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Abstract

This study considers the problem of performing all pairwise comparisons of column

means for a two by four additive nonorthogonal factorial ANOVA model where cell

variances are heterogeneous. Extensions of the Games-Howell (1976) procedure, the

Dunnett (1980) T3 and C procedures, the Holland and Copenhaver (1987) technique, the

Hayter (1986) procedure, and the James (1951) second-order test are considered. Using

computer simulated data, Type I error rates and statistical power for these multiple

comparison procedures are estimated. Sixty-six different combinations sample size and

variance patterns are examined. The results suggest that these procedures maintain the

familywise Type I error rate under the nominal .05 level. In terms of statistical power, the

Games-Howell procedure generally provides the greater any-pair power but the extension

of the Hayter technique provides greater average power per contrast as well as in

identifying all significant pairwise differences.
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Over the last twenty years, considerable attention has focused on the performance

of the multiple comparison procedures (MCP) among group means when variances are

homogeneous or heterogeneous (e.g., Dunnett, 1980; Hsiung & Olejnik, 1991; Keselman &

Rogan, 1978; Klockars & Hancock, 1992; Seaman, Levin, & Serlin, 1991). Each of these

studies has dealt only with the performance of MCP in the single-factor design. As yet,

only Wilcox (1987) has considered a two-factor model but limited his investigation to

pairwise comparisons of cell means in each row or column. We have not found any studies

in the literature which have investigated the properties of MCP to contrasts among

marginal means in a factorial design when population variances are heterogeneous.

In a nonorthogonal two factor design a pairwise contrast between column means

using an unweighted means solution can be formed by summing the cell means within a

column and subtracting the sum of cell means from the contrasting column. That is,

A
Vikk, = - (k k', and k, k' = 1, . . K; j represents the jth row and j = 1, . . J)

To test the null hypothesis: Ho: Okk, = 0, a Welch (1938) type test statistic can be formed

by dividing the point estimate for the contrast by the standard error of the contrast.

Where the standard error is the square root of the variance of the contrast formed by

summing the separate cell variances:

Ilar( cif ) = J ( j...32fie/nik ) + ( j,S /nib, ).

The test statistic can be written as:

T ( 1 )
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More generally, any hypothesis involving the linear combination of cell means can be

tested using the following statistic:

EcjAh / E( cjhS2it/njh

Where cm are the contrast coefficients and Ecjh = 0 [ (j,k) = (1,1), .. (J,K)];

Xjk are cell means for the jot level of factor J and the kth level of factor K;

LS2jk is the variance of cell jk;

and ?IA is the number of observations in cell jk.

The T test statistic may be evaluated using several different distributions. In the

present study we consider extensions of the Dunnett (1980) C and T3 procedures, the

Games and Howell (1976) procedure, the Hayter (1986) modified LSD procedure, the

Holland and Copenhaver (1987) adjusted Bonferroni technique, and a Scheffe type

procedure using the James (1951) second-order test. The purpose of our study is to

investigate whether these extensions provide valid tests, that is, control the familywise

Type I error rate across all pairwise comparisons of unweighted column means in a two by

four fixed effect additive nonorthogonal factorial ANOVA model. In addition we were

interested in investigating the effects of sample size and degree of variance heterogeneity

on the statistical power of these procedures.

Multiple Comparison Procedures

The GH, Dunnett C, and T3 Procedures

Games and Howell (1976) proposed a solution to the Behrens-Fisher problem which

uses the Studentized range distribution. The critical value for the Games-Howell (GH)

test based on Equation (1) is equal to K, df, /a The decision rule is to reject Hoff ITI

> di, v where q. is the Studentized range distribution for the cc centile; K is the
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number of levels of factor K which form the family of contrasts; and df, is the approximate

degrees of freedom from Satterthwaite (1947):

J s s 2[E j))2
df, njk,

SjA.4 So4
E njk2 (njk - 1) nik,2 (njk, - 1)

(2)

Dunnett (1980) suggested two solutions. The first solution, C test, is based on the

Cochran (1964) solution to the Behrens-Fisher problem and uses q / 2, where

E
J=1

ga,K,nik -1Sj.k get , K, -15.j ie2

njk njk,

S 2 S 31.2 )

j., njk njk.

( 3)

The decision rule is ifITI>q/ Vr2 then reject the null hypothesis.

The second solution (T3 procedure) suggested by Dunnett uses A., di. as the

critical test statistic. A. is the Studentized maximum modulus distribution at the a

centile, c is the number of contrasts in the family of comparisons. The df, is defined as

Equation (2). The null hypothesis is rejected if I T I > A< cite

Several studies have investigated the three multiple comparison procedures under

various conditions. The differing properties of the data sets used in the investigations

have led researchers to make different recommendations as to which procedure is the

'best" approach. For instance, several studies have shown the GH procedure to be robust

to variance inequality (Keselman & Rogan, 1978; Games, Keselman, & Rogan, 1981),

however, Tamhane (1979) indicated that the GH procedure tends to be liberal under some

cases. This liberal nature of the GH procedure also was noted in Games and Howell

(1976) and Dunnett (1980). Dunnett (1980) indicated that the GH procedure provides an
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inflated Type I error rate when a large number of groups are compared and variances are

homogeneous. With a small number of groups however the empirical Type I error rate did

not exceed the nominal significance level.

Sto line (1981) preferred Dunnett C procedure to the GH procedure. He cautions

that the GH procedure can be used only if the researcher can bear the risk of being

somewhat liberal. However, Dunnett (1980) found the C procedure to be conservative. He

showed that the C procedure is comparable to the GH procedure only when degrees of

freedom approached infinity. The C procedure gives tighter Type I error rate control than

the GH procedure but is generally less powerful.

Dunnett (1980) concluded that the T3 procedure is also conservative. The choice

between the T3 procedure and the C procedure depends on whether the degrees of

freedom are large or small. For small degrees of freedom, the T3 procedure is more

powerful than the C procedure. For large or moderately large degrees of freedom, the C

procedure will be more powerful than the T3 procedure and is preferred (Dunnett, 1980;

Hsiung & Olejnik, 1991; Stoline, 1981; Toothaker, 1991). However, there are no exact

guidelines for deciding whether the degrees of freedom are small. Toothaker (1991) even

indicated that the ratio of variances has effect on determining the breaking point between

small and large degrees of freedom for the purpose of choosing between the C and T3

procedures.

