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Abstract

A computer-simulation model of strategy development in N-term series (transitive
inference) problems is presented. The model learns strategies for performing N-term
scrics using knowledge that can be acquired through play experiences with scts of
objects. It is theorised that declarative knowledge acquired through play with sets of
objects is utilized by analogical reasoning mechanisms to guide the development of
strategies. Procedural knowledge, also acquired through play, is utilized by means-end
analysis. These two types of knowledge are used to build strategies as they are required
to solve transitive infcrence problems. Once developed, strategies are strengthened by
associative lcarning mechanisms. Thus the model blends associative and metacognitive
strategy development mechanisms. If strategies appropriate to a task are available they
arc applied, new strategies being developed as required. The model simulates the
transition from no strategies, through primitive strategies in which premises are
processed singly, leading to crrors, to adequate strategies in which premises are
integrated, leading to correct performance. The simulation is a self-modifying production
system model, based on PRISM-II.

Five experiments testing predictions from the model are reported.
Experiment 1 tests children’s ability to recognize ordered sets, an ability that is at the
core of the declarative knowledge required to develop transitive inference strategies. It is
found that children of five years can discriminate ordered from unordered sets.
Experiments 2 and 3 test the prediction that children shor'd be able to recognize when
the order of a set of objects is indeterminate. This ability is found to be present from the
age of 7 years. Experiments 4 and 5 make detailed assessments of the strategies children
cmploy in a varied set of transitive inference problems. No qualitative differences in
strategies are found as a function of age. However younger children, as well as older
children and adults when under high processing loads, make errors due to working
memory failure. The model is interpreted as a sufficiency test for a theory of autonomous,
adaptive processes underlying cognitive development.




Acquisition of Reasoning:
A Computational Model of Strategy Development in Transitive Inference

In this paper we want to propose a model of the way basic reasoning
processes develop in children. We model the way world knowledge can be uscd to
construct strategies for reasoning, taking account of information processing limitations.
We do not assume the prior existence of strategies, but model their development under
the dual constraints of conceptual competence and task demands.

The specific focus will be on transitive inference, but the general problem of
how reasoning develops will be addressed. Transitivity is being used as a prototypical
reasoning task, for several reasons. First, it has the main features that are basic to
reasoning. It includes representation, storage, conversion and integration of premises, and
entails making an inference based on the integrated representation. Second, there is a
very extensive and high quality data base on transitivity, in both the general cognition
and cognitive development literatures, which can constrain theory. Furthermore there are
a number of good models of the processes entailed in transitive inference (Foos, Smith,
Sabol & Mynatt, 1976; Sternberg, 1980a, 1980b), although there is no model of how
these reasoning processes develop. There is also less dispute about these processes than
occurs in some areas, such as class inclusion or conservation. This provides a solid
foundation on which to build.

Acquisition of transitivity has long been regarded as an important
developmental landmark. It was regarded as an indicator of concrete operational thought
(Piaget, 1950), and has continued to be an important phenomenon for cognitive
developmental theories to explain (Halford, 1989). However recognition of the
developmental importance of transitivity does not commit us to adoption of Piagetian or
any other stage theory. Implications for the stage issue will be considered in the final
discussion, but the model does not rest on assumptions of either continuity of
discontinuity in cognitive development.

An example of a transitive inference is; if a > b,and b > c, then a > c.
Transitivity has a strict mathematical definitionl !, but the way it is understood
psychologically may be different from the mathematical concept of transitivity. The best

course therefore is to consider both the mathematical and psychological concepts of
transitivity.

To relax the mathematical definition slightly, transitivity means that if R is a
transitive relation, and if R exists between a and b, and also between b and ¢, then the
relation R will exist between a and c; i.e. aRb and bRc implies aRc. Examples of
transitive relations include those concerned with size, weight, distance, and measurable
properties generally. On the other hand "lover of" is nontransitive; if a is the lover of b,
and b is the lover of ¢, it is unlikely that a is the lover of c. 2

The psychological significance of transitivity rests firstly on the fact that it is
part of the definition of the psychologically important concept of serial order.
Mathematically, an ordered set is one on which an asymmetric, transitive, binary relation

1. A relation R defined on a set S is transitive if aRb and aRc imply aRc for every a,b,c in S.

2. A relation is nontransitive if aRb and bRc implies aRc for some, but not all, a,b,c. A relation is
intransitive if aRb and bRc does not imply aRc for any a,b,c.
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is defined. For example, if we take the ordered set (a, b, ¢, d), where a is the biggest and
d is the smallest, then it will be true thata>b,b>c,c>d,butalsoa>c,a>d, b > d.
The relation "bigger than" is asymmetric (because a > b implies b > a cannot be true), and
lransitive.

The concept of order is important in many situations. Understanding the
numbering of houses in a street depends on understanding order, as also does
understanding positions in a competition, and a multitude of other everyday concepts.
Order is also important to all but the most primitive concepts of quantification. Only the
lowest level of scale, the nominal scale, does not depend on order. An ordinal scale
clearly entails a concept of order, an interval scale entails the concept of order plus a
definition of the distance between the elements and (therefore) an addition operation. A
ratio scale entails everything that is entailed in the interval scale, plus a zero point and a
multiplication operation. Thus understanding of quantification beyond the nominal scale
entails a concept of order, which in turns entails transitivity.

Transitivity tasks are examples of a larger class called N-term series tasks.
In general N-term series tasks are presented as a set of premises of the form aRb, bRc,
cRd, etc., with a question that asks for the rank order of one or more terms (e.g. which is
the largest element, which is larger, b or d?). Our model is designed to apply to N-term
series tasks generally.

Models of N-term series reasoning

There are already a number of reviews of work 1n this field (Breslow, 1981;
Haliord, 1982, 1989; Maybery, 1987; Thayer & Collyer, 1978), and a number of
theoretical models. Two of the best-known models of children’s performance on these
tasks have been proposed by Sternberg (1980) and Trabasso (1977). Sternberg has
offered a mixed model that integrates a number of previous theories, and accounts for a
very high proportion of the variance in solution times. The essence of it is that the
premises are first processed to obtain the linguistic deep structural base strings that
represent their meaning. These strings are then converted to images of ordered pairs. For
example, in the problem Tom is happier than Bill, Bill is happier than John, the premises
would be coded as the pairs (Tom, Bill), (Bill, Tom). The pivot or common term (Tom)
is then located, and the pairs are integrated into an ordered triple, (Tom, Bill, John).
Trabasso’s (1977) model also proposes that the problem elements are placed in an
ordered array, from which the ordinal position of any term can be read.

The model of Foos, Smith, Sabol, and Mynatt (1976) originally applied only
to adults, but has recently been extended to children (Maybery, Halford, Bain & Kelly, in
preparation). It assumes that the problem is solved by constructing an ordered array in
short term memory. The first premise is stored in STM, then an element is sought in the
second premise that matches one of the elements in STM, and the new premise is
integrated with the one that is stored. Then further premises are processed in the same
way, and an ordered string grows in STM. Several operators for performing the
integration process have been proposed and empirically confirmed, and these will be
considered later.

Sternberg’s model applies only to three term series, whereas the Trabasso
and Foos et al. models are not restricted in this respect. With the exception of the
Maybery et al. (in preparation) formulation, all these models have been applied to
problems with premises only between adjacent elements, such as a>b, b>c. Problems
with nonadjacent premises (e.g. a>c) have not been considered, although they do have
ccological validity, because real-life ordering tasks normally entail nonadjacent relations.
For example if we are rank-ordering students according to grade we may know that
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Martin is betier than Wendy, but it does not follow that Martin and Wendy are adjacent.
There may be other students in between. Our model will not be restricted to three-term
problems, and will take account of both adjacent and nonadjacent relations.

All these models agree that premise clements are organized into an ordered
sct, 5o the raw premise information is not retained. This is also consistent with the
fuzzy-set theory of Brainerd and Kingma (1984). Therefore short term memory for the
raw premises is not likely t) be a major factor in the solutions, but retention of the
ordered set should be necessary. The core of the problem is construction of the ordered
sct. Once this is done, the inference is almost perceptual (Thayer & Collyer, 1978).
Therefore the model focuses on construction of the ordered set.

All these models propose a single strategy, which has been treated as the
whole explanation for the observed performances. There are two reasons for wanting to
go beyond single strategy models. The first is that they beg the question of how strategies
originate. Second, it is possible, even likely, that people do not have a ready-made
strategy for every conceivable task, or even cvery N-term series task, but have some
general- or domain-knowledge which can be used to construct strategies that meet task
demands. Third, the question of how children acquire strategies is vital to understanding
cognitive development. Therefore the present paper presents a model of strategy
development. In this respect it is allied to models of strategy and skill development in
counting, addition, multiplication, and arithmetic word problems, which we will consider
next.

Strategy development models

Strategy selection mechanisms can be divided into two kinds, metacognitive
and associative. With metacognitive mechanisms the participant makes straicgy choices
based on an understanding of the problem. With associative selection, the participant has
a sct of possible strategies, each of which is associated with a particular strength or
confidence level that the task can be performed successfully.

The model of Siegler and Shrager (1984) is associative, and has been applied
to arithmetic, spelling, word identification in reading, and balance scale tasks. It can be
illustrated with addition problems, such as 3 + 3. Strategies are normally tried serially; if
the first one fails, the second is tried, then the third, and so on. The first strategy the child
tries is to retrieve the answer from memory. There is a distribution of answers that are
associated with this problem. The better the answer is known, the more peaked the
distribution of associations will be; i.e. the more probable the dominant, correct answer
relative to the other answers. When an answer is retrieved, its associative strength is
compared with a confidence criterion. If it is above the criterion, the answer is given,
otherwise the search of memory continues until the scarch-length criterion is reached. If
no answer exceeds the confidence criterion before the search-length criterion is reached,
the child switches to a new strategy. The next strategy tried is likely to be the
“elaborated representation”. This entails using fingers or images to represent the
numbers, thereby adding further associations which might strengthen the association
between problem and answer. This strategy is also subject to the confidence and search-
length criteria. If it again fails, the child switches to a new strategy, which entails
actually counting fingers to determine the answer. The model of Siegler and Shrager
(1984), especially in its more developed forms (Siegler, 1987; Siegler & Jenkins, 1989)
shows how much can be accomplished through associative strategy mechanisms.
However it does not incorporate any mechanisms whereby strategy development can be
influenced by understanding of the task. Therefore it seems desirable that it should be
combined with some metacognitive selection models that have successfully explained
how strategies can be constrained by the performer’s concept of the task.




Metacognitive selection mechanisms are based on understanding of the task.
The most explicit models of this kind have been by VanLehn and Brown (1980) applied
to subtraction, Greeno, Riley, and Gelman (1984), applied to counting, and Greeno and
Johnson (1984) applied to arithmetic word problems. In all these models, declarative
knowledge is used to construct strategies applicable to particular task contexts. The idea
is that pcople do not have strategies ready-made for every situation, but devise strategies
based on their knowledge of the relevant concept and the demands of the task.

The model of Vanlehn and Brown (1980) is based on planning nets, which
are directed graphs, the nodes of which represent plans for strategies, and the links
represent inferences concerning how well each proposed strategy conforms to declarative
knowledge. Each proposed strategy is checked against the relevant declarative
knowledge, and adjusted if it does not fit. In this way a strategy is devised that is
consistent with the participant’s knowledge of the task.

The concept of planning net is a sophisticated and powerful one. Van Lchn
and Brown (1980) show how a model of the planning process can provide much more
fundamental insights into the nature of a task or concept than rn:odels based on "surface
structure” or the actual procedures used. The reason is that procedures may vary
considerably even though the essential concept remains the same. The procedural
differences are often trivial or even irrelevant, with the result that models of specific
processes may fail to capture the essence of a task. It may be preferable to adopt a model
based on the underlying logic of the task. Planning net models enable this to be done.

The model of Greeno, Riley and Gelman (1984) is based on essentially the
same philosophy as the planning net models, but differs in the way it is implemented. Its
starting point was the observation by Gelman and Gallistel (1978) that young children’s
efforts at counting, although prone to error, nevertheless reflected an implicit knowledge
of the logic of counting. For example, if they counted a set of objects in a straight line
beginning with the first one, then were asked to count again making the second object the
"one", or even the "two", "three" etc., they could still succeed better than chance. Since
these are unconventional counting procedures, it is unlikely that they would have been
learned by rote as a skill. The fact that young children were able to perform correctly
indicates they understood something about the logic of counting, and could devise a
strategy to fit the constraints imposed.

To model this achievement Greeno et al. postulate three kinds of
competence, conceptual, procedural, and utilizational. They are defined relative to one
another, and the designation of any particular item of knowledge as one type of
competence or the other might vary depending how the global task is defined.

Conceptual competence is defined as action schemata that can be used in
planning. The action schemata have a degree of general validity; i.e. they are not
schemata for specific actions, but really represent understanding of the logic of a class of
actions. This understanding can be applied to a variety of different actions, depending on
the task demands. An example is action schema 11 (Greeno et al., 1084, p. 113), called
KEEP-EQUAL-INCREASE. Its purpose is to ensure that people progress through a set
of objects to be counted, and through the list of numbers 1,2,3,. . . n, at the same rate,
so that they progress to a new number when and only when they progress to a new object
in the set. The prerequisite is that the number of objects already counted must equal the
numbers used; e.g. if we have so far counted 3 objects, we must have progressed to
number 3. The postrequisite is that this situation must be maintained after the process is
completed. The consequence of the schema is that both the set of objects and the set of
numbers must be incremented by one in each counting step; e.g., as you progress to the
fourth object to be counted, you also progress to the fourth number.
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Procedural competence is like the planning heuristics in the model of
VanLehn and Brown (1980). It is knowledge about how to assemble action schemata
into a strategy. Since every action schema has consequences and prerequisites specified,
sclection of schemata can be done by means-eny analysis. That 1s, an action schema is
chosen whose prerequisites match™ the current state of the problem, and whose
conscquences match the current goal. Then anothe: action schema is chosen whose
consequences match the prerequisites of the first schema, and so on. -

Utilizational competence comprises ability to combine conceptual and
procedural competence with information about the task setting. A given set of action
schemata could generate many different action sequences, but a sequence must be chosen
that is appropriate to the specific demands of the task. Ability to do this is utilizational
competence.

Greeno et al. have produced a simulation model that accounts for young
children’s ability to count, given a variety of situational constraints. It demonstrates a
plausible mechanism by which basic knowledge of number can be translated, not just into
one counting strategy, but into a variety of strategies that are adapted to the task.

Gelman and Gallistel (1978) postulate that young children understand five
principles of counting; cardinality, i.e. the last number reached is the cardinal value of
the set; one-to-one correspondence, i.e. every object must be assigned a unique number,
and each number used must be assigned to one and only one object; indifference to object
order, i.e. it makes no difference in what order objects in a set are counted; stable order
of numerals, i.e. the counting numerals must be used in their standard sequence;
abstraction, i.e. the objects to be counted need not be of the same kind.

The way conceptual competence is formulated in the Greeno et al. (1984)
model implies that these principles are understood in a form that is equivalent to logical
rules of general validity. Set theoretic notation is used in the formal specification of the
schemata and, while being careful of course not to confuse the terms of the model with
the phenomena they are intended to describe, it is still irue that understanding of logical,
generally valid, principles is attributed to the children.

