challenge for ICAC is the central challenge of natural
language processing, the challenge of programming the rhetorical
context. This has been most effectively performed in Parlett's
Confer, because the program deals with a very limited knowledge
domainthe text-based analysis of a single short story. In

Forces That Impact CAC Software Design 85

keeping the subject and its analysis strictly defined, Par lett can
make his knowledge domain declarative instead of qualitative,
the latter knowledge base still being outside the reach of ICAC
program design. Hugh Bums has outlined the hurdles for ICAC
programs in his 1984 article "The Challenge for Computer-
Assisted Rhetoric." He calls for "intelligent systems that have
the capability to understand concrete domains and to make
inferences" (p. 18). His ideal system will know its uses, its user's
writing, and all its variations, and it will know which writing
projects are due and for whomand it will operate with natural
language processing.

With somewhat less ambitious goals, Confer comes at the
natural language problem from another angle. The program
plays the role of expert teacher-writer and leads students through
a dialogue about a single text, Walker Percy's essay, "The Loss
of the Creature." Instead of being built around an ATN or some
other parser, it uses complex pattern matching and some lexical
equivalents. While this approach is limited for a general natural
language processor, it can be made successful when the knowl-
edge domain is restricted enough for the designer to anticipate
users' input. The most famous program to use pattern matching
was Weizenbaum's ELIZA, which simulated the role of a Rogerian
therapist, offering canned responses to recognized keywords or
strings (Weizenbaum, 1976, pp. 36-45). Pattern matching works
in Confer because a single essay represents a clearly defined
domain; the program can take a student's input and, after
breaking it into phrases, match the words in each phrase to a
fairly extensive set of words (referred to as "tokens") in the
expert module of the program. When a match occurs, Confer
responds with output determined by the expert module, where
the student is in the program, and by the pedagogical rules
activated at the time (Par lett, 1987, p. 98). The program performs
fairly well in terms of syntactic ability, with an average of one
error for every 42.3 lines of system output in the tested prototype
(p. 98). Those same tests revealed high semantic performance,
with no reported instances of conversational failure or break-
down (p. 114). Given such performance, Par lett argues that
"context-sensitive pattern matching does, in fact, constitute a
legitimate approach for developing such systems now" (p. 117).

86 Writing Teachers Writing Software

Par lett (1987) argues that the key to making pattern matching
work, both in terms of syntactic/semantic performance and in
accommodating the world knowledge associated with writing,
is to "constrain the content area of the domain of inquiry, only
from the system's perspective:' (p. 117). The program requests
users to make connections between the Percy essay and their
world experience, but it does so from the perspective of the
program. In other words, it asks users to bring their knowledge
to bear on the essay, a domain where it does have expertise.
One important effect of that demand is that readers are forced
into a close reading or New Critical approach to the story, while
other critical approaches are inoperable within the program.
Parlett's long-term goal is to integrate Confer with an authoring
system that would allow instructcrs to create Confer programs
for any texts they desired. Such a program would ask questions
of the instructor about a given text, building its own expert
model for that text. An instructor could create Confer programs
for an entire semester's reading and then use the program "as
a stand-alone assistant to the teacher for these texts, with little
further work required on the system for that academic term"
(p. 24). In writing courses with narrowly defined constraints,
such as the writing of lab reports or, perhaps, technical writing,
a Confer authoring system might prove very useful.

Unless such an authoring system is developed, my research
suggests that artificial intelligence will continue to reside on the
periphery of CAC design efforts, largely as a result of expense
and expertise. Most AI software is written in LISP or one of its
derivative forms. Every statement in LISP is a list or part of a
list, usually marked off by parentheses. As a result, even simple
LISP programs are difficult to read, even by experienced LISP
programmers (Par lett, 1987, p. 69). Because LISP is an interpreted
language, it is very slow to process programs. Ideally, it should
be run on a LISP machine, a computer designed with a LISP
environment and meant to run LISP programs, but these are
quite expensive. The Xerox 118 Dandelion, on which Confer was
written, and its successors cost between $25,000 and $40,000
each, depending on the models purchased and their respective
price schemes. Furthermore, because LISP-written programs
demand so much memory (in its micro version, Confer requires

115

Forces That Impact CAC Software Design 87

18 megabytes of hard-drive storage and 3 megabytes of RAM),
they are not very portable into the microcomputer environment
where most students write.

The interview subjects working in AI are optimistic about its
impact in the near future. However, the rest of the interview
subjects agreed with Taylor when he said:

I'm in a camp that says natural language processing is too
far away to be of any use to me right now And I think it
may be twenty or thirty years before natural language
processing is really developed well enough to handle just
any old thing that you will type in . I think it's too far
away for me to worry about, so I don't put it in my
programs. (Taylor, 1989b, interview)

Even those interviewees who work in large design teams, people
who are less worried about immediate applicability in the writing
classroom and who have good equipment and funding resources,
did not see AI as being an impact technology in CAC program-
ming in the near future.

Reward and Recognition

Designing and developing CAC software is a time-consuming
and difficult task; on this point, all the interviewees agreed.
While there are no consistent, nationwide standards for the
treatment of CAC development efforts, research suggests that a
lack of reward and recognition is more common at the end of
the development continuum inhabited by full-time teachers like
Schwartz and Kaplan, than at the end inhabited by researchers
and design team leaders like Woodruff and Smith, where reward
and recognition are readily available. Given that research design
teams account for only a small percentage of CAC software
development, the implications of the research are that most CAC
software developers suffer from a lack of institutional incentive.

This hypothesis is certainly borne out of the results of the
EDUCOM survey on academic software development. Indeed,
the findir gs were rather dismal:

I

88 Writing Teachers Writing Software

The results of the interviews indicated that incentives were
not generally available to faculty. Release time seemed to
be tied to the availability of funds on campuses and, for
the most part, was available only through external funning.
Since criteria for promotion and tenure were established at
the department or school level, there were few campuswide
standards that gave credit; others counted it as a publication
if it was published; and still others did not accept devel-
opment activities as promotion criteria at all. Generally,
four-year institutions appreciated development only if it
resulted in some kind of publication. The potential to
improve the level of instruction was not a significant factor.
(Keane & Gaither, 1988, p. 55)

Sixty percent of the survey respondents cited a lack of release
time as a serious impediment to software development, and 50
percent cited the fact that development efforts did not count
toward promotion (p. 56). Keane and Gaither assert that the
demoralizing lack of support reported by people like Schwartz,
Kaplan, and the survey respondents is the single most important
factor "in sustaining decentralized development efforts" (p. 63).

The EDUCOM survey gathered information on institutional-
wide programming efforts in the full range of disciplines. Many
of the interview subjects indicated that the lack of support
reported by EDUCOM is even worse for the CAC program
developers because they typically work within English depart-
ments. Some argued that they suffer marginality even within
the field of composition. Wayne Butler humorously illustrates
the point: "I'm an English education person in an English
department, teaching composition on computersI'm the lowest
form of life on my university's food chain" (Butler, 1991,
interview). Selfe sees CAC work as having potentially a broad
impact on composition studies and English studies, but she
argues that CAC efforts are largely ignored by both groups:

I contend that our success in terms of this broader impact
is by no means guaranteed, or even feasible, given our
particular position within the profession of English studies.
A full decade after the birth of computers and composition
studies, we are, indeed, part of an exciting intellectual
debate; we are discovering fascinating relationships among
computers, writers, and teachers of writing. But we are not

Forces That Impact CAC Software Design 89

having a generalized effect on our profession; we are not
necessarily leading the thinking that goes on; we are not
always a focus of professional debate or even curiosity. We
are a group of scholars who attend each other's presenta-
tions, but who seldom hear our ideas echoed in more
general intellectual exchanges. We exist, if you will, on the
margin of English studies. (Selfe, 1989b, p. 2)

Selfe sees composition theory informing CAC work, but not a
complementary reverse of that influence. She asserts, "It's not
a permeable membrane in both ways. It's only permeable in
one way" (Selfe, 1989a, interview).

There are a number of forces at work in the marginality of
CAC researchers and developers. One of the most important
factors in that marginality is that English departments, in very
many cases, range from being outright hostile toward CAC work,
to simply being unsure of how to evaluate CAC efforts. Consider
the case of Wresch, creator of Writer's Helper, one of the most
commercially successful CAC programs on the market, and a
leader in the field. In 1982, he was a tenure-track faculty member
at a community college, and his work on the program was
progressing well. He recalls:

I had received an equipment grant from Apple, so I could
do some of this work [programming] at home. I also had a
contract with NCTE to write that first book, The Computer
in Composition Instruction. Things were looking up for me
as a developer and as c3meone who was beginning to
understand where computers might fit in. My reward from
the English department was to be fired because, they said,
I was dealing with computers, and I had no business doing
that as an English teacher. (Wresch, 1992, interview)

Wresch appealed the decision, and it was reversed, though he
became convinced that he would not receive tenure when the
time came because he was "messing with computers."

Wresch left the community college for a faculty position at
the University of Wisconsin at Stevens Point. More importantly,
once there, he joined the computer science department, where
he could continue to work on his software program, to work
with teachers and computers, and to have those efforts be
valued. In contrast to his earlier experience, Wresch went from

90 Writing Teachers Writing Software

assistant professor to professor in four years, was given early
tenure, and now chairs his department. Switching disciplinary
camps was a drastic measure, but Wresch is not optimistic about
changes occurring in the reward and recognition structures of
English departments. He remembers winning the prestigious
NCRIPTAL/EDUCOM award for Writer's Helper in 1988, and
what he calls "one of the saddest meetings I've ever gone to"
after the awards ceremony:

Those of us who had won an award got together after the
awards ceremony, and we were very, very highwe had
just picked up a check for five thousand dollars, we had
this huge trophy, re had just stood in front of a crowd of
3,000 people who had applauded us, and we were each
convinced that they had applauded for us individually. Then
we got into a room and talked about development and what
it would take, and in discussing our individual experiences,
we discovered that what we had in common was that each
of us had been working for nearly a decade, each of us
had been working largely alone, none of us had been getting
support or recognition from our institutions, and we had
continued working despite a lot of obstacles. I don't know
what to do about institutions. I don't see that situation
turning around much. (Wresch, ibid)

For Wresch, it meant finding an environment that was compatible
with his interests, and this meant moving to computer science,
though he remains quite active within English studies through
his activities in professional organizations.

Given the newness of the technology and the lack of any real
history of technologically based research in English studies, the
work of CAC researchers remains a difficult challenge to the
traditional English department in terms of evaluation and reward.
Joseph H. Bourque (1983), for example, recalled his department
chair's surprise at his request to have one of his programs
considered a publication.

In his article, Bourque argues the validity of CAC work toward
the advancement of knowledge, and he goes on to set up some
standards for considering it as such. Bourque argues that CAC
software requires the deve..-Ter to have a thorough understand-
ing of the field, as well as expertise in pedagogical theory,

Forces That Impact CAC Software Design 91

cognitive research methods, and programming. He also argues
that the act of creating a program is essentially the same as
writing a manuscript (pp. 69-70). Bourque is not wholly accurate
in his argument; the present study, for example, has revealed
the ways in which some program development efforts require
no programming knowledge on the part of the developer.
However, Bourque's guidelines for English department evalua-
tion of CAC development efforts are more helpful. He suggests
that evaluation of CAC work and programs be based on:

1. Substantive soundness. The program should be based on
the latest and best research in the discipline [composition
studies].

2. Pedagogical soundness. The program should reflect sound
and effective classroom practice.

3. Efficiency. Just as the length of a scholarly article is not an
indication of its quality, a computer program is not to be
judged by its bulk.

4. User friendliness. The computer program should be easy to
use, even for students and faculty who know nothing about
computers.

5. Documentation. No program should be dependent on the
availability of its author for use or further development.

6. Demonstrated use. Evidence that a program is being used
locally, ref,ionally, or nationally can provide further indi-
cation of the worth of the material. (p. 73)

Bourque's guidelines would not be inappropriate for the eval-
uation of a textbook, and many CAC programs might be con-
sidered in that light. Yet, other programs may help redefine our
concept of writing, and in a sense, give birth to new pedagogy,
new research, and new theory. If these programs are accompanied
by significant theory, then he CAC effort has more value than
the production of another textbook. The important point, here,
is that these kinds of guidelines could help make clear a
department's criteria for CAC development work. While the
guidelines for any given department will necessarily be geared

92 Writing Teachers Writing Software

toward that department and its particular institutional demands,
the key is that those demands be articulated and that departments
make clear the ways in which CAC efforts will come into 1, :ay
in deliberations over promotion and tenure.

Those discussions are only now beginning to occur because
English departments are faced with continuing pressure to
integrate computers into their writing curriculum, even when
they would rather not. For example, an alumna of the University
of Maine recently donated a computer writing lab to the English
department, who accepted it only on the insistence of the
academic dean. It is more common for English department CAC
enthusiasts to be in a fight with other departments over scarce
computer resources, but this example points to the kinds of
resistance these researchers face within their own departments
as well. The pressure to integrate computers into the writing
curriculum has led to what McDaniel has called the "white coat
syndrome," the hiring of one department member b act as a
computer specialist upon whom the pressure of CAC develop-
ment can be unloaded (Selfe, 1989a, interview). Selfe sees the
newly hired CAC specialist as being in a position to force a
departmental clarification of policy regarding CAC work:

I think that when they get hired, people who are in
computers are going to have to go to their department
chairs. It is going to be the mutual responsibility of the two
to clearly articulate in written form the expectations, the
professional expectations, of the chair and of the person,
so that they don't fall prey to changing expectations. I think
we can do that, but we have to take a proactive role. We
can't sit back and assume that a department head is going
to understand what we know about computers. We have
to educate the head, and the head has to educate us about
educational constraints, and there has to be a negotiated
stance that comes out of that. (Selfe, ibid)

Until that happens, release time, promotion, and tenure will be
more readily available for CAC developers in research settings.

When CAC development is tied to research goals, as it is in
the cases of WE, CSILE, Notes, and other programs developed
in the research design team model, the reward value of those
efforts is tied to their success in producing publishable research

Forces That Impact CAC Software Design 93

findings. In each of those cases, the programs will not be widely
used in writing classes for some time to come. The programs
that emerge from the other three models are intended to improve
the writing curriculum, but many English departments, as we
have seen, place little value on them. If CAC developers are
being denied departmental rewards, this may be due to English
departments' lack of understanding about the nature of their
work, and also because academic culture does not place much
value in pedagogical improvement. This was the conclusion of
the FIPSE Technology Study Group:

The conflict faculty face when forced to choose between
the rewards of improved learning in a course and the
rewards of publishing research results is deeply rooted in
the culture of higher education. We recognize that the
traditional and most significant system of faculty reward,
tenure and promotion based on disciplinary research, is not
flexible enough at many institutions to encompass work in
developing curriculum. (Balestri, 1988, p. 46)

If CAC researchers focus wholly on the classroom use of their
programs and neglect their work's theoretical implications and
research value, then their work will continue to be as under-
valued as that of any hardworking classroom writing teacher
no matter hoin effective their programs are in improving or
facilitating student writing.

Certainly, while CAC programs proliferate, a review of the
literature on CAC reveals a dearth of theoretical work. Perhaps
this is due to the newness of the tools themselves; CAC re-
searchers have been so busy trying to understand them that
they have not stood back long enough to explore their broader
theoretical implications for composition. Selfe believes that "we've
been so busy playing that we haven't had time to look back at
the field and make those intellectual bridges that are going to
increase commerce between the two areas" (Selfe, 1989a, inter-
view). Wresch agrees and sees publication tied to software
development as one possible inroad into institutional reward
structures: "If article publication is the currency of the realm,
that's one way to continue your software work" (Wresch, 1992,
interview). CAC development efforts will have to be bolstered

94 Writing Teachers Writing Software

with a stronger theoretical orientation, with more published
research, if CAC developers are to partake in the departmental
reward structure and "legitimize" their efforts within traditional
institutional value systems.

Selfe also believes that the marginal position assigned to CAC
development work has more to do with deeply rooted ideological
orientations than with academe's stress on research over teaching
or over humanists' lack of technological understanding. She
believes that the rhetoric of technology in the writing classroom
reveals a "reformist vision of computer-supported classrooms":

one in which students are active, engaged, central, and one
in which technology is helping teachers address racism,
sexism, inequitable access to education, and other disturbing
political-social problems now operative in our educational
system. (Selfe, 1989b, p. 5)

She sees the rhetoric of CAC as being closely akin to the rhetoric
of feminism, each of them being a "highly politicized, rhetorical,
persuasive discourse that calls for change and that commits a
community of scholars to positive reform" (p. 6).

Drawing on the work of Suzanne Clark, Selfe identifies a
fundamental and ideological opposition between CAC research
and the values of the discipline:

Such discourse does not go over wcil at the academic center
of our profession, say, at the latest MLA convention, where
logocentric, unsentimental, agonistic values still often hold
sway, where our colleagues think that scholarship should
be objective, apolitical, and arhetorical. (p. 7)

Clearly, there is CAC work that does not fit the reformist vision
Selfe articulates the network programs that "monitor" writers
at work or Smith's WE come to mind. However, the collaboration
that comes in a program like Interchange, the empowerment of
marginalized students which networks and telecommunications
can allow, the challenge to notions of authorship in a hypertext
environment, and the idea of shared databases like the one in
CSILE all serve to challenge the traditional value structure of
academic discourse. Even the way these programs are devel-
opedcollaboratively rejects the traditional value of sole au-

Forces That Impact CAC Software Design 95

thorship of intellectual property. And when their work is reported
on in print, CAC developers speak in terms of fundammtal
changes to our present understanding of textuality and its
management, a discussion generally "couched in terms of hope
and change" (Selfe, 1989b, p. 5).

Ted Nelson ascribes the marginality of CAC developers to an
even more fundamental disagreement over intellectual orienta-
tion than the one identified by Selfe. In his book Literary Machines
(1987), he uses, as his starting position, C.P. Snow's notion of
two diametrically opposed intellectual cultures: the culture of
technology and the culture of the humanities. In Nelson's view,
English departments lack an understanding of computer tech-
nology as discussed by Bourque, and the values of associations
like the MLA which Selfe alludes to are only symptomatic of
this larger, cultural split. While Nelson's book is quirky and
sometimes overstates his position, his characterization of the
battle between the "technoids" and the "fluffies" has the ring
of truth:

About the only thing the groups have in common is their
shared view of computers [that they are technical] . . . But
one interesting aspect of the two cultures is their view of
each other in the world. Each sees the other group as "those
people in their little corner, unaware cf the big wide world."
To the Ruffles, this real world is history, art, literature, and
the little corner is "technical things." To the Technoids the
real world is that of technical questions and ideas, and the
little corner is the artsy-craftsy nook of bygone concerns.
(Sec. 1, p. 13)

Nelson goes on to argue that the computer, through networking,
worldwide databases, and hypertext in particular (Nelson is one
of the key developers of hypertext), stands to radically change
our understanding of text and that humanists, as managers of
text, and technoids, as those who possess the tools to work with
the technology, will have to reconcile in order to guide these
drdmatic changes.

Nelson is calling for intellectuals who can combine the tech-
nological and humanistic perspectives, researchers he refers to
as "systems humanists":

96 Writing Teachers Writing Software

As far as I am concerned, both the Technoids and Fluffies
are in their own little corners. In the broader view, the goals
are the long ones of civilizationeducation, understanding,
the preservation of human valuesbut we must use today's
technologies. I call this view "systems humanism." Civili-
zation as we know it is based in part on running water.
That system had to be thought out. Similarly, somebody's
gotta design waterworks for the mind. But it should be
someone who understands the fluidity of thought. (Sec.1,
p. 14)

While CAC work is not mentioned specifically by Nelson, CAC
developers come very close to fitting the role he describes.

English departments must come to recognize the special role
their CAC faculty--acting as "technology critics," to use Selfe's
termplay in the reconciliation of technology and the human-
ities (Selfe, 1992). Such recognition and accompanying support
for CAC work would go far in ending the often-decried lack of
good CAC software. For even as the EDUCOM survey reported
the dismal treatment of CAC development efforts, the survey
team concluded that software development continues and that
the future of such efforts is promising if the issues of reward
and recognition are addressed successfully (Keane Sr Gaither,
1988, pp. 63-64).

Funding

Developing CAC programs is an expensive proposition. As
was illustrated in the earlier discussion, costs are tied to the
model of development in use. The lone programming model is
obviously much less costly than the big-budget research design
effort. The EDUCOM Software Development Survey does pro-
vide some sense of general software development costs. For
example, the University of Akron estimates the development
costs of a one-hour computer instructional module to be about
$10,000. To develop one hour of intelligent tutoring software,
the California State University at San Francisco estimated about
1,000 hours of development time, at about $50 per hour (Keane
& Gaither, 1988, p. 58).

1 1 5

Forces That Impact CAC Software Design 97

Sources of funding can range from the bank account of an
individual developer, as in the case of the prototype for Prewrite;
to the institutional funding of the sort Kaplan received for the
development of Prose; to large grant- giving entities like the
National Science Foundation (NSF), the Fund for Improvement
in Post-Secondary Education (FIPSE), or the Office of Naval
Research (ONR), the latter having funded software development
efforts at Carnegie Mellon University. Corporate funding, es-
pecially from industry giants like IBM and Apple, can also be
an important source of project monies. Commercial sale of CAC
software does not yet sustain substantial development efforts,
though as the market for such software grows and more effective
forms of marketing and distribution are discovered, the for-
profit sale of software may become a more viable source of
development funds. In cases such as Wresch's Writer's Helper;
which is being used in 3,000 high schools and colleges, sales
have provided ample reward for the developer's efforts, yet this
kind of success in marketing CAC programs is still quite rare.

Generally speaking, the lone programmer, small design group,
and entrepreneurial approaches to program development are
either under- or only adequately funded. Research-based design
teams enjoy the most generous funding, especially through ties
with corporations (which, of course, have a vested interest in
their efforts) and with the defense industry. Perhaps because of
competition in the former, and the inherent secretiveness of the
latter, interview subjects working in the research design model
were reticent about discussing their sources of funding. None
would divulge their project budgets, although c'mith, as men-
tioned earlier, used a figure of $450,000 to discuss the manage-
ment of funds in such projects. Woodruff would only identify
the number of funding sources for CSILE, seven, and say that
they were a combination of corporate and educational sources
(Woodruff, 1989, interview). Neuwirth identified FIPSE as a
funding source for one project, but she would not discuss funding
sources further, other than to say they were typically a combi-
nation of government and private foundations (Neuwirth, 1989a,
interview).

A relative abundance of funding allows research design teams
to sustain complex, ambitious projects. However, funding of this

!