Wilcox (1987) had investigated the three tests in a two-way ANOVA design when

contrasting cell means. His results indicated that the Games-Howell procedure can exceed

the nominal a level when the degrees of freedom are small. He also concluded that the

T3 procedure appears to be best when the degrees of freedom are less than 60 for any

treatment group. Otherwise, he recommends the C procedure.
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The Boriferroni Test

Frequently, researchers have used the Bonferroni (B) adjusted t-test to contra the

overall experimentwise Type I error rate. Using the Student t distribution each contrast is

tested at the a/c significance level (c is the number of contrasts). The decision rule for

this procedure is to reject Ho if ITI> te, df where tt, is the Student range distribution

at the a' (a' = a/c) centile and df, is defined as Equation (2).

Recently several suggestions for modifying the Bonferroni approach have been

made which require using a sequential hypothesis testing approach. The advantage of

these procedures is an increase in statistical power while maintaining the overall

experimentwise Type I error rate under the nominal significance level. The sequential

procedures which have received the greatest attention include the Holm (1979) technique,

the Holland & Copenhaver (1988) technique, and the Shaffer (1979, 1986) S and S1

procedures. Hsiung and Olejnik (1991) have compared these modifications of the

Bonferroni inequality for a one-way ANOVA design when population variances were

heterogeneous. Their study indicated that the magnitude of the power difference between

the Holland-Copenhaver test and any one of the Shaffer tests were very small, although

the Shaffer tests did generally give greater power. Because the Shaffer procedure isinore

complicated than the Holland-Copenhaver technique in determining the a' for each of the

pairwise comparisons, the Holland-Copenhaver test might be preferred.

The Holland and Copenhaver (HC) (1987) procedure begins by computing a p-value

for each contrast of interest and then orders these p-values from smallest to largest. The

smallest p value is given a rank of 1 and the largest p value is given a rank of c. The

significance level used to test each contrast is determined as follows:

0



8

1

all = 1 - (1 rj " (4)

where a is the desired familywise Type I error rate, c is the total number of contrasts in

the family; and ri represents rank of the contrast being tested. The decision rule is to

reject the null hypothesis if p, value is less than a'1. Since this is a step down procedure,

the process may terminate on any step if a null hypothesis is not rejected.

The Hayter-Fisher Test

Although the Fisher LSD test was the first MCP developed, it is seldom considered

by researchers in studying the properties of MCP since it gives a poor a-level protection

under all configurations of the means when there are more than three populations. To

overcome this limitation, Hayter (1986) suggested that, following a significant omnibus F-

test, contrasts could be tested by using the Studentized range distribution instead of the

Student t distribution as the reference with degrees of freedom equalling one less than

the number of levels of the factor and the degrees of freedom for the error mean square.

Seaman, Levin, and Serlin (1991) referred to this test as the Hayter-Fisher test.

Seaman et al. (1991) compared the Hayter-Fisher test with numerous alternatives

for one-way ANOVA designs with equal sample sizes and homogeneous variances. Their

results indicated that the Hayter procedure can limit the Type I error rate under the

nominal a level and has comparable or greater power than the alternatives considered.

Seaman et al. (1991) concluded that the Hayter (1986) procedure should be regarded as a

viable alternative for pairwise comparisons.

To apply the Hayter-Fisher test in unequal variance situations, two issues need to

be considered. First, a valid omnibus test must be used as a preliminary test. Several
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studies have recommended the James second-order test for the overall analysis when

variances are unequal (e.g., Dijkstra & Werter, 1981; Oshima & Algina, 1992; Wilcox,

1988). The F test, Brown-Forsythe F test, and Welch F test have been shown to be liberal

when the sample sizes are unequal and variances are severely heterogeneous.

Second, the original Hayter-Fisher test, which uses the pooled within cell variance,

is likely to be invalid when cell variances are unequal. Therefore, we suggest using

Equation (1) with degrees of freedom from Equation (2) to determine the critical value

rather than using the original Hayter-Fisher test statistic. The new alternative is referred

to as the Hayter-Welch (HW) test in the present investigation. The null hypothesis for

contrast from Equation (1) is reject if

T I >
Cia

'
K-1 df

where q, is Studentized range distribution, df, is defined as Equation (2).

(5)

The James Second-Order Test

James (1951) proposed two solutions to the problem of heterogeneous variances.

His first solution, while simpler than the second solution has been shown to lack adequate

control over Type I errors (Brown & Forsythe, 1974). The second solution referred to as

the James second-order test has received some attention and has been shown to provide

adequate control over Type I errors. Wilcox (1989) extended the James second-order test

to the two-way ANOVA model. The test statistic Ur is computed as follows:

Ur = E uk(zk Z)2 .

where Zk /Lk = 1/(g4/nik), Z = EukZk/u US = Euk.

(6)



The decision rule is to reject Ho if U, > h(a) [for detailed description of h(a), refer to

Wilcox (1989)].

The James second-order test might be used for contrast analyses. For a pairwise

contrasts the square root of Equation (7) is equivalent to Equation (1).

JG =

2

E 7)2
k-1

`J J

Xji E xj2
3-1

s 2
11 + 2s

S j2 2

j.1 j/ j1 nj2

10

(7)

The critical value could be based on the square root of the critical value used in the James

second-order test. The decision rule is to reject Ho if Jc > Jam. We refer to this

approach as Jc in the present paper. Using ATZ as the critical value is a Scheffe-type

approach which would allow data "snooping" of both complex and pairwise contrasts. A

limitation of this approach is that it is likely to have low statistical power. Nonetheless,

we felt that since the omnibus James second-order test has been shown to control the

Type I error rate under the nominal level while providing adequate power, the Jc test,

derived from the omnibus test, should be examined to evaluate its usefulness for contrast

analysis.

