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Detection of Differential Item Functioning in
Multiple Groups

Abstract

Detection of differential item functioning (DIF) is most often done between

two groups of examinees under item response theory. It is sometimes

important, however, to determine whether DIF is present in more than two

groups. In this paper Nw.: present a method for detection of DIF in multiple

groups. The method is closely related to Lord's chi-square for comparing

vectors of item parameters estimated in two groups. An example using real

data is provided.

Key words: differential item functioning, item response theory, Lord's chi-

square.
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Introduction

An item is said to be di:.:..rentially functioning if the probability of a correct

response is different for examinees at the same ability level but from different

groups (cf. Pine, 1977). Efforts to detect differential item functioning (DIF)

have been extensively reviewed by Berk (1982) and Holland and Wainer

(1993) for methods based on both classical test theory and item response

theory (IRT). DIF detection methods under either theoietical approach,

however, have been most completely developed for the two group case

in which comparisons are made between some aspect of the responses of

examines in a base (or reference) group and examinees in a second (or

focal) groups. It is not uncommon, however, to have a situation in which

more than two groups exist. With most current DIF detection methods,

multiple two-group comparisons are required to detect LIP' across all groups.

This approach does not permit other than pairwise comparisons among

groups. A more appropriate and useful approach would be to search for

DIF simultaneously across all groups. In this paper, we present a method

under IRT for simultaneous detection of DIF in a multiple group situation.

Detection of DIF under IRT is based on the assumption that the items

on the test measure the same underlying ability in all groups from the same

population. Two main approaches have been used for detection of DIF under

IRT. One approach focuses on a comparison of item parameters estimated in

two groups (Draba, 1977; Lord, 1977, 1980; Thissen, Steinberg, & Wainer,

1988, 1993; Wright & Stone, 1979). The other approach focuses on the area

between item response functions (IRFs) from two groups (Kim & Cohen,
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1991; Linn, Levine, Hastings, & Wardrop, 1981; Raju, 1988, 1990; Rudner,

1977; Wainer, 1993). Our focus in this paper is on the first set of methods

which compare item parameters estimated in different groups. Specifically,

we describe a chi-square method for comparison of item parameters estimated

in multiple groups.

IRT Model

The probability of a correct response for a dichotomously scored item can be

expressed by the three-parameter IRF (Birnbaum, 1968) as

P,(9) = + (1 --6)[1 + exP{a.# 13i)}1-1) (1)

where ai, i3j, and ryy are the item discrimination, difficulty, and pseudo-.

guessing parameters, respectively, for item j, and 9 is the ability parameter.

Equation 1 expresses the probability of a correct answer on the 9 scale. We

will make use below of the fact that this probability is also the true score

function for item j.

Estimation of the pseudo-guessing parameter is well-known to be prob-

lematic unless there is a large number of examinees for whom the item is

reasonably diffici,lt (cf. Baker, 1987, 1988; Kolen, 1981; Shepard, Camilli,

Averill, 1981; Thissen & Wainer, 1982). In this regard, Lord (1.;80) presented

a DIF detection procedure which does not consider the pseudo-guessing pa-

rameter. The extension of Lord's chi-square procedure described in this paper

likewise is discussed with the two-parameter logistic IRF defined as

PO) [1 + exp{ -ai(0 -13j)}1-1. (2)

3



The method, however, can be adapted easily to include comparison of the

pseudo-guessing parameter and is sufficiently general to accommodate any

IRT model for dichotomously scored items. Further, the method as described

here can be applied to the Rasch logistic model (Rasch,1980) or extended to

include Samejima's (1969) graded response model.