98 Writing Teachers Writing Software

magnitude carries with it some considerable burdens. As Smith
made clear, spending at this level requires tighter controls and
more accountability, adding a greater number of bureaucratic
duties to the task of projeZt manager (J.B. Smith, 1989, interview).
Projects that carry this type of funding seem to require a more
highly controlled development protocol; for example, Neuwirth
cites her role as principal investigator on grants as a reason for
closely monitoring her programmers (Neuwirth, 1989a, inter-
view). Finally, at least with the corporate sponsors, there can be
pressures to bring a product to market before the developers
are ready. Woodruff explains:

As you know, programs of this size are very expensive, and
ihne are very few private agencies that can afford them.
So sooner or later, you have to go to the corporate sector.
And as much as they would like to assume a philanthropic
attitude, they want to see something that will sell their
equipment . . . as soon as possible. Yesterday wasn't soon
enough for them. You've just got to work out that balance.
You've got to convince everybody involved that the research
is necessary, and that if you push it out before the research
is completed, you'll probably have a product that is detri-
mental to the goal you are trying to achieve. (Woodruff,
1989, interview; emphasis his)

Despite the pressures they may exert, large funding entities like
corporations and government agencies will continue to be the
primary monetary sources for the expensive efforts of the re-
search design teams. As a result, continued pressure will be
brought to bear on research-based programs to serve both market
and government needs. Moreover, because most of the major
funding entities are interested in advanced research and devel-
opment, CAC developers with solely pedagogical aime will
continue to see very little of that money coming t! fir way.

Software Publication

If faculty overcome the challenges of developing software
and actually produce good and useful programs, they still have

1 1 7

Forces That Impact CAC Software Design 99

a crucial decision to make regarding the disseminzAon of that
software. When programs were more modest in scope, the market
less broad, and the costs of development lower, faculty-devel-
oped programs were often shared for free or for the cost of the
diskette on which they were stored. Oftentimes, programs were
simply made available on campus networks. As recently as 1988,
an EDUCOM survey revealed that "the majority of academic
software developed for the curriculum was not published by
any of the major book or software publishers" (Keane & Gaither,
1988, p. 51). This state of affairs resulted in poor dissemination
of software and little monetary incentive for faculty to continue
their development efforts.

However, as the market for CAC software has grown, faculty
developers are increasingly turning to textbook or software
publishers. Unfortunately, textbook publishers have not served
the interests of faculty software developers very well, despite
their extensive sales networks. Based on the experience of those
interviewed, academic software publishers are doing a much
better job of handling faculty-based software, though there are
signs that textbook publishers may be growing more sensitive
to the demands of effective software marketing. The publishing
histories of Kaplan, Martin, and Davis's Prose, Helen Schwartz's
SEEN and Organize, and Wresch's Writer's 1-Yelper generally
illustrate the strengths and weaknesses of dealing with textbook
and software publishers. Making a program suitable for the
widest number of users, keeping up with evolving technology,
conducting effective marketing, making royalties and finding
capital for ongoing software development, and keeping software
theoretically and pedagogically sound are all tied to the choices
developers make regarding the dissemination of their software.
Programs have lived and died on the basis of those choices, so
the evolution of software publishing is of substantial importance
in the discussion of faculty-based software development.

Kaplan's experience with McGraw-Hill illustrates the worst
possible consequences of disseminating software through a major
textbook publisher. In 1988, unhappy with Kinko's Academic
Software Exchange's marketing of Prose, Kaplan and her col-
leagues scld the program rights to McGraw-Hill. She is blunt
in her assessment of that decision: "Anybody working on

1 1 S

1.t

100 Writing Teachers Writing Software

software should not publish it v rith a book publisher!" (Kaplan,
1991b, interview). McGraw-Hill has failed to upgrade Prose, in
essence making the program almost obsolete in the Macintosh
environment. That was never Kaplan's expectation, but the
contract she and her colleagues signed with McGraw-Hill allows
the publisher to decide when redevelopment of the program
should take place. Kaplan explains the problem:

The environment in which Prose has to exist has changed
many times since we finished programming the version sold
to McGraw-Hill. But in our contract, we were unable to
negotiate what I consider to be satisfactory decision points
about when redevelopment would begin. And since the
cc tr-:,-ny does not understand software, and wanted always
to think of it in terms of the cycles by which they produce
textbooks, this was not very successful. (Kaplan, ibid)

Helen Schwartz had the same experience with Wadsworth's
handling of her program Organize: "One of the reasons I signed
with them was that I thought they'd keep the software current,
which they never did" (H. Schwartz, 1992, interview). Further
exacerbating Kaplan and her colleagues' situation was the fact
that the original McGraw-Hill version of Prose still had bugs in
it. The three developers corrected those problems, but McGraw-
Hill had already packaged and shrink-wrapped the flawed
version of the program and did not want to repackage the
manuals with the new bug-free version of Prose.

Prose was originally designed for the Apple Macintosh, but
McGraw-Hill planned to target the large DOS market by con-
tracting with a programming firm for a DOS rewrite of the
program. Kaplan, Martin, and Davis were often consulted during
the project, and though they had no direct decision-making
power, they strenuously objected to a number of design decisions
that the hired programmers were making. Kaplan recalls:

They adapted a text editor that had no word-wrap capability.
Their first thought was, "Well, this will be acceptable. English
teachers don't have very high expectations." They said that
they had already built some things around this editor and
that changing it would be expensive and compli-
cated. . . They made some programming decisions that were

Forces That Impact CAC Software Design 101

very bad, and after McGraw-Hill had thrown a certain
amount of money into the problem and came up with
nothing close to acceptable, they just cut the fundingso,
no more money. (Kaplan, ibid)

As a result, Prose never made it into the DOS environment,
losing a potential market and costing Kaplan and her co-
developers potential royalties of some magnitude. Indeed, sales
of Prose have been light, and McGraw-Hill scarcely markets the
program at all.

A different kind of decision on the part of Wadsworth, on
tile question of copy protection, led to a similar loss of sales for
Organize, and thus royalties for Schwartz. Piracy, the unauthor-
ized copying and distributing of a software program, continues
to be a difficult issue in disseminating software. While copy
protection schemes can be incorporated into a program, they
often complicate the program's use, affect its reliability, and
make it more expensive (H. Schwartz, 1990, p. 26). Wadsworth
decided to copy-protect Organize, a decision to which Schwartz
did not object. Unfortunately, the right-protection scheme Wads-
worth employed proved complicated for users. Schwartz says:

The way they right-protected meant that people had to do
a fairly complex operation at the beginning, even to get the
program to work. So, essentially, it never sold. They started
giving it away. (H. Schwartz, 1992, interview)

Because the program was now being given away free, it paid
no royalties. Schwartz at least enjoyed an advance on the
program. No longer feeling invested enough in the project to
pressure for its redesign, as well as feeling frustrated with
Wadsworth, she allowed the issue to rest.

William Wresch has had a markedly different experience with
Writer's Helper, which is marketed through CONDUIT, an aca-
demic software publisher. CONDUIT, in existence since 1972,
began as a National Science Foundation-funded consortium of
universities developing and sharing faculty-developed software
on a not-for-profit basis. Now based at the University of Iowa,
CONDUIT operates much like any small publishing house,
though its not-for-profit status frees it from some of the con-

211

102 Writing Teachers Writing Software

straints of profit-making publishers. Wresch rejected large text-
book publishers (coincidentally, McGraw-Hill was one those he
rejected) to market his Writer's Helper with CONDUIT. He says:

I really made a correct decision lin dealing with McGraw-
Hill. The more I talked to them, the more I realized they
didn't know anything about software, and that if I were to
publish through them, I was not only going to publish, but
I was going to spend my life training them to understand
what software was. So I went with a software publisher
because I needed that level of help. (Wresch, 1992, inter-
view)

Even as early as 1983, when Wresch decided to contract with
CONDUIT, the consortium had ten years of experience in
marketing academic software to colleges and universities.

The experience that CONDUIT had in creating and dissemi-
nating software to the college market led to a much more active
partnership between Wresch and the organization than in Ka-
plan's experience with McGraw-Hill. Wresch explains:

They could give me a great deal of help on what my
interface should be. They knew what necessary documen-
tation should be. They had a clear sense of how to turn a
product that worked in my classroom into something easy
enough to use so that people in other classrooms could use
it. (Wresch, ibid)

That consultation extended beyond mere advice to CONDUIT's
actually rewriting some of the program code. For example, in
order to make the program run faster, they added, by Wresch's
estimate, a full 10 percent to the program's original code:

I found this astounding. They didn't say, "Here are some
things you need to rewrite." They just went ahead and
rewrote it themselvesand I'm really grateful for that.
(Wresch, ibid)

The program was released in 1985 and went on to sell approx-
imately 1,000 copies over the next three years.

User feedback, Wresch's sense of developments in the field
of composition, and new technolog cal developments all led to

Forces That Impact CAC Software Design 103

a substantial revision of the program, with CONDUIT once
again doing the programming. The result was the release of
Writer's Helper Stage II, in 1988. Wresch doubled the number of
activities from twenty-two to forty-four, updated the interface
to include easy-to-use pull-down menus, and made the program
modifiable by teachers. A recent extension of this version in-
cluded six more activities and works within the Micro Soft
Winuows environment. While CONDUIT has always had in-
house programmers, their wholesale rewriting of Writer's Helper
code was a first for them. Molly Hepler, product manager for
English and foreign languages at CONDUIT, cites a dual purpose
in CONDUIT's willingness to rewrite the program. On the one
hand, she says CONDUIT recognized that faculty developers
had little time to undertake such work:

We try to relieve the professor of trying to stay up technically
with changes in the field and with new developments.
Working in C or C+, making programs network compati-
ble . . . it gets complicated, and it's unfair to expect faculty
to keep up with that. (Hepler, 1992, interview)

On tl'e other hand, CONDUIT enjoyed great success with Writer's
Helper and saw it as the centerpiece of their software catalogue.
Rewriting the program in C (Wresch originally used BASIC),
which allowed for the new interface and increased functionality,
was good for Wresch and for CONDUIT.

CONDUIT's sense of the program's potential was borne out
with the release of Writer's Helper Stage II. With a renewed
marketing effort by CONDUIT, ;ales of the program doubled,
and it is now being used in about 3,000 high schools, colleges,
and universities. CONDUIT, lacking the extensive in-the-field
sales staff common to textbook publishers, uses a combination
of direct mail, advertising in professional media, and convention
booths to market Writer's Helper. Their sales to date have been
quite good for a CAC software program. Because field sales are
geared toward direct student sales, possessing an irk- the -field
sales force is of little help in marketing software. Hepler explains
that there continues to be no viable market base for direct sales
of software to students:

f:

I

104 Writing Teachers Writing Software

Lots of publishers tried to market software. They thought
they could package it with a textbook and sell directly to
students through college bookstores. It didn't happen. Text-
books are expensive, and adding even $10 to the cost means
students aren't going to buy. And, at least for now, insti-
tutions are the ones buying the software, not students.
Maybe if that right combination of textbook and :,..Nftware
package occurs it will generate sales; then we might be at
a disadvantage without a sales networkbut that hasn't
happened yet. (Hepler, ibid)

Moreover, the sales people who represent textbook companies
are often ill-prepared to discuss software when a faculty person
does show some interest. As most writing teachers know, text-
book sales often begin with a knock on the door by the area
representative. Usually working out of home offices and trained
to deal with print texts, these sales people often have no training
in or familiarity with the software program they carry. Indeed,
an informal survey of twelve regional sales representatives who
carry some form of CAC software revealed that eight had never
used their programs, and four had merely seen their programs
in "getting acquainted" demonstrations at regional or national
company meetings. None could discuss the programs in detail
or address anything but the most basic technical questions.
Textbor 's publishers have simply not kept pace with the tech-
nology, and that filters down to a large, but finally inept,
marketing force who tries to sell a product for which the parent
company has shown no commitment.

Commitment to their software offerings was the quality Wresch
and Schwartz saw most apparent in CONDUIT's handling of
their programs. Schwartz praises CONDUIT's handling of SEEN
and the collaborative nature of the organization's relationship
with her. At the time she entered into an agreement with
CONDUIT, she and the editors there had proposed revisions for
the program. As they did in. Wresch's case, CONDUIT took
responsibility for substantial rewriting of the prowam code.
These changes included an authoring system that allowed cus-
tomized tutorials, on-line examples, an updated interface, and
network capability. They also wrote the program manuals.
Schwartz, like Wresch, is convinced that CONDUIT greatly

1"J

Forces That Impact CAC Software Design 105

improved the program, made it more marketable, and made the
program more flexible for the teachers who would use it in their
classrooms. She also readily admits that aspects of the program,
for example, the networking capability, would never have been
included without CONDUIT's willingness to take on the pro-
gramming work: "I knew that what I could do alone was not
as good as what they could do." She adds, "I have nothing but
praise for CONDUIT. They are academics, but they also know
marketing, and they're very good. I never have to worry about
quality control. They understand software" (H. Schwartz, 1992,
interview). At least for the time being, software publishers like
CONDUIT seem to be highly preferable to textbook publishers
for faculty who are seeking a way to disseminate their software.
Certair Wresch is as adamant as Kaplan in his advice to avoid
textbook publishers: "In every case where a bookseller has
bought software, the software developer has lived to regret it"
(Wresch, 1992, interview).

Will that continue to be the case? There are encouraging signs
that textbook publishers, who are showing a revived interest in
software, are growing more sensitive to the demands of handling
and marketing. The first such sign is the creation of software
editor positions within the companies. Kim Richardson, software
developer at Harper Collins, is charged with acquiring software
products, working with developers, and developing a catalog of
programs that include more stand-alone software not tied to
handbooks or texts. She says:

The history of textbook publishers and software has not
been good, in large part, because publishers had no history
of working with software. They tried to set that work within
a book model, and it just didn't work. Textbook acquisition
editors were signing up programs they didn't know, that
were not developed properly, and that were then not
marketed properly. (Richardson, 1992, interview)

In contrast, Richardson's sole focus is software, so she has
nurtured her connections with CAC researchers and developers.
For example, one of her first projects at Harper Collins was 53rd
Street Writer, a word processor and on-line handbook developed
by the Daedalus Group.

106 Writing Teachers Writing Software

Richardson sees textbook publishers coming to value software
more than they did in the past:

The attitude is changing week to week, for the better. In
the past six months I've seen a growing awareness of
software. Oh, there are people who would rather not
acknowledge my existence within the company, but there
are editors who are really interested and want to know how
software can help their lists. (Richardson, ibid)

While editors' increased interest may still be tied to improving
their text sales, it is important to note that Richardson was hired
with the specific long-range goal of building a catalog of free-
standing software.

One challenge facing Richardson is the longstanding practice
of bundling free software with texts as a marketing strategy.
While she admits. that many editors see this as a way of selling
more texts, faculty, accustomed to getting free software with
their texts and often expecting it, are another hurdle. They will
have to be convinced that software is a viable component of
their curriculum and worth their students' dollars. She explains:

We often bundle free software with texts and many faculty
have come to expect it is a catch-22 that isn't good for any
of us. It would be better if students purchased software.
That would generate sales for us, royalties for developers,
and the increased development that would support would
provide higher-quality software for instructors and students.
(Richardson, ibid)

Richardson's argument echoes The FIPSE Technology Study
Group's conclusion that distribution of free software, through
many channels, has failed to adequately support ongoing soft-
ware development (Balestri, 1988, p. 82). With 53rd Street Writer,
Richardson makes the program available as a $9.95 free-standing
program or as a $4.96 ancillary to a handbook. It is still too
early to tell if the recently released program will enjoy good
sales in either format.

Richardson acknowledges that field sales staff are often un-
prepared to discuss software products with potential customers.
They are emblematic of their industry, slowly coming to grips

1`J

Forces That Impact CAC Software Design 107

with a technology that does not fit easily within their print-text
frame of reference (and in that, they might be said to resemble
many in English studies). Moreover, texts are still the mainstay
of their sales, and will remain so for some time to come. As
Richardson points out:

Whenever we have a national meeting, we set up a room
with computers and all our software products and invite
our saLs staff to come in and use the programs and get
better acquainted with them. But there are so many dis-
tractions at these meetings, and the sales people have so
many books they need to know. they just don't get in
there enough to work with the software. (Richardson, ibid)

On another level, technology can be a problem. Richardson
explains that Harper Collins sales people use Compaq laptops
and DOS machines, but that when they are given Macintosh
programs, they are unable to use them and learn the product.
She partly compensates for these shortcomings by attending
computer and writing conferences, engaging in the same "net-
working" that her colleagues in the software publishing houses,
people like CONDUIT's Hepler, use to make sales contacts. In
addition, she offers to make sales presentations with the
Harper Collins sales staff.

Harper Collins does not have on staff the in-house program-
mers which CONDUIT can devote to a software project, but
Richardson outlines a relationship between faculty developers
and the publisher that may avoid some of the pitfalls that beset
a program like Prose. If Richardson is presented with a program
that she finds interesting, she can negotiate with the developer
to continue the development and to present the program for a
review process similar to the one used for texts. If the publisher
accepts the finished product, the developer can negotiate a one-
time license fee or a royalty contract, with 15 percent royalties
being the rule-of-thumb average for software products for both
textbook and software publishing houses. This arrangement
offers little improvement over past arrangements, but another
possibility is for the publisher to offer an option agreement that
pays the developer an advance and gives Harper Collins the first-
right-to-buy. That advance can be used to pay for development

1`'6

108 Writing Teachers Writing Software

costs, and it has ranged from as little as $500 to several thousand
dollars for programs in which Richardson had great interest. In
either case, Richardson has developed a pool of outside pro-
grammers and developers who work with faculty developers.
She acknowledges the importance of program revision, but points
out that the decision to undertake the expense and trouble is
driven by the market demand for the product. In any event,
she uses a standard three-year term for software contracts, and
she argues that a developer unhappy with the pace or timing
of program revision could end the relationship with Harper-
Collins and enter into a new relationship with another publisher.

After their initial interest in and failure with software, followed
by their subsequent loss of interest, textbook publishers are once
again showing renewed interest in CAC software. As Richardson
says, "Computers are here to stay, and we know that now." And
the proliferation of computer writing labs means that the huge
composition market needs software products. This time, however,
the involvement of software editors like Kim Richardson, the
apparent commitment of their superiors to marketing software
and developing a catalog of free-standing programs, and the
growing interest of textbook editors in software programs suggest
that entering into an arrangement with a textbook publisher
does not necessarily have to be the disaster it once was for
many faculty software developers.

The Future of CAC Development Models

Anyone who works with computer technology makes predic-
tions about the future with hesitance and some anxiety. The
technology is moving ahead at dizzying speed, and because that
progress is fueled within a highly competitive corporate market,
research and development efforts are highly secretive. Yet, my
research suggests that this is a critical period for CAC software
development, a time when a number of forces have come
together to discourage many computer and writing people from
creating software programs, even as new technologies have
made the actual development easier than bef-u-e, For the im-

1 ''(

4

Forces That Impact CAC Software Design 109

mediate future, there is likely to be a movement up the design
continuum away from the efforts of the lone developer model.
However, there are, on the horizon, developments which may
help mitigate that trend, but probably not for another four to
five years, according to the individuals interviewed for this study.
Considering the forces at work in the area of CAC software
design (e.g., changes in technology, the reward and recognition
structures of institutions, funding questions), I would like to
suggest the probable direction of the four approaches to devel-
opment that I identified earlier.

The Lone Developer

As things now stand, the lone developer approach for CAC
development is underfunded, goes unrewarded, and is facing
increased technological complexity. While many of the best CAC
programs now available have been produced by classroom
teachers trying their hand at software development, this ap-
proach has become increasingly difficult to sustain; almost none
of these developers has gone on to create a second program.
There are likely to be fewer programs emerging from this model
for the time being. Those prOgrams that do emerge will be
necessarily limited in scope and goals, even as CAC programming
seems to be moving in the direction of programs such as WE
and CSILE, which operate as comprehensive writing environ-
ments that encompass the whole of the writing process.

There is disagreement on the place of such "small" programs
in a market accustomed to using large, multifunctional software
programs such as Word, WordPerfect, Writer's Helper, and presum-
ably, at some point, a writing environment program such as WE.
Kaplan believes software programs that address only one small
part of the writing process will seem unworthy of the time and
effort their faculty designers invested in them, especially in light
of software that is already available and the expectations of
users: "It's very difficult to adopt something that maybe addresses
a tenth of what [users] need to do" (Kaplan, 199 lb, interview).
On the other hand, if writing environmentprograms are designed
to allow the integration of smaller programs, the latter may find
a viable place in the design world. This is the position of

1 Ci

110 Writing Teachers Writing Software

Woodruff, who admires these "little programs," as he calls them
(Woodruff, 1989, interview). He sees them as "targeted to do
one thing and to do it very well;' and he believes that "if they
do that very well, there'll always be a place for them. I think
the total environment will have to allow movement in and out
of those programs" (Woodruff, ibid). Since fully integrated
writing environment programs like WE and CSILE largely exist
in research contexts, it will be some time before this question is
answered. Hypertext authoring programs, however, are quite
another matter.

As I have argued elsewhere (LeBlanc, 1992), authoring pro-
grams, particularly hypermedia authoring programs, have the
power to revive faculty-based software development in both the
lone developer and small design group approaches. Apple Com-
puters introduced HyperCard for the Macintosh five years ago,
and CAC developers are starting to explore more fully its
implications for design. For example, Chris Anson (1989), of the
University of Minnesota, is currently working on a hypertext
version of rhetorical cases, what he is calling "deep cases;'
complex and descriptively rich scenarios that use banks of
accessible information. The DiPardos' (1989) program, described
earlier, is creating new kinds of text that aren't possible in
traditional print media. John McDaid (1989; 1991) has his
freshman writers producing hypermedia essays. Hypertext and
hypermedia (as it becomes more affordable) can allow developers
to create complex programs right now

As faculty see and use hypertext/hypermedia applications,
and as those authoring programs become even easier to use,
there should be an increase in faculty-based software develop-
ment. Ron Fortune, who is creating hypertext applications that
combine manuscript studies and writing, reports just such a
phenomenon:

So often I hear faculty colleagues talking about what they
would like to do in their courses, and it makes no difference
whether it's a literature course or a writing course; your
first reaction is that the ideal tool for doing this is hypertext.
After I gave a presentation on what I was doing with
hypertext, faculty came up to me and said, "I would like
to try this. Can we get together sometime and talk about

1 " a-1

Forces That Impact CAC Software Design 111

it?" I read that as a very positive signthat the interest is
there. (Fortune, 1991, interview)

At my own institution, where we have installed a hypermedia
classroom and faculty courseware development facility, an in-
vitation for proposals went out to fill ten available spots for
faculty software developers. With no release time or additional
support offered, ten faculty from various disciplines, with almost
no programming experience, eagerly signed on, with a second
group waiting in the wings. To borrow Catherine Smith's (1991)
comment, "They seem minds stunned with possibility" (p. 237).