The Tukey and Kramer Test

In the one-way ANOVA model when the population variances are equal and the

design is balanced the Tukey HSD (1953) method is generally recommended (Toothaker,

1991, p. 91), and when the population variances are equal but the design is nonorthogonal

the Kramer (1956) modification of the Tukey approach is generally recommended

11
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(Toothaker, 1991, p. 96). The decision rule of the Tukey-Kramer test in factorial designs

is if

I J
I .E1 - E

J
IT;Xk

.1 > ,...q. K, N-L7

J J V-2'\ilms J. J.

J.1 no j.i no
(8)

then reject the null hypothesis (MS, is the mean square within samples). Although the

Tukey-Kramer (TK) test is not valid for unequal variance situations, it was included in the

present study serve as a baseline to compare the other procedures for situations where

populations variances are homogeneous.

Table 1 provides a summary of the computational procedures and reference

distributions for the seven MCPs considered in the present study.

Insert Table 1 about here

Simulation Study

Procedure

A computer program was written using the SAS - MATRIX (1985) language to

evaluate all of the procedures. Data were generated for a two by four fixed effect additive

ANOVA model. The study focused on the all pairwise comparisons for the main effect

having four levels. Three factors were manipulated: (a) sample size, (b) variance pattern,

and (c) effect size. Three types of design were considered: (a) balanced design, (b) slightly

unbalanced design, and (c) extremely unbalanced design. The total sample size for each

design equaled to 80 (an average cell size of 10), 160 (an average cell size of 20), and 240 (

1
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an average cell size of 30). Six variance patterns were considered and the coefficient of

variation (CV) of the six patterns ranged from 0 to 1.4. Table 2 summarizes the patterns

of sample size, variance conditions studied. Each of these patterns were associated with

two patterns of mean difference, (a) AI = 4.2 = µ3 = µ.4 and (b) tiA = /2,2 = /23 < /24 . A

total of 132 conditions were included.

Insert Table 2 about here

Under each of the conditions outlined above, iata were generated for the following

linear model:

Yijk = Mil + + Pk + (4( Pik Eijk.

Midis the grand mean and was set equal to 10 for the study; a, is the effect ofj,h level of J,

ph if the effect of k,h level of K, and (a 13 )ji is the interaction effect ofja level of J and km

level of K in combination. For the null condition (first mean pattern), the effects of act, ph,

(3)Jk were all set equal to zero. For the non-null condition (the second mean pattern), the

effects of (3k, (k' = 1, 2, 3), and (ank were set equal to zero, and the effect of 134 was set

equal to a constant, 8. When variances were equal or slightly unequal, 8 was set equal to

.85, .57, .48 for the sample sizes, 80, 160, 240, respectively. When variance inequality was

moderate to extreme, 8 was set to 2, 1.5, 1.2 for the sample sizes, 80, 160, 240,

respectively. The specific values for the 8 were chosen so that for the sample sizes

examined (N = 80, 160, 240), the power of the omnibus James second-order test would be

generally greater than .45. Euk is the random error component normally distributed with

a mean equalling 0 and variance set equal to the patterns presented in Table 2. The SAS

normal random generating function RANNOR was used to generate the random error
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component.

The familywise nominal significance level was set equal to .05. A total of 10,000

replications was conducted for each condition. The standard error for this number of

replications was .022. Based on the nominal a level, a test was interpreted as liberal if its

Type I error rate was greater than .0544, and as conservative if its Type I error rate was

less than .0456.

Based on the two mean patterns, the frequency of rejecting the null hypotheses

was recorded and converted to five proportions to reflect for each procedure the: (a)

faniilywise Type I error rate, (b) partial Type I error rate, (c) any-pair power which is the

probability of identifying at least one true non-null contrast, (d) per-pair power, which

represents the average power per-non-null contrast, and (e) all-pair power, the probability

of identifying all significant non-null contrasts (Einot & Gabriel, 1975; Ramsey, 1978,

1981).

Results

Type I Error Rates

The Type I error rates for the seven pairwise multiple comparison procedures and

the omnibus James second-order test for the balanced, slightly unbalanced, and extremely

unbalanced designs are reported in Tables 3, 4, 5, respectively.

Insert Tables 3, 4, 5 about here

The James second-order test generally controlled the overall Type I error rate

under the nominal a level. This indicates that the James second-order test is a robust test

even to the severe variance heterogeneity when the populations sampled have a normal
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distribution.

The Tukey-Kramer (TK) test was valid in controlling the familywise Type I errors

when variances were equal or slightly unequal. For the slightly unbalanced design, Table

4 shows that the TK test had Type 1 error rates less than the nominal when the total

sample size was small (N = 80) and sample size and variance was positively related.

However, for most of the unequal variance situations, the TK test was either liberal (when

variance was negative related to the sample size) or conservative (when variance was

positively related to the sample size) in identifying the true mean difference.

All of the Welch-type multiple comparison procedures considered here controlled

the familywise Type I errors under the nominal level. The empirical Type I error rate for

the Games-Howell procedure (GH) ranged between .040 to .055. Thus, for the two by four

factorial design when all pairwise comparisons are made among four levels for factor K,

the GH test does not appear to be liberal. This result is consistent with the findings

reported by Dunnett (1980) and Hsiung and Olejnik (1991) for the one-way ANOVA model

with the four group design they considered.

The Hayter-Welch approach (HW) test controlled Type I error rate under the

nominal a level, ranging from .030 to .051. This indicates that the new alternative is a

robust test even the variances are heterogeneous.

Type I errors for the Dunnett T3 and Holland-Copenhaver tests (HC) were nearly

identical, ranging from .032 to .045. This result is similar to the findings presented by

Hsiung and Olejnik (1991) for the one-way ANOVA model. The two tests are basically

conservative.

As was reported in the Dunnett (1980) study, the Type I errors for the Cochran

solution (C) increases as sample size increases, ranging from .017 to .041. This indicates

ii
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that the C procedure tends to be very conservative in the factorial design even when the

total sample sizes is large.

Results also show that the Jc test is very conservative, with Type I error rates

ranging between .017 and .029. This result indicates that the Jc test behaves much like

the Scheffe test and tends to be conservative.

