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Abstract

This study considers the problem of performing all pairwise comparisons of column
means for a two by four additive nonorthogonal factorial ANOVA model where cell
variances are heterogeneous. Extensions of the Games-Howell (1976) procedure, the
Dunnett (1980) T3 and C procedures, the Holland and Copenhaver (1987) technique, the
Hayter (1986) procedure, and the James (1951) second-order test are considered. Using
computer simulated data, Type I error rates and statistical power for these multiple
comparison procedures are estimated. Sixty-six different combinations sample size and
variance patterns are examined. The results suggest that these procedures maintain the
familywise Type I error rate under the nominal .05 level. In terms of statistical power, the
Games-Howell procedure generally provides the greater any-pair power but the extension
of the Hayter technique provides greater average power per contrast as well as in

identifying all significant pairwise differences.




Over the last twenty years, considerable attention has focused on the performance
of the multiple comparison procedures (MCP) among group means when variances are
homogeneous or heterogenedus (e.g., Dunnett, 1980; Hsiung & Olejnik, 1991; Keselman &
Rogan, 1978; Klockars & Hancock, 1992; Seaman, Levin, & Serlin, 1991). Each of these
studies has dealt only with the performance of MCP in the single-factor design. As yet,
only Wilcox (1987) has considered a two-factor model but limited his investigation to
pairwise comparisons of cell means in each row or column. We have not found any studies
in the literature which have investigated the properties of MCP to contrasts among
inarginal means in a factorial design when population variances are heterogeneous.

In a nonorthogonal two factor design a pairwise contrast between column means
using an unweighted means solution can be formed by summing the cell means within a
column and subtracting the sum of cell means from the contrasting column. That is,
$,,,,, = Ejfjk - Ejfj,,, (kR #k’yand k k"= 1,... K;jrepresents thej, rowandj = 1,...,J).
To test the null hypothesis: Hy §,. = 0, a Welch (1938) type test statistic can be formed
by dividing the point estimate for the contrast by the standard error of the contrast.
Where the standard error is the square root of the variance of the contrast formed by

summing the separate cell variances:

War( ¢) =V (2,5%/n, ) + ( Z;5%,/n,.).

The test statistic can be written as:

. (1)




More generally, any hypothesis involving the linear combination of cell means can be
tested using the following statistic:

Ecﬁfﬂ, /v BCcypS%/ny ).
Where c;, are the contrast coefficients and Z¢; = 0 [ k) = (1,2), .. ., (JK)};

X, are cell means for the j, level of factor J and the &, level of factor K;

82, is the variance of cell jk;
and 7 is the number of observations in cell jk.

The T test statistic may be evaluated using several different distributions. In the
present study we consider extensions of the Dunnett (1980) C and T3 procedures, the
Games and Howell (1976) procedure, the Hayter (1986) modified LSD procedure, the
Holland and Copenhaver (1987) adjusted Bonferroni technique, and a Scheffé type
procedure using the James (1951) second-order test. The purpose of our study is to
investigate whether these extensions provide valid tests, that is, control the familywise
Type I error rate across all pairwise comparisons of unweighted column means in a two by
four fixed effect additive nonorthogonal factorial ANOVA model. In addition we were
interested in investigating the effects of sample size and degree of variance heterogeneity

on the statistical power of these procedures.

Multiple Comparison Procedures
The GH, Dunnett C, and T3 Procedures
Games and Howell (1976) proposed a solution to the Behrens-Fisher problem which

uses the Studentized range distribution. The critical value for the Games-Howell (GH)

test based on Equation (1) is equal to g, x ., / V2. The decision rule is to reject H, if | T

> Quianl! V2, where @, is the Studentized range distribution for the « centile; K is the
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number of levels of factor K which form the famiiy of contrasts; and df, is the approximate
degrees of freedom from Satterthwaite (1947):
[ = (SJ.‘?Z + Sjk’z)]z

— n n.
df. = = Jj=1 Jk JK

(2)
4
S| S T S—
j-l njkz (njk e l) njkz (njk - l)

Dunnett (1980) suggested two solutions. The first solution, C test, is based on the

Cochran (1964) solution to the Behrens-Fisher problem and uses q / v2, where

XJ: ( qa,K,nj*-lsjkz + qc,K.njk-ISjk'z)

- n. n.
g= 2 JJE - _ 51 (3)
1 ik Djp

The decision rule is if | T' | > q / v2 then reject the null hypothesis.

The second solution (T3 procedure) suggested by Dunnett uses A, . 4, as the
critical test statistic. A, is the Studentized maximum modulus distribution at the «
centile. c isthe number of contrasts in the family of comparisons. The df, is defined as
Equation (2). The null hypothesis is rejected if | T | > A, , 4

Several studies have investigated the three multiple comparison procedures under
various conditions. The differing properties of the data sets used in the investigations
have led researchers to make different recommendations as to which procedure is the
"best” approach. For instance, several studies have shown the GH procedure to be robust
to variance inequality (Keselman & Rogan, 1978; Games, Keselman, & Rogan, 1981),
however, Tamhane (1979) indicated that the GH procedure tends to be liberal under some
cases. This liberal nature of the GH procedure also was noted in Games and Howell

(1976) and Dunnett (1980). Dunnett (1980) indicated that the GH procedure provides an
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inflated Type I error rate when a large number of groups are corapared and variances are
homogeneous. With a small number of groups however the empirical Type I error rate did
not exceed the nominal significance level. '

Stoline (1981) preferred Dunnett C procedure to the GH procedure. He cautions
that the GH procedure can be used only if the researcher can bear the risk of being
somewhat Liberal. However, Dunnett (1980) found the C procedure to be conservative. He
showed that the C procedure is comparable to the GH procedure only when degrees of
freedom approached infinity. The C procedure gives tighter Type I error rate control than
the GH procedure but is generally less powerful.