This model appears capable of accounting for the development of counting
knowledge, but if the planning nets approach is to be applied more widely to acquisition
of cognitive skills, it seems desirable that a way be found to use it with conceptual
representations that are not innate, and are not based on universally valid logical rules. It
should be possible for conceptual representations and mental models to be acquired
through experience, and the present theory goes beyond existing planning net models in
proposing a way for this to be achieved.

It remains to consider the relationship between associative and
metacognitive mechanisms of strategy selection. Qur proposal is that associative strategy
selection is the mechanism of first resort, and it is only when it fails to produce a viable
strategy that metacognitive mechanisms are employed. When a task is attempted in a
particular context, the strategy which has become dominant through successful use in that
or similar contexts, is tried first. If the answers it produces have insufficiently high
confidence ratings (or strength, which will be defined later), it is abandoned and the next
most dominant strategy tried, and so on. If no adequate strategy is found, then
declarative knowledge is examined to see whether a modified strategy can be produced,
using planning net-type mechanisms. Thus metacognitive processes are only invoked
where usual or habitual techniques fail. In familiar situations we do not think about what
to do, we simply perform. The reason is that, although understanding confers irnmense
power for development of new strategies to deal with changed conditions, it is




cognitively cffortful. Therefore it tends to be used only where habitual strategics are
found to be inadequate.

The present model will therefore use associative strategy selection
mechanisms as a first resort, and will cmploy metacognitive mechanisms where
associative mechanisms fail. It appears to be unique among contemporary models in
blending the two types of mechanism in this way. Our next step is to consider the origin
of the conceptual knowledge that forms the basis of metacognitive strategy development.

Origin of conceptual knowledge

Metacognitive strategy development is constrained by the conceptual
knowledge of the task. In the planning net model of Greeno et al. (1984) counting
strategies are constrained by a concept of number. Strategies for N-term series reasoning
should be constrained by a concept of order, because the essence of the task is to
assemble the premise elements into an ordered set. We therefore need to consider the
nature and origin of the concept of order.

Mathematically an ordered set is defined, as noted earlier, as a set with an
asymmetric binary relation. However a more psychologically realistic definition of a
concept of order might be expected to have the following features:

Features of a Concept of Order

1. understanding of one or more asymmetric binary relations (e.g. larger than, better
than). Note that it is not implied that the child knows the relation to be asymmetric and
binary. The child simply knows examples of such relations; i.e. knows that object a can
be larger than object b, entailing that b is not larger than a, etc.

2. cach element occurs once and only once in an ordered string.

3. end elements have the same relation to all other elements; e.g. a>b, a>c, a>d etc.

4. the position of an internal element is defined by relations to elements on both sides of
it; e.g. b<a, b>c.

5. the same relation must exist between all pairs, both adjacent and nonadjacent; e.g. a>b,
b>c, .. a>c, etc.

All these features can be instantiated in any ordered set of at least three
elements. Therefore a child who has a mental representation of any ordered set of three or
more elements has a concrete example of the concept of order. We will show in a later
section that a concrete example can be used to constrain performance by using it as an
analogy and mapping it into the problem. Therefore a child who has a mental
representation of an ordered set of at least three elements has the minimal requirements
for a concept of order.

Children have no shortage of experience with ordered sets, because they
abound in the environment. Some child-appropriate experiences are order of children in a
family, stackable blocks or other toys that vary in size, and positions in a race. We note
that the three bears also constitute an ordered set, consisting of Daddy, Mummy and
Baby bear. It seems reasonable to assume then that children as young as 3-4 years would
have plenty of concrete instances of ordered sets stored in memory. Our model aims to
demonstrate that such knowledge can serve as a basis for a concept of order, and can be
applied to strategy development through analogical mapping. The model does not assume
that the child knows these are ordered sets. All that is necessary is that the child stores a
representation of the elements together with the relations between them; e.g. represents at
least three objects varying in (a relation such as) size, and knows that object a > object b,




object b > object ¢, and so on.
Origins of manipulative knowledge

The cnvironment also provides abundant experience in manipulating ordered
sets. For example it is casy to learn that if three objects (¢.g. blocks) are in the order acb,
switching the last two results in the order abc. That is, given acb as an initial state, the
switching operator applied to b and ¢ produces abc as a final state. We assume that
manipulative experience with real objects results in a store of knowledge of the effect of
operators on ordered sets in this way. These operators, together with their initial and final
states, are the building blocks of strategies.

Application of conceptual knowledge

It is necessary to find a mechanism that would enable experience with
ordered sets to be utilized in strategy development. Analogical mapping has the power
and flexibility required for this task. According to Gentner (1983) an analogy is a
structure-preserving map from a base or source to a target. For example, in the analogy
“man is to house as dog is to kennel", "man is to house" is the source and "dog is to
kennel” is the target. "Man" is mapped into "dog" and "house" into "kennel". The relation

"lives in" between man and house is mapped into the corresponding relation between dog
and kennel.

The essence of an analogy is that relations (multi-place predicates) in the
source are mapped into the target. Attributes (single-place predicates) are not mapped.
For example the attribute of man "wears clothes” is not mapped into dog. Analogies
depend on structural similarity between base and target, rather than on element similarity.

An important implication of this for our model is that experiences with quite
different kinds of ordered sets can be used as analogies for other ordering tasks. The
ordered sets experienced in the past might have quite different elements to those in the
task, but this will not necessarily prevent the experience from serving as a source for the
task. Element similarity between source and target may facilitate discovery of an
analogy, but dissimilarity does not constitute a logical impediment to mapping (Holyoak
& Koh, 1987).

Models of analogy

There are a number of process models of human analogical reasoning
(Bakker & Halford, 1988; Falkenhainer, Forbus, & Gentner, 1990; Halford, Wilson, Guo,
Wiles and Stewart, in press; Holyoak & Thagard, 1989). However only the model of
Halford et al is based on parallel distributed processing architectures (PDP); i.e. is
connectionist and uses distributed representations. The ACME model (Holyoak &
Thagard, 1989) is connectionist, but not a PDP model, because it uses local rather than
distributed representations. Connectionist models based on distributed representations
have the advantages of graceful degradation and graceful saturation, together with the
cmergent properties that result from superposition of representations (Rumelhart &
McClelland, 1986). These properties make this class of model particularly appropriate to
models which want to incorporate realistic processing capacity limitations. The model of
Halford et al. has been constrained by evidence of processing limitations, which it makes
particularly relevant to our current project.

The STAR analogical reasoning model

Analogies entail mapping base predicates and their arguments into target predicates and
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their arguments. Therefore the representation of predicate-argument bindings as
distributed representations is at the core of a PDP model of analogies. Following
Smolensky’s (1990) proposal that the variable-binding problem could be handled in
terms of tensor products, Halford et al. (in press) showed that predicate-argument
bindings could be represented as tensor products of vectors representing predicates and
arguments. The resulting model is called the Structured Tensor Analogical Reasoning
(STAR) model. The essence of this approach is shown in Figure 1, which also provides a
numerical example of a rank-3 tensor product (i.e. with three input vectors).

Consider the simple analogy: woman:baby::mare:foal. This depends on the
fact that a similar relation MOTHER-OF exists in the base (with arguments woman and
baby) and in the target (with arguments mare and foal). The analogy requires the
predicate MOTHER-OF, as well as other predicates which can take woman-baby or
mare-foal as arguments, to be represented. The other predicates include PROTECTS,
FEEDS, LARGER-THAN etc. Figure 1 shows how this information is represented in the
STAR model. There is a predicate vector which represents all the predicates,
superimposed. Then there are argument vectors representing the predicates woman and
mare (supcrimposed) and baby and foal (superimposed). The tensor product of these
vectors (represented by the activation values within the figure) represents the binding of
the predicates to the arguments.

The solution process is shown in Figure 2, using the woman:baby::mare:foal
analogy as an illustration. The vectors for woman and baby are used as inputs to the net,
and the vector for the predicate MOTHER-OF(-,-) appears as output on the appropriate
"side" of the tensor product net. In the next phase of the reasoning process, mare is
substituted for woman, and MOTHER-OF(-,-) becomes an input vector rather than an
output. The argument 2 slot now produces the output vector, which represents foal.
Where ambiguities occur in this process, they can be interpreted by computing the inner

product of the output with candidate answers (Halford et al., in press; Humphreys et al.,
1989).

Complexity of representations

This approach can be generalized to representations of varying structural
complexities. Mathematically, a predicate with two arguments is represented by a tensor
product of rank 3: Vargi®Varg2®Vpred. This approach can be generalized to higher level
structures. A tensor product Vi@V, po®V,g3®Vipreq of rank 4 can represent a
collection of 3-place predicates. A tensor product Vagi®Vago® * ** ®VogNn®Vpred Of
rank N+1 can represent a collection of N-place predicates. ane vector represents the
predicate, and the remaining vectors represent the arguments.

A specific example of a rank 4 tensor product would be arithmetic addition.
We would have one vector representing the addition operation, and three vectors
representing ti.c arguments, which in this case are the aadends and the sum. For example
the representation of the fact that 3,5 -> 8 under the operation of arithmetic addition
would comprise a vector representing addition, and vectors representing 3, S, 8. The
advantage of this representation is that all combinations can be inferred; e.g. given that
the operation is addition, and that 3 and an unspecified number x gives 8, the solution to
x can be found by the pattern completion process.

The formulation can be linked to a metric for concept complexity, developed
by Halford and Wilson (1980) and Halford (1987), based on levels of mathematical
structures. The essence of the metric is that the complexity of a concept depends on its
dimensionality, or the number of independent units of information required to define the
concept. The units are of arbitrary size. This is related to the number of arguments in a
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predicate. A unary relation has only one argument, and therefore has only one dimension
of variation. A binary relation has two arguments, and two dimensions of variation,
because the values of the arguments can vary independently. Similarly, a temnary relation
has three dimensions, and a quaternary relation four dimensions, and so on.

This idea might scem unusual if we are accustomed to thinking of arguments
as lists, that can be processed sequentially. However each argument in a relation defines a
dimension of variation. The number of dimensions depends on the "-arity” of the
relation. A unary relation on a set S is a subset of S. A binary relation on S is a subsct S
x S of ordered pairs of S. Similarly, a ternary relation on Sis a set S x S x S of ordered
= -tuples of S, and so on. Each argument can take a number of different values, so the
tiumber of arguments defines the number of dimensions of variation. Therefore the
argument sets are not simply lists, but provide a measure of the degree of complexity in
the structure.

The number of arguments defines the types of relationships tnat can exist
within a structure. For example, a unary relation, R(x); e.g. BIG(dog) defines an attribute.
Because it has a single dimension of variation, it is not possible to specify the way an
attribute varies as a function of another attribute. This becomes possible with binary
relations, R(x,y); e.g. BIGGER(horse,dog). With temnary relations, R(x,y,z), it is possible
to define the way one attribute varies as a function of one other, and how it varies as a
function of two others, the latter not being pessible with binary relations. As the "-arity"
of a relation increases, so do the orders of interaction that are possible. This is a most
important feature of predicates for our purposes, because in memory (Huemphreys et al.,
1989), in cogniuve development (Halford, forthcoming), and in the present context of
analogical reasoning, we find it recessary to model the orders of interaction among the
dimensions of a task.

Functions are a special case of relations; in functions mappings are unique.
A zero-variate function, f()=a; e.g. PRIME-MINISTER-IN-1990()=Hawke, has no
argument and one dimension in the sense defined abov.. It is equivalent to a symbolic
constant. Univariate functions have two arguments and two dimensions. A univariate
function f(a)=b, is a set of ordered pairs (a,b) such that for each a there is precisely one b
such that ( a,bef). In a similar way, bivariate functions, f(a,b)=c have three arguments
and three dimensions, and so on.

A unary operator has two arguments, and is a special case of a univariate
function; e.g. the unary operator CHANGE SIGN comprises the set of ordered pairs (x,
-X). Binary operations have three arguments, and have the same dimensionality as
ternary relations and bivariate functions. (A binary operation on a set A is a function
from the set A x A of ordered pairs of elements of A into A; i.e., Ax A -> A. A bivariate
function is defined as f:A x B -> C).

The number of arguments in quaternary relations corresponds to the number
of arguments in tri-variate functions and in compositions of binary operations. For
example, the compesition of binary operations of the form a(b+c) = d is defined as the set
of ordered 4-tuples {(3,2,4,18), . . " (2,7,3,20). . }.

The number of arguments is related to the dimensionality of a structure
because it represents the number of independent terms required to define the structure,
and the orders of interaction within the structure. In the context of analogical reasoning,
the complexity of a structure mapping task can be related to the dimensionality of the
structures being mapped. This will be considered in the next section.

Dimensionality and levels of struciure mapping

[SAFY
(*D)




l')

Four levels of structure mapping were defined by Halford (1987) based on earlier work
by Halford and Wilson (1980). These are summarized in Figure 3, together with the
tensor product representations they cntail. We will consider each level of mapping in
turn.

Insert Figure(s) 3 about here

Element mappings are based on 1-dimensional structures, and are defined as:
M: Reei)+>R(e")

It is a mapping between two structures each of which is based on a unary
relation. The clements, e., of one structure are mapped inio the elements of the other
structure, so that the unary relations, R correspond. Because unary relations are
predicates with one argument, they correspond to attributes in Gentner’s (1983) terms, so
mappings based on one-place predicates are validated by attribute similarity. mappings
at this level correspond to metaphors.

Relational mappings are based on 2-dimensional structures, and are defined as;
M: R(Ci, Cj) “«> R(e'i, C'j)

The elements in structure one are mapped into the elements in structure 2 so
that the binary relations in the two structures correspond. At this level there need not be
any similarity between elements in the structures, and mappings are validated by
similarity of binary relations. Simple proportional analogies of the form A:B::C:D belong
to this level. For example, the analogy woman:baby::mare:foal is validated by the similar
relation, "mother of" in source and target.

System mappings are based on 3-dimensional structures, and can be defined as:
M: R(ei, € ek) «> R(C'i, e'j, e'k)

Elements are mapped so that ternary relations correspond. At this level there
need not be any resemblance even between the binary relations in the two structures.
ternary relation, but they may also be expressed as a binary operation, *(e;, €j —> €x), or as
a composition of two or more binary relations, (e; R ej), (¢j R 1), (e; R €)). System-
mappings permit a high degree of flexibility and abstraction, because they can be used to
establish correspondences between structures that have only formal similarities. They
also permit analogies to be recognized between superficially dissimilar situations
(Halford & Leitch, 1989). However this flexibility and generality is obtained at the cost
of higher information processing loads.

Multiple system-mappings are based on 4-dimensional structures, and are defined as;
M: R(e;, €;, e, €1) «> R(e';, €'}, €', e')

Elements are mapped so that quaternary relations correspond. The
quaternary relations may be interpreted as compositions of ternary relations, binary
operations, or bivariate functions. Like system mappings, multiple system mappings are
validated by structural correspondence, and are independent of element or relational
similarity. They differ only in the complexity of the structures represented.
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In theory mappings based on predicates with more than four arguments are
possible, but it is difficult to attach any psychological meaning to such structures,
because processing  capacity  limitations appear to prevent structures of higher
dimensionality being mapped.