For the pattern of means where pi = = 113 < A.4 the partial Type I error rate

for the contrasts involving equal population means (pa = /12 = p.3) was also examined. All

of the Welch-type tests had partial Type I error rates less than .05. That is, for the three

null contrasts (i.e., pi = p.1 = 4.3, and p.2 = ;1.3), none of the procedures rejected at

least one of these contrasts more than 5% of the time.

Statistical Power

Based on the non-null pattern (g = u.a = A3 < /2.4) the any-pair power, per-pair

power, and all-pair power were estimated for the 66 conditions identified in Table 2. The

results are presented below by definition of power since the conclusions vary as a function

of the definition.

Any-Pair Power. Tables 6, 7, 8 present the any-pair power of the seven multiple

comparison procedures and the omnibus James second-order test for the balanced, slightly

unbalanced, and extremely unbalanced designs, respectively. The three tables reveal

somewhat similar information about the seven MCPs.

As expected that the TK test generally provided the greatest power when variances

were equal. However, the magnitude of power difference between the TK and another

test decreased as the sample size increased. For several situations, the GH or HW tests

even had greater power than the TK test. The magnitude of power difference between

the TK and GH procedures and the TK and HW procedures varied as a function of the
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samp'e. size, ranging from -.017 to .072, but normally the difference in power ranged

between .005 to .02. Thus, a researcher employing the GH procedure or the IIW

procedure instead of the TK test in the equal variance case will lose very little power.

Among the six Welch-type tests, the GH and IlW procedures were the two most

powerful tests. The GH test generally provided larger any-pair power than the IlW test.

The IlW test, however, was more powerful than the GH test when the variance was

inversely related to the sample size. For the situations involving an unbalanced design

paired with equal variance, the IlW test also gave greater power then the GH test when

the total sample size was equal to or greater than 160.

Power for the T3 and HC procedures were nearly identical, but the T3 procedure

generally had slightly greater power. The two procedures were consistently more powerful

than the C and Jc tests. For the situations where the sample sizes were extremely

unequal, the T3 and HC procedures were even more powerful than the IlW test when the

total sample size was small (N = 80).

Two of the least powerful tests were the C and Jc tests. Although it has been

reported that the C procedure is preferred over the T3 procedure when degrees of

freedom are large or moderately large on the basis of greater power (e.g. Dunnett, 1980;

Toothaker, 1991), results of our study show that the C test was consistently less powerful

than the T3 test even when the total sample size was large. The Jc test was more

powerful than the C test when N = 80, but it was less powerful than Lae C test when N

160.

Per-Pair Power. Per-pair (average) power of the seven MCPs in the balanced,

slightly unbalanced, and extremely unbalanced designs are presented in Tables 9, 10, 11,

respectively. The three tables generally provide a consistent information about the six



Welch-type tests.

Insert Tables 9, 10, and 11 about here
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The results show that the TK test was no longer the most powerful test even the

variances were equal. The HW test generally gave greater power than the TK test. Thus,

a researcher employing the HW test rather than the TK test in the equal variance case

may have greater per-pair power.

Among the six Welch-type tests, results show that the HW test generally gave the

greatest per-pair power, followed by the GH, HC, T3, C, and Jc tests. The magnitude of

power difference between the HW and any of the other procedures was typically between

.040 to .060.

The results also show that the HC test was more powerful than the T3 test in

terms of per-pair power. This result is consistent with the findings reported by Hsiung

and Olejnik (1991) for the one-way ANOVA model.

The C and Jc tests, again, were the two least powerful tests. The C test was more

powerful than the Jc test when the total sample size equaled to or greater than 160.

All-Pair Power. Tables 12, 13, 14 include the all-pair power for the seven MCPs for

the balanced, slightly unbalanced, and extremely unbalanced designs, respectively. The

results form the three tables show that the TK test was less powerful than the GH and

HW tests in terms of all-pair power even the variances were equal.

Insert Tables 12, 13, and 14 about here

8
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The three tables give similar information about the relative all-pair power for the

six Welch-type tests. Among the six Welch:type tests, the results from these tables

indicate that the HW test was the most powerful test, followed by the HC, GH, T3, C, and

Jc tests in descending order of power. The magnitude of power difference between the

HW and any other test generally exceeded 4%. This indicates that the 11W test may

provide a power advantage over the alternatives that is of practical importance when the

identification of all true pairwise differences are of interest.

The HC test generally offered greater power than the GH and T3 tests. The

magnitude of power difference between the HC and GH or T3 tests normally exceeded 2%.

This result is consistent with the findings by fisiung and Olejnik (1991) in the one-way

ANOVA model.

The two least powerful tests, again, were the C and Jc tests. The Jc test was only

more powerful than the C test when the total sample size equaled to 80.

Conclusions

The present study only investigated all pairwise comparisons among the four

columns of a two by four factorial design. A limited number of sample size and variance

combinations were considered. In addition, only one type of non-null condition was

included in the study. As a result broad generalizations cannot be made. However, the

conditions that were studied included many of the situations frequently encountered by

the applied researcher. The results of this study are probably best viewed as an indication

of the relative merits of the alternative approaches to multiple comparisons when

variances differ. With these limitations in mind, the following conclusions seem justified:

1. When all pairwise contrasts among four populations are of interest and the
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nominal familywise Type I error rate is set at .05, all six of the Welch-type of multiple

comparison procedures considered in this study generally had empirical Type I error rates

that did not exceed two standard errors of the nominal significance level. This indicates

that the T statistic provides a reasonable solution to the Behrens-Fisher problem for

contrast analysis in the factorial design.

2. The identification of the most powerful multiple comparison procedure for the

unequal variance case depends on the definition of power. To identify at least one

significant difference the GH procedure typically will provide the most sensitive test.

However the difference in power between the HW procedure using the omnibus James

second-order test and the GH procedure is very smell.

3. To maximize the average power per contrast or to identify all significant

pairwise differences, the HW procedure can be recommended. Even when the variances

were equal the HW test provided greater average and all-pairs power than the TK test

which uses the pooled within cell variance.