Dunnett (1980) concluded that the T3 procedure is also conservative. The choice
between the T3 procedure and the C procedure depends on whether the degrees of
freedom are large or small. For small degrees of freedom, the T3 procedure is more
powerful than the C procedure. For large or moderately large degrees of freedom, the C
procedure will be more powerful than the T3 procedure and is preferred (Dunnett, 1980;
Hsiung & Olejnik, 1991; Stoline, 1981; Toothaker, 1991). However, there are no exact
guidelines for deciding whether the degrees of freedom are small. Toothaker (1991) even
indicated that the ratio of variances has effect on determining the breaking point between
small and large degrees of freedom for the purpose of choosing between the C and T3
procedures.

Wilcox (1987) had investigated the three tests in a two-way ANOVA design when
contrasting cell means. His results indicated that the Games-Howell procedure can exceed
the nominal « level when the degrees of freedom are small. He also concluded that the
T3 procedure appears to be best when the degrees of freedom are less than 50 for any

treatment group. Otherwise, he recommends the C procedure.




The Bonferroni Test

Frequently, researchers have used the Bonferroni (B) adjusted ¢-test to contr.l the
overall experimentwise Type I error rate. Using the Student ¢ distribution each contrast is
tested at the a/c significance level (c is the number of contrasts). The decision rule for
this procedure is to reject Hy if 1T 1> ¢,, 4, ,where ¢,. is the Student range distribution
at the a’ (a’ = «/c) centile and df, is defined as Equation (2).

Recently several suggestions for modifying the Bonferroni approach have been
made which require using a sequential hypothesis testing approach. The advantage of
these procedures is an increase in statistical power while maintaining the overall
experimentwise Type I error rate under the nominal significance level. The sequential
procedures which have received the greatest attention include the Holm (1979) technique,
the Holland & Copenhaver (1988) technique, and the Shaffer (1979, 1986) S and S1
procedures. Hsiung and Olejnik (1991) have compared these modifications of the
Bonferroni inequality for a one-way ANOVA design when population variances were
heterogeneous. Their study indicated that the magnitude of the power difference between
the Holland-Copenhaver test and any one of the Shaffer tests were very small, although
the Shaffer tests did generally give greater power. Because the Shaffer procedure is inore
complicated than the Holland-Copenhaver technique in determining the «’ for each of the
pairwise comparisons, the Holland-Copenhaver test might be preferred.

The Holland and Copenhaver (HC) (1987) procedure begins by computing a p-value
for each contrast of interest and then orders these p-values from smallest to largest. The
smallest p value is given a rank of 1 and the largest p value is given a rank of c. The

significance level used to test each contrast is determined as follows:
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ali____l_(l_a)c—rttl (4)

where « is the desired familywise Type I error rate, ¢ is the total number of contrasts in
the family; and r; represents rank of the contrast being tested. The decision rule is to
reject the null hypothesis if p; value is less than «’. Since thiz is a step down procedure,

the process may terminate on any step if a null hypothesis is not rejected.

The Hayter-Fisher Test

Although the Fisher LSD test was the first MCP developed, it is seldom considered
by researchers in studying the properties of MCP since it gives a poor «-level protection
under all configurations of the means when there are more than three populations. To
overcome this limitation, Hayter (1986) suggested that, following a significant omnibus F-
test, contrasts could be tested by using the Studentized range distribution instead of the
Student ¢ distribution as the reference with degrees of freedom equalling one less than
the number of levels of the factor and the degrees of freedom for the error mean square.
Seaman, Levin, and Serlin (1991) referred to this test as the Hayter-Fisher test.

Seaman et al, (1991) compared the Hayter-Fisher test with numerous alternatives
for one-way ANOVA designs with egual sample sizes and homogeneous variances. Their
results indicated that the Hayter procedure can limit the Type I error rate under the
nominal « level and has comparable or greater power than the alternatives considered.
Seaman et al. (1991) concluded that the Hayter (1986) procedure should be regarded as a
viable alternative for pairwise comparisons.

To apply the Hayter-Fisher test in unequal variance situations, two issues need to

be considered. First, a valid omnibus test must be used as a preliminary test. Several
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studies have recommended the James second-order test for the overall analysis when
variances are unequal (e.g., Dijkstra & Werter, 1981; Oshima & Algina, 1992; Wilcox,
1988). The F test, Brown-Forsythe F test, and Welch F test have been shown to be liberal
when the sample sizes are unequal and variances are severely heterogeneous,

Second, the original Hayter-Fisher test, which uses the pooled within cell variance,
is likely to be invalid when cell variances are unequal., Therefore, we suggest using
Equation (1) with degrees of freedom from Equation (2) to determine the critical value
rather than using the original Hayter-Iisher test statistic. The new alternative is referred
to as the Hayter-Welch (HIW) test in the present investigation, The null hypnthesis for

contrast from Equation (1) is reject if

qa,K-l.df,

lTl> (5)

where @, is Studentized range distribution, df, is defined as Equation (2).

The James Second-Order Test
James (1951) proposed two solutions to the problem of heterogeneous variances.
His first solution, while simpler than the second solution has been shown to lack adequate
control over Type I errors (Brown & Forsythe, 1974). The second solution referred to as
the James second-order test has received some attention and has been shown to provide
adequate control over Type I errors. Wilcox (1989) extended the James second-order test

to the two-way ANOVA model. The test statistic U, is computed as follows:

U, =Y uplzp -2)% . (6)

where Z, = T.X,, 4y = 1/(5,S%/n,), Z = YuZy/ ity u, = Tu,

1y
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The decision rule is to reject H, it' U, > h(a) [for detailed description of h(a), refer to
Wilcox (1989)].
The James second-order test might be used for contrast analyses, For a pairwise

contrasts the square root of Equation (7) is equivalent to Equation (1).