Capacity limitations

The STAR model is capable of solving analogies that entail three- or four-
place predicates. It becomes computationally more costly as we move to higher-place
predicates, and consequently to tensor products of higher rank. However this feature
provides a natural explanation for increases in processing load that have been observed
with predicates of higher rank.

From a review of the literature, Halford et al. (in press) suggest that humans can only
process four dimensions in parallel, and they present new empirical evidence to support
this hypothesis. They also argue that the number of dimensions corresponds to the
number of arguments, because each argument represents an independent source of
variation in the structure. It is argued that a tensor product representing a predicate with
more than four arguments would be too computationally costly. Tasks which are too
complex to be represented in a single tensor product can be handled in one of two ways.
These are; Conceptual chunking: i.c., information can be recoded into a representation
with fewer vectors, and segmentation, or dividing the task into into steps that are
processed serially. The development of strategies for efficient serial processing is a
component of expertise.

An cveryday example of a conceptual chunk would be velocity. Velocity is a three-
dimensional concept, defined as; velocity = distance/time (V = s/t). However it can be
recoded as a single dimension, as when (for example) we think of velocity as position of
a pointer on a dial. However there is a cost to chunking, because it results in loss of
rcpresentation of some relationships; e.g. when velocity is chunked as one dimension, the
3-way relation between V, s and/or t cannot be computed without returning to the 3-
dimensional representation, which also entails returning to the higher processing load.

Once multiple dimensions are recoded as a single dimension, they occupy
only one chunk, and can be combined with up to three other chunks, so velocity ca 1 now
be combined again with time to give acceleration, (a=2st-2), which can then be chunked
and combined with mass to produce force (F = ma). Thus so we can bootstrap our way up
to more and more complex concepts.

This implies that representation of complex concepts depends on availability
of efficient codes. Because we can only represent up to about four independent sources of
variation in parallel, we require codes that enable us to represent complex concepts
without exceeding this limit. One reason why expertise is important is that experts have
efficient codes that represent the deep structure of the concept (Chi & Ceci, 1987;
Holyoak, 1991). This model emphasizes the importance of efficient coding, and therefore
of expertise, in analogical reasoning, because the limitation to 4 dimensions in parallel
means that without it complex problems could not be solved.

Representation of transitivity

As noted earlier, a number of contemporary models agree that transitive
inferences are made by integrating the premise elements into an ordered string. We
suggest that this is a case of analogical reasoning, because it entails using a familiar
schema, such as top-down (or left-right) ordering as a basis for organizing the premise
elements. The premise elements and relations are mapped into a representation of the
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top-down schema. This is shown in Figure 4A for the problem; Bill is happier than John,
Tom is happier than Bill. The problem elements as assigned to, or "mapped into" the
three positions, top, middle, bottom, and there is a structural correspondence between the
spatial arrangement and the problem. The top position corresponds to Tom, middle to
Bill, and bottom to John.

This is a system mapping, because both structures are based on ternary
rclations. The mapping is independent of both element and relational similarity, and
convention. It is validated solely by structural correspondence.

An example of the type of mapping that children might use is shown in
Figure 4C. The base is an ordered set retrieved from memory, consisting of three blocks
ordered for size. The hypothetical problem comprises the premises "Tom is happier than
John, John is happier than Bill", and the conclusion "Tom is happier than Bill". The
analogy is formed by mapping Tom, John, and Bill into the large, medium, and small
blocks respectively. The relation "happier than" consistently corresponds to the relation
“larger than".

The validity of the mapping does not depend on any resemblance between
Tom, John or Bill and the blocks into which they are mapped, or on resemblance between
"larger than" and "happier than". The mapping is validated by consistent structural
correspondence. That is, each element in the problem is mapped into one and only one
clement in the base and vice verse (uniqueness), the relations in the source are mapped
consistently into relations in the target (larger than is 2lways mapped into happier than),
and the arguments of the relations in the source are mapped into the arguments of the
relations in the target (in each case, the arguments of larger than are mapped into the
arguments of happier than).

The importance of this is that an ordered set stored in long term memory,
such as the three blocks in Figure 4C, can be used as a mental model for the ordering
required for the problem, purely on the basis of the structural correspondence between
the two. In principle any ordered set of three or more elements, stored in long term
memory, can be used for this purpose. However there are psychological advantages to
scts that do resemble the target, or to sets which are prototypical in the sense that they
represent the common properties of many ordered sets, because it is then easier to see the
possibility of the mapping being made. However once the mapping has been recognized
as possible, similarity does not facilitate the actual mapping process, which can be based
purely on structural correspondence, as in Figure 4C (Holyoak & Koh, 1987; Halford, in
press).

Once the mapping is made, it is fused into a single representation, the
ordered set Tom, John, Bill. The analog provides the structure of the representation, and
effectively provides a criterion for the correct way to organize the information in the
problem. The fact that Tom, John, Bill is self-evidently the right order to us conceals the
fact that at some time children had to come to this understanding. If they do not innately
possess logical rules, a likely explanation is that they can use previous experience as an
analog.

PDP representation of transitivity

A PDP representation of transitivity, based on the STAR model, is shown in
Figure SA. Because transitivity is a ternary relation, the representation is a rank-4 tensor
product. The component relations, aRb, bRc, aRc can be recovered By collapsing over the
remaining vector, which is achieved by setting all elements at the value .
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The mapping of premises into an ordering schema, as in Figure 4A, is shown
for the STAR architecture in Figure SC. The ordering schema, top-middle-bottom, is
shown as the tensor product of four vectors, representing the predicate "Monotonically
higher", and the arguments, top, middle, bottom. The problem is represented as the
predicate "monotonically happier", with arguments Tom, Bill, John. The two structures
are superimposed on the tensor product representation.

Recognition of indeterminacy

Mapping into a mental model consisting of an ordered set of (at least) three
objects can also lead to recognition that a problem is indeterminate. Suppose, for
cxample, that the premise "Bill happier than John" were missing from Figure 4A or 4C. It
is clear that two different mappings a:e ;l)ossible; Bill could be mapped into either middle
or bottom, implying the orders Tom, Bill, John or Tom, John, Bill. A mental model in the
form of an ordered set can provide a criterion for deciding when another set is ordered.
The target set is ordered when it can be mapped in one, and only one, way into the base
ordered set.

Relational and system mappings are the levels most relevant to N-term series
tasks. The former are involved where premises can be processed one at-a-time, and the
latter where premises must be integrated. As we will see, processing premises one at-a-
time, without integrating them with earlier premises, produces correct solutions on some
but not all problems.

Processing loads of mappings

The four levels of structure mapping increase in abstractness, in that the
higher levels are less dependent on element or relational similarity than the lower levels,
but this abstractness is obtained at the price of higher processing loads (Halford et al. in
press; Halford & Wilson, 1980). The reason is that representations of higher
dimensionality entail tensor products of higher rank, which are more computationally
costly.

The loads arise from the information that is required to establish that a
mapping is valid. With. element mappings, elements can be mapped singly, because a
mapping is valid if it occurs between similar elements, or between elements linked by a
convention. With relational mappings, two elements must be taken into account in each
mapping decision, because validity depends on the similarity of the relation between two
elements, as illustrated earlier.

With system mappings, validity depends on consistency over two or more
relations, which requires that elements be mapped in sets of at ieast three. This is
illustrated by Fig'we 4B. Notice that, if we consider only two elements in each structure
(deleting the element at one end), there is no apparent inconsistency in the mapping. For
example "middle above bottom" mapped into "John sadder than Bill", meets the criteria
for a valid system mapping. Recognition of the inconsistency requires that all three
elements be considered, together with the relations betweeu them.

To see why there is a processing load in such a task, consider what is
cntailed in the transitive inference "Tom is happier than Bill, Bill is happier than John"
who is happiest? We want to assign Tom, Bill and John to the correct ordinal positions.
From premise 1 we can only assign Tom to either top or middle position. To decide the
correct assignment, we must take account of the other premise also. The same is true for
assigning the other premise elements to ordinal positions. Each assignment requires both
premises to be considered. That this imposes a high processing load has been empirically
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confirmed using secondary task indicators by Maybery, Bain & Halford (1986) and
Halford, Maybery and Bain (1986). The former study used adult participants, whereas the
latter used children. This has the important implication that one source of the difficulty
children have with transitive inferences arises from factors that are inherent in the
structure of the task, and these factors affect adults also.

Children’s abulity to perform structure mappings

Research conducted in our laboratory (Halford, 1978; Halford & Wilson,
1980), as well as literature reviewed (Halford, 1982, 1987; in press) indicates that
children can perform element mappings by one year of age, relational mappings by two
ycars, system mappings by five years, and multiple system mappings by 11 years
(median ages). Furthermore reviews by Brown (1989) and Goswami (in press) support
the proposition that preschool children can form analogies if they understand the
rclations entailed.

The analogies discussed by Brown and Goswami are all relational mappings;
i.c. they entail mapping a base into a target in such a way that there is a similar relation in
cach. Gentner and Toupin (1986) have shown that analogies based on systematicity,
which are system mappings, are difficult for children under 8 years. This supports the
contention that system mappings occur later than relational mappings. However our
success in demonstration system mappings in 5-7 year olds (Halford, 1978; Halford,
1980) suggests that refinement in methodology may show that analogies based on
systematicity would be possible earlier than Gentner and Toupin found, but resolution of
this question depends on further research.

Children’s transitive inference abilities

The question of when children can make transitive inferences has been a
major issue in cognitive developmental theory, and there are already several reviews of
the literature (Breslow, 1981; Halford, 1982, 1989; Thayer & Collyer, 1978; Trabasso,
1975, 1977). Piage.’s (1950) contention that transitive inferences were not understood by
young children was challenged by Bryant and Trabasso (1971) who obtained evidence
that 3-4 year olds made above-chance transitive inferences. However more reassessments
of this research by Halford (1989) and Bryant (1989) have led to the conclusion that there
is no valid evidence of tramsitive inferences before age five. The problem with studies
conducted in the Bryant-Trabasso paradigm was that procedures were used which unduly
aided children in constructing an ordered set, and that children who were unable to do so
were deleted (Halford, 1989). When these factors were eliminated, preschool children
failed the task (Halford & Kelly, 1984; Kallio, 1982).

Two main types of reason have been advanced as to why young children find
transitive inferences difficult. One is that young children encode premises in absolute
terms, whereas older children encode them in relative terms. For example, given the
premise "Tom is happier than Bill", young children would encode Tom as happy and Bill
as sad. When the premise "Bill is happier than John" is processed, Bill is encoded as
happy, contradicting the earlier encoding. This hypothesis has been proposed by Perner
and Mansbridge (1983), Siegler (1989), and Sternberg & Rifkin (1979).

The other hypothesis is that preschool children have difficulty integrating
premises. For example, Halford (1984) presented ordering tasks that could be performed
by considering either one or two premises in a single decision, and found 100 percent
success by 3-4 year olds on the former task, but chance performance on the latter.
Furthermore Halford et al. (1986) provided evidence that the failure was due to inability
of young children to process the loads imposed by premise integration. Halford and Kelly
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(1984) rcquired children to leamn cither overlapping pairs (a>b, b>c, c¢>d) or
nonoverlapping pairs (a>b, c>d, e>f). The former would be easier if integrated, because
they would be learned as the string a,b,c,d. If not integrated however the overlapping
condition would lead to conflict because of clements b and ¢ being smaller in one
premise but larger in the other. Preschool children learned the nonoverlapping pairs but
not the overlapping pairs, suggesting that they were unable to integrate the premises.

Recent evidence suggests that four-year olds can integrate premises in
certain transitive inference tasks. Pears and Bryant (1990) presented premises in the form
ot colored blocks placed one above the other; e.g. block A above B, B above C, ctc.
Childen were required to build a tower with another set of blocks of the same color as the
premise blocks, with a top-down order A,B,C,D,E, consistent with the premises. Before
building the tower, they were asked inferential questions, such as whether block B would
be above or below block D. Four-year olds performed significantly above chance in two
cxperiments, suggesting that they can perform transitive inferences.

Pcars and Bryant acknowledge that the task migi.t be performed by
manipulating images of the premises. For example, it is possible to imagine pair B-C
sitting on top of pair C-D, and it would then be apparent that in a tower B would be
above D. This is a legitimate way to make a transitive inference in these circumstances.

The study shows that 4-year old children can integrate premises in certain
conditions, but the Pears and Bryant task does not entail mapping from one
representation to another. It therefore does not entail anything equivalent to analogical
rcasoning. In this respect it is instructive to compare Pears and Bryant’s procedure with
that of Halford (1984). Both used color-coded premises, both obviated the need for
retention of premises in memory, and both used tasks that were appropriate for young
children. However Halford’s task had premises coded in the form of colored pegs in a
board. Children were asked to arrange tubes whose colors matched those of the pegs in
an order consistent with the pairs of pegs on the board. Pears and Bryant suggest that the
difficulties children experienced in Halford’s study may have been because it was hard
for them to translate spatial position into length.

Actually however this cannot be true in its entirety, because Halford’s data
showed that even 3-year olds could order the tubes without error, consistent with the
pegboard, provided the ordering task was constructed so they could process the premises
serially. Therefore they were undoubtedly able to translate the pegboard information into
the task of ordering the tubes. What they could not do is make this translation by
processing two premises jointly. When they had to order tubes using information from
two premises in a single decision, 3-4 year olds failed. Therefore the comparison of
Halford’s study with that of Pears and Bryant shows that 3-4 year olds had trouble
mapping from one representation to another when this mapping depended on two
premises, which expressed two relations.

This hypothesis has recently been tested in our laboratory (Andrews &
Halford, unpublished). We used the tower of five blocks employed by Pears and Bryant
(1990) and an isomorphic sticks task that required children to order sticks from left to
right. However to avoid the terms left-right, left was defined as closer to a stuffed toy
frog. We also employed two mapping tasks, in which children had to use pairs of blocks
to determine the order of sticks, or vice verse. The inference task based on mapping
requires children to map two premises jointly, whereas the corresponding construction
task can be performed by processing the premises one at a time. If Pears and Bryant’s
demonstration of transitive inference is valid, then by Postulates 3.0 and 5.1, and from
the argument above, it would be predicted that children under five years would succeed
on all tasks except the inference question based on mapping, because this is a system
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mapping, and entails mapping two relations jointly.

Pears and Bryant’s finding of above-chance transitive inference in 3-4 year
olds was replicated for the blocks task, but not for the sticks task, which suggests it is not
very robust. The prediction that 3-4 year olds would fail on the inference task based on
mapping was confirmed, even though they succeeded on all construction tasks, showing
that they could map one relation from blocks to sticks or vice verse. Despite the great
ingenuity shown by Pears and Bryant in devising a transitive inference task that is
cminently suitable for young children, we still find severe limits to their ability to process
two relations.

There seems to be good evidence that both encoding and integrating are
processes that improve with age, but it seems unlikely that young children are completely
unable to encode relations. Both Bullock and Gelman (1977) and DeLoache (1989) have
provided evidence that 2-3 year old children encode relations between objects. For
example, DeLoache showed young children could locate a hidden toy in a room after
seeing a model toy hidden in a model of the room. Presumably this task entails encoding
the relation between the model toy and a model piece of furniture (e.g. behind the
lounge), then map this relation into the real room. It is a good example of a relational
mapping task (Halford, in press). There does seem to be good evidence however that
children under age five years have difficulty integrating relations. Progress in transitive
inference and ordering between approximately two- and seven years depends to a
considerable extent on switching from processing relations independently, to processing
them in an integrated way. This will therefore be one of the major developments that the
model will attempt to simulate. As we will see, integrated representation of the premises
can be expected to result in a shift towards relational encoding. Therefore the question of
whether deveiopment of transitive inference depends on relational encoding or on
premise integration may turn out to be a non-issue.