4. The Dunnett alternatives generally had lower power across all definitions of

power than the GH procedure or the HW procedure. Furthermore the ext-usion of the

Cochran solution in a factorial design did not provide greater statistical power than the T3

approach even when the total sample size was large.

6. The Scheffe S-type test, the Jc test, is conservative for the pairwise contrast

analysis.
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Table 1

23

Reference of the seven multiple comparison procedures.

Procedure Computed Test Statistic Reference
Distribution

Dunnett C procedure (C)

Dunnett T3 procedure (T3)

Games & Howell procedure (GH)

Hayter-Welch procedure (11W)

Holland & Copenhaver technique (HC)

James second-order test (Jc)

Tukey-Kramer test (TK)

; / Eb

; / E

; / E

; / E

* / E

; / E

; / Eepooled

qd,occii:/4

Af, di!

q"dr,/,.-

cl.,K -1,d(

t ,11,dr,

(Z1-40c-i)1/2

get,K,dfArf

Note. a; =

bE = REA2jk njk) TiS2jk,/ nien1/2.

CEpoolod = [MSw / E(1/n) + Ei(1/nk)l1/2.

dq: Studentized distribution.

eq dr. (refer to Equation 3).

rA : Studentized Maximum modulus.

gdf, : adjusted degrees of freedom (refer to Equation 2).

ha': adjusted a level by Holland & Copenhaver technique (1986).
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Table 3

Proportion of familywise Type I errors for the two by four balanced factorial design

when all pairwise comparisons are made among levels for factor K.

/1,1' VPh Jrn'
Method'

TK GH HW T3 HC C Jc

10 1 0 .046 .051 .049 .045 .041 .040 .019 .027

2 .33 .045 .056 .049 .044 .040 .038 .019 .025

3 .64 .051 .070 .053 .049 .044 .041 .022 .028

4 .047 .064 .045 .044 .039 .037 .021 .026

5 .80 .048 .075 .046 .045 .039 .036 .022 .026

6 1.4 .045 .091 .044 .042 .033 .032 .017 .022

20 1 0 .049 .049 .051 .048 .043 .043 .033 .028

2 .33 .047 .052 .049 .045 .041 .041 .031 .026

3 .64 .050 .064 .049 .048 .041 .041 .033 .026

4 .69 .050 .067 .049 .047 .039 .038 .031 .025

5 .80 .049 .070 .044 .045 .036 .035 .028 .023

6 1.4 .051 .087 .045 .046 .036 .036 .029 .025

30 1 0 .052 .050 .052 .051 .044 .043 .037 .026

2 .33 .051 .052 .050 .049 .043 .042 .037 .027

3 .049 .057 .044 .045 .037 .036 .033 .023

4 .69 .055 .070 .052 .051 .045 .044 .041 .030

5 .80 .050 .066 .045 .044 .038 .038 .034 .024

6 1.4 .048 .076 .043 .044 .034 .034 .031 .022

Note. `no,: The average cell size. bVP: Variance patterns (see Table 1).

`CV: Coefficient of variation. dJm: the omnibus James second-order test.

'TIC: The Tukey-Kramer test. GH: The Games-Howell test.

HW: The Hayter-Welch modified t test. T3: The Dunnett T3 test. C: The Dunnett

C test. Jc: The James second-order test for contrast analysis.
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Table 4

Proportion of familywise Type I errors for the two by four slightly unba

design when all pairwise comparisons are made among levels for factor K

ni,7 VP CV rb
Method

Jm
TK GH IIW T3 HC C Jc

10 1 0 e 048 .051 .048 .047 .042 .040 .020 .027

2 .33 .87 .046 .041 .049 .045 .039 .038 .018 .025

3 .64 .80 .051 .049 .052 .048 .043 .041 .021 .027

4+ .69 .94 .047 .039 .048 .044 .040 .038 .021 .027

4' .69 -.89 .048 .106 .048 .045 .045 .037 .020 .027

5 .80 .86 .046 .048 .045 .043 .037 .035 .018 .023

6+ 1.4 .67 .047 .053 .043 .045 .036 .034 .018 .024

6' 1,4 -.67 .047 .149 .045 .044 .043 .034 .017 .025

20 1 0 e .052 .053 .053 .051 .045 .045 .034 .029

2 .33 .87 .049 .048 .051 .048 .041 .039 .030 .025

3 .64 .80 .051 .055 .048 .048 .039 .039 .031 .025

4+ .69 .94 .052 .059 .051 .048 .043 .043 .036 .029

4' .69 -.89 .046 .079 .042 .042 .035 .035 .028 .023

5 .80 .86 .048 .057 .045 .044 .037 .037 .030 .025

6+ 1.4 .67 .052 .063 .047 .048 .039 .039 .032 .027

6' 1.4 -.67 .048 .108 .042 .043 .035 .034 .027 .022

30 1 0 0 .049 .050 .052 .048 .044 .043 .037 .027

2 .33 .87 .052 .051 .052 .050 .045 .044 .040 .027

3 .64 .80 .052 .058 .051 .048 .044 .044 .039 .026

4+ .69 .94 .052 .058 .050 .048 .042 .042 .038 .026

4' .69 -.89 .050 .075 .046 .045 .039 .039 .036 .025

5 .80 .86 .050 .056 .045 .046 .038 .037 .035 .024

6+ 1.4 .67 .049 .064 .044 .044 .037 .037 .034 .023

6' 1.4 -.67 .048 .098 .041 .044 .034 .033 .030 .020

Note. *nil: The average of cell size (see Table 2 for the patterns of sample size for

the slightly unbalanced design. br: The correlation coefficient of sample size and

variance.
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Table 5

Proportion of familywise Type I errors for the two by four extremely unbalanced

factorial design when all pairwise comparisons are made among levels for factor K