2
J. = JZU-R(Z-’? -Z)*

F o3
o o .
DR IR 7
= -1 i )

The critical value could be based on the square root of the critical value used in the James
second-order test. The decision rule is to reject H, if Je > vh{(x). We refer to this
approach as J¢ in the present paper. Using vh(«) as the critical value is a Scheffé-tyne
approach which would allow data "snooping” of both complex and pairwise contrasts. A
limitation of this approach is that it is likely to have low statistical power. Nonetheless,
we felt that since the omnibus James second-order test has been shown to control the
Type I error rate under the nominal level while providing adequate power, the Jc test,
derived from the omnibus test, should be examined to evaluate its usefulness for contrast

analysis.

The Tukey and Kramer Test
In the one-way ANOVA model when the population variances are equal and the
design is balanced the Tukey HSD (1953) method is generally recommended (Toothaker,
1991, p. 91), and when the population variar.ces are equal but the design is nonorthogonal

the Kramer (1956) modification of the Tukey approach is generally recommended

11
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(Toothaker, 1991, p. 96). The decision rule of the Tukey-Kramer test in factorial designs
is if

IJX J'X' l
Z er 14
j-l

Fe1 N Qa, x, N-T

7 7 Ve
Ms.( .._j:... + __l_...)
J g jz; ;e jX-; g

(8)

then reject the null hypothesis (MS,, is the mean square within samples). Although the
Tukey-Kramer (TK) test is not valid for unequal variance situations, it was included in the
present study serve as a baseline to compare the other procedures for situations where
populations variances are homogeneous.

Table 1 provides a summary of the computational procedures and reference

distributions for the seven MCPs considered in the present study.

Insert Table 1 about here

Simulation Study
Procedure
A computer program was written using the SAS-MATRIX (1985) language to

evaluate all of the procedures. Data were generated for a two by four fixed effect additive
ANOVA model. The study focused on the all pairwise comparisons for the main effect
having four levels. Three factors were manipulated: (a) sample size, (b) variance pattern,
and (c) effect size. Three types of design were considered: (a) balanced design, (b) slightly
unbalanced design, and (c) extremely unbalanced design. The total sample size for each

design equaled to 80 (an average cell size of 10), 160 (an average cell size of 20), and 240 (

} ot
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an average cell size of 30). Six variance patterns were considered and the coefficient of
variation (CV) of the six patterns ranged from 0 to 1.4, Table 2 summarizes the patterns
of sample size, variance conditions studied. Each of these patterns were associated with
two patterns of mean difference, (a) 4, = kg = pg = g and () gy = py = By < ba. A

total of 132 conditions were included.

Insert Table 2 about here

Under each of the conditions outlined above, .lata were generated for the following

linear model:
Yo =Ma+ a; + B + (aB)y + Epe

M is the grand mean and was set equal to 10 for the study; «; is the effect of j,, level of J,
B, if the effect of k,;, level of K, and (), is the interaction effect of j;, level of J and &,
level of K in combination. For the null condition (first mean pattern), the effects of «;, B,,
(¢ B); were all set equal to zero. For the non-null condition (the second mean pattern), the
effects of a;, B,. (k' = 1, 2, 3), and (¢p);, were set equal to zero, and the effect of p, was set
equal to a constant, 3. When variances were equal or slightly unequal, & was set equal to
.85, .57, .48 for the sample sizes, 80, 160, 240, respectively, When variance inequality was
moderate to extreme, 3 was set to 2, 1.5, 1.2 for the sample sizes, 80, 160, 240,
respectively. The specific values for the 8 were chosen so that for the sample sizes
examined (N = 80, 160, 240), the power of the omnibus James second-order test would be
generally greater than .45, E is the random error component normally distributed with
a mean equalling 0 and variance set equal to the patterns presented in Table 2. The SAS

normal random generating function RANNOR was used to generate the random error

(B2
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component.

The familywise nominal significance level was set equal to .05. A total of 10,000
replications was conducted for each condition. The standard error for this number of
replications was .022. Based on the nominal « level, a test was interpreted as liberal if its
Type I error rate was greater than .0544, and as conservative if its Type I error rate was
less than .0456.

Based on the two mean patterns, the frequency of rejecting the null hypotheses
was recorded and converted to five proportions to reflect for each procedure the: (a)
familywise Type I error rate, (b) partial Type I error rate, (c) any-pair power which is the
probability of identifying at least one true non-null contrast, (d) per-pair power, which
represents the average power per-non-null contrast, and (e) all-pair power, the probability
of identifying all significant non-null contrasts (Einot & Gabriel, 1975; Ramsey, 1978,
1981).

Results
Type I Error Rates

The Type I error rates for the seven pairwise multiple comparison procedures and

the omnibus James second-order test for the balanced, slightly unbalanced, and extremely

unbalanced designs are reported in Tables 3, 4, 5, respectively.

Insert Tables 3, 4, 5 about here

The James second-order test generally controlied the overall Type I error rate
under the nominal « level. This indicates that the James second-order test is a robust test

even to the severe variance heterogeneity when the populations sampled have a normal
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distribution.

The Tukey-Kramer (TK) test was valid in controlling the familywise Type I errors
when variances were equal or slightly unequal. For the slightly unbalanced design, Table
4 shows that the TK test had Type I error rates less than the nominal when the total
sample size was small (N = 80) and sample size and variance was positively related.
However, for most of the unequal variance situations, the TK test was either liberal (when
variance was negative related to the sample size) or conservative (when variance was
positively related to the sample size) in identifying the true mean difference.