Working memory architecture

Baddeley (1986, 1990) and Schneider and Detweiler (1987) have provided
sophisticated reviews of the working memory literature. It is clear that working memory
consists of more than one system, and that the aggregate capacity is much greater than
the small number of items in short term memory span. Gur model does not make strong
assumptions about working memory limitations, but it provides for this factor to be
manipulated.
Outline of the model

The model has the following major objectives:

1. To simulate development of N-term series strategies, under the constraint of a concept
of order that could be acquired through experience.

2. To integrate associative and metacognitive strategy-selection mechanisms.

3. To simulate a major acquisition in middle childhood, the ability to integrate premises.
Main features of the model

1. Transitive inferences are made by constructing an ordered set of premise elements, as

in models of Sternberg (1980) and Foos, Smith, Sabol & Mynatt, (1976). The ordered set,
called a "working memory resultset" is stored in short term memory.
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2. There are no strategies as such, the role of strategics being filled by productions.

3. It productions cxist that match the current state, they are invoked without
metacognitive processing. If no productions match the current state of the problem, ncw
productions are crcated by metacognitive processes, constrained by the concept of order.

4. It is assumed that operators are learned by manipulative experience, and are stored in
long term memory, together with initial and final states, so they can be used in means-
cnd-analysis. An example would be the "switch" operator (Table 1), which reverses the
order of two clements. It is assumed that children have learned during manipulative play
that if two objects are in the order AB, and they are switched around, that the order will
be BA. Thus the initial state is AB and the final state is BA.

5. It is assumed that a concept of order is acquired through experience (such as play with
blocks that form series), and can be instantiated as an ordered set of at least 3 elements,

stored in long term memory. The essential features of the concept of order were outlined
above.

6. Analogical mapping of the ordered set in long term memory into the strategy output is
used to assess validity of strategies. This constrains the strategies to produce an output
consistent with the concept of order. This mapping produces a high processing load,
which causes difficulty for children and adults, but the magnitude of the difficulty is
greater at younger ages.

7. Strength of productions is increased if they produce correct orders, decreased if they
produce incorrect orders (associative strategy development).

8. Negative feedback leads to increased effort, which leads to higher level structure
mapping processes being invoked.

9. If relational level structure mapping is invoked, strategies are produced that do not

integrate premises. If system level structure mapping is invoked, strategies are produced
that do integrate premises.

10. Strategies that do not integrate premises produce correct solutions on some problems,
but produce errors on other problems. This leads to negative feedback, which increases

cffort, which leads to system mapping being invoked, and strategies are then developed
that do integrate premises.

Architecture

The model was programmed in the production system language PRISM I[I
(Ohlsson & Langley, 1986). The whole model described in this chapter is based on
productions. The program does not have access to the PDP based STAR model of
analogical reasoning described earlier. Instead, structure mapping is carried out by

productions which perform the same functions as relational- and system mappings
specified for the STAR model. /

A production system is composed of a set of condition-action pairs each of
which specifies that if a certain state occurs in working memory, then a mental or

physical action should be performed. For example, the traffic rule "stop on a red light"
could be coded as a production of the form;

if a traffic light is red --> stop
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The left-hand-side of the production refers to a condition; in this case, a red
traffic light. The right-hand-side refers to an action; in this case stopping. When
productions systcms are used t0 model problem solving, the actions are usually mental;
¢.g. entering information in, or retrieving it from, working memory, manipulating
information in working memory, setting goals, etc.

PRISM Il is based on the ACT* model of cognition (Anderson, 1983), and
the model we present has a number of features in common with Anderson’s approach.
Some of these are structural, such as the use of productions and hierarchical goal
structures (Figure 6). However more significant similarities occur in the way strategies or
cognitive skills are acquired. The current model, like that of Anderson (1987) proposcs
that strategies are first acquired through domain-independent, general processes such as
analogical reasoning and means-end analysis (the so-called "weak" methods). Once
acquired, strategies are strengthened or weakened according to their success in solving
problems. However PRISM II has many parameters and structures that can be altered by
the programmer, so it does not constrain the model builder to adopt the assumptions of
the ACT* theory. Furthermore no attempt has been made to either conform to or depart
from Anderson’s theory, and the model has been constrained solely by data on N-term
scries problems and other relevant cognitive phenomena.

The productions that have been programmed into the model are basically
domain-general, in the sense that they are not specifically related to N-term series
problems. One set performs such functions as setting and removing goals, requesting
feedback, starting new problems, and building new productions. Another set searches for
clements, compares elements, and codes elements into features. Domain-specific
productions that are specialised for performing N-term series probiems are built by the
model in the course of solving problems.

There is a working memory which stores the current state of the problem,
including goals. This information is subject to decay over time. When items are added to
working memory they are given an initial activation value of 1.0. Activation decays on
subsequent cycles, delta x = -0.1x. However goals are not subject to decay, because it is
assumed that goals have highest priority, and will always be maintained.

Domain-general productions are stored in a procedural memory, and their
strength does not vary. It is assumed that their use has been so general that their strength
will affected negligibly by tprocessing of these problems. Domain-specific productions
that are built in the course of problem-solving are stored in new-procedural memory, and
have a strength which varies in two ways. First, strength is increased following
successful performance of a problem according to the formula;

delta S+ = .1(1-8S),
and decreased following unsuccessful performance, according to the formula;
delta S- = .25S.
Second, there are small random fluctuations according to the formulas;
delta S+ = v(1-S)
delta S- = vS

where v fluctuates randomly between 0 and .2.
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This causes strength values to asymptote at either 0 or 1. The random
fluctuations cause strength values to tend towards a common value of .5,

There is also a declarative memory which stores the goal hicrarchy, and the
information about conditions and consequences of operators. The operators arc listed in
Table 1. As noted carlier, it is assumed that these operators have been learned through
manipulative experience, such as play. For example, the append operator has
preconditions that object 2 is not in the list, and object 1 is in the list. The operator has
the effect that object 2 is appended to object 1 in the list. This is assumed to be a
primitive function that would have been learned manipulatively.

Insert Table(s) 1 about here

The effect of different memories is to categorize ccntents so that, for example,
declarative memories contain different kinds of information from procedural memories.
This is a matter of programming efficiency, and does not imply that these types of
information occupy physically different memories in a human being. The categorization
function in human memory is more likely to be achieved by linking stored information to
context (Humphreys, Bain & Pike, 1989; Schneider & Detweiler, 1987), but computer-
simulation of this process requires a neural net architecture. Integration of neural net and
production system architecture is not yet practicable, at least on the scale of this model,
although progress is being made in this direction (Touretzky & Hinton, 1988).

Operation of the model

Overview We will illustrate the model using a sample problem as shown in Figure 7.

Insert Figure 7 here

The first premise is a>b. The model checks whether there is an ordered string already in
working memory, finds there is not, and adds the string ab to working memory. This can
be done because the model is set up with domain-general productions for storing
information in working memory. When the premise b>c is presented there is no
production that has a string in working memory plus a premise, in its condition side,

because the model is not equipped initially with productions for dealing with transitive
inference.

This puts the model into a modification phase. First it searches for a concept
appropriate to its present goal, which is ORDER OBJECTS. This causes the concept of
order to be retrieved from memory. Analogical reasoning is used to determine the correct
order, by mapping the premises a>b and b>c into an ordered set retrieved from memory,
as explained previously. It is recognized that the ordering abc would be consistent with
the concept of order. Means-end analysis is then used to select an operator which will

produce the order abc. Then a new production is built which includes the APPEND
operator, as shown in Figure 8.

Insert Figure 8 here

This production will match any state in which working memory contains one or more
objects in a string, and the first object in the premise matches the last object in the string.
On the action side, the APPEND operator will place the second object in the premise on
the end of the string.
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When a subscquent problem occurs which requires this production it will
firc, without the effortful process of having to build it. Thus strategies, which in this
model consist of productions, can operate in relatively automatic fashion once they are
acquircd. Understanding is not required for problems of a type which the model has
alrcady learned to solve.

When a correct solution is obtained, positive feedback increases the strength
of the preductions involved in the solution. Negative feedback results in weakened
productions. Productions that lead to errors are gradually weakened below threshold, and
ccase to fire. This clears the way for construction of new productions that avoid the
CITOrS.

When the model first builds productions, some of them do lead to errors.
Some of these errors occur because of the processing load imposed by system mappings;
i.c. mapping both premises into an analog, as in Figure 4. This cza result in a tendency to
focus on the most recent premise, ignoring the implications of earlier premises. We call
this the relational strategy, because it uses only relational mappings, as defined earlier,
and processes only one relation at a time. The operation of relational and system
strategies are illustration in Figure 9.

Insert Figure(s) 8 about here

The first premise, c>d results in the string cd being stored in working memory. The next
premise, a>b contains no element which matches any element in cd. If the model is
operating at a low level of cognitive effort, either because of low arousal, competition for
resources, or inadequate processing capacity, then it pays attention only to the most
recent premise, and performs a relational mapping. That is, it maps a>b into the analog of
an ordered set, ignoring c>d. Therefore the production that is built simply inserts ab after
cd, yielding the order cdab, without recognizing that the order of the pairs is
indeterminate. When b>c is presented, attention is again paid only to the most recent
premise, resulting in a production which simply switches b to the front of the list,
yielding the order bcda. Data from Foos et al.’s (1976) study, and from our own
laboratory, show this is a common error for children, and for adults under high
processing load.

This error leads to negative feedback, which weakens the productions
involved in the incorrect solution, clearing the way for new productions to be built. The
negative feedback also increases effort, which causes the most recent premise to be
integrated with previous premises when a new production is being built. This leads to a
production based on system mapping as defined earlier.

Now when a>b is appended to the string, a marker is inserted to indicate that
the order of the pairs is indeterminate. Then when b>c is presented, a production is built
that switches ab to the front of the string, yielding abcd. Correct feedback strengthens
this production.

The model makes these errors when it first builds strategies, but then builds
new productions which provide correct solutions to problems with all permutations of
premises. It also recognizes when a problem is unsolvable, because it codes
indcterminacies in the ordered set in working memory.

Productions
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The productions that are built into the system before it begins operation are
listed in Appendix A. The productions that are built in the course of the run to be
described in this section are listed in Appendix B.

Two parameters are defined, cffort level and strength of productions. Effort
level affects the type of structure mapping that is performed. Because structure mapping
based on two relations imposes a high processing load and is therefore cognitively
cffortful (Kahneman, 1973), participants tend to avoid using it. Therefore people tend to
map using only one relation, usually the current premise. This produces correct
performance some of the time, but does not yield valid and reliable premise integration.
In our model, effort is set initially at a level that leads to mapping using only one relation.
This leads to errors, and the resulting negative feedback causes effort to be raised to a
level that produces mapping based on two relations.

When effort is below threshold, only relational mappings are performed,
when it is above threshold, system mappings are performed. On this run the threshold
level was set at 1.30. Strength affects the likelihood of a production firing. As is standard
in production systems, a precondition for a production to fire is that its conditions match
clements in working memory. If more than one production matches, the one with the
greatest strength fires.

The strength of productions involved in producing a solution is increased
when it is correct, and decreased when it is incorrect. The names of productions that have
contributed to a solution by altering the working memory resultset are placed in a list.
Following feedback, the strengths of all productions in the list are adjusted according i
the formula given in the previous section. Productions that are below threshold (initially
.50 on this run) will not fire. There is aiso a random component in the strength parameter,
which varies according to the formula given in the previous section. This has the effect of
causing differences in strength to be gradually reduced, thereby permitting productions
that have recently been weakened to eventually reappear.

Run of the model

The model was run on the set of problems shown in Table 2. The first 6
problems entail adjacent and nonadjacent relations, and consist of all permutations of the
premises a>b, b>c, a>c. Problems 7-12 do not entail nonadjacent premises, but contain a
fourth term, and comprise all permutations of the premises a>b, b>c, c>d. The value of
the fourth term is that it requires the system to iterate the ordering processes. For
example, having integrated b>c with a>b, producing abc, it then must integrate c>d with
abc to produce abcd. A model that can do this can produce series of any length, provided
they are based on adjacent relations only, and subject to a memory capacity that is
adequate for storing the resulting string. The problem is different however with
nonadjacent relations, because series of more than 3 terms cannot be constructed simply
by iterating processes used in 3-term problems.

Insert Table(s) 2 about here

Pilot work showed that series of more than 3 terms with non-adjacent relations cannot
normally be handled by human participants without external aids. The fact that the
model can handle series of any length with adjacent relations, and can process adjacent

and nonadjacent relations, gives it a high degree of generality. The generality is
increased by the fact that elements and relations in production rules are defined as
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variables. This means that in principle any type of ¢lement or relation can be handled.
However specific instantiations will be discussed in the run to be described, for the sake
of clarity.

When the operation of the model begins, the goal "order objects” is sct. This
is cquivalent to participants attempting to perform a N-term series task. The next
production requests instructions, which can be one of "stop", "restart new problem" or
“add a premise". The instruction can be supplied interactively by the user, or read in from
a file. If the instruction is "stop", the FLAG "hait" is set, so no new productions will be
fired, and the goal "oider-objects” is deleted. If the instruction is "restart new problem"
the initial goal is reset, and further instructions are requested. If the instruction is "add a
premise”, ther. a goal is set to integrate that premise into the working memory resultset.

If the working memory resultset is empty, then u.c elements of the new
premise are simply placed in working memory in the correct order. For example, if the
first premise were "a>b" then "ab" would be placed in working memory. Then the next
premise is requested.

If there is already a premise in working memory, then one or more "match"
productions are fired. These productions seek elements that are common to the working
memory resultset and the premise. For example, if "ab" were in the working memory
resultset, and the premise were "b>c", then the match element would be "b". The
“matchlist" is then placed in working memory.

This is as much as can be done using productions that are "prewired" into the
system. That is the sysiem has productions for obtaining and comprehending premises,
storing and retrieving information in working memory, and comparing new premises
with the working memory resultset. It can identify elements common to the new premise
and the working memory resultset, and mark the position of the common elements. For
cxample, with "ab" in the working memory resultset and "b>c" as the new premise, the
common element is "b" and it is at the "back" of the string in the working memory
resultset. Strategies for proceeding beyond this point are constructed by the system.
Once constructed they are stored and can be used on future problems, without having to
be constructed again.

The comprehension of premises is not modelled in detail, it being assumed
that the system is capable of extracting the semantic information in the premises and
storing it in STM, or using it in construction of ordered sets. The reason is that this aspect
of the task has already been well modelled in Sternberg’s (1980a, 1980b) formulation,
and in this project we wanted to concentrate on the development of strategies for premise
integration. This formulation is quite compatible with Sternberg’s account of premise
comprehension, and if the premise comprehension process could be simulated, in
principle it could be integrated with our model.