Definition of DIF

When item parameters are estimated from two different groups of examinees,

we obtain two sets of item parameter estimates, ( ail bbl ) from the

first group and ( ap b,3 ) from the second. IRT assumes that the item

parameters are invariant across groups if examinees are drawn from the same

population (cf. Baker, 1985, 1992; Hambleton, 1989; Lord, 1980). Therefore,

the two sets o" item parameter estimates should be identical within sampling

fluctuation after proper scaling adjustment. When the parameter estimates

in the first group are not the same as the estimates in the second, the item

is considered to be functioning differentially in the two groups. Since the

shapes of the IRFs are dictated by their parameters, when the parameters

differ so will the IRFs.

The definition of DIF stated in terms of IRFs, however, is unnecessarily

restrictive as it is applicable only for dichotomous scored items. A more

useful definition of DIF would be the following:

An item is considered to be functioning differentially when the

item true score functions in the different groups are not equal.

As noted earlier, for the dichotomously scored items, the item true

score function is identical to the IRF. The statement in terms of item true

4



score functions provides a consistent definition of DIF to include not only

dichotomous models but also polytomous IRT models in general (Cohen,

Kim, & Baker, 1992). Further, it should be noted that the item true score

functions are identical if and only if the sets of the item parameters from the

groups are equal. Consequently, the null hypothesis for testing the equality

of the two-parameter IRFs from K groups of examinees can be stated as

H
cep. )

o:
(

hail
. .

aik
Pik

ctoc
Aix

The null hypothesis can also be stated as

H., . . = . .

where Lk = ( a k d33k )'. The alternative hypothesis is, of course,

H1 : Ho is not true.

Lord's Chi-Square

(3)

(4)

(5)

For two groups of examinees, Lord (1980) presented a chi-square method

for comparing vectors of item parameters. Lord's chi-square is obtained as

follows: Suppose we define vik and Eik as the vector of maximum likelihood

item parameter estimators and the asymptotic variance and covariance

matrix for vik, respectively, for the kth group of examinees. That is,

and

Ljk =

V jk = ( a jk b,k )1

var(aik) cov(a3k, b,k)
cov(aik, kik) var(bik)

)
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Then, for large samples

or equivalently

vik ik N(0, _EA)

(vjk (vik 4ik ) Xd,f =2.

The statistic in Equation 9 is sometimes called the Wald statistic and can be

used to make inferences about (Rubin, 1988; Wald, 1943). Hence, item

parameters estimated in two groups of examinees, which have been placed on

the same scale, can be compared using the following chi-square test statistic

described by Lord (1980):

Xj = (VP lij2)'(E31 Ei2)-1(Vii vj2). (10)

The null hypothesis tested is Ho : i1 = 1.0. Lord's chi-square has two

degrees of freedom for the two-parameter model. This chi-square has been

shown to be effective for detection of DIF (Caudell & Hulin, 1987; McCauley

& Mendoza, 1985) and is based on the following assumption (Lord, 1980):

1. It is asymptotic.

2. 9 are assumed to be known.

3. It is appropriate only for maximum likelihood estimates.

A DIF Statistic in Multiple Groups

Suppose we have a set of item parameter estimates for the two-parameter

model for item j from K different groups of examinees. We assume that

all item parameter estimates a:e placed on the same metric so that the
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comparisons can be made. We define vi as the vector of length 2K of

estimators of all item parameters from the K different groups, ij as the

vector of item parameters, and Ej as the block-diagonal and non-singular

dispersion matrix of vi. The first step is to formulate the following model to

describe vi as

where

V1 = X4. . f
31

v1= ( all bil aiK

X is a known design matrix such as X = Inc,

biK),

\
= fiii ... aix fig( )

and ej is the error vector with the dispersion matrix D(ci) = Ej as

/ var(aji) cov(aji, bp.) ... 0 0

cov(aji, bp) var(bii) ... 0 0

Ej = .