The lack of any real DOS-based hypertext systems has so far
slowed the amount of software development being done by
faculty, given the huge installed base of DOS-based computers
in higher education. As noted earlier, lone faculty developers
work with the hardware available to them, and for a vast
number of faculty, that is the IBM or one of its compatibles.
Apple's competitors have rushed to enter the hypertext market,
but as Tim Bajarin, vice president of Creative Strategies Research
International, says, "In the Mac arena [the HyperCard idea] is
understood. In the PC arena, I don't think anybody has any
idea of what it is" (Flynn, 1989, p. 21). That was so for some
time, but in 1991, IBM introduced its first integrated hypermedia
system and this year began shipping its Ultimedia system, the
first DOS system to run hypertext applications at a speed
comparable to Apple's Macintosh computer. If Tool Book, the
Asymetrix-produced, hypermedia authoring program packaged
with IBM systems, can do for the DOS environment what
HyperCard is doing for the Macintosh environment, the power
to effectively create software will be in the hands of thousands
of technology-savvy faculty. Helen Schwartz's Discourse Detective
and Ron Fortune's manuscript work have both been created
using ToolBook and hopefully signal the first wave of DOS-based
hypertext applications to join the superb work that other CAC
specialists like Moulthrop, Joyce, McDaid, and others are doing
in the Macintosh environment.

Helen Schwartz envisions a middle ground in which faculty
purchase software programs that have built-in authoringsystems
and that can be greatly and easily modified. In this case, teachers

112 Writing Teachers Writing Software

are not building programs from scratch, but can take the existing
"frame" of a program, flesh it out, and modify it in ways that
are most useful to them. She explains:

I think the metaphor for the coming decade is going to be
"sampling." What we're going to do is learn to build on
other people's work more successfully. (H. Schwartz, 1992,
interview)

Her point is that the reusability and transferability of blocks of
object-oriented program code, and the authoring programs they
make possible, will allow the easy modification of existing
software. For example, in Schwartz's own program, SEEN, teach-
ers can use the built-in authoring utilities to create entirely new
tutorials within the program. Given the constraints imposed
upon writing teachers, the lack of support or institutional reward,
for example, Schwartz does not anticipate the widespread de-
velopment of software by writing instructors. However, she
believes that modifiable software programs will encourage writ-
ing teachers to shape software in ways most meaningful to their
students, and that giving software users that power will en-
courage continued diversity in approaches with CAC software.

The Small Design Group

What is good for the lone program designer is generally good
for the small design group, as well. Therefore, advances such
as OOP, hypertext, and authoring programs, when they become
more readily available, will offer the same benefits in this
approach as they do for the lone faculty designer. Indeed, the
small design group is likely to take advantage of those benefits
even sooner. Given their collaborative structure, small-group
design teams are able to assemble a broader range of expertise
by bringing in diverse specialists. By employing an audiovisual
specialist in their design group, for example, they could more
easily expand into hypermedia than the writing teacher who
has not worked with videodiscs or animators. Because OOP
design allows for the independent construction of objects (or
independent blocks of code), members of the small-group design
team can delegate responsibility for portions of the program

Forces That Impact CAC Software Design 113

more easily than they can with traditional programming lan-
guages, thus speeding up their development time. Yet, like the
lone programmer, they are likely to cintinue to suffer from
underfunding and lack of rewards.

While the small design groups often work with the hardware
they find readily available, the fact that their funding is often
partially supplied through grants allows them a little more
flexibility in equipment choices than the lone developer typically
enjoys. For example, Kaplan and her collaborators were able to
choose the Macintosh as their architectural base for the devel-
opment of Prose. This flexibility in hardware purchasing will
allow small design groups to take advantage of technological
developments more rapidly than sole program designers.

There is likely to be more pressure on small design group
members to publish research based on their program efforts and
use. While that same pressure may be felt by many lone
programmers, because small-group developers are more likely
to have grant funding, their development efforts are more
formalized, often justified in terms of research goals, and more
publicly central in their scholarship. In contrast, while some
lone programmers may also seek to work that way and have
their programs treated as research related, most, like Mimi
Schwartz, have treated software as an ancillary piece of course
materialthat is, a small piece of a much larger pedagogical
approach, developed on one's own time away from professional
duties, and often produced without complementary research
efforts. Kaplan, on the other hand, sees Prose as one of her
primary scholarly accomplishments and posited it as her "book"
in her successful tenure application at the University of Texas
at Dallas. Simply put, published research is still the "currency
of the realm;' as Wresch puts it, and will be necessary if CAC
developers wish their work to be the basis for promotion, tenure,
or even release time. While this added burden may slow down
program development, the need for research results may have
the positive effect of forcing more user testing and evaluation
than is typical in this model. While the results of this testing
should provide valuable research data for program developers
who need to publish, it should also result in better program

1"

114 Writing Teachers Writing Software

efforts if these developers are afforded the funds to revise their
programs.

The growing number of microcomputers in the writing class-
room is creating a growing and viable market for the sale of
CAC software, a fact reinforced by the knowledge that college
microcomputers are overwhelmingly used for the task of writing.
A review of the 1990-91 software logbook at the Springfield
College microcomputer lab revealed that almost 80 percent of
the software signed out was for word processing. As the FIPSE
Technology Study Group points out, one source of development
funds may lie in more effectively tapping this market through
better distribution and marketing of CAC software (Balestri,
1988, p. 82). This may seem commonsensical, but CAC devel-
opers' longstanding habit of making their software available for
free or for a very nominal fee resulted in a subsequent lack of
profit and provided no funds for future development. In a
commercial arrangement, "Receipts from the sale of software
pay the developers, the graphic artists, and the publisher's
expenses in marketing and supporting the product; most im-
portantly, receipts can pay for the development of a new
generation of software" (Balestri, ibid). While the gift-giving
approach of "public domain" software is endorsed by the FIPSE
Group (Balestri, ibid), the expense of program development, the
general lack of funds, and the amount of time and effort
demanded by program development make such generosity much
rarer.

The success of Wresch and Schwartz in working with CON-
DUIT suggests that the small group may often be comprised of
faculty and publishing professionals. Though Wresch and
Schwartz both worked as sole programmers through the early
development and even initial distribution of their programs,
when they joined CONDUIT, the development of their programs
became a small-group efforta highly successful, collaborative
one. The effective small-group approach of the future may
consist of one or more faculty members together with the editor,
programmer, and marketing expert of the publishing company.
One benefit of such collaboration would come in having the
marketing expertise, sense of user needs, and technological
expertise of the publishers included in the early development

1 ' j

Forces That Impact CAC Software Design 115

stages, thus precluding the often substantial program revisions
that occur when software passes from the hands of faculty
developers into those of the publishers.

The Entrepreneurial Design Group

If these groups can more effectively market their programs,
the expanding market for CAC software has the potential to
sustain their design efforts, as well as to fund their expanded
development goals and their purchase of the technology nec-
essary to meet those goals. Because they self-market their
products, professional developers like Dan Burns cannot rely on
word-of-mouth referrals and vendor displays at conferences for
the sale of their software. Burns has tried direct-mail marketing
for academe with disappointing results:

When we send direct mail to businesses we get about 2.2
percent in sales. To colleges and universities, it's been about
1 percent at best, which is just not enough to sustain the
costs of this marketing approach. (Bums, 1989, interview)

As a result, Burns has been forced to tap the academic market-
place through conferences such as the Conference on College
Composition and Communication and the Computers and Writ-
ing Conference, and has had to subsequently lower his expec-
tations for college sales. For the program, less money means less
revision, and Burns has had to delay his plans for an academic-
based version of Thoughtline.

The entrepreneurial design group, comprised of academics
who start their own software company as a separate and
secondary pursuit, can more effectively operate with conference
and word-of-mouth marketing. They can do so .)ecause their
software efforts are not their primary source of income, and
because their contacts within academe make word-of-mouth
referrals a much more effective marketing device than it is for
an outsider like Burns. However, they cannot be blase about
sales. For example, the Daedalus Group members, recognizing
the amount of time and effort they were devoting to the company,
were forced to double the price of their software in 1990 in
order to cover their costs. At that, Butler admits that the group's

7

116 Writing Teachers Writing Software

contract programming work kept it afloat until sales of the
Daedalus Instructional System could finally sustain operations.
Profits, if they are abundant, can cover costs and allow such
design groups to purchase new hardware and software tools,
allowing them to keep up with changes in operating environ-
ments and the marketplace in ways which textbook publishers
find it harder to do. If profits are scarce, these design groups
will find it more difficult to take advantage of technologies that
could greatly influence the programs they designhypermedia,
for example.

While their careers as academics insulate entrepreneurial de-
sign group members from the vicissitudes of the marketplace,
they nonetheless are forced to juggle their software development
and the academic pursuits necessary for their professional suc-
cess. For example, Paul Taylor, recently hired at Texas Tech,
admits that his work for the Daedalus Group greatly slowed his
academic progress. Taylor also asserts that his work with tech-
nology was not viewed positively by some search committees
during his job search: "It scared off most of those I spoke with"
(Taylor, 1989b, interview). Wayne Butler, who is now on the job
market, echoes that sense and has downplayed his technology
work in some cases. Once they are hired, the entrepreneurial
designers will ,Post likely find it difficult to balance their full-
time academic responsibilities with their software development.
Fred Kemp agrees:

I think it's a very tough thing to do. I think to design
software with the kind of originality and risk taking that
characterized my early days . . . I believe that with the
responsibilities I have and the demand upon me to publish
texts, that I don't have the time to take those risks, to play
I mean play in a very serious way, to learn the new
programming languages, for example. (Kemp, 1991, inter-
view)

If they wish to succeed as academics, that is, to receive promotion
and tenure, and to create CAC software, members of the
entrepreneurial design group, like members of the small design
group, will have to demand clarification from their chairs on

Forces That Impact CAC Software Design 117

the treatment of CAC work in decisions about tenure and
promotion, and they will have to produce publishable research.

It may be necessary for entrepreneurial designers to follow
the Daedalus Group strategy of keeping company work and
academic work publicly separate. For example, if Daedalus Group
members are presenting a paper at a conference, they perform
no Daedalus work there, that is, no working in the booth or
meeting with interested customers. Butler points out that in
some disciplines, a connection between academic life and the
outside corporate/governmental world is prized, engineering or
business, for example:

The business school would much rather have the CEO of
a corporation as a lecturer in the department, because that
person knows about business, has been out there doing it.
I think, in the humanities, there's a skepticism about those
who would make money from their knowledge, or some-
thing like that. (Butler, 1991, interview)

While none of those interviewed expressed a desire to sever
their ties to academe, the precedent for such a break exists in
other fields, where strong corporate markets exist for academic
expertise in program design. It will be interesting, in the next
few years, to see if any entrepreneurial design group members
become full-fledged, professional software developers like Dan
Burns. Butler does not dismiss that as a possibility for some
members of the Daedalus Group, though it has not happened
yet.

The Research-Based Design Team

Design teams operating in research universities will continue
to thrive and may come to represent a larger percentage of CAC
development efforts. The research-based design team has played
an increasingly important role for a number of reasons. First,
being situated in a research university, design teams are in a
position to integrate new technologies as those technologies
emerge. This is true, in part, because these technologies are
often developed in such settings, because the expertise necessary
to effect their integration is more likely to be available at research

2(3

118 Writing Teachers Writing Software

institutions, and because those institutions are more likely to
have the funds necessary to purchase new technologies. In
addition, because their goal is research rather than the dissem-
ination of software, they are under less pressure to see their
product in the marketplace.

As illustrated in the earlier examination of this members
of the research design teams operate in an environment where
their efforts are valued and rewarded. This kind of professional
atmosphere will not only continue to nurture design efforts, but
it may draw CAC developers who are currently working in other
models. Par lett sees this as a distinct possibility:

I think the whole movement in design efforts is toward
cogn;tive-based research groups like Chris Neuwirth's or
John Smith's. They have the money, they have the resources,
and they are doing good stuff. Who could blame someone
like a Paul Taylor for choosing to work in that environment?
(Par lett, 1989, interview)

If Parlett's prediction is correct, then research design teams will
not only have the best technological resources available to them,
but they may have many of the best CAC developers as well.

Perhaps the most important development in this model is the
continued movement toward complex and comprehensive writ-
ing environments like WE and CSILE. The development of a
single, cohesive writing environment represents a significant
break from previous macro-environments or "macroprograms"
like Writer's Helper, which offers a diverse menu of subprogram
offerings. Macroprograms like Writer's Helper or HBJ Writer allow
their users to pick and choose among subprograms for those
that best meet their needs as writers. They can choose "strategies
that accord both with individual writing styles and with the
demands of both their topics and their intended audience"
(Rodrigues & Rodrigues, 1984, p. 85). The pluralism of macro-
programs is largely rejected in the new "environment" programs.
Par lett explains the rationale:

This design philosophy [of macroprograms] is characterized
by an "objective" or naïve pluralism wherein all instructional
methods and strategies for invention or prewriting are
treated as potentially and equally legitimate, without regard

Forces That impact CAC Software Design 119

for the pedagogical stance enacted by the teacher in the
classroom. Such a pluralistic tolerance removes the burden
of strategy evaluation from the teacher and places it solely
on the students, themselves, who must sample such a mixed
bag of approaches in its entirety before adopting one or
more strategies for the work at hand. (Par lett, 1987, p. 58)

A strong advocate of Parlett's view, John Smith argues for
comprehensive writing environments designed around a highly
structured cognitive model of the writing process:

While these programs [CAC software] offer writers new
tools, they do so piecemeal and with minimum concern for
the large-scale structure of the writing task. Their designs
often seem driven more by what the computer can be easily
programmed to do rather than by what will help writers
most. Badly needed are tools designed from the outset to
closely match and to augment the inherent cognitive pro-
cesses that human beings use to perform the complex,
multifaceted task of writing. (Smith & Lansman, 1987, p.
1)

Woodruff's willingness to integrate independently developed
"little programs" in CSILE, a total writing environment, is not
shared by Smith, who urges a stricter adherence to a highly
formalized design model (Smith, Weiss, & Ferguson, 1987).

Wresch sees some important design issues in the emergence
of writing environments like WE and believes that such programs
are out of synch with the needs of teachers and the demands
of writing classes:

Every teacher I've talked to resists that approach for a very
simple reason: you only get students for fifty minutes. What
they wanted, and still want, and request from me are
activities that can be done in a fairly short period of time.
The environment that you create is not the software; it's
the classroom. The teacher comes in and says, "Today we're
going to do module A or module B;' as part of a larger
process that they, the teachers, have er visioned as taking
place over a week, or two weeks, or three. So the glue that
holds everything together is not the softwarethe software
never takes over anythingit's the classroom. The class has
to be able to get into a particular activity, to do something
the teacher thinks is of value, and to get out again before

1

120 Writing Teachers Writing Software

that bell rings or the period comes to an end. (Wresch,
1992, interview)

Wresch argues that software designers need to keep the teacher
central in the design concept, and that software must not only
give teachers control over the programs but also empower them
to decide what is important for their classrooms. As writing
environment programs move from the research setting to the
marketplace, teachers, the key consumers in the CAC market,
will largely determine the ability of writing environments to find
acceptance in the classroom. It will be interesting to see if
Wresch's sense of their needs is borne out.

An Overall View

While diversity still exists in approaches to CAC software
development, recent years have seen an increase in the number
of one-time developers who abandon further projects as well as
a general drop-off in programming efforts. One key reason for
the decline in CAC software work has been the growing com-
plexity of technology and the corresponding increase in program
sophistication. The arrival of authoring tools and hypertext, as
well as the decreasing costs of technology, may reinvigorate
faculty-based programming on the part of classroom teachers.
However, formidable obstacles still exist for those interested
faculty and include the marginalized position of CAC specialists,
a lack of institutional reward and recognition, and difficulty in
acquiring funding. While overcoming technological hurdles is
significant, our success in addressing institutional issues will be
the key in assigning CAC software development its proper value
and in keeping it within the province of English studies.

For now, th increased cost of CAC development and the
growing complexity of programs are moving CAC development
up the continuum toward the research design model. That model
will account for a greater number of CAC programs, though the
lag period between their development and their common use in
writing classes will remain significant until memory, processing
speed, and larger screen sizes become much more affordable.
The value placed on CAC program development in university

1

Forces That Impact CAC Software Design 121

research programs will make it the most welcoming environment
for CAC specialists.

The work of CAC developers in the other three models will
not be properly rewarded by English departments in the near
future, due in part to a lack of appreciation for the intellectual
rigors of good CAC work, to some deeply rooted anxieties about
technical culture, and to an ideology that devalues work that
emerges from the classroom and is meant to improve the
curriculum. The research model has developed in an environment
where these obstacles are much less pronounced or are entirely
absent. Many of the developers working in the lone programmer,
small-group, and entrepreneurial group models have been people
with no real stake in departmental reward systems. They might
be said to have been marginalized in the departmental structure
during their program development efforts, being either graduate
students (Taylor, Kemp, Carter, Par lett) or working as adjunct
faculty (Mimi Schwartz, Kaplan). In the latter case, faculty
developers have generally produced only one program, finding
the lack of reward and the effort required for program devel-
opment to preclude new development projects or even revisions
of their original programs. In the former case, CAC work has
slowed progress in the graduate program and will pose interesting
problems for these developers as they enter the profession or
decide to pursue another career. The first generation of com-
position specialists with CAC as their doctoral focus are only
now entering the field. In many cases, they are likely to be
burdened as their department's "computer specialist;' falling
victim to the "white coat" syndrome; they will be expected to
publish and teach full loads; and they may find very little time
for their CAC program work.

Take, for example, the case of Fred Kemp. Kemp was hired
by Texas Technological University as an assistant professor. He
is director of developmental writing, director of the writing
program, the English department coordinator for the Texas
Assessment of Skills Proficiency (TASP), and overseer of their
expansion of computer-based writing facilities. In addition to
that, he is trying to maintain his responsibilities to the Daedalus
Group. His colleagues worry. Par lett says:

122 Writing Teachers Writing Software

It's real hard trying to fulfill academic duties, particularly
the way they pile them onto new faculty, especially writing
faculty. And then try to do any computer programming? I
don't know how Fred does it. It's not the supportive
atmosphere I work in at the Human Resources Lab. (Par lett,
1989, interview)

The little time left for program development might drive CAC
specialists to research settings that nurture this kind of work.
The situation may spark an increase in professional development
groups, if the marketing strategies can make that endeavor
viable, or it may simply cut down on the number and quality
of new CAC programs, forcing some developers to abandon
their efforts entirely.

The nonresearch-based design models stand to be reinvigo-
rated by new technologies, hypertext most immediately, but also
object-oriented programming and authoring programs. The im-
pact of hypertext is being felt across the whole design continuum
and only awaits better DOS-based programs to prompt a whole
new generation of software, particularly from the small design
and entrepreneurial design groups. However, the complexity of
hypertext systems and OOP will dissuade all but the most
dedicated lone programmers. or

In trying to determine the direction of CAC program devel-
opment, my research suggests that the work of research-based
design teams will play a much more prominent role in the field
overall. They have the funds, the technology, and the resources
to develop complex programs in an atmosphere that values and
rewards their efforts. The success of the entrepreneurial design
model will be tied to its .-ilccess in tapping the growing CAC
market. The size of that market is suggested by looking at just
one of its parts. Consider the figures:

1. The number of computers used in elementary and second-
ary schools quadrupled from about 250,000 to 1983 to
over one million in 1985.

2. Three-quarters of the schools which had not previously
used computers began to do so.

Forces That Impact CAC Software Design 123

3. During the 1984-85 school year, approximately 15 million
students and 500,000 teachers used computers as part of
their schools' instructional programs. (Qtd. in Herrmann,
1989, p. 111)

For those academics working in the entrepreneurial model, their
CAC work is likely to be constrained by professional duties and
pressures. That will also be the case for members of the small
design group. In both instances, a change in attitudes by English
departments will go a long way to reinvigorating these models.
If the success of the research-based model confirms the old
adage about the rich getting richer, the lone programmer's fate
seems to confirm the second half of the saying. A lack of reward,
a lack of funding, and the growing complexity of the technology
and design goals are making the lone programming effort a
thing of lore, a relic of the days of BASIC and 64k machines.

1 ti

Chapter 5

CAC Software Design
and the New Literacy

While computer and writing specialists may still feel margin-
alized within the profession, their fundamental belief that tech-
nology is radically redefining writing and most other literary
practices is taking hold. A growing chorus is proclaiming the
digital revolution, as Richard Lanham (1989) terms it. A call to
order is being issued within English studies, either directly, as
in Andrea Lunsford's 1991 MLA address, or implicitly through
the increased attention paid by mainstream journals such as
NCTE's College English and MLA's Profession; the growing num-
ber of CAC sessions at the MLA and CCCC annual conventions;
or the now steady stream of professional texts from publishers
such as NCTE, Boynton /Cook, MLA, Ablex, and others. There
was little choice in the matter.

The limitations of print text have become all too nakedly
apparent in the light shed by the computer monitor. For example,
the transmission speed of electronic text, the ability to move
through a hypertextual database and easily reassemble data, and
the compact mass storage possible with electronic text are ideally
suited to library science, information services, and business.
While the return on their investment has been questioned
(Moran, 1991, p. 2), American corporations are spending huge
sums on electronic communications systems and are adopting
technologies such as electronic mail, hypermedia, and computer
conferencing at a furious pace. Like it or not, corporate needs
and practices exert a powerful influence on curricula in both
secondary and higher education, and corporate America's wide-
spread adoption of the computer as a communications tool will
have a significant impact on the English classroom. As Lanham
(1989) says:

124

CAC Software Design and the New Literacy 125

Some of the billions of dollars American business and
government spend to train their employees are being spent
in redefining the "textbook"and, almost in passing, the
codex book itselfinto an interactive multimedia delivery
system. Sooner or later, such electronic "texts" will redefine
the writing, reading, and professing of literature as well.
(p. 265)

While the profession struggles to understand the changes in
its subject area and to rewrite its curriculum, on-line documen-
tation and hypermedia systems have altered technical writing
irrevocably and have created the first direct link between the
changes in corporate communication and undergraduate edu-
cation (Shirk, 1991; Zimmerman, 1989; Carlson, 1988; Bernstein,
1988). As Muriel Zimmerman (1989) said to her colleagues in
technical writing:

Many of us will acquire programming skills and write or
edit on-line menus and messages. Some of us will become
hypertext information architects. Some of us will have
facilitating roles in a technology whose outlines we can
only guess at. . . . We may continue to be called writers;
modern truckdrivers are teamsters, and firemen ride diesel
trainsbut I don't think that we will do much of what
Thelma Thistleblossom [a Timp Software grammar- and
style-checking program] can do, or even much of what we
presently do. (p. 245)

Zimmerman's use of the future tense should not mislead anyone.
These changes are taking place now, and they serve notice on
those of us working in composition that our students must be
prepared to function in a world of electronic discourse when
they leave our classrooms.