A run of the model through the 12 problem forms over four cycles is shown
in Table 3. An overview of the run will be given before considering the details.
Additional runs have been made with problems in random order and the outputs have
been essentially the same. The main difference was that in some cases strategy shifts
occurred more readily. This occurs when a number of problems happen to occur close
together that cause incorrect productions to be weakened. However for convenience we
will examine two runs of the problems in the order shown in Table 3. The effort level is
initially set low (.6), so relational structure mapping will be used.




Insert Table(s) 3 about here

On the first cycle the model is building productions to deal with N-term series problems.
Effort level for structure mapping is initially low because of the high demands of other
processes, and because the need for system mappings is not recognized. The first sct of
productions built produce correct responses to most problem forms. However, because of
the low effort level, incorrect orders are produced initially on those problem forms which
require premise integration. Specifically, on problem forms 1 and 2, the incorrect order
acb is produced. These are errors that were commonly found in previous rescarch
(Maybery, Halford, Bain, & Kelly, in preparation). The former was explained in an
carlier section. The latter results from first combining b>c and a>b to produce abc, then
when a>c is presented, ¢ is placed after a, yielding acb. As with the first problem form,
this error results from processing the final premise by itself, without integrating it with
carlier premises. The order produced is incompatible with the second premise, a>b, but
this is not recognized by the model at this point in its development, because it only maps
premises into the concept of order one at-a-time.

The error on problem 1 results in negative feedback, which reduces the
strength of the productions which fired for that problem, and increases effort level to so
the mode! will continue to operate at the relational level, resulting in further errors on
some problem forms. :

On problem 2, a new production is built to process the second premise,
because (a>b) has not previously been processed following (b>c). The resultset after the -
second premise will be a,b,c, as with problem 1. When (a>¢) is presented, the production
which processed it with the same conditions in problem will have been weakened, below
threshold. However the model is not yet ready to build a system level production. To
avoid rebuilding failed productions, or abandoning problems because no adequate
production can be built, the model now checks whether a production has previously been
built with the same conditions and actions. Such a production exists; token-2. The
threshold is temporarily lowered, to permit the production to fire again, resulting in the
same error as before. The effort level has also been increased in the search for a
production. Thus there is competition between processes which jzad to new productions
and processes which reinstate old productions.

The error on problem 2 raises the effort level to 1.409, which allows system
level productions to be built. On problem 3, premise (a>b) is processed as before. In an
attempt to build a production to process premise (a>c) system mapping is employed, and
a>b,a>c are mapped into the concept of order. It is then recognized that the order is
indeterminate, so a production is built which inserts an indeterminacy marker, <<c * b>>,
showing that the order of ¢ and b is indeterminate. This is resolved by premise (b>c),
yielding the resultset, abc.

The remaining problems are processed using system level mapping, resulting
in produciions which take account of the current premise and the most relevant, previous
premise. This means that indeterminacies are noted, where the occur after the second
premise, and the remaining problem forms are processed without error. On cycle 2, all
problem forms are processed without error. The sequence of productions which fire on
problem forms 1-3 in Table 2 is given in Appendix C.

To summarise the run of the model, it began with domain-general

productions, then built domain-specific productions appropriate for the N-term series
problems presented. Metacognitive processes, which entailed mapping premise

-
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information into a concept of order, instantiated a5 an ordered set of three clements, was
used to guide the creation of new productions. Once created, productions were subject to
strengthening or weakening by associative leaming mechanisms, depending on their
success in producing correct problem solutions.

Experiments

We will now consider S experiments designed to test children’s ability to
perform a number of functions predicted by the model. Experiment 1 tests the prediction
that children should be able to map one ordered set into another. Experiments 2 and 3
assess children’s ability to recognize when the order of a set of elements is determinate.
Experiment 3 also examines tiie orders which children produce as premises are presented
successively, so these can be compared with the orders predicted by the model
Experiments 4 and 5 assess the processes children use to solve N-term series problems,
so these can be compared with the processes incorporated into the model.

Experiment 1: Mapping ordered sets

In this experiment children were shown an ordered set as standard, and
required to say which of two comparison sets, one ordered and one not, was like the
standard. This required children to recognize the correspondence between two ordered
sets, which is equivalent to mapping one ordered set into the other. Task overview

Each trial consisted of three cards, as shown in Figure 10A or 10B. The
bottom card was the standard, and the two cards above it were the comparisons. The
participant’s task was to say which comparison card was similar to the standard in a
specified way. In each trial the standard varied in one dimension, which we call the
primary dimension. The other dimension which varied in some trials is the secondary
dimension. For example in Figure 10A, the standard is ordered with respect to height,
and the correct comparison (left) is ordered with respect to both height (primary) and
width (secondary). The incorrect comparison is ordered with respect to neither
dimension. Figure 10B is a transfer task, and the correct comparison (right) is ordered
with respect to width but not height.

To ensure the selection could not be made by choosing the card with
elements similar to the standard, on two thirds of test problems the elements also varied
on a secondary dimension (as illustrated in Figure 10A). When this was done, the correct
card was ordered with respect to primary and secondary dimensions, so as to avoid a
conflict of two orders. An additional purpose of variations in the secondary dimension
was to show children that elements could be ordered with respect to other dimensions,
thereby easing the transition to the transfer items.

In the transfer problems, the correct comparison item is ordered with respect
to the secondary but not the primary dimension. In the transfer problem in Figure 10B,
the standard is ordered according to height, and the correct comparison is ordered
according to saturation. None of the comparisons were ordered with respect to the
primary dimension in transfer problems.

Introductory problems were used to familiarise participants with the idea of
ordering from left to right. They comprised three cards, each with two elements; e.g. a
taller object on the left and a shorter object on the right. Children’s attention was drawn
to the fact that in the standard the taller object is on "this side" (indicating the left side of
the standard card). They would then be asked to say which of the comparison cards had
the taller bottle on that side. The purpose was to teach the idea of ordering elements from
left-to-right, and to introduce the dimensions of height, width and saturation used in the
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test problems.
Method

Parucipants

There were 24 children, 9 males and 15 females, aged 5-1to 5-10 (mean 5-6)
from three middle-class preschools, and 24 children, 10 males and 14 females, aged 6-9
to 7-11 (mean 7-5) from a middle-class school.

Materials

The three dimensions used were height (h), width (w), and saturation (s). The
six combinations of primary (given first) and secondary dimensions were h x s, h x w, w
x s, w x h,s x h,s xw. Each combination was used to form one introductory, one test and
one transfer problem.

Height of figures varied from three to six cm., width also varied from three
to six cm., and saturation varied from a bright, intense, highly saturated color to that
same color fading towards white. The colors were cut from Pantone color
paper/Graduated/Uncoated.

The cards for the introductory problems averaged 41 square c¢m, and had
grey backgrounds. The two comparison cards were placed approximately 5 cm apart,
with the standard card approximately 1 cm below their lower edges. The figures on the
cards were bottles, drums, or rockets, colored red, blue, or green. The same object and
same color were sed throughout any one display.

The cards for the test and transfer problems averaged 105 square cm, and
were similar in background and positioning to the introductory cards. The figures were
mushrooms, houses, and toffees.

Procedure

Each participant received the following sequence:
1. three, two-trial introductory problems
2. one three-trial practice problem, using the test problem format
3. three, three-trial test problems :
4. one three-trial practice problem in the transfer problem format
5. and three, three-trial transfer problems.

The same standard was used for all trials of a problem, but the comparisons
varied. Each set of three problems was based on one of two combinations of dimensions:
wxs,hxw,sxhorhxs,sxw,wx h. Half the participants received one combination,
half the other, at random. This ensured that each dimension was used once as primary and

once as secondary for each problem set for each participant. Order of problems was
randomized.

Referring to the example introductory problem mentioned earlier, children
were asked to point to the taller bottle and tc the shorter bottle in each card. Synonyms
(¢.g higher, lower) were permitted where there was no possibility of confusing
dimensions. Then their attention was drawn to the position of the taller bottle on the
standard card, and they were asked to select the comparison card that had the taller bottle
in the same position. Feedback was given.

I'3 ~
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In test problems the child’s attention was drawn to the fact that the elements
were ordered in the standard, and (referring to the cxample in Figure 10A) was asked to
point to the tallest, the next tallest, and the shortest. The child was then asked to sclect
the comparison card that was also in order. For the practice problem immediate feedback
was given. On test problems, children were asked to select the comparison card that was
like (ordered the same way as) the standard. Feedback was given after the three trials
were complete. This would help the child to acquire the concept of order and facilitate
later problems, without interfering with responses within the problem. Participants were
rcquired to answer five of the last six trials correctly in order to proceed to the transfer
problems.

A transfer problem was preceded by three trials of a test problem using the
same primary and secondary dimensions. Otherwise the procedure for the transfer
problems was the same as for the test problems.

Results

The mean number of correct test-problem responses (out of 9) was 7.25
(S.D. = 1.92) for the five-year olds, and 8.63 (S.D. = .70) for the seven-year olds, t(46) =
3.23, p < .01. Both means are significantly higher than the chance value of 4.5, 1(23) =
7.00 for the five-year olds, and 28.43 for the seven-year olds. Although there is an age-
effect on overall accuracy, both groups can discriminate ordered from unordered sets at
better than chance level.

All the seven-year olds but only 18 of the 24 five-year-olds met the passing
criterion of five correct responses out of the last six. Those five-year olds who failed did
not perform better than chance (mean correct = 4.50, S.D. = 1.12).

On transfer problems, the mean correct (out of 9) for the five-year olds was
7.56 (S.D. = 1.80) and for the seven-year olds was 8.08 (S.D. = 1.41). The age effect is
not significant, but of course only the successful five-year-olds progressed to the transfer
task. Both groups performed significantly better than chance, t(17) = 7.19 for the five
year olds and t(23) = 12.40 for the seven-year-olds, p < .001 in both cases. Therefore all
participants who passed the test items transferred successfully.

The appropriate conclusion is that all the seven-year old sample, and 75
percent of the preschool five-year old sample can discriminate between ordered and
unordered sets. Both 7-year olds and 5-year olds who can pass the test problems can
transfer the discrimination from one dimension to another, which shows that the
discrimination is not based on specific features of the stimuli.

Discussion

The transfer task requires children to recognize the correspondence between
one ordered set and another, even though there may be little similarity between the
elements and relations of the two sets. This can be treated as a structure mapping, as
shown in Figure 11. The standard set in Figure 10B corresponds to the correct
comparison set in that figure because the tall figures maps into the narrow figure, the
medium height figure into the medium width figure, and the short figure into the wide
figure. The relation "higher than" consistently corresponds to "narrower than". There is a
structural correspondence between the standard and the correct comparison. This does
not exist however between the standard and the incorrect comparison, as shown in Figure
11B. Here the mapping is not consistent, because "higher than" in the standard is mapped
into "higher than" in the comparison on two occasions, but into "shorter than" on the
third occasion. The inconsistent mapping reflects the lack of consistent correspondence
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between the standard and the incorrect comparison set. The mapping is a system mapping
because it depends on consistency and uniqueness, rather than on clement or rclational

similarity. As explained carlier,” construction of an ordered set depends on system
mappings.

The finding that 75 percent of five-year olds succeeded in the transfer task
supports a central contention of the model, that five year old children, who can perform
transitive inferences, are capable of mapping one ordered set into another. Analogical
mapping of ordered sets is a core process in the model, and it constrains strategy
development. Experiment 1 indicates that the model is realistic in postulating that
children can use analogical mapping of one ordered set into another.

Recognition of indeterminacy

Another prediction from the model is that ghildren should be able to
recognize when the order of premise elements is indeterminate. As explained earlier, they
can map the premises into an ordered set representing their concept of order.

JIndeterminacies can be recognized if there is more than one way the mapping can be

made. Furthermore the missing premises can be recognized because there will be
relations in the concept of order that do not have corresponding relations in the premises.

Consequently Experiment 2 will assess children’s ability to recognize when
the premises are sufficient to determine the order of the clements. Two premises will be
presented for each problem which will be either determinate or indeterminate.
Participants will be asked to judge determinacy after both premises have been presented,
and will be asked to construct orders only for problems that they judge to be determinate.

Experiment 2

Method

The participants were from a primary-school in a lower-middle class suburb of Brisbane,
Australia. The 10 younger participants had a mean age of 7 years 11 months (range 7-5
to 8-5). The 10 older participants had a mean age of 10 years 2 months (range 9-7 to 10-
7). .

Apparatus consisted of a BBC model B microcomputer, connected to a 23 cm Amust
color monitor.

Problems. Two determinate and two indeterminate problem forms, each
with two premises, were used. The determinate problems were A>B,B>C and B>C,
A>B. The indeterminate forms were A>B,A>C and B>C,A>C.

Thirty-two problems were generated for each participant. The eight practice
problems used each of the 4 problem types twice, and the 24 test problems used each

problem type six times. The test problems were divided into two equivalent blocks, each
of 12 problems.

Three of the digits 1-9 were randomly selected as the A, B, and C terms on
cach problem. One restriction on the selection was that numerically-adjacent digits could
not take neighbouring positions in the ordering. The digits were printed on animated
runners that "ran on the spot". This permitted a concrete description of the task, for
¢xample, "runner 4 is ahead of runner 6, and runner 6 is ahead of runner 2", The runners




were 3 cm high, and colored red and yellow with white 1 cm numerals.

Procedure.

Each problem was initiated by the participant pressing the space bar, which
was labelled NEXT. This was followed by 3s of blank screen, after which the first pair of
runncrs was printed centrally on the monitor. The participant proceeded to the second
pair by pressing the space bar. The previous pair was obliterated when the new pair
appeared. Perusal time for each pair was recorded to centisecond accuracy.

On practice problems, feedback consisted of a simultaneous display of (1) all
of the pairs, (2) a row of asterisks marking where the sure button should have been
pressed, (3) the participant’s ordering, (4) the correct ordering, and (5) a typed message
indicating which components of the task (pressing the sure button and providing the
ordering) were correct. This feedback continued on the test problems, except on trials
where both components of the task were completed successfully, in which case a
message to that effect was printed.

Initial instructions familiarized the participant with the relevant keys on the
keyboard, including the DELETE key, used for correcting answers. Then the
Experimenter worked through a simple problem on paper, and the first practice problem
was solved with the Experimenter recording the successive pairs on paper. The
participant was permitted to record the pairs on paper on the second problem, but the
pencil and paper were removed for subsequent trials. The Experimenter provided
detailed feedback on the practice problems.

After the second premise had been understood (indicated by pressing the
space bar), the prompt "your answer" appeared on the screen. Participants were
instructed to press the return key, marked with an asterisk, and referred to as the "can’t
tell" button, if they thought there was more than one correct order. Otherwise they were
asked to type in the correct order. As each number was typed, its corresponding runner
was printed on the screen. Participants were tested individually in a single 20-30 minute
session. Errors were corrected with the DELETE key.

Results

Three variables were recorded:

(1) Determinacy judgment. Judgments were scored correct on indeterminate
problems if participants indicated they could not order the elements, and on determinate
problems if they attempted to specify the order, irrespective of whether the order they
provided was correct.

(2) Problems correct. Scoring for indeterminate problems was as for (1), but
on determinate problems the order provided by pariicipants had to be correct for the
response to be scored correct.

(3) Second premise latency, i.e. time to inspect the second premise. Second
premise latencies reflect variations in processing between different problem forms of the
problem, whereas first premises do not discriminate between problem forms. Maybery et
al. (in preparation) showed that second premise latencies were most revealing of
processing differences.