0 0 var(apc) cov(ajK, b,K)
0 0 cov(ajK, bfic) var(bjK)

(12)

(13)

(14)

It can be seen that, asymptotically,

(vi c'E;'(v, x3K

provided that E(vi) (Dobson, 1992). We can re-express Equation 15

in terms of a new parameter vector C of length p such that the new

variance and covariance matrix CLiC' is non-singular. Here, C is a contrast

matrix which contains p rows of contrast vectors that are linearly independent

7
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(Johnson & Wichern, 1992). Then the quadratic term Qi is defined as

Qi = (Cv1 - (CZiC1)" (Cv C4"i).

Any test for the homogeneity of item parameters can be expressed as

Ho : = O.

(16)

(17)

The asymptotic distribution of the quadratic term Q ;, which is a multi-group

DIF statistic, under the null hypothesis, = 0, is given by

Qi = (Cv (CLC1)-1 (Cv ;) (18)

where p is the rank of C (Dobson, 1990).

For example, when we have two groups of examinees, we obtain two sets

of item parameter estimates. We assume that a proper scaling adjustment

has been done so that two item parameter estimates from the first and second

groups are expressed on the same scale. Then,

and

E =

V1 = ail
b,1 a12 b,2

)1 (19)

va,r(aii) cov(aii, bii) 0 0

cov(aii, bii) var(bji) 0 0 ) . (20)
0 0 var(ai2) cov(ai2, bi2)
0 0 cov(ao, bi2) var(bi2)

The hypothesis of the equality of two sets of item parameters can be tested

with the matrix of contrast coefficients defined as

C

(1 0 -1 0

0 1 0 -1 )

8
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which has rank of two. This yields

= ( 1 0

0 1

and

With the null hypothesis

as

1 00 1

Cvi =

=

a31

)

bil

0 0 )', the

ajl 4212 (22)-
1311 1312

(23)

test statistic can be written

c = (v31 v 22)1 (Zii + ZA)-1 (v v22) (24)

which is in fact the same as Lord's chi-square in Equation 10 with two degrees

of freedom.

Example

We provide an example to illustrate the detection of DIF in three groups

of examinees using the method described above. The data for this example

were taken from a study by Cohen and Kim (1992) of calculator effects on

mathematics test items.

Data and Item Parameter Estimation

Three groups of 200 students each were selected from students enrolled

in calculus and pre-calculus mathematics courses in Fall 1990 at a large

midwestern university. The first group was composed of examinees who

were not allowed to use calculators during the test (i.e., No-Calculator

Group). The second and third groups were composed of examinees who used

9



two different brands of scientific calculators when they took the test (i.e.,

Calculator-1 and Calculator-2 Groups). All students were tested during the

first week of classes, prior to any instruction in the course.

The test consisted of 14 items assembled from the pre-calculus section of

a standardized multiple-choice university mathematics placement test with

five options per item. The items used were all operational items on the test

and had originally been written for use without calculators. DIF analysis

was used to determine which items were sensitive to calculator usage. It was

also of interest to determine the effect of two different brands of calculators

on item performance.

As the number of examinees in each group was relatively small, we opted

to try to use the two-parameter logistic model to fit the data sets. IRT item

parameter estimates were obtained using BILOG 3 (Mislevy 8z Bock, 1990)

with the marginal maximum likelihood estimation. The item fit statistics

provided by BILOG 3 indicated that the two-parameter model provided a

good fit to the data. Use of an IRT model also assumes that the data are

unidimensional. Recluse (1979) has suggested that this condition may be

satisfied if the first component in a principal component analysis accounts

for at least 20 percent of the variance. A principal component analysis

using tetrachoric correlation coefficients indicated that the data sets were

sufficiently unidimensional for purposes of this study.

Summary statistics for each group of examinees are given in Table 1.

Examination of mean item difficulties for the test indicated that the test was

at about the appropriate level of difficulty for the examinees in the sample.

Classical test item difficulties and item-excluded biserial correlations are

10



presented in Table 2. IRT item discrimination and item difficulty estimates

along with estimated variances and covariances are given in Table 3.