The new literacy has not been thrust willy-nilly upon English
studies because of the demands of the workplace; as technology
has moved beyond word processing and stand-alone computers,
compelling connections have emerged between electronic com-
munication and many of the current theories informing both
literary and composition studies. As George Landow and Paul
Delaney (1991) assert, the

deep theoretical implications of hypertext converge with

126 Writing Teachers Writing Software

some major points of contemporary literary theory and
semiological theory, particularly with Derrida's emphasis on
decentering, with Barthe's conception of the readerly versus
writerly text, with post-modem's rejection of sequential
narratives and unitary perspective, and with the issue of
"intertextuality." In fact, hypertext creates an almost em-
barrassingly literal embodiment of such concepts. (p. 6)

This notion of electronic text's ability to operationalize theory,
which print text resists, is echoed in a number of recent works.
David Bolter (1991) claims, "Not only reader-response and
spatial-form but even the most radical theorists (Barthes, de
Man, Derrida, and their American followers) speak a language
that is strikingly appropriate to electronic writing" (p. 161).
Stuart Moulthrop (1991) sees hypertext uniting deconstruction
and the production of all text, everything from the freshman
essay to the novel.

Similarly, computer and writing specialists have been quick
to point out the compatibility of computer-based writing and
much of the current thinking in composition theory and pedag-
ogy. In composition studies, Trent Batson (1988) echoes Landow
and Delaney's (1991) assertion, claiming that "it was as if some
of the current theories about how to write were developed
specifically with networks in mind, even though the developers
didn't know it" (p. 32). Early CAC research was enthusiastic
but often unconnected to theory and larger issues of literacy. In
1989, calling for more theoretical work in computers and writing
and the changing nature of literacy, Cynthia Selfe (1989c) wrote:

Our profession will have to work diligently in the next few
years to identify and explore the changing nature of literacy
with a computer-supported writing environment, and to
consider the implications of these changes for our teaching.
(pp. 13-14)

CAC research has begun to take that broader view and has
explored more thoroughly the connections between on-line
literacy behaviors and theory. For example, in more recent work,
Thomas Barker and Fred Kemp (1990) describe the new "post-
modern pedagogy for the writing classroom" (p. 1); Janet Eldred
(1989) has clearly outlined the way computer-based writing

145

CAC Software Design and the New Literacy 127

supports social constructivist theory (pp. 209-216); Ron Fortune
(1991, interview) is linking notions of intertextuality and revision
in his hypertext-based manuscript work; and Selfe (1990) has
explored the potentially liberatory effects of computer-based
writing for otherwise marginalized students. The proliferation
of computer-based writing labs, the installation of campuswide
networks, the increasing,number of students who now own their
own computers, and the enthusiasm of colleagues who teach in
electronic environments have all fueled the growing interest in
CAC within composition studies.

At present the challenge for CAC specialists is less to convince
their colleagues that a transformation in literacy is taking place
and more to urge them to assume a central role in defining how
technology and literacy will intersect. As John McDaid (1991)
puts it:

It seems we are in the midst of a "phase change" between
technologies, when the characteristics of the defining me-
dium become momentarily apparent. . . . Here is an oppor-
tunity and, for composition theorists, a responsibility (pp.
217-218)

Henrietta Shirk (1991) echoes McDaid's call to order, and she
voices one of the key points of this book when she says, "If
those concerned about communication do not participate in the
development of new theories for the new technologies available
in the field, others will accomplish this task for them" (pp. 198-
199). The argument needs to be extended, for even Shirk relegates
composition to a reactive position when we are in this unique,
yet perhaps short-lived, even ignored, period that allows us to
shape the technology through software development and thus
become proactive in the shaping of the new literacy. We confront,
then, a question of vision, or more precisely, a question of whose
vision we will be working with in our classrooms.

Relying on Corporate Creativity

Writing teachers could wait for the computer industry's hard-
ware and software manufacturers to create products in response

146

128 Writing Teachers Writing Software

to their needs, but such a stance ignores the longstanding
relationship between technological development and consumer
need, a relationship in which technology drives need (some
would even say dictates), not the reverse. Nancy Kaplan (1991a)
treats this subject with great insight, reminding us that complex
technologies arise within existing and self-perpetuating ideolo-
gies that have the capital and power to shape those technologies
(pp. 21-24). She echoes Richard Ohmann's (1985) assertion that
"computers are an evolving technology, like any other, shaped
within particular social relations and responsive to the needs of
those with the power to direct that evolution" (p. 680). The key
to shaping consumer need is to make the original technology
seem "natural" to its users, so that all subsequent needs and
consumer feedback begin with the base technology and its
underlying assumption of "what can be," to borrow from Goran
Therborn. If consumers of technology begin to define their needs
in terms of the base technology, with its sets of capabilities and
limitations, their sense of what could be is constrained from the
outset.

Consider just one of the technologies that has inspired so
much interest and enthusiasm in CAC: networking. Networking
has made possible Barker and Kemp's post-structuralist writing
classroom. It seems to make possible new pedagogies based on
social constructivist theories of writing, in which collaboration,
empowerment, student-centeredness, and social-based learning
can be realized. Yet network technology was first designed for
military and then business use, and its design favors security,
hierarchical relationships among users, and surveillance. At best,
writing teachers must work to overcome those obstacles; gaining
full freedom from them might even mean building a new network
technology from scratch, as occurred with CSILE. In another
example, Ron Fortune, working with Too/Book to create hyper-
media applications in the DOS environment, complains that the
software belies IBM's business orientation and has required him
"to work around" those limitations (Fortune, 1991, interview).
Because we do not create hardware (though Ontario's devel-
opment of the ICON computer was a valiant attempt), computer
and writing teachers will always be subject to at least that

147

CAC Software Design ar.d the New Literacy 129

amount of ideologically influenced technology in their on-line
environments.

Indeed, it the microcomputer were designed in response to
writers' needs, it would most likely look and operate quite
differently than it does now Screen size, which affects reading
effectiveness and thus revision, as Haas (1989) has shown,
would have allowed long ago more than an average of fifty-
one lines of text on a screen. Kaplan comments:

Where did the architecture of the IBM systemwhich still,
by the way, dominates the world as far as I can seewhere
did that come from? Well, it certainly didn't come out of
anybody's notion of how people actually work with text,
yet that actually turns out to be the single most important
application of microcomputers. My favorite example of this
is the notion that documents scroll down. Where did that
come from and why is it so deeply embedded in the
architecture of all word processing? How did it get to be
that way? Well, it almost doesn't matter how it got to be
that way; that it is that way really shapes our relationship
to emerging text. (Kaplan, 1989, Interview)

Selfe shares that view, points out the computer's military-
industrial lineage, and suggests that the computer embodies
elements of that background:

What are the command lines that come up on the computer?
They've been somewhat disguised in the later years: "Abort,
kill, zap, and execute:' Every command line comes right
out of the military background of the computer. My suspicion
is that it's reflected in many other subtle ways. (Selfe, 1989a,
interview)

As writing teachers who are exploring electronic literacy and
struggling to answer the question "What can be ?" we might
find that the range of answers available to us is already con-
strained by what has been offered and what we accept as our
starting point.

In the worst case, those underlying design values result in
networked systems like Robotel's Micro Select video network
system. Marketed at educational conferences, the system allows

130 Writing Teachers Writing Software

teachers to monitor their students' screens, unbeknown to the
students, and to interrupt and take over a student terminal.
Note the pedagogical values implicit in the following excerpts
from their marketing materials:

No More Inattentive Students.

The teacher can end the class' work at any point by
preempting their screens . . .

Better teacher control over student work.

Computers tended to interfere with age-old, proven pedagogical
techniques. ("MicroSelect: The Essential Tool") This particular
product seems the computer embodiment of Bentham's Pan-
opticon, against which Selfe (1989b) warns. As she explains,
the Panopticon.was Bentham's design for a circular prison with
a guard station in the middle, constructed in such a fashion as
to allow guards to observe prisoners unobserved by the latter,
creating a king of paranoid self-discipline in the prison population
(p. 10). As Selfe says:

We have not acknowledged or explored the fact, for example,
that these electronic spaces [networks] can be used as
"disciplinary" technologies, through which teachers control
students and their discourse in the most traditional sense.
(p. 10)

Technologies like MicroSelect's network system, merely an ex-
tension of the underlying technology's design and ideological
basis, undermine the promise of electronic literacy. A reality of
computers and writing, and one not likely to change, is that the
tools the computer industry affords us are ideologically laden,
as Kaplan, Ohmann, Olson, and others would argue, and that
ideology may often conflict with teacher ideals and goals.

Forging Alliances

While collaboration between academics and corporate interests
is common and often valued by some disciplines, for example,

I

CAC Software Design and the New Literacy 131

business, engineering, and some medical fields, those relation-
ships are fairly new to the humanities (though manning the
conference booth of one's textbook publisher carries some of
the same reverberations). Within the humanities such relation-
ships have been forged most directly and visibly in computers
and writing studies. For those working in research settings or in
some software development programs, these alliances are as
necessary as they are in any field that relies on what is often
expensive technology and equipment. For example, the Computer
Research Lab at the University of Texas was founded on an IBM
equipment grant, and without it, the Daedalus Group would
not have come into existence or created its software. Similarly,
Apple Computers has given substantial support to the CSILE
project, and the computer William Wresch used at home to first
create Writer's Helper (then called Essay Writer) was provided
with an Apple grant. Such funding has made some of the best
CAC software possible, but it is, of course, in the hardware
manufacturers' best interest to support software that moves their
product line.

Collaboration with corporate interests seems to inspire a
complicated mix of reactions within the CAC community. Because
that collaboration can mean financial support, knowledge of and
early access to new technologies, and endorsement of one's
work, there is a measure of pride and prestige for the faculty
person; CAC faculty have been featured in "resource" materials
produced by both Apple and IBM, and both companies have
featured faculty-developed software, the latter producing poten-
tial sales of the software and royalties for the developer. Other
perks might include travel to corporate-sponsored conferences,
consulting opportunities, and employment possibilities. How-
ever, many within the humanities look askance at such part-
nerships and see them as exploitive relationships in which
academics sacrifice their scholarly objectivity. For now, given the
lack of institutional support and funding for CAC software
development, coNboration between developers and corporate
interests seem a r. cssary, if complicated, arrangement.

Wresch, who has forged those corporate ties as visibly as
anyone, asserts that such relationships are good for the corn-
p.anies, with their need for the guidance of academics, and are

132 Writing Teachers Writing Software

good for the academics, with their need for support and tech-
nological know-how. He agrees that a hardware manufacturer
like IBM is looking for software that "it can sell and runs on its
machines. . . that enhances its product," but that computer com-
panies also have a sincere and well-intentioned interest in
education:

They want to market to us, and they need to understand
[the academic marketplace], but some of it is altruistic, as
well. They are interested in who their next generation of
employees will be, what kind of a school experience their
own children will have. They're interested in education for
more than simply making money, and that's true for all of
the hardware companies I've spent some time with. They
honestly do listen. (Wresch, 1992, interview)

Wresch also points out that companies like IBM and Apple have
hired many academics who go on to play key roles in shaping
academic technology for the manufacturers:

If you say you work with IBM, or you say you work with
Apple, generally who you're working with is somebody
who used to teach at a university and is now employed
over there, so you're essentially talking with one of your
colleagues.. .. Because they come from our milieu, they're
not hard to talk to. They know exactly what's going on
over there [academe], because they were, in many cases,
over here for a decade or two before they went over to the
company. These individuals come out of an academic tra-
dition, they are hired at some point by the hardware
companies, and they understand cur needs. (Wresch, ibid)

Wresch focuses on the individuals who represent the corpora-
tions, people with children, academic backgrounds, and perhaps
similar values, and anyone meeting someone like IBM's Doug
Short, a former medievalist, or Apple's Rich B. (last name kept
confidential at his request), who works on educational technology
for children, is struck by their thoughtfulness, intelligence, and
idealistic vision for computer-based learning. That said, Apple
and IBM are still large capitalistic entities that exist to generate
profits, and the intersection of that ontological fact and our
educational purpose bears further consideration and ongoing
diligence.

1r
$ A

CAC Software Design and the New Literacy 133

Military Funding

While corporate affiliations are not entirely new to English
studiesmany faculty have contracts with textbook publishers
and do consulting workmilitary funding is another matter.
Given the military's longstanding investment in computer tech-
nology, it comes as no surprise that the military invests in
software development. For example, the Army Research Institute
has sponsored John Smith's work with WE, the Office of Naval
Research funded the construction of Carnegie Mellon's software
development center, and the Air Force and NASA have begun
a joint hypertext project. Within CAC software development,
Department of Defense (DOD) funding, which can be quite
substantial, has occurred only within the research design ap-
proach, yet some of those interviewed think such funding should
be avoided.

Reservations about DOD funding have been raised on many
campuses and within many disciplines, but the issue had not
arisen within composition or English studies until the advent of
CAC software development efforts. Interview subjects were more
guarded in their comments about DOD funding than they were
about any other subjectin part, I believe, because the CAC
community is still quite small and therefore has less room to
accommodate the kind of ethical and moral recriminations often
engendered in this debate. One interviewee, under promise of
anonymity, said:

It's not that the software someone produces with military
funding is itself good or bad, it is just that on one level,
such developers are buying into some larger enterprise in
which the military sees their software playing some func-
tional role, and on another level, there is ethical complicity
in that larger enterprise as well. There are no neutral
technologies.

Chris Neuwirth acknowledges the ethical reservations held by
some of her colleagues at Carnegie Mellon toward DOD funding,
but she applies a more practical principle to the question as she
pursues project funding:

Richard Young put it this way to me, when I was first

134 Writing Teachers Writing Software

starting. He said, "Chris, don't ever go out and get money
where you wouldn't do what you're doing anyway." That's
the bottom line we use to judge whether we are going to
go after it [funding]. If it's something we would do anyway,
and the [funding] constraints aren't shoving us in a particular
direction, then it's okay. I can say that this has been the
case for our funding. (Neuwirth, 1989a, interview)

Unlike the affiliations with corporations, which take place across
the development continuum, partnerships that rely on defense
funding will likely remain within the research setting, where
they are less controversial and more actively sought; this is not,
however, to dismiss the issue, for if broad-based faculty devel-
opment of CAC software continues to decline, the research
setting stands to play a more influential role in articulating our
vision of computer-based writing..

The Ascendancy of Cognitive Theory
in CAC Design

As writing becomes increasingly an electronic practice, the
dominance of any one approach to computer-based writing in
the CAC software market has important implications for all of
composition studies. Kaplan (1991a) illustrates the power of
software to shape our thinking about information and knowledge
making in 'ler discussion of electronic databases:

The database's underlying structure, usually invisible to the
user, shapes both the forms inquiry can take, and for what
purposes. Anyone first encountering an electronic cataloging
system bumps up hard against such reality as he or she
struggles to transform strategies appropriate for a system
of card files into new mental habits for a system dependent
on Boolean techniques. And the nature of those habits
depends on the software's data structure and on the user
interface constructed by the software's designers. (p. 15)

While Kaplan does not mention it as an example, consider the
influence exerted by Lotus 1-2-3 on the business world. It has
now become almost mandatory in undergraduate business pro-

CAC Software Design and the New Literacy 135

grams to teach Lotus 1-2-3, the most popular spreadsheet and
database program in existence. Because training in Lotus 1-2-3
or one of its imitations is almost universal, the program has
largely come to define the way a whole generation of business
people understand spreadsheet and database management. If
composition studies does not find ways to support faculty-based
software development, to encourage and reward faculty for
learning and using new hypertextual and OOP -based authoring
systems, and to nurture diversity in software design, then the
only approach to CAC software development may be that of
the research-based design team.

Certainly, the trends examined in the previous chapter suggest
that programs in the research-based design team model will
account for a larger percentage of CAC programs in the future,
either directly or indirectly, and that those programs will be
more technically powerful than many of those originating in
the other design models. The movement in the research-based
design model toward writing environment programs, which
operationalize a cognitive theory of writing, also tends to leave
little room for accommodation of smaller programs that are
likely to be technically and theoretically incompatible. The
prospect of CAC software development being dominated by
cognitive-based research teams is not a healthy or encouraging
one, not because those groups aren't doing some wonderful and
valuable work, but because there is great value in carrying over
the theoretical diversity that characterizes composition studies
into CAC software development. Otherwise, a single, dominant
approach to software will allow technology to shape writing
instruction as it takes place in computer environments. Instead,
writing teachers should be able to choose from the widest variety
of software tools possible and to shape their own virtual writing
spaces.

Diversity in Composition Studies

Since Richard Young (1978) and Maxine Hairston (1982; 1985)
argued for the existence of a "paradigm shift" in writing theory,
it has become commonplace to refer to the movement from
"current-traditional" (Young, 1978, p. 30) to "process" ap-

136 Writing Teachers Writing Software

proaches to composition. Such a shift, they argue, is accompanied
by and even sparked by the "development of new theories
which are able to provide more adequate solutions" to the crisis
that undermines established paradigms (Young, 1978, p. 35).
That these theories are often competing, contradictory, and
include a wide range of research methodologies and aims has
been generally accepted as part of a paradigmatic transformation
in which the new paradigm struggles to define itself through
testing and debate, establishing its boundaries and frontiers
through theory and research. In that defining process, the various
theories somehow coalesce over time, with some becoming more
central for their explanatory power while others fall by the
wayside. Until that process is complete, the argument goes, a
diversity of approaches should be nurtured. Even adherents to
a particular theoretical approach, cognitivists such as Bereiter
and Scardamalia (1983), for example, argue for this pluralism
in the field:

On the one hand, we are impatient, as surely many others
are, with the miscellaneous character of so much writing
research, with its orientation toward topics or methods rather
than toward goals, and with its generallack of cumulative
force. On the other hand, we think that in this era of
competing methodologies there is a special need to promote
tolerance and a free spirit of inquiry. Writing research is
new, and there is not much of it. It is not easy, and there
are, as yet, no magic keys to an understanding of it. Writing
research needs to be varied without being unfocused, guided
by theory without being dogmatic, progressive without being
mindlessly trendy. (p. 3)

Implicit in this passage is the value of diversity in theory as
well as in research. It should be noted that some see this diversity
is undermining the attempt of composition to establish itself as
a discipline. Stephen North (1987) writes, "It might not be too
much to claim, in fact, that for all the rhetoric about unity in
pursuit of one or another goal, composition as a knowledge-
making society is gradually pulling itself apart" (p. 364). A far
more common view, at least for now, is Stephen Witte's (1983)
belief that various approaches to composition studies, using a

I

CAC Software Design and the New Literacy 137

range of methodologies, come together as a "cumulative" body
of knowledge in the field.

Composition's accommodation of theoretical diversity has
been paralleled in CAC software development, as a review of
existing programs reveals. For example, Prewrite and FREE reflect
expressivist pedagogies; Interchange and Thought line support
social-epistemic theory; and WE, Notes, and Comments are cog-
nitive-based programs. Indeed, as Janet Eldred (1989) has pointed
out, the marketing of the microcomputer and CAC software has
thus far paralleled movements in composition studies. First there
were "current-traditional" programs that checked spelling and
mechanics, programs like Grammatik, to be used on personal
computers. At that time, the programs developed for these
private machines were expressivist, but then both the hardware
and the software gave way to more social concerns, manifested
in networking, telecommunications, and bulletin boards, as seen
in programs such as SEEN and Interchange (p. 202).

While no single theoretical approach to composition dominates
the software market, the subjects interviewed for this study
suggested that the increasingly important role played by the
research design teams in CAC software production will indeed
favor cognitive theories of writing over other competing theories.
Par lett, in fact, believes such a phenomenon is occurring at
present:

Things are moving in the direction of design programs like
CMU's [Carnegie Mellon University]. In terms of leading
development efforts, the cognitive people are really taking
charge. (Par lett, 1989, interview)

There are a number of reasons for the preeminence of cognitive
theory within the research design model. The connection be-
tween the two has developed as a result of the longstanding
relationship between computers and cognitive science, and the
impact of cognitive science on composition theory.

Cognition, Computers, and Composition Studies

Psychologists have attempted to write programs that model
human cognitive processes for almost as long as computers have

I

138 Writing Teachers Writing Software

existed. Such models, it was argued, would offer theoretical
explanations for observed human behaviors. One example of
such an attempt was Edward Feigenbaum's 1959 project in
which a computer was programmed to model the processes by
which humans can memorize a list of nonsense syllables (Wei-
zenbaum, 1976, pp. 162-163). While a computer could be easily
programmed to perform such a task, "simulation" programs like
Feigenbaunt's are not performance oriented per se. Instead, they
try to reveal possible cognitive processes by successfully modeling
them in a computer program, by doing the task as a human
would, not as a computer couldthe a priori assumption being
that on a most fundamental structural level, both the human
mind and the computer program process information in the
form of effective procedures. Thus, if a computer can be made
to perform some task in the same way a human might, then the
computer program can be said to be a cognitive model of how
humans perform that task.

One of the most influential projects using computers to
simulate human cognitive processes was Simon and Newell's
General Problem Solver, an information-processing system that
sought to model human problem-solving behavior. Positing
writing behavior as a form of problem-solving, Flower and
Hayes (1981) adopted much of Simon and Newell's information-
processing model to develop a cognitive model of writing be-
havior. Represented in graphic form, their cognitive model
resembles a computer flow chart for an information processor;
but of course, in this case, the information processor is the
human brain (Flower & Hayes, 1981, p. 370). The connection
is one straight out of Simon and Newell's work: "All humans
are information processing systems" (Newell, Shaw, & Simon,
1957, p. 64). Part of the appeal of Flower and Hayes's work,
and some might say, part of the problem with it, is the clearly
schematized representation of this otherwise difficult to under-
stand activity we call writing.