Aka vp CV r Jm
Method

TK GH HW T3 HC C Jc

10 1 0 e .045 .049 .055 .044 .045 .041 .014 .027

2 .33 .90 .041 .028 .055 .041 .045 .042 .013 .024

3 .64 .91 .040 .019 .049 .038 .041 .038 .013 .020

4+ .69 .94 .037 .019 .047 .035 .036 .033 .011 .017

4' .69 -.94 .045 .207 .046 .042 .038 .034 .016 .028

5 .80 .91 .040 .024 .048 .039 .039 .038 .016 .020

6+ 1.4 .76 .044 .013 .050 .042 .041 .038 .016 .027

6' 1.4 -.76 .042 .361 .040 .030 .034 .028 .013 .029

20 1 0 c .051 .048 .051 .049 .042 .041 .029 .027

2 .33 .93 .049 .030 .051 .048 .042 .041 .029 .027

3 .64 .87 .053 .028 .053 .051 .043 .043 .030 .026

4* .69 .95 .055 .026 .054 .053 .046 .046 .035 .030

4- .69 -.91 .050 .158 .046 .046 .037 .036 .026 .025

5 .80 .94 .048 .030 .048 .045 .038 .038 .027 .023

6+ 1.4 .72 .050 .020 .047 .047 .038 .037 .027 .024

6' 1.4 -.72 .047 .252 .040 .043 .033 .032 .025 .024

30 1 0 c .049 .048 .049 .047 .043 .042 .036 .027

2 .33 .89 .049 .033 .051 .048 .044 .043 .038 .025

3 .64 .91 .050 .033 .047 .048 .040 .040 .035 .025

4+ .69 .98 .052 .030 .051 .049 .043 .042 .039 .025

4' .69 -.98 .031 .129 .046 .047 .037 .037 .034 .026

5 .80 .89 .048 .037 .048 .045 .040 .039 .036 .025

6+ 1.4 .75 .052 .027 .045 .048 .038 .038 .033 .024

6' 1.4 -.75 .050 .188 .043 .045 .037 .036 .033 .023

Note. tnik: The average cell size (see Table 2 for the patterns of sample size for the

extremely unbalanced design.
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Table 6

Any-pair power for the two by four balanced factorial design when all pairwise

comparisons are made among levels for factor K

n VP CV Jm
Method

TK GH HW T3 HC C Jc

10 1 0 .727 .753 .733 .725 .703 .696 .579 .626

2 .33 .458 .546 .474 .450 .442 .436 .326 .369

3 .64 .596 .773 .616 .586 .581 .571 .479 .520

4 .75 .405 .587 .414 .388 .381 .371 .298 .328

5 .80 .604 .729 .617 .591 .580 .571 .491 .531

6 1.4 .377 .663 .353 .351 .319 .308 .259 .289

20 1 0 .727 .730 .725 .725 .699 .699 .659 .631

2 .33 444 .510 .456 .436 .423 .423 .384 .359

3 .64 .696 .827 .710 .687 .683 .682 .655 .626

4 .75 .494 .640 .499 .478 .467 .466 .435 .403

5 .80 .711 .794 .718 .701 .692 .689 .665 .640

6 1.4 .459 .715 .439 .432 .406 .403 .384 .361

30 1 0 .764 .763 .764 .762 .741 .739 .720 .673

2 .33 .482 .535 .492 .473 .463 .461 .443 .396

3 .64 .691 .814 .711 .683 .682 .681 .669 .623

4 .75 .492 .616 .495 .475 .454 .463 .453 .402

5 .80 .700 .773 .712 .689 .687 .686 .677 .627

o 1,4 .451 .670 .435 .424 .409 .409 .403 .360

Note. art: see Table 3.
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Table 7

Any-pair power for the two by four slightly unbalanced factorial design when all

pairwise comparisons are made among levels for factor K

n VPb CV r Jm
Method

TK GH HW T3 HC C Jc

10 1 0 e .790 .804 .789 .788 .765 .760 .648 .685

2 .33 .87 .511 .555 .535 .506 .501 .495 .378 .412

3 .64 .80 .668 .775 .704 .664 .674 .667 .581 .596

4+ .69 .94 .484 .553 .510 .472 .477 .470 .386 .399

4" .69 -.89 .977 .827 .925 .960 .909 .902 .856 .871

5 .80 .86 .682 .705 .711 .675 .680 .674 .596 .611

6+ 1.4 .67 .446 .636 .443 .424 .409 .401 .351 .357

6" 1.4 -.67 1 1 1 1 1 1 1 1

20 1 0 e .754 .749 .748 .752 .721 .720 .680 .648

2 .33 .87 .479 .517 .489 .471 .458 .457 .414 .380

3 .64 .80 .736 .829 .756 .730 .730 .729 .705 .673

4' .69 .94 .540 .639 .557 .528 .525 .523 .498 .458

4" .69 -,89 1 .970 .999 1 .999 .999 .999 .999

5 .80 .86 .744 .780 .757 .737 .735 .734 .713 .679

6' 1.4 .67 .495 .709 .489 .471 .456 .453 .439 .401

6- 1.4 -.67 1 .976 1 1 1 1 1 1

30 1 0 e .778 .769 .772 .777 .748 .746 .730 .684

2 .33 .87 .513 .553 .524 .505 .496 .494 .476 .423

3 .64 .80 .722 .819 .739 .716 .717 .716 .707 .658

4+ .69 .94 .515 .615 .525 .501 .497 .497 .487 .431

4- .69 .89 .988 .814 .964 .980 .955 .955 .951 .932

5 .80 .86 .724 .770 .740 .717 .713 .711 .705 .653

6+ 1.4 .67 .471 .690 .458 .450 .432 .431 .429 .379

6' 1.4 -.67 1 .964 1 1 1 1 1 1

Note. 'nil,: see Table 4, bFor variance patterns 4 and 6, + represents variance pattern is

directly paired with sample size; - represents variance parrtern is inversly paired with