Insert Tables 1, 2, and 3 about here

Iterative Linking

Under the assumption of item parameter invariance, item parameters

estimated in different groups will differ from one group to another due only to

errors in measurement. The metrics from these groups must first be equated

to a common scale before between-groups DIF comparisons of parameter

estimates are made. In the multi-group DIF study context, estimates from

the calibration of the two focal (i.e., Calculator-1 and Calculator-2) groups

must be transformed to the metric of the reference (i.e., No-Calculator)

group. In this study, therefore, two sets of linear coefficients are required for

transforming the estimates from each of the two focal groups to the reference

group scale. For simplicity, we designate the No-Calculator group as the

first group and the Calculator-1 and Calculator-2 groups as the second and

third groups, respectively. To illustrate the transformation, the transformed

estimates of item discrimination and item difficulty parameters from the

second group to the metric of the first group for item j are given by

and

a;7 = ai2/A (25)

6j2 = Abi2 B, (26)

11



where * indicates a transformed value and A and B are the linear transforma-

tion coefficients for linking. The task of linking two metrics is to determine

appropriate coefficients A and B. Note that a different set of A and B coef-

ficients needed to be determined to transform the third group estimates onto

the scale of the first group. The test characteristic curve method by Stocking

and Lord (1983) was used in this study as implemented in the computer pro-

gram EQUATE (Baker, Al-Karni, & Al-Dosary, 1991) for determining the

appropriate A and B coefficients.

The linking procedure may be seriously affected by the presence of DIF

items (Lautenschlager & Park, 1988; Shepard, Camilli, & Williams, 1984).

Therefore, an iterative linking procedure described by Candell and Drasgow

(1988) was used in the DIF analyses in this paper. In this procedure, an

initial set of linear coefficients is determined and used to transform the

parameter estimates from the focal group to the reference group metric. DIF

analyses are done and items identified as DIF items are removed and the

linear coefficients re-calculated from the remaining items. Item parameter

estimates from the focal group are again transformed onto the reference

group metric and DIF analyses again conducted. This process continues

until either no DIF items are detected or until the same set of DIF items is

detected. Evidence suggests using the test characteristic curve method with

iterative linking provided more accurate detection of DIF than either the

weighted mean and sigma method or minimum chi-square method (Kim &

Cohen, 1992).

12



DIF Measures

The null hypothesis used in the present study of the equality of three sets of

item parameters was tested with the following contrast matrix:

1 0 1 0 0 0

0 1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

(27)

This contrast matrix is of rank four and yields the following comparisons:

ail a;2

Cl/1 = 1 10!2

ail a;3
bii b;3

The null hypothesis for these comparisons is

(28)

ail c12 0

Ce . = 13j1 13;2 = 0
(29)ail cz.i3 0

pil 013 0

The test statistics, Qi, with four degrees of freedom can be obtained us;ng

Equation 18. In the present study Qi was tested with a .05 type I error rate.

It is of course possible to specify a different contrast matrix than that

given in Equation 27. For example, we could use

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0
0 0 0 1 0 1

(30)

This contrast matrix looks different than that in Equation 27 but would

produce the same value of Qi.
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It is important to note that the calculation of Qj requires that both

item parameter estimates and the variance and covariance matrices from the

second and third groups be placed onto the metric of the first group. As an

example, the following transformations of the estimated variance terms from

the second group are required in the calculation of Qj:

and

var(a* ) = var(a 2)/442 (31)

var(b.;2) = A2var(bj2). (32)

Note that no transformation is needed for the individual covariance terms.

For comparison purposes, three Lord's chi-squares were obtained from the

pairs of the groups. Iterative linking was also used with Lord's chi-square for

each pair of the groups. Since a .05 type I error rate was used for Q,, each

Lord's chi-square was tested with 1 .95h/3 = .017 type I error rate (Kirk,

1982).

As a comparison between the multi-group DIF statistic and Lord's

chi-squares, three pairwise multi-group DIF statistics were also obtained.