From an earlier discussion we know that computer program-
ming requires a highly defined procedural map of the activity
that is being programmed. That simple technological fact gives
the cognitive basis for CAC program design a great deal of
appeal. Within the discourse of computer programming, Flower

CAC Software Design and the New Literacy 139

and Hayes's model could be understood and appropriated as an
underlying structural foundation for building computer tools.
No other theory of composition offers such a highly defined
mapping of the writing process, and metaphors like Elbow's
(1973) "growing" (p. 22) and "cooking" (p. 53), for example,
are antithetical to the highly defined procedural outlines of
computer programming. As Kemp says, "When you program an
activity, even the simplest activity, you must be procedurally
accurate" (Kemp, 1989, interview). Not only does the cognitive
approach to writing lend itself to CAC programming efforts, but
it was making itself most strongly felt at the same time that the
first flood of microcomputers was arriving on college campuses.
Given their currency at the time, and their complementary and
longstanding relationship, cognitive theories of writing and com-
puter-aided composition came together in the research setting.

Since then, and for reasons cited in my discussion of design
models, the best-funded and best-rewarded CAC projects have
been the cognitive-based research programs, those programs
which have closely followed the theories of cognitive psychology.
Woodruff is working under the auspices of Bereiter and Scar-
damalia, Neuwirth acknowledges the strong influence of Flower
and Hayes, and Smith has based WE on a synthesis of cognitive
models that includes Flower and Hayes's, Bereiter and Scarda-
malia's, and others. Indeed, Smith's opening statement in Smith
and Lansman's "A Cognitive Basis for a Computer Writing
Environment" (1987) neatly resolves the question of competing
theories:

During the past ten years, our understanding of writing has
changed significantly. It was in 1980 that Dick Hayes and
Linda Flower first outlined what has since become a standard
model for both composition theorists as well as cognitive
psychologists who study writing. (p. 1)

Obviously Smith overstates the case, and he admitted as much
in his interview, but he does hold a firm conviction that the
cognitive approach is the right one and that CAC design confirms
it and will drive that conviction for the rest of the field.

This was made most clear in his keynote address at the 1989
Computers and Writing Conference, where Smith echoed North's

140 Writing Teachers Writing Software

critique of composition's claim to being a viable discipline. Like
North, he argued that a lack of methodological soundness and
an unfocused and centrifugal body of research have characterized
composition; that to survive as a discipline, composition required
a more clearly delineated research agenda, methodology, and
practice; and that all three existed in the development of cog-
nitively based computer tools such as WE. Smith (Smith &
Lansman, 1987) criticizes those kinds of "little programs," as
Woodruff calls them, which are typical of the other three design
models and that are designed to address only part of the writing
process, programs such as Prewrite and Organize:

While these programs offer writers new tools, they do so
piecemeal and with minimum concern for the large-scale
structure of the writing task. Their designs often seem driven
more by what the computer can be easily programmed to
do, rather than by what will help writers most. (p. 1)

He argues that CAC developers must design programs around
the inherent cognitive processes that constitute the activity of
writing:

Badly needed are tools designed from the outset to closely
match and to augment the inherent cognitive processes
human beings use to perform the complex, multifaceted
task of writing. The nature of the interaction between tool
and tool user for computer writing invites, perhaps demands,
a reconciliation between cognitive research and system
design. (p. 1)

Arguable in this passage is Smith's assumption that we can
discuss an "inherent" and thus universal set of cognitive pro-
cesses and his assumption that cognitive methodologies will do
more than model themindeed, that cognitive research can
positively identify them. However, it is more useful here to note
that in Smith's view, the paradigm shift is complete with our
adherence to a cognitive approach and methodology, a theoretical
stance that by nature precludes the diversity of approaches
advocated in the earlier quoted passage from Bereiter and
Scardamalia.

Smith's attempts to capture and address the large-scale struc-

CAC Software Design and the New Literacy 141

ture of the writing process have driven the concept of a "writing
environment." WE, which stands for "writing environment," is
based on a closed modela multimodal cognitive model that
accounts for every aspect that Smith and his associates identify
as taking place in the writing process. The program's hypertext
capabilities allow for recursive movement through each of the
program's modes. Therefore to allow for the inclusion of a
program like Prewrite would be to disrupt the unity of the model
and the very structure of the program. Besides, Smith's conviction
that his model of writing is closer to "right" than the models
suggested in noncognitive approaches to composition makes the
inclusion of these other approaches or subprograms not only
unnecessary but theoretically unsound. Unlike the "macropro-
grams" that reflect the current diversity of approaches in com-
position theory, writing environment programs like WE rigidly
adhere to a single approach. If these programs go on to become
preeminent in the field, their rigidity effectively devalues the
approaches they reject.

The Influence of Cognitive-Based CAC Programs

Indeed, the software that emerges from the research design
team model stands to exert great influence on the shape of other
CAC programs, creating a ripple effect down the design contin-
uum. This is so because, by nature, their design efforts are most
advanced in terms of technological sophistication and capability.
They therefore effectively set an agenda for the use of these
technologies as they later become available to developers with
more modest resources. Neuwirth has seen that dynamic with
Notes, Comments, and ANDREW, the Carnegie Mellon-wide area
network system upon which the program ran:

ANDREW is now being used at several places and it has
had a tremendous impact in the computer science world.
For instance, it's the Open Software Foundation file system
they chose, and things like that. (Neuwirth, 1991, interview)

She imagines her group's research as creating a sound basis for
the commercial software development of others. She says:

142 Writing Teachers Writing Software

Our model is sort of like . . . well, you know, the first
outliners were built in computer science, and they eventually
made it to the marketplace years later, where, now, most
word processors have some sort of outlining capability.
That's the sort of influence we'd like to have, where someone
reads about our work in a journal, and they're building
stuff, and they're a commercial outfit, and they would say,
"Yeah, let's try this!" (Neuwirth, ibid)

This "trickle down" relationship with industry, which draws
upon research from product design, gives the research team's
findings a kind of product validity beyond its own theoretical
soundness. Certainly, as writing lab directors search for good
CAC programs, they will be drawn to these programs as the
most technologically sophisticated, as the most tested, and as
the ones endorsed by the corporate computer sector.

This is an unsettling eventuality for some of the interviewees.
It should be noted that most of the interview subjects expressing
such anxieties were reluctant either to discuss or to elaborate on
them. As with the aforementioned subject of defense funding,
the nature of the CAC community made those interviewed
hesitant to level criticism at any predominance by the research
design teams. That said, Kemp worries about the impact of
programs developed by research design teams.

We need computer-based research facilities in English de-
partmentsnot in every department, perhapsbut I see
these things [CAC development projects] being relegated to
Carnegie Mellon and Rensselaer and Michigan Tech. I don't
think it's right for English departments to assume Carnegie
Mellon is going to be able to work for them because, for
all the respect I have for Carnegie Mellon and the New
York Institute of Technology and Michigan Tech, they are
still operating, I think, Lnder certain kinds of assumptions,
and we have slightly different assumptions. (Kemp, 1991,
interview)

Another researcher (who wished to remain anonymous) echoes
Kemp's anxieties about cognitive-based CAC programs domi-
nating the software market:

A research institute like Carnegie Mellon has a limited vision

1f

CAC Software Design and the New Literacy 143

that I don't want to see limiting software. If their research
is any indication of what their software is going to be, I
don't want to see it entering ... I don't war it to see it being
the only vision.

Helen Schwartz, who was a Dana Fellow at Carnegie Mellon,
expresses unbounded admiration for the work of Neuwirth and
her colleagues (as did virtually all of those interviewed). How-
ever, she expresses fear that the software emerging from research
design teams will too narrowly define the writing process for
students and teachers:

If I'm afraid of anything, it's that the software will only
come out of Carnegie Mellon or Stanford, because I think
there are other models [of the writing process] and that, at
the very least, people have to be able to modify software
for their students and their classrooms. (H. Schwartz, 1992,
interview)

Schwartz encourages software development within a variety of
approaches to writing because of the way that software programs
can inform and shape each other:

Carnegie Mellon students are a particular type of student,
and they're wonderful, but as some have argued, if we in
academe don't create our own software, then we will be
stuck modifying software designed for the business world.
So the same argument applies: in our own world, we need
more than one orientation, and we shouldn't rely on mod-
ifying the software created at a Carnegie Mellon. Chris
Neuwirth is the best. She knows programming and she
knows rhetoric, but she has a particular orientationI mean,
she can't do all things. (H. Schwartz, ibid)

Research design teams should not be blamed for their success
in software design. The anxiety expressed by many was not that
cognitive approaches were somehow wrong, but that conditions
existed which discouraged software design by faculty with other
theoretical approaches to composition.

Diversity in Cognitive Approaches

If Smith's solution to the diverse nature of composition
research is to hold higher the banner of cognition, there are

1

144 Writing Teachers Writing Software

other cognitive research design teams that seem more open to
integrating other theoretical and pedagogical approaches. Wood-
ruff's sounds like a social epistemic when he describes the
benefits of CSILE's shared database of user notes:

So the idea of authorship can slip away, or has to slip away.
You can get credit for an idea if you want it, but the real
power of the system is that everyone is trying to build, and
you're part of a community of knowledge builders. (Wood-
ruff, 1989, interview)

Schwartz asserts that the Carnegie Mellon researchers are more
open to diverse theory than they are given credit for. Indeed,
at the 1989 Computers and Writing Conference, researchers
from Carnegie Mellon offered presentations such as "Design
and Implementation of a Computer-Supported Collaborative
Writing Curriculum," "Creating the Dialogue: Using the Network
to Initiate Collaborative Learning and Writing," and "Extending
the Dialogue: Using the Network to Evaluate and Support
Student Writing." These program developers, all working within
a cognitive research model, were at least starting to explore
social- epistemic concerns and to act upon them in their program
design.

Returning to Smith's WE program for a moment, it is interesting
to note that he, too, acknowledges in the technical reports a
"situational analysis" mode as one of the principle modes in his
cognitive model. However, it is the one primary mode not included
in the design of WE, leaving it for the writing instructor to
address separately in class (Smith & Lansman, 1987, p. 16). He
does point out that he has collaborated with Catherine Smith
on three heuristic procedures for evaluating rhetorical concerns,
and that they may, in the future, "be combined as a mode and
included in the program design to address extrinsic concerns"
(p. 16). The last phrase belies a social theory seen through the
lens of cognitive research.

WE's limitations aside, it is interesting to speculate on what
seems to be an opening up of cognitive-based programs to the
area of social epistemology. Selfe believes it is a matter of
researchers responding to current thinking in the field:

1 E 3

CAC Software Design and the New Literacy 145

I think those people are responding to an interest. What
drives the profession lb that the profession comes up with
interesting topics that it buys into for a year or two, or
three or four, or maybe a decade, and this constructs the
thinking of the members of the profession. And because
we are intelligent human beings, we transport that to our
work. (Selfe, 1989a, interview)

Selfe's explanation points to another phenomenon that may
help explain this widening perspective of the cognitive research
developers. If a shift in the field can effect a rethinking of
computer tools, then certainly a shift in technology has the same
potential. Simply, the technology necessary to program a social-
epistemic approachthe networking capability and the pro-
cessing speed and memory required to drive ithas only recently
become affordable for computer-based writing labs. In addition,
technological developments like hypertext are underscoring post-
structuralist notions of intertextuafity, giving that theory a kind
of technological validity and a place in development efforts.
Linking computers through networks, or telecommunications,
presents a substantial expansion of the market for producers of
the appropriate hardware and software. These are often the
same corporate funding agents for the research design projects.
As Woodruff pointed out, these corporate sponsors want to see
software that will sell their product (Woodruff, 1989, interview).
Therefore, we have a theoretical basis, a market basis, and the
funding pressures for the integration of social-epistemic com-
ponents in the research model.

In a phenomenon quite the opposite of Smith's insistence on
a solely cognitive model for writing, there are indications among
some of the interview subjects that the boundaries between
theoretical approaches are breaking down in CAC programs.
When asked if he felt this were so, Woodruff responded:

I think so. I think I would use different categories [than
cognitive and social-epistemic]. For example, I might want
to know if you are trying to be reflective with ideas at one
time, or whether you are trying to expand them. [Here
Woodruff is referring back to the activity of accessing the
community database.] I'm not even sWing what those tasks
are. I'm stating that I think we don't have a very good

I

146 Writing Teachers Writing Software

understanding of that at all. And neither one of those fits
comfortably. I think investigating networked environments
will probably tell us more about that. (Woodruff, 1989,
interview)

While none of the subjects could describe concretely how the
reconciliation of generally exclusive theories might be made
operational in a program, those who commented felt that de-
velopments in hypertext and a better understanding of the
dynamics behind networked collaboration would help shed some
light on the possibility of such a reconciliation taking place. In
all cases, it was clear that the subjects were not positing a
"macroprogram" of the sort Rodrigues and Rodrigues (1984)
describe (p. 85), but rather a theoretical synthesis of traditionally
competing theories of writing. That synthesis of theory may be
more a hope than a reality in current CAC programs, but the
desire to at least reconcile theories of context and cognition are
powerfully voiced by Linda Flower (1989) for the field of
composition in general:

We need, I believe, a far more integrated theoretical vision
which can explain how context cues cognition, which in its
turn mediates and interprets the particular world that context
provides. (p. 282)

Because such a synthesis of theory for CAC development would
have to find application in a program capable of handling a
broad base of concerns, the writing environment programs being
developed by research design teams would seem to best lend
themselves to embodying a new hybrid theory of composition.
However, it remains to be seen whether a synthesis would, in
fact, represent an integration of theories or a co-opting of one
by another.

Giving Shape to the Future:
Some Reflections

English faculty conduct research, design curricula, and write
textbooks, and those activities largely define our understanding

11;5

CAC Software Design and the New Literacy 147

of written communication. In an age of electronic literacy, the
software we and our students use will be a significant part of
our pedagogy and may or may not embody a theory or ideology
to our liking; thus we have an important stake in its development
and design. English teachers in the virtual age must have a
variety of quality CAC software programs from which to choose,
a variety that reflects the full range of theory and pedagogy
within composition studies. In the more distant future, as writing
classes take place not within the physical confines of a classroom
but in electronic or "virtual spaces," software will more wholly
define the characteristics of that writing space (Bolter, 1991;
Moran, 1992). Peter Elbow's What Is English? (1990)his re-
flections on the 1987 English Coalition Conferenceoffers plu-
ralism of theory and approach as one of the few certain answers
to the title's question (p. 117). As the accounts in the present
study reveal, that pluralism is at risk within the field of CAC
software development. Commenting on the lack of good edu-
cational software, Stephen Jobs, co-founder of Apple Computers
and NeXt Computers, calls for faculty leadership: "Faculty are
the experts. They are the people driving the educational expe-
rience, and it's going to have to come from them" (Sprecher,
1988, p. 128). In composition studies, that leadership, once
energetic and widespread, is almost nonexistent due to the
combination of factors examined in chapter 4.

It would be unfair to underestimate the power and ability of
teachers to make use of software, any software, in the best
possible ways. Yet, imagine how much richer their classrooms
might be if they had the means and support to create their own
software, to answer the problems they see in their classes in the
ways they know best. Ron Fortune agrees:

It's extremely important that software applications respond
to defined problems and needs, so that someone can say,
"Well, this software will help me do something or get at
something in ways I can't otherwise do effectively." That's
why the people who teach the courses have to develop
software. Because if they're the ones articulating the prob-
lems, it's difficult for someone out there to develop the right
software for them. That's why I started using hypertext.
(Fortune, 1991, interview)

r G

148 Writing Teachers Writing Software

In the traditional writing class, teachers fine -tune their pedague,y
and materials to suit the particular problems or challenges of a
class or an individual student. That may mean using some parts
of a text and skipping other parts, copying handouts, renting
film, and a host of other ways teachers exert control over the
media of their pedagogy. Software, however, does not lend itself
so well to such tampering, particularly if the designer leaves out
the mechanisms for teacher control that Schwartz and Wresch,
for example, include in their programs.

Many with whom I spoke were pessimistic about the chances
for any revival of widespread faculty development of software
and for good reason. Despite technological developments that
will allow even nonprogrammers to create complex software,
departments and institutions continue to undervalue those ef-
forts, funding is still difficult to acquire, and obstacles remain
to effective dissemination of finished products. In developing an
understanding of electronic literacysupporting computer and
writing work, in general, and software development, specifically,
and training writing teachers for the new literacy as well as
supplying them with the appropriate technologycomposition
studies is not keeping pace with the computer's growing adoption
as the communication technology of choice for the workplace
and the classroom. This is the context in which faculty find
themselves. The accounts gathered for this book capture, in
large part, the state of faculty-based software development at
the end of the 1980s and beginning of the 1990s, but as Stephen
Doheny-Farina and Lee Odell (1985) remind us, "No matter
how carefully and thoroughly the ethnographer studies the life
of a particular group, the details of that life will continue to
change" (p. 530). There is much that can be done to revive and
nurture faculty-developed software, and some of that ground-
work is being established at present.

While no single, concerted effort is being made to address
the aforementioned problems facing faculty software developers
(and there may be few who recognize the issue), a number of
developments are encouraging. On one level, there is a growing
acceptance of computers and writing studies and its importance
within the discipline of composition studies. This is evidenced
in Lunsford's presentation and the other instances mentioned

1 7

CAC Software Design and the New Literacy 149

at the start of this chapter. In addition, the language of computers
and writing studies is coming into the lexicon of composition
studies. For example, the forthcoming NCTE-sponsored Ency-
clopedia of English Studies and Language Arts has a technology
section and a full range of entries, and the new CCCC Bibliography
of Composition and Rhetoric includes a section on computers and
writing. It will become increasingly difficult for composition
theorists to ignore computer-based writing in their work, partic-
ularly as the sites for their research become electronic writing
environments.

On another level, the field of computers and writing is
maturing. While much of the early research was more enthu-
siastic than sound, much of the recent work has been original,
rigorous, and has contributed to a widening understanding of
computer-based writing. As a result, the subject has begun to
receive more attention it mainstream journals such as College
English and College Composition and Communication. While there
have been brief periods of heightened attention paid to com-
puters and writing in the past, the current revival of attention
is more likely to be sustained as many of the leaders within
CAC studies come to play more prominent roles in composition
studies in general. One recent example is Cindy Selfe and Gail
Hawisher, editors of Computers and Composition and the series
which is copublisher of this book, being named editors of the
new CCCC Bibliography. Recent attempts to address software
issues have included a special issue of Computers and Composition,
a revised version of the NCTE Software Evaluation Form, and
new bibliographies of software and software-related texts.

Perhaps the biggest change in the thinking about software
development will be heralded by the development of hypermedia
and its accompanying authoring systems; they present a powerful
combination of intriguing pedagogical and theoretical possibilities
combined with relative ease in use. As the authoring systems
become even easier to use and as the platforms they require
become less expensive, many faculty are likely to develop
software even without improvements in institutional support or
rewards. In that belief, I share Robert Alun Jones's (1988) sense
of the immediate present and not too distant future:

,

150 Writing Teachers Writing Software

In twenty years, when historians of technology write the
chapter on hypermedia in higher education, they will most
likely focus on two, seemingly inexplicable phenomena. The
first will have been the initial reluctance of the vast majority
of the professoriate, despite the availability and future
promise of enormously powerful tools, to become even the
least bit involved. The second will have been the way in
which this inertia was broken through. (p. 44)

That breakthrough may occur in the area of English studies.
Because knowledge making and meaning making are at the
heart of English studies, hypermedia, with its radical redefinition
of those processes, stands to impact English studies perhaps
more than any other discipline in the academy. As that occurs,
the ability to navigate electronic writing spaces, to use Bolter's
(1991) term, will become transparent to functioning within the
field. At that point, computers and writing merges with com-
position and disappears as a separate area of research and study.
At that point, developing software becomes as common to writing
instruction as the current preparation of traditional print class-
room materials.

Revolutionary technologies are only revolutionary when they
touch one's life. The "Age of Steam" meant nothing to an
English farmer in some remote Yorkshire village until the day
the railroad arrived and nothing was again the same. The English
historian, E.J. Hobsbawm (1982), explains:

It [the railroad] transformed the speed of movementindeed
of human lifefrom one measured in single miles per hour,
and introduced the notion of a gigantic, nation-wide, com-
plex and exact interlocking routine symbolized by the rail-
way time-table (from which all subsequent "time-tables"
took their name and inspiration). It revealed the possibilities
of technical progress as nothing else had done, because it
was both more advanced than most other forms of technical
activity and omnipresent. (p. 110)

Like the Yorkshire farmer, anyone who writes cannot help but
be touched by the new electronic technology, and when that
becomes pervasive, the study and teaching of writing will be
irrevocably changed. However, unlike the brute presence of
industrial steel and steam, computer technology relies on the

1

CAC Software Design and the New Literacy 151

diminution of its physical presence and is mostly experienced
through software, which is created through intellectual endeavor
and imagination, the currency of academic life. Therefore, those
of us who write, teach, and theorize about writing have a rare
opportunity to play a part in our own destiny, to help shape
the revolution.

Appendix

The following is a list of software programs mentioned in this book.
The list provides a brief description of each program and, in some
cases, a sample of the program interface.

Comments is a network-based writing response program (fig.1). Writers
can send a draft to a reader for response or a reader can request the
draft of a writer. The program allows users to identify a section of
text and append to it a comment. In addition, comments can be
appended to comments, allowing multiple readers to offer input on a
document. The networked nature of the program allows the writer to
ask for clarification of comments and to establish a dialogue with
readers.

CSILE (Computer-Supported Intentional Learning Environment) is a
networked system that gives students simultaneous access to a database

Directions

Open the menus and choose one of the following from the Options menu
Card:

Sand a Paper to send a paper.

Request a Paper's Return to request the return of a paper you have
already sent.

Read a Paper to read or make comments on a paper.

Delete Comments to remove all comments from a paper.

Help to call up the program's online help.

Report a Program Problem to report a problem with the program.

Ouit to quit the Comments program.

Figure 1. The Comments program options. (Used by permission of the
developer, Christine Neuwirth.)

153

154 Appendix

Thinking

What

Know

Write Info spell copy cut paste form

Problem

why were the Neaderthals so much mere muscular

than us? How come if down the line we have ha1

out brains grow but than the Neanderthal CA,e and

its head was 1/4 bigger than ours wh}? Did we

Arlirk ker:p some of the genes from the Neaderchal?

E\XL

I

Read -v.- Info f5)

Neanderthals anatomical features

Neanderthals were very modern and advanced even

more advanced than us. The neanderthals had a very

big head and a very big brain. Their brain was

bigger than ours! The average brain size in neander-

thals was around 15°Ccc's They had a big forehead

that was long and low there skul was flat on the top

and they had very big eye brow ridges. There

nostrils were very big and they had a wide face.

Their bones were heavy and they had strong ligaments.

Their cheek bones stuck out.