All of the Welch-type multiple comparison procedures considered here controlled
the familywise Type I errors under the nominal level. The empirical Type I error rate for
the Games-Howell procedure (GH) ranged between .040 to .055. Thus, for the two by four
factorial design when all pairwise comparisons are made among four levels for factor K,
the GH test does not appear to be liberal. This result is consistent with the findings
reported by Dunnett (1980) and Hsiung and Olejnik (1991) for the one-way ANOVA model
with the four group design they considered.

The Hayter-Welch approach (HW) test controlled Type I error rate under the
nominal « level, ranging from .030 to .051. This indicates that the new alternative is a
robust test even the variances are heterogeneous.

Type I errors for the Dunnett T3 and Holland-Copenhaver tests (HC) were nearly
identical, ranging from .032 to .045. This result is similar to the findings presented by
Hsiung and Olejnik (1991) for the one-way ANOVA model. The two tests are basically
conservative.

As was reported in the Dunnett (1980) study, the Type I errors for the Cochran

solution (C) increases as sample size increases, ranging from .017 to .041. This indicates

Jamt,
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that the C procedure tends to be very conservative in the factorial design even when the
total sample sizes is large.

Results also show that the Jc test is very conservative, with Type I errex rates
ranging between .017 and .029. This result indicates that the Jc test behaves much like
the Scheffé test and tends to be conservative.

For the pattern of means where u; = p, = p3 < u, the partial Type I error rate
for the contrasts involving equal population means (u; = p, = ©3) was also examined. All
of the Welch-type tests had partial Type I error rates less than .05. That is, for the three
null contrasts (i.e., uy = pg gy = ug, 8nd gy = ;3), none of the procedures rejected at
least one of these contrasts more than 5% of the time.

Statistical Power

Based on the non-null pattern (u, = u, = u; < u,) the any-pair power, per-pair
power, and all-pair power were estimated for the 66 conditions identified in Table 2. The
results are presented below by definition of power since the conclusions vary as a function
of the definition.

Any-Pair Power, Tables 6, 7, 8 present the any-pair power of the seven multiple
comparison procedures and the omnibus James second-order test for the balanced, slightly
unbalanced, and extremely unbalanced designs, respectively. The three tables reveal
somewhat similar information about the seven MCPs.

As expected that the TK test generally provided the greatest power when variances
were equal. However, the magnitude of power difference between the TK and another
test decreased as the sample size increased. For several situations, the GH or HW tests
even had greater power than the TK test. The magnitude of power difference between

the TK and GH procedures and the TK and HW procedures varied as a function of the

fomt
<.




16
samp'e size, ranging from -.017 to .072, but normally the difference in power ranged
between .005 to .02. Thus, a researcher employing the GH procedure or the HW
procedure instead of the TK test in the equal variance case will lose very little power.

Among the six Welch-type tests, the GH and HW procedures were the two most
powerful tests. The GH test generally provided larger any-pair power than the HW test.
The HW test, however, was more powerful than the GH test when the variancc_e was
inversely related to the sample size. For the situations involving an unbalanced design
paired with equal variance, the HW test also gave greater power then the GH test when
the total sample size was equal to or greater than 160.

Power for the T3 and HC procedures were nearly identical, but the T3 procedure
generally had slightly greater power. The two procedures were consistently more powerful
than the C and Jc tests. For the situations where the sample sizes were extremely
unequal, the T3 and HC procedures were even more powerful than the HW test when the
total sample size was small (N = 80).

Two of the least powerful tests were the C and Jc tests. Although it has been
reported that the C procedure is preferred over the T3 procedure when degrees of
freedom are large or moderately large on the basis of greater power (e.g. Dunnett, 1980;
Toothaker, 1991), results of our study show that the C test was consistently less powerful
than the T3 test even when the total sample size was large. The Jc test was more
powerful than the C test when N = 80, but it was less powerful than tue C test when N »
160.

Per-Pair Power. Per-pair (average) power of the seven MCPs in the balanced,
slightly unbalanced, and extremely unbalanced designs are presented in Tables 9, 10, 11,

respectively. The three tables generally provide a consistent information about the six

bt
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Welch-type tests.

Insert Tables 9, 10, and 11 about here

The results show that the TK test was no longer the most powerful test even the
variances were equal. The HW test generally gave greater power than the TK test. Thus,
a researcher employing the HW test rather than the TK test in the equal variance case
may have greater per-pair power.

Among the six Welch-type tests, results show that the HW test generally gave the
greatest per-pair power, followed by the GH, HC, T3, C, and Jc tests. The magnitude of
power difference between the HW and any of the other procedures was typically between
.040 to .060.

The results also show that thie HC test was more powerful than the T3 test in
terms of per-pair power. This result is consistent with the findings reported by Hsiung
and Olejnik (1991) for the one-way ANOVA model.

The C and Jc tests, again, were the two least powerful tests. The C test was more
powerful than the Jc test when the total sample size equaled to or greater than 160.

All-Pair Power. Tables 12, 13, 14 include the all-pair power for the seven MCPs for
the balanced, slightly unbalanced, and extremely unbalanced designs, respectively. The
results form the three tables show that the TK test was less powerful than the GH and

HW tests in terms of all-pair power even the variances were equal.

Insert Tables 12, 13, and 14 about here

' —,
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The three tables give similar information about the relative all-pair power for the
six Welch-type tests. Among the six Welch:type tests, the results from these tables
iadicate that the HW test was the most powerful test, followed by the HC, GH, T3, C, and
Jc tests in descending order of power. The magnitude of power difference between the
HW and any other test generally exceeded 4%. This indicates that the HW test may
provide a power advantage over the alternatives that is of practical importance when the
identification of all true pairwise differences are of interest.