Estimates for this set of comparisons were based on the equating coefficients

from the final iteration of the multi-group DIF Qj procedure. These pairwise

comparisons were also tested with a .017 type I error rate. For example, the

pairwise comparison between the first and second group was obtained the

contrast matrix defined as

( 1 0 1 0 0 0C =
0 1 0 1 0 0

14
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This pairwise Q, may be the same as Lord's chi-square for the two groups

compared. Differences which occur between the pairwise Q, and Lord's chi-

square do so because of the differences in linking coefficients obtained for the

two approaches.

Results

Results for the multi-group Q,, Lord's chi-square, and the pairwise Qj are

given in Table 4. Possible calculator effects were detected in two items

(Item 10 and Item 14) using multi-group DIF statistic Q, and in one item

(Item 10) using Lord chi-square. The pairwise Q, resulted in the same two

DIF items (see Table 4) as the multi-group Q. Both Lord's chi-square and

pairwise Q, detected no significant differences on item performance between

the two brands of calculators.

Insert Table 4 about here

The DIF detection procedure based on the multi-group Q, required three

linking iterations. (Recall that the pairwise Qi were obtained from the

transformed estimates in the final iteration.) Linkings based on Lord chi-

square required one or two iterations. Table 5 contains linking coefficients

and DIF items detected. Differences in the A and B coefficients after the

first iteration are a result of the differences in the detection of DIF b ' ween

the multi-group DIF statistic and Lord's chi-square.

Insert Table 5 about here
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The two items detected with Q, were computational items and were easier

when calculators were used. Item 10 was identified as a DIF item by the

multi-group and pairwise DIF statistics. This item required examinees to

find an unknown angle given the sine of a second unknown angle minus a

known angle. This problem can be solved easily using a scientific calculator

by entering each of the five choices and pressing the sine function. Examinees

with calculators seemed to have an advantage on this item.

Item 14, a trigonometry item, was identified by both the multi-group and

pairwise DIF statistics and Lord's chi-square. It required the examinee to

find cos(x) given the value of cos(x). Examinees with calculators had an

advantage un this item. Using a calculator, an examinee could possibly have

inserted a value for x and pressed function keys until an answer was found

which agreed with one of the choices for the item.

Discussion

The presence of DIF in a test is a serious problem affecting the validity of

the item as well as of the entire test. The typical DIF study is conducted

between two groups. It is important to note that situations arise in which

comparisons among several groups may be desirable or necessary. In such

cases, one approach might be to conduct multiple pairwise comparisons. It

may be preferable, however, to conduct simultaneous comparisons among the

groups. In this paper, we presented a statistic, Q: for simultaneous detection

of DIF in multiple groups. This statistic is closely related to Lord's chi-square

and is based on the same set of assumptions.
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One of the assumptions of Lord's chi-square is that the 9 are known. In

this regard, Lord and Wingersky (1985) presented sampling variances and

covariances of parameter estimates in IRT when abilities are unknown under

the joint maximum likelihood estimation context. When 9 are unknown,

McLaughlin and Drasgow (1987) have shown that the type I error rate of

Lord's chi-square may be seriously violated for joint maximum likelihood

estimates. The type I error rate of Lord's chi-square does not appear to be

inflated, however, when marginal maximum likelihood estimates or marginal

Bayesian estimates were used (Cohen & Kim, in press). A well-known result

of marginalized solutions (cf. Drasgow, 1989; Mislevy & Stocking, 1990) is

that improved estimates of item parameters are typically obtained over those

from joint maximum likelihood estimation. This improvement was shown in

spite of the fact that ability was also treated as unknown. Further research is

needed on the null distributions of Qi, particularly for short tests and small

samples.