The women had big pelvic areas sore say that

was because for the babys heal to come out the} need

a big open space bigger that ct.rs because their heads

are bigger than ours is.

00

lir

Figure 2. CSILE screen showing read-a-note and write-a-note win-
dows. The arrows in a read-a-note window (top) permit
stepping through a set of notes retrieved through a
pseudonatural language Boolean search. The arrows on a
write-a-note window (bottom) permit stepping through a set
of notes in process. (Used by permission of the developer, Earl
Woodruff.)

1

S
e
n
d

m
e
s
s
a
g
e

C
a
n
c
e
l

m
e
s
s
a
g
e

F
i
l
e
s

B
l
o
c
k

Q
u
i
t

J
o
h
n
,
H
o
w

c
a
n

y
o
u

s
a
y

t
h
a
t

k
n
o
w
l
e
d
g
e

v
a
r
i
e
s

w
i
t
h

p
e
r
s
o
n
a
l

p
e
r
c
e
p
t
i
o
n
?

I

a
m

w
i
l
l
i
n
g

t
o

b
l
o
c
k

a
s

b
l
u
e

d
o
e
s

n
o
t

m
e
a
n

t
h
a
t

e
v
e
r
y
o
n
e

d
o
e
s
.

I
t

i
s

j
u
s
t

s
o
c
i
e
t
i
e
s

d
e
f
i
n
i
t
i
o
n

o
f

t
h
e

p
e
r
c
e
p
t
i
o
n

t
h
a
t

y
o
u

h
a
v
e
.

K
r
i
s
t
i

G
a
l
l
o
w
a
y
:

J
o
h
n

d
o
e
s
n
'
t

t
r
u
t
h

h
a
v
e

m
o
r
e

t
o

d
o

w
i
t
h

a

s
t
a
t
e

o
f

m
i
n
d

t
h
a
n

a

s
t
a
t
e

o
f

d
e
s
i
r
i
n
g

s
o
m
e
t
h
i
n
g
?

B
e
c
a
u
s
e

o
n
e

i
s

u
n
t
r
u
t
h
f
u
l

i
s

h
e

a
l
s
o

d
e
c
e
i
t
f
u
l
?

A
n
d
r
e
w

K
i
p
l
i
n
g
:

K
n
o
w
l
e
d
g
e
,

I

f
e
e
l

i
s

n
o
t

b
e
i
n
g

i
g
n
o
r
a
n
t

o
f

a

s
u
b
j
e
c
t
;

b
e
i
n
g

a
b
l
e

t
o

e
x
p
a
n
d

o
n

t
h
a
t

s
u
b
j
e
c
t
.

T
r
u
t
h

i
s

s
o
m
e
t
h
i
n
g

t
h
a
t

p
e
o
p
l
e

c
a
n

t
r
u
s
t
.

R
e
a
l
i
t
y

i
s

r
e
a
l

l
i
f
e
,

o
r

s
o
m
e
t
h
i
n
g

t
h
a
t

o
p
e
n
s

y
o
u
r

e
y
e
s

t
o

Fi
gu

re
 3

.
Se

nd
in

g
a

m
es

sa
ge

 in
 I

nt
er

ch
an

ge
. W

he
n

a
co

nf
er

en
ce

 p
ar

tic
ip

an
t w

is
he

s
to

 s
en

d
a

m
es

sa
ge

, a
n

ed
iti

ng
 w

in
do

w
 p

op
s

up
 o

ve
r

th
e

co
nf

er
en

ce
 w

in
do

w
. T

he
 in

di
vi

du
al

ca
n

co
m

po
se

 a
nd

 e
di

t a
 m

es
sa

ge
 b

ef
or

e
se

nd
in

g
it

ou
t t

o
be

co
m

e
pa

rt
 o

f
th

e
pu

bl
ic

di
sc

us
si

on
.

T
he

 a
ct

iv
e

co
nv

er
sa

tio
n

re
m

ai
ns

 p
ar

tia
lly

 v
is

ib
le

 in
 th

e
bo

tto
m

pa
rt

 o
f

th
e

sc
re

en
. (

U
se

d
by

 p
er

m
is

si
on

 o
f

th
e

de
ve

lo
pe

r,
 P

au
l T

ay
lo

r.
)

1
7,

;

156 Appendix

Hayes, J.R. (1982). What is a creative act?. The Complete Problem Solver
(pp. 197 - 198). Philadelphia: cranklin Institute Press.

Consequential
Length of time
Copy cats
Onginality criterion
Newness
Value vs Consequential
Subjectivity and value?
Being there
Housepainter example
Intentionality

Perkins, O. N. (1981). Having It. The Mind's Best Work Cambridge, MA
Harvard University Press.

Memory
More creative
Criteria for postulating an ability,

MI Notts
View Notes

Classes

Source Ted

New
New from file

en

Edit Reference

Delete

Write To Scribe File
Read Scribe File

Figure 4. The Notes program window. (Used by permission of the
developer, Christine Neuwirth.)

that is composed of text and graphical notes which the students
produce themselves. The system provides students a means of searching
and commenting on one another's contributions (fig. 2).

Interchange is a real-time or synchronous conferencing program that
allows simultaneous text-based discussion in a networked computer
classroom (fig. 3). The program allows on-line discussion, subconfer-
ences, and group analysis of text throutil a "View-a-File" function.
Interchange is part of the Daedalus Ins. actional System, a set of

Appendix 157

integrated programs that include invention, e-mail, word processing,
and revision, but each can be purchased separately.

Mindwriter is the invention program within the Daedalus Instructional
System, though it can be purchased separately. The program is based
on Hugh Burns's 1977 invention programs TOPOI, TAGI, and BURKE.
Mindwriter offers three sets of prompts that are designed to help
students explore a topic. As in Burns's TOPOI program, the prompt
sets are based on Aristotle's topoi, Young, Becker, and Pike's tagmemics,
and Burke's pentad.

Notes allows readers to make notes on on-hit, source texts and to
make direct links between the source text and the electronically stored
notes. The program maintains a list of all notes taken, and the user
can then ,riew selected notes, classify them, and organize them in
various ways (fig. 4).

Organize is a prewriting program composed of modules for prewriting
that include a large number of tutorials on development, generating
ideas, audience assessment, creating an argument for debate, and
approaches to drafting.

Prep Editor ("Work in Preparation") is a network-based program that
supports collaborative writing, particularly through its co-authoring
and commenting functions. The hypermedia capability of the program
allows spatial representations of ideas and their restructuring. Authors
can define "drafts," areas of that writing space which an =author opens
up to others for their colle boration and comments. The interface allows
multiple on-screen "columns" that contain different types of infor-
mation. For example, a set of columns might hold a draft, the larger
outline into which it fits, and a reader's comments on that draft.

Prewrite is an invention program that prompts the user in brainstorm-
ing an expository essay or autobiographical/fictional work (fig. 5). The
program prompts for information on topic, purpose, key ideas, audi-
ence, metaphor, and other components of the writing process. The
answers can then be printed as a set of notes to be used in the first
stag' of the writing process. Instructors can modify the prompts.

Prose is an instructor feedback program that allows the user to respond
within the student text with pre-programmed comments on mechanical
errors (with built-in tutorials), the writer's own comments on any part
of the text, or overall summary comments. Prose flags the text so that
the responses are linked directly to the passage in question. In addition,
the program allows the instructor to guide the revision by forcing the
student to address the revisions in a given order.

SEENoffers six tutorials for examining or exploring a particular subject.
The tutorials focus on character analysis, exploratory essays, art ex-

158 Appendix

Hi, what's your name?
Sandi Mackey

Any ideas on what to write? Y or N.
Yes, I want to write about soap operas and
why so many people get hooked on them.

Okay. Now give me a one-to-five word title for
your topic. Here are some examples: Feeling
Blue, Are Schoolya :cis Safe?, Flying Saucers.
What's your title?

Hooked on Soaps

What made you choose "Hooked on Soaps"
to write about?

Because every afternoon the Student Center
is filled with busy people watching General
Hospital. And that includes me even if I

have a midisrm and paper due the next day.
Why do r do it? What's the lure?

Figure 5. Excerpt from Prewrite questions. In Prewrite, a 'series of inter-
active questions and answers results in a printout of the
writer's thoughts, which can be used as notes for developing
a first draft. (Used by permission of the designer, Mimi
Schwartz.)

ploration, historical conflicts, essay analysis, and plotting in literature.
The tutorials can be customized by the instructor. The program also
includes bulletin boards that allow for asynchronous collaboration
among student writers.

Thoughtline was originally designed for business users who wanted
help in the preparation of presentations or reports. It is an invention
program that uses Artificial Intelligence (AI) features to prompt the
user for information and then to refine or expand on that information.

Appendix 159

The program creates an open-ended, nondirective dialogue with the
user in the same manner of Joseph Weizenbaum's now famous ELIZA
program.

WE is a hypertext "writing environment" program designed for a
networked environment. Based on an explicit cognitive model of the
writing process, WE operates within six distinct modes that can each
operate in a separate window on screen. The user can quickly and
easily move from one mode to another and manipulate screen objects
which directly affect the text linked to those objects (in reorganizing
the structure of an essay, for example).

Writer's Helper is a macro-environment program that offers a wide
range of instructional modules or activities. These include nineteen
prewriting activities that address discovery. invention, and organization,
and twenty revising modules that address structure, audience, and
style. The new Windows version of Writer's Helper includes more tools
than the previous version and smoother integration with word-pro-
cessing programs.

1

Wy

Works Cited

Allen, H.B. (1986). Facets: The joys and frustrations of writing text-
books. English Journal, 75 (8), 12.

Anson, C.M. (1989). Computer deep cases for writing instruction.
Paper presented at the Computers and Writing Conference. Min-
neapolis, Minnesota. May 13.

Balestri, D.P. (1988). Ivory towers, silicon basements: Learner-centered
computing in postsecondary education. A report from the FIPSE
Technology Study Group. McKinney, TX: Academic Computing
Publications.

Barker, T.T., & Kemp, F.O. (1990). Network theory: A postmodern
pedagogy for the writing classroom. In C. Handa (Ed.), Computers
and community: Teaching composition in the twenty-first century (pp.
1-27). Portsmouth, NH: Boynton-Cook.

Batson, T. (1988). The ENFI project: A networked classroom approach
to writing instruction. Academic Computing, 2 (2), 32-o7.

Beaugrande, R., de. (1985). Composition textbooks: Ethnography and
proposal. Written Communication, 2,391-413.

Beck, R.J., & Spicer, D. (1988). Hypermedia in academia. Academic
Computing, 2 (2), 22-30.

Beesley, M.S. (1986). The effects of word processing on elementary
students' written compositions: Processes, products, and attitudes.
Ph.D. diss. Indiana University at Bloomington. DAI, 47 (4006A).

Bereiter, C., & Scardamalia, M. (1983). Levels of inquiry in writing
research. In P. Mosenthal, L. Tamor, & S.A. Walmsley (Eds.), Research
on writing: Principles and methods (pp. 3-25). New York: Longman.

Berlin, J.A. (1987). Rhetoric and reality: Writing instruction in American
colleges, 1900-1985. Carbondale: Southern Illinois University Press.

Berlin, J.A. (1988). Rhetoric and ideology in the writing class. College
English, 50, 477-494.

Bernstein, M. (1988). Hypertext: New challenges and roles for technical

161

1'i

162 Works Cited

communicators. Proceedings of the 35th Intern,- iTonal Technical Com-
munication Conference. ATA33ATA36. Society for Technical Com-
munication.

Bizzell, P. (1982). Cognition, convention, certainty: What we need
to know about writing. Pre/Text, 3,213-243.

Boden, M.A. (1977). Artificial intelligence and natural man. New York:
Basic Books.

Bolter, J.D. (1984). Turiq's man: Western culture in the computer age.
Chapel Hill: University of North Carolina Press.

Bolter, J.D. (1991). Writing space: The computer, hypertext, and the history
of writing. Hillsdale: Lawrence Earlbaum.

Bourque, J.H. (1983). Understanding and evaluating: The humanist as
a computer specialist. College English, 45, 67-73.

Bruffee, K.A. (1983). Writing and reading as collaborative or social
acts: The argument from Kuhn and Vygotsky. In J.N. Hays, P.A.
Roth, j.R. Ramsey, & R.D. Foulke (Eds.), The writer's mind: Writing
as a mode of thinking (pp. 159-169). Urbana: National Council of
Teachers of English.

Burnett, J.H. (1984). Word processing as a writing tool of an elementary
school student: A single case experiment with nine replications.
Ph.D. diss. University of Maryland. DAI, 47 (1183A).

Burns, D. (1987). Thoughtline software: A computer to help you write
a speech. Executive Communications, 8, 5.

Bums, D. (1989). Telephone interview. February 20.

Burns, H.L. (1980). Simulating invention in English composition through
computer-assisted instruction. Educational Technology, 20, 5-10.

Burns, H.L. (1984). The challenge for computer-assisted rhetoric.
Computers and the Humanities, 18, 173-181.

Burns, H.L. (1988). Personal interview. San Antonio, Texas. August 29.

Bums, H.L., & Capps, C.G. (1988). Foundations of intelligent tutoring
systems: An introduction. In M.C. Poison & J.J. Richardson (Eds.),
Foundations of intelligent tutoring systems (pp. 1-19). Hillsdale, NJ:
Lawrence Erlbaum.

Butler, W. (1991). Personal interview. Seattle, Washington. November.

Carbonell, J.R. (1970). AI in CAI: An artificial intelligence approach
to computer-aided instruction. IEEE Transactions on Man-Machine
Systems, 11, 190-202.

Works Cited 163

Cardwell, D.S.L. (1972). Turning points in western technology: A study
of technology, science, and history. New York: Neale Watson Academic
Publications.

Carlson, P. (1988). Hypertext: A way of incorporating user feedback
into online documentation. In E. Barrett (Ed.), Text, context, and
hypertext: Writing with and for the computer (pp. 93-110). Cambridge,
MA: Massachusetts Institute of Technology Press.

Carter, L. (1988). Personal interview. Austin, Texas. August 29.

Catano, J.V. (1985). Computer-based writing: Navigating the fluid text.
College Composition and Communication, 36, 309-316.

Cavalier, R., & Friend, K.E. (1988). Educational software frontiers. In
Sprecher, J.W. (Ed.), Facilitating academic software development (pp.
99-120). McKinney, TX: Academic Computing Publications.

Chambers, J.A., & Lewis, D.O. (1988). The effects of academic software
on learning and motivation. In Sprecher, J.W. (Ed.), Facilitating
academic software development (pp. 71-98). McKinney, TX: Academic
Computing Publications.

Cirello, V.J. (1986). The effect of word processing on the writing abilities
of tenth-grade remedial writing students. Ph.D. diss. New York
University. DAI, 47 (2531A).

Clark, Suzanne. (1989). Feminism, poststructuralism, and rhetoric: If
we change language, do we also change the world? Paper presented
at the Conference on College Composition and Communication.
Seattle, Washington. March 17.

Collier, R. (1983). The word processor and revision strategies. College
Composition and Communication, 34,149-155.

Collier, R., Gerand, H., Parbs, R., & Morrison, P. (1987). Computer
writing facilities: The state of the art. Report to the English De-
partment, Mount Royal College, Calgary Alberta, Canada. June.

Connors, R.J. (1986). Textbooks and the evolution of the discipline.
College Composition and Communication, 37, 178-194.

Coulter, C.A. (1986). Writing with word processors: Effects on cognitive
development, revision, and writing quality. Ph.D. diss. University
of Oklahoma. DAI, 47 (2551A).

Coursey, D. (1988). Revised Thought line package is writers' tool. MIS
Week, July 4,1.

Curley, W.P., & Strickland, J. (1986). Garbage in/garbage out: Evaluating
computer software. The English Record, 37, 11-14.

164 Works Cited

Curtis, M. (1988). When writing is revision: Teaching revision on the
word processor. College Composition and Communication, 39, 337-
344.

Daiute, C. (1985). Writing and computers. Reading, MA: Addison-
Wesley.

Daiute, C. (1986). Physical and cognitive factors in revising: Insights
from studies with computers. Research in the Teaching of English, 20,
141-159.

Dalton, D.W., & Hannafin, M.J. (1987). The effects of word processing
on written composition. Journal of Educational Research, 80, 338-
342.

Debs, M.B. (1989). A different collaboration: Word processing and the
workplace. 7raper presented at the Conference on College Compo-
sition and Communication. Seattle, Washington. March 17.

Dinan, J.S., Gagnon, R., & Taylor, J. (1986). Integrating computers into
the writing classroom: Some guidelines. Computers and Composition,
3, 33-39.

Di Pardo, A., & Di Pardo, M. (1989). Toward the metapersonal essay:
Exploring the potential of hypertext in the composition classroom.
Paper presented at the Computers and Writing Conference. Min-
neapolis, Minnesota. May 13.

Doheny-Farina, S., & Odell, L. (1985). Ethnographic research on
writing: Assumptions and methodology. In L. Odell & D. Goswami
(Eds.), Writing in nonacademic settings (pp. 503-525). New York:
Guilford Press.

Dreyfus, H. (1979). What computers can't do: The limits of artificial
intelligence. Rev. ed. New York: Harper & Row.

Du ling, R.A. (1985). Word processors and student writing: A study of
their impact on revision, fluency, and quality of writing. Ph.D. d'ss.
Michigan State University. DAI, 46 (1823A).

Edwards, J. (1987). AI-based outliner tackles writer's block. PC Week,
June 2, 1.

Eisenstein, E.L. (1979). The printing press as an agent of change:
Communications and cultural transformations in early modern Europe.
New York: Cambridge University Press.

Elbow, P. (1973). Writing without teachers. New York: Oxford University
Press.

Elbow, P. (1990). What Is English? New York: Modern Language As-
sociation.

1 c%

Works Cited 165

Eldred, J.M. (1989). Computers, composition pedagogy, and the social
view. In G.E. Hawisher & C.L. Selfe (Eds.), Critical perspectives on
computers and composition instruction (pp. 201-218). New York:
Teachers College Press.

Eldred, J.M., & Fortune, R. (1992). Exploring the implications of
metaphors for computer networks and hypermedia. In G.E. Haw-
isher & P.J. LeBlanc (Eds.), Re-Imagining computers and composition:
Teaching and research in the virtual age (pp. 58-73). Portsmouth,
NH: Boynton/Cook.

Faigley, L. (1986). Competing theories of process: A critique and
proposal. College English, 48, 527-542.

Fersko-Weiss, H. (1991). 3D reading with the hypertext edge. PC, 10,
240-261.

Fish, S.E. (1980). Is there a text in this class? The authority of interpretive
communities. Cambridge, MA: Harvard University Press.

Flower, L. (1989). Cognition, context, and theory building. College
Composition and Communication, 40, 282-311.

Flower, L., & Hayes, J.R. (1981). A cognitive process theory of writing.
College Composition and Communication, 32, 365-387.

Flynn, L. (1989). HyperCard-like programs confuse the DOS market.
Info World, June 12, 21.

Fortune, R. (1991). Personal interview. Seattle, Washington. November
23.

Giroux, H.A. (1983). Theory and resistance in education: A pedagogy for
the opposition. S. Hadley, MA: Bergin & Garvey.

Goetz, J.P., & LeCompte, M.D. (1981). Ethnographic research and the
problem of data reduction. Anthropology and Education Quarterly, 7,
51-70.

Grabowski, B., Suciati, I., & Pusch, W. (1990). Social and intellectual
value of computer-mediated communications in a graduate com-
munity. Educational Training and Technology International, 27, 276-
283.

Graves, R.L. (Ed.). (1984). Rhetoric and composition: A sourcebook for
teachers and writers. Rev. 2nd ed. Portsmouth, NH: Boynton/Cook.

Gumpert, G., & Cathcart, R. (1985). Media grammars, generations,
and media gaps. Critical Studies in Mass Communications, 2, 23-35.

Haas, C. (1989). Seeing it on the screen isn't really seeing it: Computer

166 Works Cited

writers' reading problems. In G.E. Hawisher & C.L. Selfe (Eds.),
Critical perspectives on computers and composition instruction (pp. 44-
69). New York: Teachers College Press.

Haas, C., & Hayes, J.R. (1986). What did I just say? Reading problems
in writing with the machine. Research in the Teaching of English, 20,
22-35.

Hairston, M. (1982). The winds of change: Thomas Kuhn and the
revolution in the teaching of writing. College Composition and Com-
munication, 33, 78-86.

Hairston, M. (1985). Breaking our bounds and reaffirming our con-
nections. College Composition and Communication, 36, 272-282.

Hale, D.G. (1984). Word processing: Panacea or problem? English
Record, 35, 10-11.

Halpern, J.W. (1985). An electronic odyssey. In L. Odell & D. Goswami
(Eds.), Writing in non-academic settings (pp. 157-202). New York:
Guilford Press.

Halpern, J.W., & Liggett, S. (1984). Computers and composing: How the
new technologies are changing writing. Carbondale: Southern Illinois
University Press.

Hammers ley, M., & Atkinson, P. (1983). Etnnography: Principles in
practice. London: Tavistock.

Harris, J. (1985). Student writers and word processing: A preliminary
evaluation. College Composition and Communication, 36, 323-330.

Havelock, E.A. (1982). The literate revolution in Greece and its cultural
consequences. Princeton, NJ: Princeton University Press.

Hawisher, G.E. (1989). Research and recommendations for computers
and composition. In G.E. Hawisher & C.L Selfe (Eds.), Critical
perspectives on computers and instruction (pi, 44-69). New York:
Teachers College Press.

Hawkins, B. (1989). Campus-wide netw ;king at Brown University.
Academic Computing, 3,32-49.

Hepler, Ni. (1992). Telephone interview. February 6.

Herrmann, A. (1989). Computers in public schools: Are we being
realistic? In G.E. Hawisher & C.L. Selfe (Eds.), Critical perspectives
on computers and composition instruction (pp. 109-143). New York:
Teachers College Press.

Hiltz, S.R. (1988). Collaborative learning in a virtual classroom: High-

Works Cited 167

lights of findings. Paper presented at the Computer Supported
Cooperative Work Conference. June.

Hobsbawm, E.J. (1982). Industry and empire: From 1750 to the present.
3rd ed. Hammondsworth: Penguin.

Johnson, G. (1987). Machinery of the mind: Inside the new science of
artificial intelligence. Redmon, WA: Tempu ;.

Johnson-Laird, P. (1983). Mental models: Toward a cognitive science of
language, inference, and consciousness. Cambridge, MA: Harvard
University Press.

Johnston, S.J. (1989). Software reusability depends on teamwork and
cooperation. Info World, June 19, 19.