The HC test generally offered greater power than the GH and T3 tests. The
magnitude of powe:r difference between the HC and GH or T3 tests normally exceeded 2%.
This result is consistent with the findings by Hsiung and Olejnik (1991) in the one-way
ANGOVA model.

The two least powerful tests, again, were the C and Jc tests. The Jc test was only

more powerful than the C test when the total sample size equaled to 80.

Conclusions

The present study only investigated all pairwise comparisons among the four
columns of a two by four factorial design. A limited number of sample size and variance
combinations were considered. In addition, only one type of non-null condition was
inciuded in the study. As aresult broad generalizations cannot be made. However, the
conditions that were studied included many of the situations frequently encountered by
the applied researcher. The results of this study are probably best viewed as an indication
of the relative merits of the alternative approaches to multiple comparisons when
variances differ. With these limitations in mind, the following conclusions seem justified:

1. When all pairwise contrasts among four populations are of interest and the

b
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nominal familywise Type I error rate is set at .05, all six of the Welch-type of multiple
comparison procedures considered in this study generally had empirical Type I error rates
that did not exceed two standard errors of the nominal significance level. This indicates
that the T statistic provides a reasonable solution to the Behrens-Fisher problem for
contrast analysis in the factorial design.

2. The identification of the most powerful multiple comparison procedure for the
unequal variance case depends on the definition of power. To identify at least one
significant difference the GH procedure typically will provide the most sensitive test.
However the difference in power between the HW procedure using the omnibus James
second-order test and the GH procedure is very small.

3. To maximize the average power per contrast or to identify all significant
pairwise differences, the HW procedure can be recommended. Even when the variances
were equal the HW test provided greater average and all-pairs power than the TK test
which uses the pooled within cell variance.

4. The Dunnett alternatives generally had lower power across all definitions of
power than the GH procedure or the HW procedure. Furthermore the ext-usion of the
Cochran solution in a factorial design did not provide greater statistical power than the T3
approach even when the total sample size was large.

5. The Scheffé S-type test, the Jc test, is conservative for the pairwise contrast

analysis.
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Table 1

Reference of the seven multiple comparison procedures,

Procedure Computed Test Statistic Reference
Distribution
Dunnett C procedure (C) e/ E° @ oian V2
Dunnett T3 procedure (T3) «/E A,
Games & Howell procedure (GH) +/E Qurcan/ /2
Hayter-Welch procedure (HW) «/E .
Y o K-1,3f
Holland & Copenhaver technique (FIC) v/ B . b
&’ ,dfs
James second-order test (Jc) «/E "
(121-.—,}(-1)
Tukey-Kramer test (TK) v/ B tea
i Qxa/ V2

Note. B; - E,x_;b-z;x—ﬁ.

*E = (8% / n) + (5S%./ np)™
“Bpoolea = [MSW / J(1/n) + Yi(1/n)1%,
9q: Studentized distribution.

*J ., k, 4 (refer to Equation 3).

A : Studentized Maximum modulus.

8df, : adjusted degrees of freedom (refer to Equation 2).

ba’: adjusted « level by Holland & Copenhaver technique (1986).
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Table 3

Proportion of familywise Type I errors for the two by four balanced factorial design

when all pairwise comparisons are made among levels for factor K.

Method®
o VB OV dmt T GH Ew 18 HC c Je
10 1 0 046 051 .043 045  .041  .040 019  .027
2 33 0456 056 .049 .044  .040  .038 019  .025
3 64 051 070 .053 049  .044  .041 022  .028
4  6¢ 047 064 045 044 039  .037 021  .026
5 80 048 .075 046 .045 039 .03  .022  .026
6 14 045 091 .044 042  .033  .032 017 .02
20 1 0 049 049 051 048  .043 043 033  .028
2 .33 047 052 049 045  .041 041 031 .02
3 64 050 064 049 .048 041  .041 033  .026
4 .69 050 .067 .049 .047  .039 .03  .031  .025
5 .80  .049  .070 .044  .045 036  .035  .028  .023
6 14 051  .087 .045 .046  .036  .036  .029  .025
30 1 0 052 050 052 .51  .044  .043 037  .026
2 33 051 .052 .050 .049  .043  .042  .037  .027
3 .6 .04 057 .044 045  .037  .036  .033  .023
4 69 0556 .070 052 .051  .045 044 041  .030
5 .80 050 .066 .045 .044  .038 038  .03¢  .024
6 14 048 076 043 .044 034 034  .031  .022

Note. "n,: The average cell size. bVP: Variance patterns (see Table 1).

‘CV: Coefficient of variation. ‘Jm: the omnibus James second-order test.

‘TK: The Tukey-Kramer test. GH: The Games-Howell test.