6ample size.
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Table 8

Any pair power for the two by four extremely unbalanced design when all pairwise

comparisons are made among levels for factor K

nA VPb CV r Jm
Method

TIC GH HW T3 HC C Jc

10 1 0 e .767 .836 .818 .764 .792 .786 .700 .619

2 .33 .90 .499 .536 .588 .495 .556 .547 .418 .375

3 .64 .91 .731 .752 319 .731 .794 .791 .670 .653

4+ .69 .94 .528 .507 .619 .524 .587 .582 .439 .435

4" .69 -.94 .957 .957 .950 .952 .937 .934 .911 .835

5 .80 .91 .751 .659 .842 .750 .818 .815 .734 .681

6+ 1.4 .76 .477 .566 .616 .468 .584 .579 .516 .397

6' 1.4 -.76 1 .999 1 1 1 1 1 1

20 1 0 E .816 .796 .794 .810 .771 .768 .732 .693

2 .33 .93 .550 .503 .549 .545 .519 .517 .466 .428

3 .64 .87 .842 .828 .863 .841 .845 .845 .820 .791

4+ .69 .95 .654 .580 .680 .647 .652 .651 .615 .570

4- .69 -.91 .994 .960 .982 .989 .976 .976 .973 .959

5 .80 .94 .852 .728 .872 .849 .856 .855 .838 .804

6+ 1.4 .72 .621 .666 .651 .610 .623 .623 .608 .547

6' 1.4 -.72 1 .999 1 1 1 1 1 1

30 1 0 e .839 .817 .820 .834 .796 .795 .783 .737

2 .33 .89 .578 .551 .580 .573 .551 .549 .532 .470

3 .64 .91 .806 .813 .826 .803 .809 .807 .799 .749

4+ .69 .98 .608 .578 .626 .599 .600 .599 .590 .529

4- .69 -.98 .991 .927 .969 .983 .962 .961 .960 .939

5 .80 .89 .821 .747 .841 .818 .824 .823 .818 .771

6+ 1.4 .75 .579 .658 .585 .561 .561 .559 .558 .490

6- 1.4 -.75 1 .998 1 1 1 1 1 1

Note. 'nik: see Table 5. b: see Table 7.
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Table 9

Per-pair power for the two by four balanced factorial design when all pairwise

comparisons are made among levels for factor K.

nik VP
Method

CV
TK GH HW T3 HC C Jc

10 1 0 .516 .485 .551 .454 .475 .343 .382

2 .33 .341 .281 .316 .255 .269 .172 .201

3 .64 .618 .448 .485 .416 .434 .322 .355

4 .69 .421 .273 .299 .248 .259 .182 .203

5 .80 .570 .442 .479 .411 .427 .329 .360

6 1.4 .586 .286 .314 .257 .267 .204 .231

20 1 0 .481 .473 .537 .445 .472 .405 .380

2 .33 .311 .267 .303 .243 .259 .214 .197

3 .64 .683 .536 .582 .508 .534 .476 .446

4 .69 .469 .337 .370 .310 .329 .282 .257

5 .80 .644 .540 .582 .511 .537 .482 .456

6 1.4 .639 .361 .390 .330 .352 .312 .289

30 1 0 .514 .514 .577 .489 .513 .467 .420

2 .33 .329 .292 .331 .271 .286 .255 .219

3 .64 .668 .534 .576 .506 .532 .491 .444

4 .69 .452 .332 .366 .306 .326 .295 .253

5 .80 .616 .527 .566 .501 .527 .489 .443

6 1.4 .623 .361 .386 .335 .358 .330 .289
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Table 10

Per-pair power for the two by four slightly unbalanced factorial design when all

pairwise comparisons are made among levels for factor K

nik VP CV
Method

TK GH HW T3 HC C Jc

10 1 0 s .549 .517 .585 .488 .510 .374 .410

.33 .87 .332 .312 .348 .28E .300 .199 .221

3 .64 .80 .598 .518 .556 .487 .509 .393 .409

4* .69 .94 .369 .330 .359 .303 .318 .230 .240

4- .69 -.89 .489 .524 .602 .495 .510 .428 .459

5 .80 .86 .527 .521 .556 .490 .512 .408 .422

6* 1.4 .67 .540 .359 .382 .329 .346 .273 .280

6" 1.4 -.67 .791 .734 .763 .728, .740 .711 .728

20 1 0 e .499 .489 .555 .460 .487 .421 .392

2 .33 .87 .309 .285 .326 .260 .277 .230 .208

3 .64 .80 .681 .580 .626 .550 .579 .518 .484

4* .69 .94 .459 .377 .413 .350 .371 .325 .292

4" .69 -.89 .748 .725 .787 .706 .734 .689 .673

5 .80 .86 .619 .573 .613 .547 .573 .522 .488

6* 1.4 .67 .625 .401 .427 .370 .394 .352 .319

6" 1.4 -.67 .821 .774 .805 .765 .783 .758 .753

30 1 0 e .522 .524 .589 .49? .524 .477 .429

2 .33 .87 .337 .312 .351 .291 .306 .276 .237

3 .64 .80 .670 .562 .607 .535 .564 .521 .471

4* .6E/ .94 .440 .353 .389 .329 .350 .320 .275

4' .69 -.89 .469 .633 .703 .611 .638 .605 .563

5 .80 .86 .609 .554 .591 .527 .522 .517 .470

6* 1.4 .67 .607 .378 .405 ,353 .376 .351 .302

6" 1.4 -.67 .779 .777 .804 .767 .785 .766 .754

3 4
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Table 11

Per-pair power for the two by four extremely unbalanced design when all pairwise

comparisons are made among levels for factor K.

nik VP CV
Method

TK GH HW T3 HC C Jc

10 1 0 e .508 .455 .495 .427 .435 .329 .311

2 .33 .90 .268 .304 .315 .279 .287 .187 .176

3 .64 .91 .447 .591 .611 .560 .585 .402 .418

4+ .69 .94 .252 .395 .404 .366 .386 .243 .250

4" .69 -.94 .631 .462 .520 .440 .442 .394 .375

5 .80 .91 .359 .606 .622 .578 .601 .438 .436

6+ 1.4 .76 .352 .483 .426 .452 .475 .354 .284

6- 1.4 -.76 .869 .684 .706 .680 .679 .671 .695

20 1 0 e .492 .478 .546 .450 .473 .406 .380

2 .33 .93 .256 .301 .345 .278 .292 .240 .218

3 .64 .87 .589 .677 .724 .651 .680 .616 .577

4+ .69 .95 .335 .461 .503 .435 .459 .401 .361

4' .69 -.91 .649 .548 .608 .528 .545 .505 .501

5 .80 .94 .486 .686 .726 .662 .689 .634 .592

6+ 1.4 .72 .493 .541 .557 .512 .539 .493 .433

6' 1.4 -.72 .879 .714 .735 .708 .717 .699 .709

30 1 0 e .538 .533 .604 .507 .533 .489 .441

2 .33 .89 .308 .335 .385 .312 .328 .297 .253

3 .64 .91 .617 .642 .689 .617 .645 .604 .547

4' .69 .98 .366 .420 .464 .396 .418 .386 .333

4- .69 -.98 .599 .579 .642 .558 .581 .551 .548

5 .80 .89 .536 .642 .684 .619 .644 .611 .556

64. 1.4 .75 .530 .483 .508 .457 .481 .455 .391

6" 1.4 -.75 .875 .735 .760 .730 .742 .726 .723

3 3
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Table 12

All-pair power for the two by four balanced factorial design when all pairwise

comparisons are made among levels for factor K.