Jones, R.A. (1988). Building a hypermedia laboratory. Academic Com-
puting, 2 (10), 24-44.

Kantor, K., Kirby, D., & Goetz, J.P. (1981). Research in context:
Ethnographic studies in English education. Research in the Teaching
of English, 15, 293-309.

Kaplan, H. (1986). Computers and composition: Improving students'
written performance. Ph.D. diss. University of Massachusetts at
Amherst. DAI, 47 (776A).

Kaplan, N. (1989). Telephone interview. February 1.

Kaplan, N. (1991a). Ideology, technology, and the future of writing
instruction. In G.E. Hawisher & C.L. Selfe (Eds.), Evolving perspec-
tives on computers and composition studies: Questions for the 1990s
(pp.11-42). Urbana: National Council of Teachers of English/Com-
puters and Composition.

Kaplan, N. (199th). Telephone interview. December 8.

Kaufer, D.A. (1989). Designing and implementing of a computer-
supported writing curriculum: Theory and practice. Paper presented
at the Computers and Writing Conference. Minneapolis, Minnesota.
May 13.

Keane, D., & Gaither, G. (1988). The effects of academic software on
learning and motivation. In J.W. Sprecher (Ed.), Facilitating Academic
Software Development (pp. 47-69). McKinney, TX: Academic Com-
puting Publications.

Kemp, F. (1988). Personal interview. Austin, Texas. August 29.

Kemp, F. (1989). Telephone interview. February 2.

Kerlp, F. (1991). Telephone interview. December 5.

1 "5

168 Works Cited

Landow, G.P., & Delaney, P. (Eds.). (1991). Hypermedia and literary
studies. Cambridge, MA: Massachusetts Institute of Technology
Press.

Lanham, R. (1989). The electronic word: Literary study and the digital
revolution. In New Literary History, 20, 265-290.

Larson, R.L. (1989). Review of The making of knowledge in composition:
Portrait of an emerging field. College English, 40, 95-98.

Laub, L. (1986). The evolution of mass storage. Byte, 2, 161-172.

LeBlanc, P.J. (1988). How to get the words just right: A reappraisal of
word processing and revision. Computers and Composition, 5, 29-42.

LeBlanc, P.J. (1992). Ringing in the virtual age: Hypermedia authoring
software and the revival of faculty-based software development in
composition. In G.E. Hawisher & P.J. LeBlanc (Eds.), Re-Imagining
computers and composition: Teaching and research in the virtual age
(pp. 191-206). Portsmouth, NH: Boynton/Cook.

LeBlanc, P., & Moran, C. (1989). Adapting to a new environment:
Word processing and the training of writing teachers. In C.L. Selfe,
D. Rodrigues, & W.R. Oates (Eds.), Computers in English and language
arts: The challenge of teacher education (pp. 111-130). Urbana:
National Council of Teachers of English.

LeCompte, M.D., & Goetz, J.P. (1982). Problems of reliability and
validity in ethnographic research. Review of Educational Research,
52, 31-60.

Lewis, P.H. (1992). The computer as catalyst. New York Times Educational
Supplement, January 5, 48-50.

Lloyd-Jones, R. (1989). Review of The making of knowledge in compo-
sition: Portrait of an emerging field. College English, 40, 98-100.

Lunsford, A.A. (1991). Conditions for literacy. Paper presented at the
Modern Language Association Convention. Seattle, Washington.

McCreary, E. (1989). Computer-mediated communication and orga-
nizational culture. In R. Mason & A. Kaye (Eds.), Mindweave:
Communication, computers, and distance education (pp. 101-112).
New York: Pergamon Press.

McDaid, J. (1989). Breaking frames: Toward an ecology of hypermedia.
Paper presented at the Computers and Writing Conference. Min-
neapolis, Minnesota. May 13.

McDaid, J. (1991). Toward an ecology of hypermedia. In G.E. Hawisher
C.L. Selfe (Eds.), Evolving perspectives on computers and composition

Works Cited 169

studies: Questions for the 1990s (pp. 203-223). Urbana: National
Council of Teachers of English/Computers and Composition.

McDaniel, E. (1987). Bibliography of text-analysis and writing-instruc-
tion software. Journal of Advanced Composition, 7, 139-169.

McKenzie, A.T. (1991). The academic on-line. In Profession 91 (pp. 41-
48). New York: Modern Language Association.

McLuhan, M. (1962). The Gutenberg galaxy: The making of typographic
man. Toronto: University 'f Toronto Press.

Madigan, C. (1984). The tools that shape us: Composing by hand vs.
composing by machine. English Education, 16,143-149.

Manzelli, J. (1991). Telephone interview. November 18.

Marcus, S. (1983). Real-time gadgets with feedback: Special effects in
computer-assisted instruction. The Writing Instructor, 2,174-181.

Marcus, S., & Blau, S. (1983). Not seeing is believing: Invisible writing
with computers. Educational Technology, 23,12-15.

Meeker, M. (1986). Waiting for WANDAH: A critique of present trends
in computer-assisted composition. Computer-Assisted Composition
Journal, 1,42-54.

Micro Select: The essential tool. (1986). Marketing materials distributed
by Robotel Electronique, Inc. Montreal, Quebec, Canada.

Minsky, M. (1981). A framework for representing knowledge. In J.
Hauge land (Ed.), Mind design: Philosophy, psychology, artificial intel-
ligence (pp. 95-128). Cambridge, MA: Massachusetts Institute of
Technology Press.

Moore, M.A. (1987). The effect of word processing technology in a
developmental writing program on writing quality, attitude toward
composing, and revision strategies of fourth- and fifth-grade stu-
dents. Ph.D. diss. University of South Florida. DAI, 48 (635A).

Moran, C. (1983). Word-processing and the teaching of writing. English
Journal, 72, (3) 113-115.

Moran, C. (1984). The word-processor and the writer. Computers and
Composition, 2, 1-5.

Moran, C. (19?1). Teaching writing in the virtual classroom: Good
news and bad. Paper presented at the Modern Language Association
Convention. San Francisco, California. December.

Moran, C. (1992). Computers and the writing classroom: A look to
the future. In G.E. Hawisher & P.J. LeBlanc (Eds.), Re-Imagining

170 Works Cited

computers and composition: Teaching and research in the virtual age
(pp. 7-23). Portsmouth, NH: Boynton/Cook.

Morgan, B.A. (1985). Evaluating student papers with a word processor.
Collegiate Microcomputer, 3,345-350.

Moulthrop, S. (1991). The politics of hypertext. In G.E. Hawisher &
C.L. Selfe (Eds.), Evolving perspectives on computers and composition
studies: Questions for the 1990s (pp. 253-271). Urbana: National
Council of Teachers of English/Computers and Composition.

Mumford, L. (1934). Technics and civilization. New York: Harcourt
Brace.

Murray, D. (1985). Composition as conversation: The computer terminal
as medium of conversation. In L. Odell & D. Goswami (Eds.), Writing
in non-academic settings (pp. 203-228). New York: Guilford Press.

Nadel, S.F. (1976). The interview technique in social anthropology. In
F.C. Bartlett, M. Ginsberg, E.J. Lindgren, & R.H. Thou less (Eds.),
The study of society: Methods and problems (pp. 317-328). London:
Rout ledge and Kegan Paul.

Nelson, T. (1987) Literary machines: The report on, and of, Project Xanadu
concerning word processing, electronic publishing, hypertext, tinkertoys,
tomorrow's intellectual revolution, and education and freedom. Ed. 87.
1. Swarthmore, PA: Theodor H. Nelson.

Nelson, T. (1988). The call of the ocean: Hypertext universal and open.
Hyper Age, May/June, 5-7.

Neuwirth, C. (1989a). Telephone interview March 6.

Neuwirth, C. (1989b). Creating the dialogue: Using the network to
initiate collaborative learning and writing. Paper presented at the
Computers and Writing Conference. Minneapolis, Minnesota. May
13.

Neuwirth, C. (1991). Telephone interview. December Y.

Newell, A., Shaw, J.C., & Simon, H.A. (1957). Empirical explorations
of the logic theory machine: A case study in heuristics. Report P-
951. The Rand Corporation. March.

Newman, J. (1987). On-line: Using a database in the classroom.
Language Arts, 63,315-319.

Ney, J.W. (1986). Facets: The joys and frustrations of writing textbooks.
English Journal, 75 (8), 12.

North, S.M. (1987). The making of knowledge in composition: Portrait of
an emerging field. Upper Montclair, NJ: Boynton/Cook.

1

4.

Works Cited 171

Odell, L., Goswami, D., Herrington, A., & Quick, D. (1983). Studying
writing in non-academic settings. In P.V. Anderson, R.J. Brockman,
& C.R. Miller (Eds.), New essays in technical and scientific commu-
nication: Research, theory, and practice (pp. 17-40). Farmingdale, NY:
Baywood.

Ohmann, R. (1985). Literacy, technology, and monopoly capital. College
English, 47, 675-689.

Ong, W.J., S.J. (1982). Orality and literacy: The technologizing of the
world. New York: Methuen.

Palmquist, M. (1989). Extending the dialogue: Using the network to
evaluate and support student writing. Paper presented at the Com-
puters and Writing Conference. Minneapolis, Minnesota. May 13.

Par lett, J. (1987). Confer: An ICAI system for prewriting and reflective
inquiry. Ph.D. diss. University of Pittsburgh. DAI, 49 (05A).

Par lett, J. (1989). Personal interview. Minneapolis, Minnesota. May 13.

Poison, M.C., & Richardson, J.J. (Eds.). (1988). Foundations of intelligent
tutoring systems. Hillsdale, NJ: Lawrence Erlbaum. "Put stars in your
head." (1987). Washington Post, July 10, C5.

Raymond, .1 C. (1989). Review of The making of knowledge in composition:
Portrait of an emerging field. College English, 40, 93-95.

Richardson, K. (1992). Telephone interview. February 10.

Ringle, M. (Ed.). (1979). Philosophical perspectives in artificial intelli-
gence. Atlantic Highlands, NJ: Humanities Press.

Rodrigues, D., & Rodrigues, R.J. (1984). Computer-based invention:
Its place and potential. College Composition and Communciation, 35,
78-87.

Romiszowski, A. (1990). Shifting paradigms in education and training:
What is the connection with telecommunications? Educational and
Training Technology International, 27,233-236.

Rosenthal, J.W. (1987). Integrating word processing into freshman
composition. Computer-Assisted Composition Journal, 1,119-131.

Ross, D. (1989). Beyond NeXt. Paper presented at the Computers and
Writing Conference. Minneapolis, Minnesota. May 13.

Schwartz, H. (1990). Ethical considerations of ethical computer use.
In D.H. Holdstein & C.L. Selfe (Eds.), Computers and writing: Theory,
research, practice (pp. 18-30). New York: Modern Language Asso-
ciation.

I c,

172 Works Cited

Schwartz, H. (1992). Telephone interview. February 4.

Schwartz, M. (1985). Writing for many roles. Upper Montclair, NJ:
Boynton/Cook.

Schwartz, M. (1989). Telephone interview. February 2.

Schwartz, M. (1992). Telephone interview. February 4.

Schwartz, M. (Forthcoming). Swimming above the black fine.

Schwartz, M. (Ed.). (1991). Writer's craft, teacher's art: Teaching what
we know. Portsmouth, NH: Heinemann.

Selfe, C.L. (1985). Computer-assisted instruction in composition: Create
your own. Urbana: National Council of Teachers of English.

Selfe, C.L. (1989a). Personal interview. Seattle, Washington. March 18.

Selfe, C.L. (1989b). An open letter to computer colleagues: Notes from
the margin. Paper presented at the Conference on Computers and
Writing. Minneapolis, Minnesota. May 13.

Selfe, C.L. (1989c). Redefining literacy: The multilayered grammars of
computers. In G.E. Hawisher & C.L. Selfe (Eds.), Critical perspectives
on computers and composition instruction (pp. 3-15). New York:
Teachers College Press.

Selfe, C.L. (1990). Technology in the English classroom: Computers
through the lens of feminist theory. In C. Handa (Ed.), Computers
and community: Teaching composition in the twenty-first century (pp.
118-139). Portsmouth, NH: Boynton/Cook.

Selfe, C.L. (1992). Preparing English teachers for the virtual age: The
case for technology critics. In G.E. Hawisher & P.J. LeBlanc (Eds.),
Re-Imagining computers and composition: Teaching and research in the
virtual age (pp. 24-42). Portsmouth, NH: Boynton/Cook.

S :ark, H.N. (1985). Hyperrhetoric: Teaching students to develop hy-
pertext discourse models. Paper presented at the Computers and
Writing Conference. Minneapolis, Minnesota. May 13.

Shirk, H.N. (1991). Hypertext and composition studies. In G.E. Haw-
isher & C.L. Selfe (Eds.), Evolving perspectives on computers and
composition studies: Questions for the 1990s (pp. 177-202). Urbana:
National Council of Teachers of English/Computers and Composition.

Shor, I. (1987). Critical teaching and everyday life. Chicago: University
of Chicago Press.

Shriner, D.K. (1988). Risk taking, revising, and word processing.
Computers and Composition, 5, 43-54.

I;

Works Cited 173

Simon, J.F. (1989). A user-friendly revolution: Object orientation may
point the way. Boston Globe, May 21, Al.

Slatin, J. (1990). Reading hypertext: Order and coherence in a new
medium. College English, 52,870-883.

Sledd, A. (1988). Readin' not riotin': The politics of literacy. College
English, 50, 495-508.

Smith, C.F. (1989). Reconsidering hypertext. Paper presented at the
Computers and Writing Conference. Minneapolis, Minnesota. May
13.

Smith, C.F. (1991). Reconceiving hypertext. In G.E. Hawisher & C.L.
Selfe (Eds.), Evolving perspectives on computers and composition
studies: Questions for the 1990s (pp. 224-252). Urbana: National
Council of Teachers of English/Computers and Composition.

Smith, J.B. (1989). Personal interview. Minneapolis, Minnesota. May
13.

Smith, J.B., & Lansman, M. (1987). A cognitive basis for a computer
writing environment. Text Lab Report #TR87-032. University of
North Carolina at Chapel Hill. June.

Smith, J.B., Weiss, S.F., & Ferguson, G.J. (1987). A hypertext environ-
ment and its cognitive basis. Text Lab Report #TR87-033. University
of North Carolina at Chapel Hill. October.

Spitzer, M. (1986). Writing style in computer conferences. In V. Arms
(Ed.), IEEE Transactions on Professional Communication: Special Issue
on Computer Conferencing (pp. 19-22).

Sprecher, J.W. (1988). The future of software development in higher
education. In J.W. Sprecher (Ed.), Facilitating academic software
development (pp. 121-156). McKinney, TX: Academic Computing
Publications.

Stewart, D.C. (1978). Composition textbooks and the assault on tra-
dition. College Composition and Communication, 29, 171-176.

Strassman, P.A. (1983). Information systems and literacy. In R.W. Bailey
& R.M. Fosheim (Eds.), Literacy for life: The demand for reading and
writing (pp. 115-121). New York: Modern Language Association.

Strickland, J. (1988). Telephone interview. September 14.

Sudol, R. (1985). Applied word processing: Notes on authority, re-
sponsibility, and revision in a workshop model. College Composition
and Communication, 36,331-335.

174 Works Cited

Tamp lin, J., & Adams, C. (1986). Word-processing: Does it work?
Electronic Education, 5, 101-116.

Taylor, P. (1989a). Telephone interview. January 30.

Taylor, P. (1989b). Personal interview. Austin, Texas. August 29.

Thiesmeyer, J. (1984). Some boundary considerations for writing soft-
ware. In L.S. Bridwell & D. Ross (Eds.), Computers and composition:
Selected papers (pp. 277-291). Fort Collins: Colorado State Univer-
sity/Michigan Technological University.

Townsend, C. (1988). Understanding C. Indianapolis: Howard W. Sams.

Trimbur, J. (1989). Consensus and difference in collaborative learning.
College English, 51, 602-616.

Tuman, M. (1989). 'Caverns measureless to man': The prospects for
post-typographical literacy. Paper presented at the Computers and
Writing Conference. Minneapolis, Minnesota. May 13.

Turing, A.M. (1937). On computable numbers, with an application to
the entscheidungsproblem. In Proceedings of the London Mathematics
Society, 2nd ser. 42,230-265. London: C.F. Hodgson.

Turing, A.M. (1964). Computing machinery and iatelligence. Rpt. in
A.R. Anderson (Ed.), Minds and machines (pp. 4-30). Englewood
Cliffs, NJ: Prentice-Hall.

Warwick, D.P., & Lininger, C.A. (1975). The sample survey: Theory and
practice. New York: McGraw-Hill.

Weizenbaum, J. (1965). ELIZA: A computer program for the study of
natural language communication between man and machine. Com-
munications of the Association for Computing Machinery, 9,36-45.

Weizenbaum, J. (1976). Computer power and human reason: From judge-
ment to calculation. San Francisco: W.H. Freeman.

Welch, K.E. (1987). Ideology and freshman textbook production: The
place of theory in writing pedagogy. College Composition and Com-
munication, 38,269-282.

Winograd, T., & Flores, F. (1986). Understanding computers and cognition:
A new foundation for design. Norwood, NJ: Ablex.

Winterowd, W.R. (1989). Composition textbooks: Publisher-author
relationships. College Composition and Communication, 40, 139-151.

Witte, S. (1983). Topical structure and revision. College Composition
and Communication, 34, 313-341.

1 (-

Works Cited 175

Woodruff, E. (1989). Telephone interview. March 13.

Woolley, W.C. (1985). The effects of word processing on the writing
of selected fifth-grade students. Ph.D. dins. College of William and
Mary. DAI, 47 (82A).

Wresch, W. (1992). Telephone interview. January 29.

Young, R. (1978). Paradigms and problems: Needed research in rhe-
torical invention. In C.R. Cooper & L. Odell (Eds.), Research on
composing: Points of departure (pp. 29-48). Urbana: National Council
of Teachers of English.

Zimmerman, M. (1989). Reconstruction of a profession: New roles for
writers in the computer industry. In E. Barrett (Ed.), The society of
text: Hypertext, hypermedia, and the social construction of information
(pp. 35-49). Cambridge, MA: Massachusetts Institute of Technology
Press.

Zinsser, W. (1983). Writing with a word processor. New York: Harper &
Row.

=No

Author

Paul J. LeBlanc is associate professor of
English and chair of the humanities de-
partment at Springfield College. His pub-
lications include Re-Imagining Computers
and Composition: Research and Teaching in
the Virtual Age (edited with Gale E. Ha-
wisher), c. apters on the politics of tech-
nology in secondary schools in Literacy
and Computers (edited by Cynthia L. Selfe
and Susan Hilligos), on hypertext in a
forthcoming volume on hypertext and

software development (edited by William Condon), and on
teacher training and computers (with Charles Moran) in Com-
puters in English and the Language Arts: The Challenge of Teacher
Education (edited by Cynthia L. Selfe, Dawn Rodrigues, and
William Oates). His articles have appeared in Thalia, SIGCUE
Outlook, and Computers and Composition. He has presented at
NCTE, CCCC, MLA, New Hampshire Conference on Compo-
sition, and various educational and corporate organizations. He
is currently software editor for Computers and Composition and
serves on the software subcommittee of NCTE's Instructional
Technology Committee.