HW: The Hayter-Welch modified t test. T3: The Dunnett T3 test. C: The Dunnett

C test. Jc: The James second-order test for contrast analysis.
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Table 4
Proportion of familywise Type I errors for the two by four slightly unba. 1nced
design when all pairwise comparisons are made among levels for factor K.
Method
' VPOV dm T TGH O HW O T8 HC G &
10 1 0 € 048 .051 .048 .047 .042 .040 .020 .027
2 .33 87 .046 .041 .049 .045 .039 .038 .018 .025
.64 80 .051 .049 .052 .048 .043 .041 021 .027
4* .69 94 047 039 .048 044 040 .038 .021 .027
4 .69 -89 .048 .106 .048 .045 .045 .037 .020 .027
.80 .86 .046 .048 .045 .043 037 .035 .018 .023
6+ 1.4 .67 .047 .053 .043 .045 .036 .034 .018 .024
& 14 -67 .047 149 .045 .044 .043 .034 .017 .025
20 1 0 € .052  .053 .0563 .0561 045 045 .034 .029
2 .33 87 049 .048 .051 .048 .041 .039 .030 .025
3 .64 .80 .051 .055 .048 .048 .039 .03% .031 .025
4+ .69 94 052 059 .051 .048 .043 .043 .036 .029
4 .69 -89 .046 .079 .042 .042 035 .035 .028 .023
.80 .86 .048 0567 045 044 .037 037 .030 .025
6* 14 .87 .02 .063 047 .048 .039 .039 .032 .p27
6 1.4 -67 .0a8 .108 .042 .043 .035 .034 .027 .022
30 1 0 0 049 050 .052 .048 .044 043 .037 .027
2 .33 .87 .062 .051 .052 050  .045 044 040 .027
3 .64 80 052 .058  .051 .048 .044 044 039 .026
4% .69 94 052 .058 .050 048 042 042 038 .026
4 .69 -89 .050 .075 .046 045 039 039 .036 .025
6 80 86 .060 .056 .045 .046 .038 .037 .0356 .024
6* 1.4 67 049 .064 .044 044 037 .037 .034 .023
6 14 -67 .048 098 .041 .044 .034 033 .030 .020

Note. “n;: The average of cell size (see Table 2 for the patterns of sample size for

the slightly unbalanced design. °r: The correlation coefficient of sample size and

variance.
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Proportion of familywise Type I errors for the two by four extremely unbalanced

factorial design when all pairwise comparisons are made among levels for factor K.

Method

nt VP CVor Jm Ty 6H EHW T3 HC C  de
0 1 0 ¢ .045 .049 .055 044 045 .041 014 .027
2 .33 .90 .041 .028 055 .041 .045 .02 .013 .024

3 .64 91 .040 019 .049 .038 041 038 .013 .020
4" 69 .94 037 .019 .047 035 .036 .033 .011 .017
& 69 .94 045 207 .046 .042 .038 .034 016 .028

5 .80 .91 .040 .024 .048 .039 039 .038 .016 .020
6+ 14 .76 044 013 050 .042 041 .08 .016 .027
6 14 -76 .042 361 .040 .030 .03 .028 .013 .029
20 1 0 e .05 .048 .051 .049 .042 .041 .020 .027
2 .33 93 .049 030 .051 .048 .042 .041 029 .027

3 64 .87 053 .028 .053 .051 .043 .043 .030 .026
4+ 69 .95 055 026 .054 .053 .046 .046 .035 .030
& 69 -91 050 .158 .046 .046 .037 .036 .026  .025

5 .80 .94 .048 .030 .048 .045 .038 .038 .027 .023
6* 14 .72 .050 .020 .047 .047 038 .037 .027 .024
6 14 .72 047 252 040 .043 033 032 .025 .024
30 1 0 e .049 .048 .049 047 .043 .042 .036 .027
2 .33 .89 .049 033 051 .048 .044 .043 .038 .025

3 .64 91 .050 .033 .047 .048 .040 .040 .035 .025
4+ 69 98 052 .030 051 .049 .043 .042 039 .025
69 .98 031 .129 046 .047 .037 .037 .034 .026

5 .80 .89 .048 .037 .048 .045 .040 039 .036 .025
6 14 .75 052 .027 .045 .048 .038 .038 .033 .024
& 14 .75 .050 .18 .043 .045 .037 .036 .033 .023

Note. *n;: The average cell size (see Table 2 for the patterns of sample size for the

extremely unbalanced design.
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Table 6

Any-pair power for the two by four balanced factorial design when all pairwise

comparisons are made among levels for factor K.

28

Method
meo VPO OVdm oy Gy BEW TS HC € dc
10 1 0 127 783 733 725 703 696 579 .626
2 33 458 546 474 450 442 436 .326 .369
3 .64 596 773 616 586 .581 Bb71 479 520
4 75 405 587 414 388 .381 .371 298 .328
5 .80 .604 729 617 .591 .580 571 491 531
6 14 377 663 .353 .351 319 .308 .29 .289
20 1 0 27 7130 725 725 .699 .699 .659 631
2 33 444 510 456 436 423 423 384 .359
3 .64 696 .827 710 .687 .683 682 .655 .626
4 .75 494 640 499 478 467 466 435 403
5 80 711 794 718 701 692 683 665 .640
6 1.4 459 716 439 432 406 403 .384 .361
30 1 0 764 763 .764 .762 741 739 720 .673
2 .33 482 B35 492 473 463 461 443 .396
3 .64 691 814 711 683 .682 681 .669 .623
4 75 492 616 495 475 .4b4 463 453 402
5 .80 700 773 712 689  .687 686 .677 .627
g 1.4 451 670 435 424 409 409 403 .360
Note. °n;,: see Table 3.
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Table 7

Any-pair power for the two by four slightly unbalanced factorial design when all

pairwise comparisons are made among levels for factor K.

Method
a b
me VEROVor dm o G BHW T3 HC € Jde

10 1 0 € 790 804 789 .78 765 760 .648 .685
2 3 .87 .11 555 535 506 .501 .495 .378 412
3 64 .80 668 .775 .704 664 674 .667 .581 .596
4" 69 .94 484 553 510 472 477 470 386 .399
4 69 -89 977 .827 925 960 .909 902 .856 .871
5 .80 .86 .682 .705 .711 675 .680 674 596 .611
6" 14 .67 446 636 443 424 409 401 .351 .357
6 14 -67 1 1 1 1 1 1 1 1
20 1 0 € 754 149 748 752 721 .7120 .680 .648
2 .33 87 479 517 489 471 458 457 414 .380
3 64 .80 736 .829 756 730 730 729 705 .673
4* 69 94 540 .639 557 .528 525 .523 498 458
4 69 -89 1 970 .999 1 999 999 999 999
5 .80 .86 .744 .780 .757 .737 135 .734 .713 .679
6 14 67 495 709 489 471 456 453 439 401
6 14 -67 1 976 1 1 1 1 1 1
30 1 0 € 778 769 772 177 148 746 730 684
2 33 .87 513 .553 524 505 .496 494 .476 423
3 64 80 722 819 739 .716 .717 716 707 .6538
4* 69 .94 515 .615 .525 .501 .497 497 487 431
4 69 .89 988 .814 964 980 .955 955 951 .932
5 .80 .86 724 770 .740 717 713 711 .705 .653
6* 14 67 471 690 458 450 432 431 429 .379
6 14 -67 1 .964 1 1 1 1 1 1