31

Each ANOVA comprised the factors age and problem type. The latter factor
was partitioned by planned comparisons into determinate versus indeterminate.
Determinate problems were partitioned into a>b,b>c versus b>c,a>b, and indeterminate
problems were partitioned into a>b,a>c versus h>c,a>c. Block was included in
preliminary analyscs and only one significant effect was found, an interaction of problem
form by block on judgments of determinacy, F(3,54) = 3.63, p < .05. This was due to a
small reduction in performance on a>b,b>c problems in the second block. Because it
does not modify the interpretation of any other effects of interest, it will not be discussed
further.

Determinacy judgments yielded an effect of determinate versus
indeterminate, F(1, 54) = 6.40, p < .05. ‘The proportion correct was .87 for determinate
problems, and .75 for indeterminate problems. A second effect was a>b,a>c (.83 correct)
was easier than b>c,a>c (.67 correct), F(1,54) = 6.61, p < .05. There was no age effect.

In order to test whether children were significantly discriminating between
determinate and indeterminate problems, a planned comparison was made of determinate
versus indeterminate problems on the number of "can’t tell" responses. This yielded F(1,
54) = 132.49, p < .00. The proportion of can’t tell responses was .75 for indeterminate
problems and .13 for determinate problems. Therefore the children were discriminating
between determinate and indeterminate problems very reliably.

On problems correct determinates (.51 correct) were harder than
indeterminates (.75 correct), F(1,54) = 16.27, p < .001, but this only reflects the more
stringent criterion for determinates, where the correct order was required as well as a
correct determinacy judgment. Two marginal effects were that a>b,a>c problems (.83
correct) were easier than b>c,a>c problems (.67 correct), F(,54) = 4.01, p = .05, and
a>b,b>c problems (.59 correct) were easier than b>c,a>b problems (.43 correct), F(1,54)
= 3.62, .05 < p <.10. There was an effect of age, F(1,18) = 8.15, p < .05. For the seven-
year olds the proportion correct was .56 and for the 10-year olds it was .70.

Second premise latency was shorter for indeterminate problems (5.60
seconds) than for determinate problems (9.50 seconds), F(1, 54) = 38.55, p < .001. This
is consistent with Sternberg’s (1981) model. There was a marginal age effect, F(1,18) =
3.41, .05 < p <.10. The seven-year old mean was 8.73 seconds, and for 10-year olds it
was 6.36 seconds.

Discussion
Experiment 2 shows that 7-10 year old children can judge whether the order of a set of
elements is determined, and shows that with the very simple procedure used there is no
age effect. Sternberg’s (1980) model predicts that children will be able to recognize
indeterminacy, but does not provide a megacognitive basis for explaining this ability.
Furthermore there does not appear to be any data confirming that children have this
ability. Some doubt must have existed as to whether children of this age can recognize
indeterminacy because of controversy as to whether they can recognize logical necessity
in reasoning (Falmagne, Mawby & Pea, 1989; Halford, 1982, in press; Markovits,
Schleifer & Fortier, 1989; Moshman & Franks, 1986; Osherson & Markman, 1975;
Tunmer, Nesdale & Pratt, 1983). Experiment 2 shows that ability to recognize
indeterminacy exists in middle childhood. This confirms another prediction of the model.

Model’s recognition of indeterminacy
A run of the model on the problem forms used in Experiment 2 is shown in Appendix D.

On early problems, the model uses relational strategies, which do not recognize
indeterminacy. It builds system level strategies first for those problem forms on which
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rclational level strategies produce errors. This leads to a mixed-strategy phase, in which
some but not all indeterminate problems are detected. However feedback after the second
premise causcs the model to build system level strategies for all problems, and the model
then discriminates reliably between determinate and indeterminate forms. Construction
of ordered sets

One of the main predictions of the model concerns the manner in which
orders are constructed progressively as premises are processed. Therefore Experiment 3
is dcsigned to examine the orders that children produce successively as premises are
prescnted. These can be compared with the orders predicted by the model. Children’s
ability to order scts of four elements following a single exposure to cach premise does
not appear to have been tested. Also, their ability to order three elements, including a
nonadjacent relation has not been tested. Children’s ability to recognize indeterminacy
while carrying out the ordering task will also be assessed, in order to check the findings
of Experiment 2.

To avoid conflict between these two tasks, the ordering task will be carried
on progressively as premises are presented, using cardboard cutouts of the premise
clements. Determinacy judgments will be made by having the computer generate an
order and having participants say whether it is correct, and whether it is the only order
possible. When participants’ and computer’s orders are different, participants will be
asked whether both could be right, and if not which one is right. Thus determinacy
judgments will be made by indicating whether one or more than one order can be correct.

Experiment 3

Method
Participants

Participants were from a primary school in a lower middle-class suburb of
Brisbane, Australia. The 15 younger participants had a mean age of 8 years 4 months,
(range 7-8 to 9-3). The 15 older participants had a mean age of 11 years 5 months (range
10-1to 12-1).

Apparatus was as for experiment 2, plus 12 cardboard cutout runners, two
each of the colors yellow, blue, red, green, purple and white.

Problems

There were four types of problems. Problems 1-6 were three-term adjacent-
and-nonadjacent problems, and problems 7-12 were four-term adjacent-only problems, as
shown in Table 2. The remaining types of problems are shown in Table 4. Problems 13
and 14 were three-term indeterminate and problems 15-18 were four-term indeterminate.
The possible orders that result from the indeterminate problems are shown in Table 4.

Insert Table 4 about here

Problem presentation. The three premises for each problem were presented
as pairs of colored runner-sprites 2 cm high in the top right-hand corner of the monitor
screen. The colors of the sprites were yellow, blue, red, green, purple and white. The
pairs were presented sequentially, with the first pair at the top, and each successive pair
below. They remained in view throughout the problem. All runners faced left towards a
finish flag, with the leading runner on the left. For each problem the computer randomly




33

sclected the colors to be used, and randomly assigned colors to ordinal positions of
runners.

Procedure. After each premise was presented, participants chose cutout
runners from a pool and arranged them in the order that they considered appropriate for
the premises presented so far. When they had done this and signalled that they
understood the premises, the experimenter pressed the key which caused the computer to
proceed to the next pair. The participant then updated the set of cutout runners. After the
participants had completed their order following the third premise, they were asked
whether there was any other way the cutout runners could line up. This will be referred
to as the first determinacy question. If the answer was yes, s/he was asked to create the
alternative order. If the answer was no, and the problem was indeterminate, the
participant was queried about one of the runners whose position was indeterminate, e.g.
"what about green, could he go somewhere else?" This is referred to as the second
determinacy question. If the participant agreed that this runner could go in another
position, s/he was asked to indicate the alternate position.

Practice problems consisted of an initial 4-term determinate problem
(problem 7, Table 2) followed by three three-term determinate, three four-term
determinate, and three four-term indeterminate problems, in random order. Complete
feedback was given for practice problems; participants were shown any alternative orders
they had not recognized, and any errors of ordering were corrected, making reference to
the appropriate premises in both cases.

The 18 test problems were shown in random order. Then there were two
catch problems, both of which were four-term determinate, but when participants had
created their final order of runners, they were queried as to whether one of them could be
placed in an alternate position, as with the second determinacy question.

Results and Discussion

In order to analyze participants’ ability to recognize whether problems were
determinate  or indeterminate, a 2(grade) by 2(three termyfour term) by
2(determinate/indeterminate) analysis of variance was performed on the proportion of
problems (arcsine transformed) on which participants said the ordering was indeterminate
on the first determinacy question. This produced a significant main effect of
determinate/indeterminate, F(1,28) = 49.29, P < .001, and the interaction of age with
determinate/indeterminate was marginally significant, F(1,28) = 4.03, p = .06. The
(untransformed) mean proportion of probiems said to be indeterminate for 7-9 year-olds
was .12 for determinates and .44 for indeterminates. For 10-12 year-olds the proportions
were .07 for determinates and .65 for indeterminates. Simple main effects analysis
showed a significant determinate/indeterminate difference at both age levels, F(1,28) =
12.60 for the younger group and 40.70 for the older group. Therefore, both age groups
showed significant discrimination between determinate and indeterminate problems.

It is possible however that the first indeterminacy question underestimates
the accuracy of children’s judgments in absolute terms. Therefore the same analysis was
performed on the proportion of problems on which a correct determinacy judgment was
given on either the first or second indeterminacy question. This yiclded only one
significant effect, an interaction of agexdeterminacyxthree-term versus four-term, F(1,28)
= 5.80, p < .05. The means are shown in Figure 12. Consistent with Experiment 2, there
is a high proportion of correct determinacy judgments for both age-groups, although the
7-9 year olds are relatively poorer on the three-term indeterminates, but even here their
performance is quite high in absolute terms. It is possible that determinacy is more
difficult to check on three-term problems because of the nonadjacent relation (a>c). This
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oficn means that three relations (a>b, b>c, a>c) must be processed to check whether the
order of a sct of three clements is determinate. On the catch questions (i.e. second
determinacy question asked where the problem was determinate) an alternative order was
suggested in only .10 of cases, and there were no age or problem form effects. This
suggests that only a small proportion of answers to the first or second indeterminacy
question are talse alarms, confirming that children were genuinely able to recognize
determinacy.

An analysis was also conducted on the proportion of the participants’
orderings correct (i.e. consistent with the premises in indeterminate problems) after the
three premises were presented, using the same factors as before. There was a main effect
of three-term versus four-term, F(1,28) = 7.85, p < .01, and of determinate/indeterminate,
F(1,28) = 25.56, p < .001. There was also an interaction of these two factors, F(1,28) =
20.54, p < .001. For the determinates the proportion correct was .96 for the three-term
problems and .87 for the four-term problems. For the indeterminates the proportions
were .97 and .98 respectively. This interaction is due to a low proportion correct for the
dcterminate four-term problems. However there was a marginally significant interaction
of these two factors with age, F(1,28) = 3.97, p = .06,indicating that the low proportion
correct for these problems was primarily due to the fact that for the 7-9 year old
participants the mean on these problems was .83 whereas for the 10-12 year old
participants it was .90. Therefore the low performance on tne determinate four-term
problems was primarily due to the 7-9 year old children.

In 94 percent of cases where participants correctly recognized that a problem
was indeterminate, they were able to construct both the alternate orders that were
consistent with the premises. There were no age or problem form effects.

To summarise the results of experiment 3, both 7-9 and 10-12 year olds can discriminate
significantly between determinate and indeterminate N-term series problems, without the
benefit of an additional prompt. However with benefit of a prompt that asks whether a
specific element could go in another position, their accuracy becomes quite high in
absolute terms, and this is not due to false alarms. They can also find the correct order of
clements in both four-term adjacent-only and three-term adjacent-and-nonadjacent
problems with high accuracy.

Model’s performance on problems in Experiment 3

A run of the model on problem forms in Experiment 3 is shown in Appendix E. On the
first three problems, the model is operating at the relational level (effort < 1.30). By
problem 4, the model is operating at the system level, and indeterminacies in the resultset
are recognized. From this point on, the model can reproduce the output of the participants
in Experiment 3. That is, it can construct an order consistent with the premises, recognize
indeterminacies, and produce the alternate order. Experiments 1-3 show that children can
map one ordered set into another, that they can recognize determinacy in an ordered set,
and that they can construct orders of elements in accordance with the premises, all
consistent with the model. A further tenet of the model is that reasoning skills, as used in
N-term series problems, are gradually constructed through experience in problem
solving, and based on previous, less domain-specific knowledge. This suggests that
cognitive development cognitive development is not to be explained in terms of a shift
from less appropriate to more appropriate strategies. In our model children have no N-
term series strategies to begin with. They have a concept of order and manipulative
knowledge that have been acquired in past experience, and with these they gradually
acquire problem solving skills.
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One way to check this is to attempt to find strategies for N-term series
reasoning. If we find that young children have well-cstablished strategies that are
incorrect, and which explain their carly failures, gradually being replaced by correct
strategies, this would disconfirm the present model. Therefore Experiments 4 and 5 will
attempt to analyse strategies used on problems of the types we have been assessing, using
4 responsc pattern analysis (sometimes known as a rule assessment) technique similar to
that of Levine (1966) or Siegler (1981).

Children’s Strategies in N-term Series Problems
Experiment 4
Method

Participants. There were 15 participants with a mean age of nine years 2
monthS (range 8-6 to 9-6) and 15 with a mean age of 12 years four months (range 11-8 to
13-6) both from a primary school in a lower-middle class suburb of Brisbane, Australia.

Apparatus was as for Experiment 3, plus a piece of cardboard with a line and
a flag on it representing the finish-line.

Problem presentation was based on colored runner-sprites as for Experiment
3. In addition there was a judge-sprite with a cup trophy in the bottom-left corner of the
screen, symbolizing the finish of a hypothetical race. The participant indicated that s/he
had comprehended the most recent premise by lining up the cardboard cutout runners,
after which the experimenter pressed a key which caused the computer to display copies
of the runner-sprites in a line-up before the judge. If premises after the first introduced
new runners, these were added to the lineup. If runners in the computer’s lineup had to
be reordered this was done by having runners hurdle one another, Sometimes the
compuiter’s line-up was consistent with the premises, and sometimes inconsistent.

Procedure. After each premise was presented, participants chose cutout
runners from a pool and arranged them in the order that they considered appropriate for
the premises presented so far. When they had done this, signalling that they understood
the premises, the experimenter pressed the key which caused the computer to update the
lineup at the judge in the bottom-left corner of the screen. The participant was then
asked to compare his/her ordering of the cutouts with the ordering produced by the
computer. If they were the same, the participant was asked if there was any other way
the runners could line up consistent with the premises. [f participant’s and computer’s
orders were different the participant was asked to say which order was correct, or whether
cither might be correct. No feedback was given for the judgments on test problems
because feedback might induce a change of strategy during the problem set, thereby
violating the assumptions of the method, that strategies must remain constant over a set
of problems used to make a diagnosis (Levine, 1966).

Problem forms. There were seven problem forms, comprising the six
possible forms of the three-term adjacent-and-nonadjacent problem, and the four-term
nonadjacent problem cd,ab,bc, as shown in Table 5. These problem forms were found to
provide the best discrimination between possible stzategies, as shown in different patterns
of responses. The order of premises within each set was the order in which the pairs of
runner-sprites were presented in the top-right corner of the screen. After each premise
was presented the computer lined up copies of the runner-sprites at the judge in the
bottom-left corner of the screen. These computer-generated orders are shown in Table S.
For the first two problem forms, the computer generated three different orders in front of
the judge (problems 1-3, 4-6 in Table 5), and it generated two orders for each of the
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remaining five problems forms (problems 7-16). Problems 1-14 were presented once
cach, and problems 15 and 16 were presented three times, making a total of 20 problems.
Each participant was presented with the complete set of problems, in random order. The
color of runner-sprite was randomly allocated to each element in a problem, with the
restriction that the same color could not occur twice in 2 problem.