After obtaining a significant multi-group DIF statistic, it may be of

interest to compare pairs of groups. The pairwise Qi could be used for

this purpose. As discussed earlier, the pairwise Qi is identical to Lord's

chi-square but, as found in the present study, may be based on different

equating coefficients. The results of the example give some indication of

differences in the two procedures for the detection of DIF. It also should

be noted that comparisons using the multi-group DIF statistics are not

limited to pairwise cases. Comparison between the No-Calculator group

and a combined calculator group (the Calculator-1 and Calculator-2 groups)

17
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could have been done using a contrast matrix such as the following:

( 1 0 .5 0 .5 0C
0 1 0 .5 0 .5 (34)

It should be noted that the type I error rate must be adjusted for the total

number of contrasts (cf. Kirk, 1982).

The example given in this paper was used to illustrate a situation in which

a, comparison of item parameters was desirable among more than two groups.

Using the multiple group Q, statistic described in this paper, it was possible

to simultaneously compare item parameters in each of the three groups in

the example. Lord's chi-squares and the pairwise Qi were also presented

and used to illustrate the differences between the multi-group approach

and the Lord chi-square approach. Differences between two types of DIF

detection methods occurred because of the differences in linking coefficients.

Even though the same general iterative linking procedure was used for two

approaches, a different rationale for the statistics yielded different equating

coefficients and, consequently, different sets of DIF items.

In the example provided in this paper, equal sample sizes of 200 for the

reference and the two focal groups were used to control the effect of sample

size. It is likely that in most DIF studies equal sample sizes do not occur.

Further, the ability distributions for the reference and the two focal groups

were well matched to the distribution of item difficulties. The effects of

inequalities on these factors were not addressed in this paper.

An alternative approach to testing DIF in multiple groups might be

one suggested by Lord (1980) which employs a MANOVA approach with

post hoc comparisons based on Roy's method (Kim & Cohen, 1993). One

18
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drawback to this procedure, however, is that the assumptions of this method

are somewhat more difficulty to realize than those for the multi-group DIF

statistic presented in this study.
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TABLE 1
Raw Score Summary Statistics for the Data Sets

Group
Statistic No-.Calculator Calculator-1 Calculator-2
Number of Items 14 14 14
Mean Score 9.24 9.71 9.56
Standard Deviation 3.02 2.95 2.83
Coefficient Alpha .66 .62 .60
Number of Examinees 200 200 200
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TABLE 2
Classical Item Difficulties and Item-Excluded Biserial Correlations for the Data Sets

Item
No Calculator Group Calculator-1 Group Calculator-2 Group

Difficulty Correlation Difficulty Correlation Difficulty Correlation
1 .86 .62 .88 .59 .86 .52
2 .88 .39 .92 .29 .92 .49
3 .75 .33 .70 .32 .70 .26
4 .76 .31 .74 .33 .73 .25
5 .72 .55 .74 .41 .68 .48
6 .76 .49 .77 .37 .77 .45
7 .52 .53 .49 .42 .53 .39
8 .69 .42 .79 .39 .72 .30
9 .67 .51 .67 .66 .72 .28

10 .55 .44 .70 .61 .66 .64
11 .71 .51 .76 .32 .69 .40
12 .57 .53 .59 .73 .54 .45
13 .45 .43 .49 .57 .47 .39
14 .37 .46 .54 .47 .60 .52
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TABLE 3
Item. Parameter Estimates and Their Estimated Variances and Covariances for the Data Sets