Al

Note. "n;;; see Table 4. PFor variance patterns 4 and 6, + represents variance pattern is
directly paired with sample size; - represents variance parrtern is inversly paired with

sample size.
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Table 8

Any-pair power for the two by four extremely urbalanced design when all pairwise

comparisons are made among levels for factor K.

Method

mt VER CVor dm T HW T3 HC G Je
10 1 0 e 767 .83 .818 764 792 786 700 .619
33 .90 499 536 .588 495 .556 .547 418 375

3 64 91 731 752 819 731 794 791 670 653

4* .69 .94 528 507 .619 .524 587 582 439 435

4 69 -94 957 .957 .950 .952 .937 934 911 .835

5 80 .91 .751 659 842 750 818 815 734 .681

6 14 .76 477 566 616 468 584 579 516 397

& 14 -76 1 99 1 1 1 1 1 1

20 1 0 e 816 .19 .794 810 771 768 732 .693
33 93 550 503 540 545 519 517 466 428

3 .64 .87 842 828 .863 841 845 845 820 791

4* .69 95 .654 580 .680 .647 .652 .651 615 570

4 69 -91 994 960 .982 .989 .976 976 973 .959

5 80 .94 .852 .28 .872 .849 .856 855 .838 .804

6 14 .72 621 666 .651 610 .623 623 608 547

6 14 -72 1 .999 1 1 1 1 1 1

30 1 0 e .839 .817 .820 .834 .796 795 783 737
2 .33 .89 578 551 .580 .Bb73 .551 .549 532 470

3 64 91 .806 .813 .826 .803 .809 .807 .799 .749

4 69 98 .608 578 .626 599 .600 599 590 529

& 69 -98 991 927 .969 .983 962 961 .960 .939

5 80 .89 .821 .47 .84l 818 .824 823 818 771

6t 14 75 579 658 .685 .561 661 559 558 490

@

14 -75 1 998 1 1

Note. "ny: see Table 5. ®: see Table 7.

dc
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Table 9

Per-pair power for the two by four balanced factorial design when all pairwise

comparisons are made among levels for factor K.

Method
mo VPOV G HW T3 HC  C Je
10 1 0 516 .485 551 454 475  .343  .382
2 .83 .341 281 316 .255 .260 .172  .201
3 .64 .618  .448 485 416  .434 322  .355
4 69 421 273 299 248 259 .182  .203
5 .80 570 442 479 411 427 329  .360
6 14 .58  .286 .314 .257 267 204 .231
20 1 0 481 473 537 445 472 405  .380
2 .33 311 267 .303 .243 259 214  .197
3 .54 683 536  .582  .508 534 475  .446
4 .69 469 337 370 310 .329 282  .257
5 .80 644 540 582 511 537 482 456
6 14 639 361 .390 .330 .352 .312  .289
30 1 0 514 514 577 489 513 467  .420
2 .33 .329 292 331 271 286 .255 .219
3 .64 668 534 576 506 532 .91 444
4 69 452 332  .366  .306  .326 .295 .253
5 .80 616 527 566  .501 527  .489  .443
6 14 623 361 .386 .335 .358 .330 .289

o~
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Table 10

Per-pair power for the two by four slightly unbalanced factorial design when all

pairwise comparisons are made among levels for factor K.

Method
"k VP OV r " GH HW T3 HC C  Je
10 1 0 e 549 517 585 488 510 .374 410

2 .33 87 332 312 348 .28t 300 .19 .221
3 .64 80 .98 518 556 487 .509 .393 409
4* .69 94 369 330 359 .303 .318 .230 .240
4 .69 -89 489 524 602 495 510 428 459
5 .80 .86 627 521 656 490 512 408 422
6" 14 .67 540 359 .382 329 .346 .273 .280
6 14 -67 791 .734 763 .728. .740 .711 .728

20 1 0 € 499 482 555 460 487 421 392
33 87 309 28 326 .260 277 .230 .208

3 64 .80 681 .580 .626 550 .579 .518 484

4" .69 94 459 377 413 350 .371 .3256 .292

¢ 69 -89 748 726 187 706 734 .689 .673

5 .80 .86 619 573 613 547 573 .B2Z 488

6* 14 .67 625 401 427 370 .394 .352 .319

6 14 -67 821 774 805 7656 783 .758 .753

30 1 0 € 522 524 589 497 524 477 429
2 .33 87 337 312 351 .291 306 .276  .237

.64 80 670 562 .607 B3 .564 521 471

4* 69 94 440 353 389 .329 .350 .320 .275

4 69 -89 469 633 .703 611 .638 .605 .563

5 .80 .86 .609 .554 .591 527 .622 .B17 470

6* 1.4 .67 607 378 405 353 .376 .351 .302

6 14 -67 779 777 804 767 185 .766 .754

w
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Table 11

Per-pair power for the two by four extremely unbalanced design when all pairwise

comparisons are made among levels for factor K.