Insert Table(s) 5 about here

Practice problems. The first six problems consisted of a single premise. The computer
generated a pair of runners in the top-right corner, and a copy at the judge in the bottom-
left comer. On half the trials the order of runners at the judge was consistent with the
premise, and on half the trials it was inconsistent. Participants were asked to say whether
the order of runners at the judge was consistent with the premises. The purpose was to
cnsure that participants were willing to accept or reject the computer-generated ordering,
as appropriate. The next eight practice problems were the same except that two premises
were presented. The computer-generated order was always consistent with the first
premise after the first premise had been shown (first pair stage). Following the second
premise (second pair stage), the computer-generated order was inconsistent with the first
premise on 25 percent of trials and with the second premise on 25 percent of trials.
Participants were encouraged to use the cardboard cutout runners as described for the test
problems. Strategy diagnosis

There were 7 strategies that were both identifiable on logical grounds and for
which evidence was obtained either in previous research (Maybery et al., in preparation)
or in pilot studies. These strategies may be partitioned first into those that were based on
an integration of the information in all three premises, and those that were based on only
part of the premise information. There was a single strategy in the first category, shown
as the integration strategy in Table 5. This strategy can be illustrated with the premise
sets ac,ab,bc and cd,ab,bc. With the former premise set, it would be recognized that the
order was indeterminate after the first two premises, so the alternative orders acb and abc
would be stored, or one of these orders would be stored with a marker (as suggested by
Foos et al.,, 1976) between b and ¢ indicating that the relation between them was
unknown. With the second premise set, the two premises cd,ab would be first stored
separately, or would be stored as a string with a marker between d and a indicating that
their order was unknown. Then when bc was presented, the order would be adjusted to
take account of both the most recent premise and the stored information. That is, ab
would be switched as a pair to the front of the string, giving abed. This takes account of
all the premise information. A strategy which integrates information from all premises
requires that indeterminacies be recognized. It depends on constructing partial orders,
and resolving the indeterminacies when further premises are presented.

The remaining strategies take account of only part of the premise
information. The first subcategory contains strategies based on using one of the end
terms as an anchor. In the front strategy, the term at the front of the string was identified
if it occurred first in both the first two premises. For example in the a>b,b>c problem in
Table 5, the first two premises are ab,bc, so no term occurs first, and the order is deemed
to be indeterminate. However in the first a>b,a>C problem, the first two premises are
ab,ac and in this case a occurs first in both premises, so it is used as the front element.
Any order produced by the computer that has a as the first element will be accepted. The
back strategy was similar except that it was based on the end term, identified as an
clement that was last in the first two premises.




37

The remaining strategics focussed on the most recent premise. The first of
these was the adjacent, described in the introduction. It entails placing the elements of
the last premise in the correct order adjacent to each other. Thus in the a>b,b>c problem
in Table S the orders ab,abc,acb are produced after the first, second and third premises
respectively. The incorrect order acb results from placing ¢ next to a following the last
premise, ac. The remote strategy also places clements in the order indicated by the last
premise, but places them as far apart as possible. Thus in the first a>b,a>c problem in
Table S, the first two premises, ab,ac produce the order abc, but the third premise, be
results in b being shifted to the front, yielding bac.

The adjacent-confirming strategy is similar to the adjacent strategy but is
modified so that items already in position, that are consistent with the current premises,
are left as they are. In the a>b,b>c problem, the order abe results from the first two
premises, ab,bc, then when ac is presented, this is consistent with the existing order abc,
so it is left alone. This avoids the error made in the adjacent strategy, of shifting ¢ next to
a. The sequential strategy focusses on the most recent premise, but the placement of
clements is influenced by the order in which they appear in the premises. In the first
b>c,a>c problem the first two premises are bc,ac. The sequential strategy places c last,
consistent with the premises, but since the order of b and a is indeterminate, they are
placed in the order they appear, yielding bac. The indeterminacy after the first two
premises is not recognized, as it would be in the integration strategy.

Table S shows the pattern of participants’ responses that would be expected
for each strategy. There is one pattern at the second pair stage and one at the third pair
stage. A response was scored accept (a) if the participant constructed the same order as
the computer, and said this was the only order possible, or if they constructed a different
order and said the computer’s order was correct. A response was scored reject (r) if the
participant constructed a different order from the computer, and said his/her order was the
correct one. Responses were scored indeterminate (i) if the participant constructed the
same order as the computer but said another order was possible, or if they constructed a
different order from the computer and said either order might be correct.

Insert Table(s) 7 about here

Consider, for example, problem 1. After the premises ab,bc have been presented, the
computer generates the order abc. This is consistent with the order that would have been
generated by the integration strategy. Therefore a participant using this strategy would
accept this order, so an (a) is shown for the second premise stage of problem 1 for the
integration strategy. When the third premise, ac is presented, the computer generates the
order acb. This is inconsistent with the order generated by the integration strategy, so a
participant using that strategy would reject that order, and accordingly an (r) is shown for
the third premise stage of problem under the integration strategy. On the other hand a
participant using the adjacent strategy would accept the computer’s order for problem 1
at both the second and third premise stage, so an (a) is shown for both stages under this
strategy. In problem 7, the order is indeterminate under the integration strategy at the
second premise stage, so (i) is shown at this stage for this strategy. The minimum number
of problems on which strategies differed in the responses predicted was six, summed over
second and third premise stages.

Strategy diagnosis was based primarily on acceptance of the computer’s
order because this technique has been shown to be a sensitive measure of strategies
(Briars and Siegler, 1984), and because it covers cases where children might make one of
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two or more orders, any of which they would be preparcd to accept as valid. if there is
more than one order consistent with a strategy, the child would be prepared to accept any
of them, thereby avoiding false negatives.

The accept, reject or indeterminate response made by cach participant at the
sccond premise stage, for the full set of problems, was pattern-maiched against the
pattern shown in Table 5 for cach strategy. This process was repeated for the third
premise stage.

Results

Normally a participant provided 40 judgments, summed over the second-
and third-premise stages of the 20 problems. A participant was diagnosed as having used
a strategy if at least 80 percent of his/her judgments matched the pattern for that strategy,
and if no other strategy produced an equal-best match. One of the o'der participants
completed only 17 useable trials, and one of the older and one of the younger participants
completed only 19 useable trials, due to experimental error. In this case the criterion was
80 percent of available judgments. All the rest completed 20 trials. Where a participant’s
judgments matched the patterns for two strategies equally, this was resolved by allocation
to the strategy that best matched the orders constructed by the participant. This had to be
done for three participants, and in each case the match on the orders was betier than 80
percent. The number of participants using each strategy is shown in Table 6.
Significantly more older- than younger- participants were diagnosed as having used a
specific strategy, X2(1) = 4.60, p < .05.

Insert Table(s) 6 about here

The figures in parentheses in Table 6 show how many participants could be considered
to have used a strategy if the criterion is their best-matching strategy, irrespective of the
percentage of trials that match, with equal matches being resolved as before. The mean
percentage of trials that matched the best-fitting strategy for participants who were
diagnosed by this criterion, but who did not meet the 80 percent criterion, was 70.1
percent, range 60-77.5 percent. By either criterion, the majority of participants who used
a diagnosable strategy used the integration strategy.

The data were examined for evidence of strawcgies that had not been
envisaged in the design. One strategy was found, the switching strategy, which was a
modification of the adjacent strategy, but entailed moving both the elements mentioned
in a premise. Ten occurrences were observed for the 8-9 year olds, and 14 for the 5-7
year olds, as shown in Table 9. However no participant used it consistently enough to
meet the 80 percent criterion.

In order to analyse the correctness of participants’ final order with the
cutouis, the 20 problems were divided into three categories. There were six problems in
the first category (problems one to six), eight in the second (problems seven to 14), and
because 15 and 16 were each presented 3 times, there were 6 problems in the last
category. Problems 1-6 are alike in having three terms and requiring a>b,b>c or b>c,a>b
processes as defined by Foos et al. (1976) and problems 7-14 were alike in having three
terms and producing indeterminacies at the second premise stage. Problems 1-14 were
alike in using nonadjacent relations. Problems 15-16 were alike in having four terms, and
using only adjacent relations.
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A wo (age) x three (problem type) ANOVA was conducted on the
proportion (arc-sine transformed) of final cutout orders correct. This yielded a signiicant
clfect of age, F(1, 28) = 4.37, p < .05, and of problem type, F(2, 56) = 27.60, p < .001.
The mean proportion correct for the eight- to nine-year olds was .73, and for the 11- to
[3-ycar olds was .83. The mean proportion correct for problems one- to six was .83, for
problems seven- te fourteen was .96, and for problems 15-16 was .54. The four-term
adjacent-and-nonadjacent problems are more difficult, probably because the two separate
strings cd,ab have to be held in STM and then integrated with the third premise bc.

Experiment 5.

To2 jwrpose of Experiment 5 was to examine N-term series processes used by 5-7 year
1. children, using the same method as in Experiment 4.

Participants

There were 15 children, 7 girls and 8 boys, from a campus after-school
daycas -z r2. Their mean age was 6 years, five months, range 5-8 to 7-3. There were
an ader:caal two participants who failed to reach the practice criterion, specified below,
and one wno was color-blind.

Apparatus and procedure were the same as experiment 4, except that the
practice-problem set was expanded so there were 16 two-premise practice problems
-astead of 8. Half the problems were determinate and half were indeterminate. The
criterion for practice was one determinate problem where the participant’s order was
correct although the computer’s order was incorrect, and at least one indeterminate
problem on which the participant produced an order consistent with the premises.
Participants were also required to recognize whether a premise was consistent with
his/her order, and with the computer’s order. Participants were also required to achieve
three consecutive correct problems at some point in practice. At least 8 practice problems
were given.

Results

The scoring criteria were the same as for Experiment 4, and the results are
shown in Table 6. Only 40 percent of participants met the 80 percent criterion. As with
Experiment 4, the most common single strategy was integration, but there were no
significant strategy preferences.

A one-way ANOVA was performed on poportion (arc-sine transformed) of
orders correct, with the same three levels of the problem-form factor used in Experiment
4. This yielded F(2, 28) = 31.56, p < .001. The mean proportion correct was .97 for
a>b,b>c and b>c,a>b problems, .91 for a>b,a>c and b>c,a>c problems, and .31 for four-
term problems. Again, four-term problems were most difficult.

Error analysis

Problems 15-16 were the most difficult. This would be expected because
they require two premises to be held in STM before they can be integrated. Therefore it
was thought worthwhile to examine the error patterns on these problems in more detail,
and this was done for the pooled data from Experiments 4 and 5. The most common
crror was to produce an ordering that was consistent with the adjacent strategy (i.e. bcda
or dabc). The proportion (arc-sine transformed) of errors on problems 15-16 that were
consistent with the adjacent strategy was subjected to a one-way Analysis of Variance
with three levels of age, but there was no significant effect. The mean (untransformed)
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proportion was .67, which differs significantly from the chance value of .09, t(37) = 9.11,
p < .01. (Note the dfs are reduced because some participants made no errors on these
problems). Therefore the errors that were made were consistent with the use of the
adjacent strategy, but it was not used consistently across all problems, being evident cn
the most difficult problems.

Model’s performance on problems in Experiments 4 and 5

A trace of the models output for problem forms used in Experiments 4 and 5
is shown in Appendix F. The run began with previously built relational and system level
productions in place. The production strength threshold was set at the low value of .15, so
the weaker relational productions had a chance to appear. The level of production,
relational (rel) or system (sys) is shown in Appendix F. Under "resultset" are shown the
order which the model constructed in the course of its normal operation, and the order
suggested in accordinance with the methodology of Experiments 3 and 4. Where sysem
level productions are fired, the model tends to construct an order consistent with the
premises, and correctly deals with the suggested order by accept, reject, or indeterimate
judgments.

In the instances of problem form 11 which occur in Appendix F, the
indeterminaCy marker was lost from the resultset due to random memory failure, as
suggested in the work of Foos et al., (1976), discussed earlier. This causes errors, mainly
on those problem forms which entail a high memory load. This is true of problem form
11 (Table 2), with premises ¢>d, a>b, b>c, because a string of four elements, cdab, plus
the indeterminacy marker, must be held in short term memory after processing the
sccond premise. This simulates the periodic errors made by both children and adult
participants on this problem form.

Conclusions from Experiments 4 and 5.

Two strategy-diagnosis experiments have shown that no single strategy
appears to give an adequate account of N-term series performance by children aged 5-13
years. Quite a high proportion of children appeared to use no diagnozable strategy with
80 percent consistency, and this was more true for younger participants. Interpretation of
this finding should be made in recognition of the possibility that there may have been
inaccuracies of diagnosis. Nevertheless close inspection of the strategies by independent
observers did not disclose any consistent pattern in undiagnosed performances. Another
alternative is that some participants, particularly the younger ones, did not use a single
strategy, but changed their procedure from time to time.

The evidence is consistent with the theory that N-term series reasoning
processes are gradually acquired piecemeal, on a problem-by-problem basis. Incorrect
performances are not caused by incorrect strategies, in the sense of generalized
procedures that apply to all problems, but simply reflect inadequately developed skills.
These skills are acquired gradually, as experience with a variety of problem forms
accumulates.

General Discussion

This paper has presented a computer simulation of the development of a
problem solving skill in a particular domain, N-term series reasoning or transitive
inference. However the principles incorporated in this model are likely to apply to other
domains, and to that extent it might be regarded as a general theory of the development
of reasoning skills.
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The immediate aims of tiie model were to account for previous data on N-
term series reasoning, and to predict some hitherto unobserved aspects of the process. In
respect of the first aim, it has been shown that the model can account for the way people
acquire the ability to construct an ordered set in working memory. This process has been
central to previous models of N-term series reasoning (Foos et al., 1976; Sternberg, 1980;
Trabasso, 1977). What the present model adds is an account of how this ability is
acquired. The specific strategies or skills required to construct an ordered sct consistent
with the premises are not assumed, but are developed as the system gains experience with
the task.

Another aspect of previous work on N-term serics is the difficulty of
integrating premises. There is evidence that young children, and adults when unfamiliar
with the task or under high processing loads, tend to process premises singly, without
taking sufficient account of previous premises (Baylor & Gascon, 1974; Halford, 1984;
Halford & Kelly, 1984). More sophisticated, or more competent performers integrate
premises, finding a solution that is consistent not only with the most recent premise but
with previous ones as well. It has also been shown that premise integration is associated
with high processing loads (Maybery et al., 1986; Halford et al., 1986). All these premise
integration phenomena have been incorporated into the model.

Another source of failure in N-term series reasoning is the tendency to
encode premises in absolute rather than relational terms (Breslow et al., ; Perner &
Mansbridge, 1983; Siegler, 1989; Sternberg & Rifkin, 1979). Simulation of premise
encoding would require a natural language processing model and is beyond the scope of
the present project. However the type of encoding might well be a consequence, rather
than a cause, of difficulty in integrating premises. The reason is that if premises are
processed separately there is no need to avoid absolute labels. For example, if we say Bill
is taller than John, no conflict results from coding Bill as tall and John as short. ConSict
does occur however if we consider two premises jointly. Consider Bill is taller than John
and John is taller than Mike. The problem now is that John is coded as both tall and
short. Absolute coding therefore causes conflict when premises are considered jointly. If
participants are unable to process premises jointly because of processing loads, but are
restricted to processing them serially (one-at-a-time) there is less incentive to avoid
absolute encoding. Thus absolute encoding could” be consequence of information
processing demands. If however premises are processed jointly a coding scheme must be
adopted which avoids conflict; e.g. large, medium, small, or top, middle, bottom. Thus
coding might be a consequence of the amount of information that processed in a single
decision.