1q

177

Index

Academic Computing, 53
Academic Software Development

Survey (EDUCOM), 41, 52, 87-
88, 96, 99

Academic work vs. software work,
116-117, 121-122, 123

Air Force, 16, 133
ANDREW (network system), 141
Anson, Chris M., 110
Apple Computer, Inc.

academic collaboration with,
132

funding from, 40, 97, 131
in future of CAC, 110
Macintosh computers, 76-77,

82, 100, 110
software for computers by, 25,

32, 73
system architecture by, 79

Architecture, system. See System
architecture

Arms, Valerie, 34
Army Research Institute, 64, 133
Artificial intelligence, 82-87
Asymetrix Corporation, 71, 111
Atkinson, Bill, 73
Augmented transition network

(ATN), 83

B., Rich, 132
Babbage, Charles, 13
Bajarin, Tim, 111
Balister, Valerie, 46
Barker, Thomas T., 126, 128
Barthes, Roland, 126
BASIC (programming language),

25
Batson, Trent, 46, 47, 80, 126
Beck, J. Rcbert, 73, 75-76
Beesley, M. S., 6
Bentham, Jeremy, 130
Bereiter, C., 58, 136, 139, 140
Berlin, James A., 66
Bolter, J. David, 18, 126, 150

Bourque, Joseph H., 12, 90-91, 95
Bread Net, 81
BRUNET (Brown University net-

work), 82
Bump, Jerome, 44, 45
Burnett, J. H., 6
Burns, Dan, 25, 52, 53-56, 82, 83,

115
Burns, Hugh, 6, 26, 42, 44, 45, 83,

85. See also Daedalus Group
Business Week, 54
Butler, Wayne

on academics vs. software de-
sign, 117

on future of CAC, 115-116
on reward and recognition, 88
in software development, 42,

45-46, 49, 51, 52, 66
See also Daedalus Group

C (programming language), 25,
103

C++ (programming language), 25
CAC (Computer-Aided Composi-

tion)
composition theory in, 89, 93-

94
difficulties in development of,

12, 120
evaluation of, 91-92, 149
future of, in general, 146-151
humanistic vs. technological

perspectives in, 94-96
writing environments in, 109-

110, 118-119, 140-141
See also Cognitive software

models; Design/develop-
ment, of software; Program-
ming; names of specific soft-
ware

California State University, 96
Carnegie Mellon University, 57,

59-61, 64-65, 97, 133, 142-
143, 144

q5

179

180 Index

Carter, Locke, 42, 45, 47. See also
Daedalus Group

CCCC (Conference on College
Composition and Communica-
tion), 45, 46, 115

CCCC Bibliography of Composition
and Rhetoric, 149

CD-ROM technology, 81-82
CD-RW (Compact Disc-Read

Write) drives, 82
CD-WORM (Compact Disc-Write

Once, Read Many) drives, 82
Center for Applied Cognitive Sci-

ence, 57, 59, 64
"Challenge for Computer-Assisted

Rhetoric" (H. Bums), 85
Chambers, Jack A., 22, 42
Cirello, V. J., 6
Clark, Suzanne, 94
"Cognitive Basis for a Computer

Writing Environment, A" (Smith
& Lansman), 139

Cognitive software models
arguments for use of, 139-141
future influence of, 141-146
history of, 137-139
negative aspects of, 142-143
and other theoretical models,

135-137, 139, 141, 144-146
overview of, 17-19, 134-135
in specific software, 58-59, 137,

141
Colab tools (software), 80
College Composition and Communi-

cation, 149
College English, 124, 149
Collier, R., 80
Comments (software), 58, 80-81,

137, 153
Compact disc technology, 81-82
Composition

cognitive models in, 134-135
in general, 1-4, 94-96, 148-151
hypermedia in, 125-127, 150
in motivating students, 5-6

Composition theory
diversity in, need for, 135-137,

141, 147
general influence in CAC, 89,

93-94

1 q G

and hypertext, 125-127, 145
See also Cognitive software

models
Computer-Aided Composition

(CAC). See CAC (Computer-
Aided Composition)

Computers
basic principles of, 13-14
history of, 13, 129
IBM PCs, 51, 76-77, 79
Macintosh, 76-77, 82, 100, 110
in schools, statistics on, 3, 122-

123
SUN workstations, 78
Xerox 118 Dandelion, 86
See also Programming; System

architecture
Computers and Composition, 5, 53,

249
Computers and Writing Confer-

ence, 5, 115, 139-140, 144
"Computer Writing Facilities: The

State of Art" (Collier), 80
CONDUIT consortium, 32, 101-

105, 114
Confer (software), 16, 70, 72, 79,

83, 84-87
Conference on College Compos'-

tion and Communication
(CCCC), 45, 46, 115

Copy protection, 101
Cornell University, 34, 39-41
Corporations

aspects of collaboration with,
130-133

funding from, 40, 64, 97, 98,
131

Costs, examples of, 64, 96. See also
Funding

Coulter, C. A., 6
Create/Recreate (software), 34
Creative Problem-Solving (software),

34
Creative Strategies Research Inter-

national, 111
CSILE (software)

description of, 59, 109, 144,
153, 154 (fig.), 156

development of, 59, 62, 128
funding for, 64, 97, 131

Index 181

networking with, 80

Daedalus Group, 42, 46-52, 115-
117, 121-122, 131
Daedalus Instructional System,

43, 48, 50-51, 116
53rd Street Writer (software),

105, 106
Daiute, C., 6
Dalton, D. W., 6
Data abstraction (object-oriented

programming, 00P), 69-72,
112-113, 122

Davis, Stuart, 34, 36, 99, 100
Declarative knowledge, 16, 17, 85
Deconstruction, 126
Delaney, Paul, 125-126
Department of Defense (DOD),

133
Derrida, Jacques, 126
Design/development, of software

vs. academic work, 116-117,
121-122 123

collaboration wish programmers
in, 28-31, 38, 68

definition of, 21
programming expertise in, 30-

31, 48, 91
See also Programming; names of

specific models
Di Pardo, Anne, 74, 110
Di Pardo, Mike, 74, 110
Direct-mail marketing, 115
Discipline, use of networks for,

130
Discourse Detective (software), 111
Diversity in theory, 135-137, 141,

147
DOD (Department of Defense),

133
Doheny-Farina, Stephen, 65, 148
DOS (disk operating system), 111,

122, 128
Du ling, R. A., 6

EDUCOM
Academic Software Develop-

ment Survey, 41, 52, 87-88,
96, 99

NCRIPTAL/EDUCOM Award

for Outstanding Software,
41, 43, 90

Eisenstein, Elizabeth L., 2
Elbow, Peter, 6, 25, 139, 147
Eldred, Janet M., 126-127, 137
Electronic communications, 81, 124
ELIZA (software), 85
"Empirical Explorations of the

Logic Theory Machine: A Case
Study in Heuristics" (Newell &
Simon), 18

Encyclopedia of English Studies and
Language Arts, 149

ENFI system (software), 80
English Coalition Conference, 147
English departments, recognition

from, 88-93, 96
Entrepreneurial des4n group

model
definition of, 23-24, 42
description and examples of,

42-52
funding in, 50-51, 57, 97, 115-

116
future of, 115-117, 121, 123
reward and recognition in, 24,

52, 121
user input and revision in, 50,

51
Essay Writer (software, later The

Writer's Helper), 131. See also
The Writer's Helper (software,
formerly Essay Writer)

Evaluation of CAC programs, 91-
92, 149. See also User input and
software revision

Executive Communications, 54
Eyeball (software), 34

Feigenbaum, Edward, 138
53rd Street Writer (software), 105,

106
FIPSE (Fund for Improvement in

Post-Secondary Education), 93,
97, 106, 114

Flower, Linda, 17, 58, 138-139,
146

Folio (software), 74
Fortune, Ron, 110-111, 127, 128,

147

1 q 7

182 Index

Forum (software, later Interchange),
47, 49. See also Interchange
(software)

Frames, cognitive, 68-69
FREE (software), 6, 25, 33, 137
Freewriting, software for

FREE, 6, 25, 33, 137
Prewrite, 26-29, 31-33, 68, 97,

137, 140, 157, 158 (fig.)
Fund for Improvement in Post-

Secondary Education (FIPSE),
93, 97, 106, 114

Funding
from corporations, 40, 64, 97,

98, 131
for entrepreneurial design

groups, 50-51, 57, 97, 115-
116

ethics in, 133-134
general discussion of, 21, 96-98
and impact of technology, 67
for lone developers, 32, 97
from military organizations, 64,

97, 133-134
for professional developers, 52-

53
for research-based design

teams, 22-23, 64, 97-98, 134
for small design groups, 23, 36,

39-40, 41, 97, 114

Gaither, G., 41, 88. See also EDU-
COM, Academic Software De-
velopment Survey

General Problem Solver (informa-
tion-proces3ing system), 138

General Problem Solving (GPS)
theory, 18

Giansiracusa, Robert, 54-55
Gibson, Jim, 34
Giesler, Cheryl, 58
Grammatik (software), 137
Guide (software), 74

Haas, C., 6, 129
Hairston, Maxine, 135
Hannafin, M. J., 6
Hardware. See Computers; System

architecture
Harper Collins publishers, 105-108

1 (4 °......

Havelock, Eric A., 2
1-lawisher, Gail E., 6, 149
Hayes, John R., 6, 17, 58, 138-139
HBJ Writer (software), 118
Hepler, Molly, 103-104
Hobsbawm, E. J., 150
Humanistic perspectives, 94-96
HyperCard (software), 31, 73, 74,

110
Hypermedia/hypertext

authoring systems using, 31,
72- 76,110 -111

and composition theory, 125-
127

definition of, 73
general impact on composition,

95, 125, 150
hardware requirements for, 78
in specific CAC software, 34,

43, 50, 141
HyperTies (software), 74
HyperWord (software), 74
HyperWriter (software), 74

IBM
and CAC development, 51, 111,

132
funding from, 64, 131
Interleaf Publisher (software), 79
personal computers from, 51,

76-77, 79
ICAC (Intelligent computer-aided

composition), 83-85
ICON computer, 128
Ideolog (software, later Mindwriter),

45. See also Mindwriter (soft-
ware, formerly Ideolog)

Ideological biases, 128-130
InfoWirld, 53
Institutio Oratoria (Quintilian), 2
Intelligent computer-aided compo-

sition (ICAC), 83-85
Intelligent Systems Branch of the

Air Force Human Resources
Lab, 16

Intelligent Tutoring Systems (ITS),
15, 17, 83

Interchange (software, formerly
Forum)
description of, 42-43, 74, 137,

155 (fig.), 156-157

Index 183

development of, 42, 46-50, 66,
74, 77

networking with, 77, 80
Interleaf Publisher (software), 79
Intertextuality, 126, 127, 145
ITS (Intelligent Tutoring Systems),

15, 17, 83

Jobs, Stephen, 147
Johnson-Laird, Philip, 68
Jones, Robert Alun, 82, 149-150

Kaplan, Howard, 6
Kaplan, Nancy

on future of writing instruction,
2, 109, 128, 129, 134

Prose (software) by, 34-42, 51,
97, 99-101, 113, 157

Kaufer, David, 60-61
Keane, D., 41, 88. See also EDU-

COM, Academic Software De-
velopment Survey

Kemeny, John, 25
Kemp, Fred

on future of writing instruction,
126, 128, 139, 142

in software development, 30-
31, 42-49, 66, 116, 121-122

See also Daedalus Group
Kinko's Academic Software Ex-

change, 99
Kinneavy, James, 44
Klein, Sheldon, 17
Knowledge, in programming

declarative, 16, 17, 85
metatheory for, 17
procedural, 14-16, 17
qualitative, 16-17, 85

Landow, George P., 125-126
Lanham, Richard, 124-125
LANs (Local-area networks), 80
Lansman, M., 139
Laub, L., 81
Lewis, Dorothy Ohl, 22, 42
LISP (programming language), 25,

54, 86-87
Literacy, new, 125-126
Literary Machines (Nelson), 95-96
"Little" programs, 109-110, 119,

140

Local-area networks (LANs), 80
Lone developer model

definition of, 22, 33
description and examples of,

25-34, 54
funding in, 32, 97
future of, 75, 109-112, 121,

122, 123
reward and recognition in, 22,

34, 121
user input and revision in, 31-

32, 33-34
Lotus 1-2-3 (software), 134-135
Lunar (software), 83
Lunsford, Andrea A., 4, 5, 10, 124,

148

McDaid, John, 110, 127
McDaniel, Ellen, 1, 92
McGraw-Hill publishers, 39, 51,

99-101
Macintosh computers, 76-77, 82,

100, 110
McKenzie, Alan T., 5
McLean, Bob, 59
McLuhan, Marshall, 2
Macroprograms, 118-119, 141
Manzelli, John, 75
Marginalized students, 127
Marketing of software

by design groups, 114, 115
by publishers, 103-104, 106-

107
Martin, Joseph, :34, 36, 99, 100
Memory (computer)

on CD-ROM, 81-82
limitations of, 78, 79, 80, 86-

87, 120
MicroSel' _t (network system), 129-

130
Micro Soft Windows, 79, 103
Military organizations

funding from, 64, 97, 133-134
influence on system architec-

ture, 129
MINA (software), 83
MindScape software publishers, 32
Mindwriter (software, formerly

Idealog), 42, 45, 157
Minsky, Marvin, 68-69, 82-83

184 Index

MIS Week, 54, 55
MLA (Modern Language Associa-

tion), 4, 124
Modems, 81
Monitor screen size, 78, 79, 120,

129
Moore, M. A., 6
Moran, Charles, 3
Motivation, technology in, 5-6
Moulthrop, Stuart, 126

Nachman, Louis, 34, 36-37
NASA (National Aeronautics and

Space Administration), 83, 133
National Council of Teachers of

English (NCTE), 124, 149
National Science Foundation

(NSF), 64, 97, 101
Natural language processing, 83-

85
NCRIPTAL/EDUCOM Award for

Outstanding Software, 41, 43,
90

NCTE (National Council of Teach-
ers of English), 124, 149

Nelson, Ted, 73, 95-96
Networking

and composition theory, 126
distribution of software

through, 99
history of systems for, 128
in impact on software develop-

ment, 77, 79-81
Neuwirth, Christine

cognitive theory in work of,
139, 141-142, 143

on funding, 97, 98, 133-134
on impact of technology, 78
on reward and recognition, 64-

65
in software development, 57,

58, 59-61, 78, 80-81
Newell, A., 18, 138
New literacy, 125-126
Nodes, in hypermedia, 73
North, Stephen, 136, 139-140
Notes (software), 58, 60, 78, 137,

141, 157
NSF (? 3tional Science Founda-

tion), 64, 97, 101

2 t ; 4, e

Object-oriented programming
(00P), 69-72, 112-113, 122

Odell, Lee, 65, 148
Office of Naval Research (ONR),

97, 133
Ohmann, Richard, 128
"On Computable Numbers, with

an Application to the Entschei-
dungsproblem" (Turing), 13

Ong, Walter, 1-2
ONR (Office of Naval Research),

97, 133
00P (Object-oriented program-

ming), 69-72, 112-113, 122
Operating systems. See System ar-

chitecture
Organize (software), 34, 36-37, 99,

101, 140, 157
0S2 (operating system), 79
Ownership of software, 49

Panopticon, Bentham's, 130
Paradigm shift, in composition the-

ory, 135-136
Parlett, James

and artificial intelligence, 83,
84-86

Confer (software) by, 16, 70, 72,
79, 83, 84-87

on future of CAC, 118-119,
121-122, 137

in software development, 42,
70, 72, 79

See also Daedalus Group
PASCAL (programming language),

48
Pattern matching in artificial intel-

ligence, 85-86
PC Week (magazine), 54, 55
Piracy, 101
Poison, Martha C., 15, 17
Prep Editor (software), 157
Prewrite (software), 26-29, 31-33,

68, 97, 137, 140, 157, 158 (fig.)
Prewriting, software for

Organize, 34, 36-37, 99, 101,
140, 157

Prewrite, 26-29, 31-33, 68, 97,
137, 140, 157, 158 (fig.)

Problem-solving software models,
138

Index 185

Procedural knowledge, 14-16, 17
Process approach to composition,

135-136
Processing speed, 78, 79, 80, 120
Profession, 124
Profession 91, 5
Professional software development

model, 24, 52-57
Programming

declarative knowledge in, 16,
17

hired programmers for, 28-30,
31, 38, 68

with hypermedia authoring sys-
tems, 31, 72-76, 110-111

with OOP (Object-oriented pro-
gramming), 69-72, 112-113,
122

procedural knowledge in, 14-
16, 17

qualitative knowledge in, 16-
17, 85

See also Programming languages
Programming languages

general impact of, 12, 67-68
impact on lone developers, 25
natural language processing,

83-85
specific languages, 25, 48, 54,

86-87, 103
Prose (software), 34-42, 51, 97,

99 101, 113, 157
Publication of software, 98-108

by CONDUIT consortium (not-
for-profit), 32, 101-105, 114

by Harper Collins, 105-108
by McGraw-Hill, 39, 51, 99-

101
Public domain software, 114

Qualitative knowledge, 16-17, 85
Quintilian, 2

Rasche, Robert, 34
Recognition. See Reward and rec-

ognition
Research-based design teams

and cognitive models, 135,
141-146

definition of, 22-23, 57, 65

description and examples of,
57-65

funding for, 22-23, 64, 97-98,
134

future of, in general, 117-120,
122, 135

reward and recognition for, 23,
64-65, 87, 118, 121

user input and revision by, 61-
63

Revision, computers for, 6, 35-36,
38. See also User input and soft-
ware revision

Reward and recognition
from English departments, 88-

93, 96
fe- entrepreneurial design

groups, 24, 52, 121
general discussion of, 21, 87-96
for lone developers, 22, 34, 121
for research-based design

teams, 23, 64-65, 87, 118,
121

for small design groups, 23, 40-
42, 113, 121

Richardson, Kim, 105-108
Robotel, 129
Rodrigues, Dawn, 34, 146
Rodrigues, Ray J., 34, 146
Ross, Donald, 34, 74
Royalty payments, 107

Scaffolding, software for, 58
Scardamalia, M., 58, 136, 139, 140
Scholar project, 16
Schools, statistics on computers in,

3, 122-123
Schwartz, Alan, 28
Schwartz, Helen

on Carnegie Mellon, 143, 144
Discourse Detective (software)

by, 111
on future of CAC, 111-11'2, 143
Organize (software) by, 34, 36-

37, 99, 101, 140, 157
SEEN (software) by, 30, 51, 99,

104-105, 112, 114, 137,
157-158

on software development, 72
Schwartz, Mimi, 24, 26-29, 31-33,

67-68, 113

r. ,

1A.

186 Index

Prewrite (software) by, 26-29,
31-33, 68, 97, 137, 140, 157,
158 (fig.)

Screen size, 78, 79, 120, 129
Second National Survey of Instruc-

tional Uses of School Com-
puters, 3

SEEN (software), 30, 51, 99, 104,
112, 114, 137, 157-158

Selfe, Cynthia L.
as editor of CCCC Bibliography,

149
on future of writing instruction,

126, 127, 129, 130, 144-145
on reward and recognition, 88-

89, 92, 93-95, 96
on software development, 25-

26, 57, 68
Wordswork (software) by, 30, 34

Shirk, Henrietta N., 127
Short, Doug, 132
Simon, H. A., 18, 138
Simon, Jane Fitz, 69
Simulation programs, 138
Situational analysis, 144
Small design group model

definition of, 23, 41
description and examples of,

34-42
funding in, 23, 36, 39-40, 41,

97, 114
future of, 75, 112-115, 121
reward and recognition in, 23,

40-42, 113, 121
user input and revision in, 38-

39
Smith, Catherine, 111, 144
Smith, John B.

on cognitive basis for CAC,
139-141, 144

on costs, 23, 97, 98
in development of software in

general, 57, 58
on future of CAC, 119
See also WE (Writing Environ-

ment, software)
Snow, Charles Percy, 95
Social aspects of writing, 18 19
Social constructivist theory, 127,

128

2 (1

Social-epistemic theory, 145
Software

corporate influence on, 127-132
military influence on, 133
ownership of, 49
See also Design/development,

of software; Programming;
Technology, impact on soft-
ware; User input and soft-
ware revision; names of spe-
cific programs

Speed, of processing, 78, 79, 80,
120

Spicer, Donald Z., 73, 75-76
StorySpace (software), 74
Strickland, James, 6, 25, 28, 33
SUN workstations, 78
Supercard (software), 74
Swimming above the Black Line

(Schwartz), 26
System architecture

ideological biases in, 128-130
impact on software develop-

ment, 76-79
memory, 78, 79, 80, 86-87, 120
processing speed, 78, 79, 80,

120
screen size, 78, 79, 120, 129

TASP (Texas Assessment of Skills
Proficiency), 121

Taylor, Paul
on academics vs. software de-

sign, 116
on impact of technology, 67, 87
in software development, 42,

45-52, 66, 77
See also Daedalus Group; Inter-

change (software)
Teacher's role with CAC, 120, 130,

146-148
Technology. See Composition, im-

pact of technology on; Com-
puters; Software; Technology,
impact on software

Technology, impact on software
artificial intelligence in, 82-87
CD-ROM in, 81-82
funding in, 67
hypermedia in, 72-76

Index 187

networking in, 79-81
object-oriented programming

(OOP) in, 69-72, 112-113,
122

overview of, 67
programming languages in, 67-

68
system architecture in, 76-79

Telecommunications, 81
Texas Assessment of Skills Profi-

ciency (TASP), 121
Texas Technological University, 121
Textbook publishers

Harper Collins, 105-108
McGraw-Hill, 39, 51, 99-101

Therbom, Goran, 128
Thought line (software), 25, 53-56,

82, 83, 115, 137, 158-159
Tool Book (software), 31, 74, 79,

111, 128
Turbo Pascal (programming lan-

guage), 25
Turing, Alan M., 13

Ultimedia system, 111
United State, Air Force, 16, 133
United States Army Research Insti-

tute, 64, 133
United States Department of De-

fense (DOD), 133
United States Office of Naval Re-

search (ONR), 97, 133
University of Akron, 96
University of Illinois at Urbana-

Champaign, 82
University of Iowa, 101
University of Maine, 92
University of Minnesota, 110
University of North Carolina at

Chapel Hill, 57, 58
University of Texas at Austin, 43,

49, 52, 113, 131
User friendliness, design for, 29
User input and software revision

definition of, 21
by entrepreneurial design

groups, 50, 51
by lone developers, 31-32, 33-

34
by professional software devel-

opers, 53, 54-56

publishers in, 100-101, 102--
103, 104-105

by research-based design teams,
61-63

by small design groups, 38-39

Van Neumann, john, 13
VIEWS (software), 74

Wadsworth publishers, 100, 101
Wahlstrom, Billie, 34
WE (Writing Environment, software)

cognitive models for, 139, 141,
144

description of, 13, 18-19, 62-
64, 109, 137, 141, 144, 159

development of, 59, 62-64, 78
funding for, 133
in future of CAC, 109, 119

Weizenbaum, Joseph, 13, 14, 85
What Is English? (Elbow), 147
Windows (operating system), 79,

103
Winograd, Terry, 84
Witte, Stephen, 136-137
Wood, John, 71
Woodruff, Earl

cc.gnitive theory in work of,
139, 144

on funding, 64, 97, 98
on future of CAC, 110, 145-146
in software development, 57,

59, 62
Woods, William, 83
Woolley, W. C., 6
Word-processing programs, 3-4
Wordswork (software, formerly

Wordsworth II), 30, 34
Wresch, William

on collaboration with corpora-
tions, 131-132

on future of CAC, 113, 119-120
on reward and recognition, 89-

90, 93
on technological impact, 73
See also The Writer's Helper

(software, formerly Essay
Writer)

Writers' Craft, Teachers' Art
(Schwartz), 26

2(13

188 Index

The Writer's Helper (software, for-
merly Essay Writer)
award won for, 90
commercial success of, 89, 97
description of, 118, 159
funding for initial development

of, 131
publication of, 5 , 99, 101-105,

114
Stage II, 103

Writing. See Composition, impact
of technology on; Composition
theory

Writing environments, 109-110,
118-119, 140-141. See also WE
(Writing Environment, software)

2 (i 4

Writing for Many Roles (Schwartz),
26

Writing without Teachers (Elbow),
25

Xerox 118 Dandelion computer, 86
Xerox Palo Alto Research Center,

80
Xpercom company, 52, 56. See also

Bums, Dan

Young, Richard, 133-134, 135-136

Zimmerman, Muriel, 125

Ihis.6.itticaiI1-is"tory'af and conterentarYon the

chn:;e1Of meritof wrgaig softwa re, th.e first, of its kindfr'.

Otters hitfctht into how compotes inf9trit the

teaching of .1.1,artifig,'arrict how teacher -s,of fitArtipg
. .

.,..T.torril the lir rie,,iefoornent
: . .,

,and per son able. rf a: th6: hoof%

. _

cootaffis ittrirvyeirai a.c.cotafts horn geveral proifyinent
. . .

wr iting.tp. at; flef s:'s`oftwal e eteveloOers.-1-neltlito Pfeil

rKentli",. Gfirf H a-kripOre r, Cynthia Seffe, add 3a ds

- the. uthOr St-tniys. the '-

gtory of Ihi".filst!:-.:Citiivtriri."4.1itiso.p.Iiiio.,:establishes

models to; sOftware-.tlevefripmint e4fOlfs.,firojects

tfte
,

fiatft.e of,thD -is model; and- poiot1-fte.Ai.for "': .

. . .

EngW:i studies into the 21st cent*.

Net octal Chnifcit.Of Teachers of English
-

'..111I.1.11/7KenyQn Road

. tirliati.6.11tintifs.611301---3:096:

'Computers and Composition

D- egartment Hurnahtf:es,'

. . .

Holighton:..M4higan 4.9931

BEST CRFY VIIILBLE