Method

n, VP CV r

TK GH HW T3 HC C dc

10 1 0 € H08 455 495 427 435 329 311
2 33 .90 268 .304 .315 278 287 187 .176
3 64 91 447 591 611  .560 .585 402 418
4* 69 .94 252 395 404 .366 .386 243 250
4 69 -94 631 462 520 440 442 394 375
5 80 91 359  .606  .622 578 .601 438 436
6* 14 .76 352 483 426 452 475 .354 284
6 14 -76 869 .684 .706 .680 679 671 695

20 1 0 € 492 478 546 450 473 406 .380
2 33 .93 256 .301  .345 278 292 240 218
3 .64 .87 589 677 .724 651 .680 616 BT
4" 69 .95 335 461 .503 435 459 401 .361
4 69 -91 649 .548 .608 528 545 505 501
5 .80 .94 486  .686 .726 .662 .689 .634 592
6" 14 72 493  .b41  .b57 512 539 493 433
6 14 -72 879 714 735 708 717 .699 709

30 1 0 € 538 .533 604 507 533 489 441
2 33 .89 308  .336 .385 312 .328 297 253

64 91 .617  .642 .689 617 .645 .604 .b47

4* .69 .98 .366 420  .464 396 418 .386 333

4 69 -98 .599 579  .642 .558 581 551 .548

5 .80 .89 .536  .642 .684 .619 644 611 .556

6* 14 .75 530 483 .508 457 481 455 391

6 14 -75 875 735 760 730 742 726 123

30




Table 12

All-pair power for the two by four balanced factorial design when all pairwise

comparisons are made among levels for factor K.

34

Method
o VPOV GH HW T3 HC C Je
10 1 0 272 238 .333 211 257 .129  .155
2 .33 .52 104 .164 088 .11  .045  .060
3 64 455 275 353  .248 203 171  .195
4 75 2686 135 .10 119 .148 073 .084
5 .80 .405 226 306  .202 244 .136  .156
6 14 507 223 273 198 230 151 175
20 1 0 235 226 315 .202 253 .72 .153
2 .33 134 101 .153 .087 114 .069 .061
3 64 523 349 441 323 377 289 263
4 75 302 176 236 .56  .193  .133  .116
5 .80 480 .308 .396 281  .335 248  .225
6 14 563 .285 341 258  .304 242 219
30 1 0 262 258 351  .236  .284 217  .180
o .33 .43 111 .66  .099  .125  .089  .068
3 64 508 .349 437 320 .376  .304  .260
4 .75 291 .169 233 152 .199 141 114
5 .80 .447 291 377 269 320 255 213
6 14 5477 288 342 264 311 260  .223

P




Table 13
All-pair power for the two by four slightly unbalanced factorial design when all

pairwise comparisons are made among levels for factor K.

Method

me VPOV T gE BHW T3 HC C Jc

10 1 0 € 284 240 .335 212 261 126 156
33 .87 135 117 174 .100 .130 .054 .065

.64 80 418 .322 413 293 344 .205 221

4* 69 94 .204 .157 222 138 172 089 096

4 69 -89 .153 .114 197 .092 122 051 077

5 80 .86 352 .286 371 .258 .308 181 192

6* 14 87 444 277 .333 .252 293 201 .207

6 14 -67 534 211 289 .186 220 134 184

20 1 0 € 246 230 319 207 258 177 .156
33 .87 .126 .105 .162 .090 119 .074 .064

.64 80 520 .388 @ .484 .355 419 .320 .288

4* 69 .94 289 .199 270 .180 220 157 133

.69 -89 443 .353 471 .320 .386 294 268

5 .80 .86 450 .330 413 302 .35b 276 245

6* 14 67 .40 316 .377 .286 .338 .269 239

6 14 -67 .584 .323 416 .295 .350 274 258

30 1 0 € 271 269  .359 244 297 225 .186
2 33 .87 142 120 .178 .106 130 .097 .075
3 64 .80 507 .370 462 342 401 324 278
4* 69 .94 273 .181 248 164 202 .154 124
4 69 -89 .134 230 328 201 257 197 155
5 80 .86 441 314 .3%4 290 338 278 236
6* 14 .67 523 301 .356 278 323 276 230
6 14 -67 511 .331 412 .303 355 297 261
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Table 14
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All-pair power for the two by four extremely unbalanced design when all pairwise

comparisons are made among levels for factor K.

Method

o VBOCV T GH O HW T3 HC G de
16 1 0 e .59 .08 .57 .072 .08 .017 .051
33 .90 .045 .059 .106 .048 .062 .011 .025

64 91  .135 344 441 310 364  .142  .190
4* 69 .94 038 .183 253 .19 203 .077 .088
4 69 -94 237 025 .064 .019 .020 .005 .023
5 .80 .91 .082 .331 430 .298 352 .147 .171
6* 14 76 .118 .338 .368 310 .362 .163 172
& 14 -76 615 .052 .120 .041 038 .014 .089
20 0 e .18 .59 237 .40 178 .102 .102
33 93 .057 .08 .131 .073 095 .054 .048

64 .87 338 .459 562 427 491  .385 342
4* B9 95 .126 .38 319 216 .264 .189 .16l
4 69 -91 272 .090 .148 074 100 055 .065
5 .80 .94 .259 443 534 414 473  .383 .330
6* 14 72 312 424 490 .394 451 371 316
6 14 -72 648 143 206 .124 152 .097 .126
30 0 e .246 236 327 211 263 .194 .160
33 .89 .098 .120 .181 .106 .135 .096 .073
64 91 416 432 532 403 465 .388  .330
4* B9 .98 .183 215 .196 239 .193 .151 .005
4 69 -98 .229 136 207 .116 .155 .109 .089
r .80 .89 .336 .378 .471 .352 406 .343 .286
6* 14 75 .396 .380 444 357 406 .354 297
& 14 -75 647 207 280 .189 226 .177 .168