ik VP
Method

CV
TK GH HW T3 HC C Jc

10 1 0 .272 .238 .333 .211 .257 .129 .155

2 .33 .152 .104 .164 .088 .119 .045 .060

3 .64 .455 .275 .353 .248 .293 .171 .195

4 .75 .266 .135 .190 .119 .148 .073 .084

5 .80 .405 .226 .306 .202 .244 .136 .156

6 1.4 .507 .223 .273 .198 .230 .151 .175

20 1 0 .235 .226 .315 .202 .253 .172 .153

2 .33 .134 .101 .153 .087 .114 .069 .061

3 .64 .523 .349 .441 .323 .377 .289 .263

4 .75 .302 .176 .236 .156 .193 .133 .116

5 .80 .480 .308 .396 .281 .335 .248 .225

6 1.4 .563 .285 .341 .258 .304 .242 .219

30 1 0 .262 .258 .351 .236 .284 .217 .180

2 .33 .143 .111 .166 .099 .125 .089 .068

3 .64 .508 .349 .437 .320 .376 .304 .260

4 .75 .291 .169 .233 .152 .199 .141 .114

5 .80 .447 .291 .377 .269 .320 .255 .213

6 1.4 .5477 .288 .342 .264 .311 .260 .223
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Table 13

All-pair power for the two by four slightly unbalanced factorial design when all

pairwise comparisons are made among levels for factor K

nk VP CV
Method

r
TK GH HW T3 HC C tic

10 1 0 e .284 .240 .335 .212 .261 .126 .156

2 .33 .87 .135 .117 .174 .100 .130 .054 .065

3 .64 .80 .419 .322 .413 .293 .344 .205 .221

4+ .69 .94 .204 .157 .222 .138 .172 .089 .096

4- .69 -.89 .153 .114 .1S7 .092 .122 .051 .077

5 .80 .86 .352 .286 .371 .258 .308 .181 .192

6+ 1.4 .67 .444 .277 .333 .252 .293 .201 .207

6" 1.4 -.67 .534 .211 .289 .186 .220 .134 .184

20 1 0 e .246 .230 .319 .207 .258 .177 .156

2 .33 .87 .126 .105 .162 .090 .119 .074 .064

3 .64 .80 .520 .388 .484 .355 .419 .320 .288

4' .69 .94 .289 .199 .270 .180 .220 .157 .133

4- .69 -.89 .443 .353 .471 .320 .386 .294 .268

5 .80 .86 .450 .330 .413 .302 .355 .276 .245

6+ 1.4 .67 .540 .316 .377 .286 .338 .269 .239

6' 1.4 -.67 .584 .323 .416 .295 .350 .274 .258

30 1 0 e .271 .269 .359 .244 .297 .225 .186

2 .33 .87 .142 .120 .176 .106 .130 .097 .075

3 .64 .80 .507 .370 .462 .342 .401 .324 .278

4+ .69 .94 .273 .181 .248 .164 .202 .154 .124

4' .69 -.89 .134 .230 .328 .201 .257 .197 .155

5 .80 .86 .441 .314 .394 .290 .338 .278 .236

6+ 1.4 .67 .523 .301 ,356 .278 .323 .276 .230

6" 1.4 -.67 .511 .331 .412 .303 .355 .297 .261

37
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Table 14

All-pair power for the two by four extremely unbalanced design when all pairwise

comparisons are made among levels for factor K

njk VP CV
Method

TK GH I-1W T3 HC C Jc

10 1 0 e .159 .088 .157 .072 .085 .017 .051

2 .33 .90 .045 .059 .106 .048 .062 .011 .025

3 .64 .91 .135 .344 .441 .310 .364 .142 .190

4+ .69 .94 .038 .183 .253 .159 .203 .077 .088

4" .69 -.94 .237 .025 .064 .019 .020 .005 .023

5 .80 .91 .082 .331 .430 .298 .352 .147 .171

6+ 1.4 .76 .118 .338 .368 .310 .362 .163 .172

6' 1.4 -.76 .615 .052 .120 .041 .038 .014 .089

20 1 0 e .183 .159 .237 .140 .178 .102 .102

2 .33 .93 .057 .085 .131 .073 .095 .054 .048

3 .64 .87 .338 .459 .562 .427 .491 .385 .342

4+ .69 .95 .126 .738 .319 .216 .264 .189 .161

4' .69 -.91 .272 .090 .148 .074 ,100 .055 .065

5 .80 .94 .259 .443 .534 .414 .473 .383 .330

6+ 1.4 .72 .312 .424 .490 .394 .451 .371 .316

6' 1.4 -.72 .648 .143 .206 .124 .152 .097 .126

30 1 0 E .246 .236 .327 .211 .263 .194 .160

2 .33 .89 .098 .120 .181 .106 .135 .096 .073

3 .64 .91 .416 .432 .532 .403 .465 .388 .330

4+ .69 .98 .183 .215 .196 .239 .193 .151 .005

4" .69 -.98 .229 .136 .207 .116 .155 .109 .089

e: .80 .89 .336 .378 .471 .352 .406 .343 .286

6+ 1.4 .75 .396 .380 .444 .357 .406 .354 .297

6' 1.4 -.75 .647 .207 .280 .189 .226 .177 .168