Item
No-Calculator Group Calculator-1 Group Calculator-2 Group

a (var) b (var) (coy) a (var) b (var) (coy) a (var) b (var) (coy)
1 1.53 (.17) -1.73 (.10) (.10) 1.39 (.15) -2.01 (.15) (.13) 1.18 (.11) -2.06 (.18) (.12)
2 .84 (.09) -2.77 (.68) (.24) .66 (.10) -4.06(2.86) (.51) 1.22 (.20) -2.58 (.40) (.25)
3 .63 (.04) -1.95 (.37) (.11) .55 (.04) -1.69 (.36) (.10) .45 (.04) -2.02 (.80) (.16)
4 .56 (.05) -2.19 (.71) (.18) .61 (.05) -1.91 (.42) (.12) .45 (.03) -2.37 (.96) (.17)
5 1.16 (.08) -1.10 (.06) (.05) .80 (.05) -1.54 (.18) (.08) .30 (.05) -1.01 (.08) (.04)
6 .98 (.06) -1.44 (.11) (.06) .77 (.05) -1.79 (.24) (.09) .91 (.07) -1.55 (.14) (.08)
7 1.12 (.06) -.10 (.03) (.00) .86 (.05) .09 (.04) (.00) .68 (.04) -.20 (.07) (.01)
8 .79 (.05) -1.16 (.12) (.05) .78 (.07) -1.92 (.33) (.13) .58 (.04) -1.79 (.38) (.11)
9 1.02 (.06) -.86 (.06) (.03) 1.52 (.10) -.71 (.03) (.02) .50 (.03) -1.98 (.58) (.12)

10 .91 (.05) -.28 (.05) (.01) 1.39 (.09) -.87 (.04) (.03) 1.52 (.13) -.66 (.03) (.03)
11 1.01 (.07) -1.13 (.09) (.06) .58 (.04) -1.60 (.30) (.09) .74 (.04) -1.22 (.13) (.05)
12 1.11 (.08) -.34 (.04) (.02) 1.89 (.15) -.34 (.02) (.01) .91 (.05) -.19 (.05) (.01)
13 .84 (.04) .29 (.05) (-.01) 1.28 (.09) .04 (.03) (.00) .68 (.04) .24 (.07) (-.01)
14 .94 (.06) .70( .05) (-.03) .88 (.05) -.25 (.04) (.01) 1.05 (.06) -.51 (.04) (.02)
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TABLE 4
Multi-Group DIF Statistics and Lord's Chi-Squares

Item
Multi-Group

DIF Q
Lord's Chi-Square Pairwise Q

-C1 vs N C2 vs NC Cl vs C2 Cl vs NC C2 vs NC 01 vs C2
1 .15 .04 .04 .15 .03 .03 .16
2 1.76 .35 1.27 1.16 .58 1.27 1.61
3 1.77 2.45 1.06 .13 1.50 1.06 .07
4 .42 .58 .23 .24 .30 .23 .07
5 1.72 .87 .85 .94 .49 .85 1.20
6 .79 .45 .34 .51 .12 .33 .92
7 2.04 2.46 .66 1.61 .93 .66 1.76
8 3.78 2.05 .56 1.58 3.45 .56 1.42
9 6.76 2.43 1.61 7.57 2.57 1.62 6.09

10 11.46* 5.74 8.10 .23 8.51** 8.10 .68
11 1.84 2.14 .27 .41 1.39 .27 .85
12 4.42 3.32 .18 4.61 3.81 .18 3.19
13 2.98 1.80 .36 2.49 2.69 .35 1.59
14 20.20* 5.94 17.81** 2.69 8.70** 17.80** 3.55

*Significant at .05 alpha level and the crossponding critical value is xi = 9.49.
**Significant at .017 alpha level and the crossponding critical value is A --, 8.16.
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TABLE 5
Linking Coefficients and DIF Items on Each iteration

Method
(Linking)

1st Iteration 2nd Iteration 3rd Iteration
Coefficients DIF Item Coefficients DIF Item Coefficients DIF Item

Multi-Group DIF 14 10, 14 10, 14
(C1 onto NC) A = .957 A = .934 A = .896

= .196 B = .114 B = .040
(02 onto NC) A = .865 A = .827 A = .788

B = .101 B =-.016 B =-.080
Lord's Chi-Square

Cl vs NC None
(C1 onto NC) A = .957

B = .196
C2 vs NC 14 14

(C2 onto NC) A = .865 = .827
B = .101 B =-.016

01 vs C2 None
(C2 onto C1) A = .899

B =-.101

31