The present model predicts that young children should have the ability to
map one ordered set into another, because this structure mapping ability is a core feature
of the model. Experiment 1 shows that most 5-year old children do this. The specific
ability to map ordered sets does not appear to have been assessed previously, but it
should be noted that a mapping of this form is an example of what Gentner (1983) calls
systematicity, because it is based on a coherent set of relations. However Gentner &
Toupin (1986) found that 5-7 year olds were not able to make structure mappings based
on systematicity. The observation that S-year olds can do so is therefore both new and
important to the theory of N-term series reasoning.

We have also shown that children can recognize whether the order of a set of
clements is determinate. Recognition of indeterminacy is postulated in the model of
Sternberg (1981), but children’s ability to perform this task has not been tested
previously. Doubt as to whether they can do so is caused by controversy as to whether
they can recognize that a logical argument (based on two categorical premises) is
determinate (see Halford 1989 for a review). Experiments 2 and 3 show that they can do
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so, consistent with the model. This does not necessarily imply that the can recognize
when a logical argument is determined, or can recognize logical necessity, because the
tasks are too different to permit exirapolation from cae to the other.

The study has also shown that stratcgies are unlikely to be the explanation
for pcrtormance on N-term series tasks. Experiments 4 and S failed to find evidence that
failures on N-term series rcasoning were attributable to incorrect strategies. Consistent
with this finding, the model does not use strategies as the cause of behaviour, but treats
strategies and skills as phenomena that need to be explained. It is consistent in this
respect with the planning net models of Van Lehn and Brown (1980) and Greeno et al.
(1984). A planning net is a directed graph in which the nodes are plans or strategies, and
the links between the nodes are constraints exercized by the task concept on the
strategies. Planning nets have been used by Greeno et al. (1984) to develop a model of
how a child’s concept of number constrains counting strategies. Our model shows how a
concept of order can constrain the development of N-term series reasoning skills.

However our model differs from previous planning net models in two
significant ways. The first is that it permits concrete experience with specific content to
provide the declarative knowledge base for development of reasoning skills. That is,
experience with specific ordered sets can be used as the basis for a concept of order,
which in turn can constrain the development of N-term series reasoning skills. By
contrast Greeno et al. (1984) postulate knowledge of universally valid logical rules,
which are probably innate. We do not object to postulating the existence of such
knowledge, but believe that a role must be provided for empirical knowledge as well,
because not all reasoning skills can be based on innate knowledge. Furthermore logical
rcasoning principles appear to have limited power to explain human reasoning (Halford,
1990).

Use of content-specific, experience-based knowledge to constrain acquisition
of reasoning skills is made possible in our model by the use of analogical mapping. This
is the second way that our model differs from previous planning net models. Analogies
have the advantage that they permit concrete instances of concepts to be used as a basis
for inferences that go beyond those instances. Analogies are a form of abstraction, as
was pointed out in the introduction. They make it unnecessary to postulate knowledge of
abstract, universally valid, logical rules or principles, because specific instantiations of
those principles can suffice. In our model a representation of an ordered set of at least
three elements serves as a concept of order, and permits children to reason as though they
understood the abstract concept of order.

The third way that our model differs from previous planning net models is
that it does not postulate that understanding operates throughout all performances of a
cognitive task. Previous planning net models have modelled the role of understanding in
the sense that they have shown how a concept of the task constrains the development of
strategies. The present theory entails a role for understanding in this way, but it also
postulates that once skills, modetled as production rules, are acquired, understanding is
no longer required. When a production exists for a particular task it simply fires,
cquivalent to automatically performing a task we already know how do. Understanding is
only invoked when it is necessary to acquire a new problem solving skill.

The model aiso blends metacognitive and associative strategy selection
mechanisms. Planning net models are essentially metacognitive models, in that they
model the way strategies and skills are developed under the constraint of declarative
knowledge. However as Siegler’s (1989) work has shown, a great deal of strategy growth
and development can be account for by associative mechanisms. In the present model
strategies are strengthened or weakened, once they are acquired, by associative learning

44
L.l




43

mechanism. Furthermore associative mechanisms are the first resort, because
performance is based on existing skills where they are applicable, and development
procceds by strengthening or weakening the processing underlying these skills. It is only
if existing skills are not applicable that resort is had to metacognitive mechanisms.

The model also posulates that processing loads play a role in skill
acquisition. The specific mechanism postulated in this paper entails using a previously
experienced ordered set as an analog of the order which must be constructed to perform
the task. As explained in the Introduction, this entails structure mapping, which inmposes
a processing load. The general principle is that analogical reasoning imposes a high
processing load when more than one relation (or large amounts of structural information)
must be processed in a single mapping decision. A lot of N-term serics reasoning entails
mapping two or more relations into an ordering schema, and the joint processing of two
relations imposes a high processing load.

This processing load is separate from memory loads that might apply during
other aspects of task performance. It is distinct from the short term memory load imposed
when an ordered set is stored in working memory during processing of the premises. The
short term storage load applies whenever information has to be stored for later use, and is
distinct from processing load, which is imposed by information that is actually being
processed. This distinction is considered in more detail, together with supporting
evidence clsewhere (Halford, in press, Chapter 3). Structure mapping, which occurs when
reasoning skills are being developed, imposes a processing load. This load does not
occur once skills are acquired.

Transitive inference has been associated with a history of failure in youn

children, the causes of which have been the subject of much controversy (Halford, 1989).
It has been proposed that there are a number of sources of false negatives in the tests that
have been used, but Halford (in pressa,b) has argued that these factors, while important,
do not completely explain the difficulties experienced, especially the rather persistent
problems exhibited by young children. Furthermore Halford et al., (1986) and Maybery
et al. (1986) have shown that the processing load associated with premise integration is a
source of difficulty for both children and adults.

The STAR model of analogical reasoning outlined earlier provides a new
account of these processing loads. It implies that because transitivity is a 3-dimensional
concept (based on a ternary relation), representation of the transitivity principle requires a
rank-4 tensor product, which is computationally costly. This produces a tendency to
default to lower dimensional representations, in which only one binary relaticn can be
represented at a time.

The present model implies that one of the things that develops is the ability
to represent integrated relations. Young children, as well as older children and adults
under lower effort or high conflicting loads, tend to represent only one relation. This can
be compared to Siegler’s (1981) principle that children first represent a variety of tasks,
including proportion, balance scale, and conservation, in terms of a single, dominant
dimension, and only later integrate this with the second, subordinate dimension. For
example, in the balance scale, early representations tend to be based on weight, which is
progressively integrated with distance.

The progression observed in this research from representations based on one
relation to those which integrate two relations, and Siegler’s finding of progression from
representation of a single, dominant dimension to integration of dominant and
subordinate dimensions, can be seen as two cases of a common principle. Both imply
that development entails progression to representations of higher dimensionality. This
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appears to be emerging as one of the fundamentally important principles of cognitive
development.

Transitive inference has been associated with Piaget’s (1950) concrete
opcrational stage of cognitive development. The present model, unlike Piaget’s, is not
based on psycho-logic, but emphasizes learning and reasoning mechanisms more in
keeping with the theory of Anderson (1983, 1987). Nevertheless it would explain why
transitive inference has been found to be a difficult task for young children. The high
processing load imposed by the requirement to map premises into an ordering schema
would place an especially heavy burden on young children. Note that the basic
mechanisms are the same at all ages, and the processing load is the same for any
participant at a given level of expertise. It appears however that young children cannot
construct representatins of sufficiently high dimensionality to understand transitivity. As
Halford (in press) has suggested, the observations that gave rise to Piaget’s stage theory
might reflect the development of representations of higher dimensionality, and tensor
products of higher rank, with age.

The model is generally consistent with Anderson’s (1983) ACT* model, and
with Anderson’s (1987) theory of skill acquisition. It postulates the use of domain-
general methods such as analogical reasoning and means-end analysis to construct skills,
based on previously acquired declarative knowledge. In its present form it does not
incorporate the compilation and proceduralization postulated by Anderson (1987). These
processes could be used to explain gains in efficiency as a result of further experience
with the task. However the aim of the present project has been to simulate the acquisition
of basic reasoning skills in the domain of N-term series. It also had the aim of providing
a sufficiency test tor some basic developmental mechanisms, which will be considered in
the next section.

Developmental significance of the model

A fundamental problem for cognitive development is to explain how
children acquire cognitive processes that are autonomous and adaptive, so the child can
deal with situations and problems that could not have been anticipated. This implies the
ability to develop strategies which meet task demands as they arise. It is not sufficient to
explain children’s performance by describing the strategies they use, because the really
important problem is to account for the development of the strategies. To account for
children’s transitive inferences by defining their strategies is undoubtedly useful,
especially if the strategy is defined precisely, and is rigorously validated. Some earlier
models of this kind formed an important foundation for this project. But to treat the
strategy as the explanation for the performance is tantamount to assuming that the
strategy somehow preexisted, specifically for performing that task. It is like assuming
that child has a program for performing transitive inferences in the laboratory. Actually
however there is no reason why a child should be equipped to perform transitive
inference tasks in a laboratory. Such performances are of interest only because they
reflect the autonomous, adaptive processes by which a child manages to cope with a
multitude of problems in real life. Research on these performances is useful to the extent
that it tells us about these adaptive processes.

We began therefore with the assumption that there is no reason why children
or adults should have preexisting strategies for performing laboratory-based transitive
inferences. When asked to do so, they build strategies that draw on past knowledge, and
which meet the unanticipated demands of the task. That knowledge was not acquired
with the purpose of using it in this way. It might have been acquired for a quite different
purpose, or might have been acquired through relatively aimless exploration of the world.
The problem then was to explain how knowledge of the world, acquired for a different
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purpose or without any purpose, can be adapted to meet the demands of an unanticipated
problem. This seems to us to be more a "real-life" situation than most experimental
paradigms.

The task demanded that children take a set of relational premises, and make
certain inferences that follow from the set, but which cannot be made from any premise
taken alone. This entails integrating the premises into an ordered set. The knowledge
required to do this includes the concept of an ordered set. It was necessary therefore to
cxplain the nature and origin of this concept. For reasons given carlier, it is unlikely that
children have a formal mathematicaj definition of an ordered set, or even domain-general
principles that relate to it.

The solution which seemed plausible to us was to assume that children
acquire experience with specific, concrete examples of ordered sets, through play and
general interaction with their world. Those experiences would be stored in memory, not
for the purpose of solving N-term series problems, but simply as part of the child’s world
knowledge. The next problem was to explain how such knowledge could be used to guide
the development of reasoning strategies.

Analogical reasoning proved very useful. Analogies are by no means new in
models of skill acquisition. For example, Anderson’s (1987) model incorporates
analogies between the current problem solving step and a step taken in similar
circumstances, in a related context, previously. However our use of analogy differs in that
it enables knowledge acquired in a completely unrelated context to be used to guide the
building of strategies for an unanticipated task. We believe this feature of our model
captures an important aspect of the autonomous, adaptive processes that are fundamental
to cognitive development.

It is also this step which imposes the processing load. Learning, in the sense
of building up a store of representations of the world, does not appear to impose a
significant processing load. We appear to be well equipped with efficient mechanisms
which detect regularities in the environment, and mental models of such regularities can
be built up in small increments, without apparent effort. Processes by which this occur
have been discussed elsewhere (Halford, in press; Holland et al.,, 1986). Significant
processing loads are observed when it is necessary to map such experiences into new
problems. The size of the loads depends on the complexity of structure which must be
mapped. According to the STAR model of Halford et al, (in press) the load occurs
because of the type of representation that is required for these structures. The important
point here is that it is the need to map one structure into another that imposes the load.

This means that very young chiidren might well have examples of ordered
sets stored in memory, and might be able to learn N-term series strategies, if
appropriately taught. What they evidently find difficult is to map their stored experiences
into the tasks demanded of them. Thus they find it difficult to develop strategies for
structurally complex tasks autonomously, based on their own representation of the task.
To use an old fashioned word, they find it difficult to develop strategies with
understanding.

There are other aspects of autonomous, adaptive behavior which are also
captured by the model. One is that children should recognize when strategies are
inappropriate. A clear case is that they should not be applied mindlessly to N-term
problems which are unsolvable. Our data show children can do this, and the model shows
that strategies based on knowledge of the world can reproduce this aspect of adaptive
cognition. Thus the model is adaptive and autonomous in this sense also. Therefore we
suggest that the computational model provides a sufficiency test for a theory of processes
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underlying adaptive, autonomous strategy and skill acquisition.
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Appendix A
Productions existing before the model begins operation.

Productions - for getting premises
- for reporting on solution states
- for retricving info from itm

. If there 1s nothing else to do, do something,.
(READY

(

(FLAG (wm waiting))

(<not> (FLAG (get feedback)))
)

>

(
($clear-dm wm)
($add-to wm (GOAL (do-something)) 1 1 1)

)

)
0.4

:Af the goal is 1o do something, read in more input
(GET_NEW_INPUT

((GOAL (do-something))

->

( .

(Sadd-to wm (INPUT ((Sinput-line))) 1 1 0)
(Sdelete-from wm (GOAL (do-something)))
)

)
0.3

; If the new input is recognised as a command, accept it
; as a goal to fulfill.
; Valid commands:- add, restart, stop, report, say, other.

(NEXT_COMMAND

(INPUT (=new-input))
(@ltm (recognized-commands !f =new-input !b))

->

(
(Sadd-to wm (GOAL (=new-input)) 11 1)
($delete-from wm (INPUT (=new-input)))
)

)

; Get next premise interactively and set goal to integrate-premise.
(ASK_FOR_PREMISE

(

(GOAL (=reply) )

(*or(*equal =reply add)}(*equal =reply ADD) )
)

->

(Swritecr Enter the premise: )
($add-to wm
(premise ((Sinput-line))) 11 0
(GOAL (integrate-premise)) 1 1 1

)
(3delete-from wm (GOAL (=reply)))
)

i}
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)
» I result set 1s empty add first premuse directly.
(INTEGRATE_FIRST_PREMISE

(

(GOAL (integrate-premise))
(<not> (result sct (=rel =rset)))
(premise (=ot{ =rel =ob2))
>

(Sdelete-from wm
(GOAL (integrate-premise))
(premise (=obl =rel =0b2))

($add-to wm
(GOAL (do-something)) 1 1 1
(result set (=rel (=obl =0b2))) 11 0

(Strace-results (=obl =rel =ob2) (=obl =0b2))
)

» I result set is not empty add a goal to search for
; premise elements in resultset.

(INTEGRATE_OTHER_PREMISES

(

(GOAL (integrate-premise) )

(<not> (MATCHLIST {matchlist))

(<not> (FLAG (result-set-modified)));23-3-91
(result set (=rel =resultset) )
->

(Sadd-to wm (result set (=re! =resuliset)) 11 0)
($add-to matchmem
(GOAL (make MATCHLIST)) 111
(MATCHSET =resultset) 1 1 0

(Scall mm)

)
(TRY_EXISTING_STRATEGIES

scheck new-pm for existing strategies,
;if there are none,
;production STRATEGIES_TRIED sets the goal to build a new production.

(
(GOAL (integrate-premise))
(MATCHLIST =list1 =list2)
(result set (=rel =resultset))
(<not> (FLAG (STRUCTURE MAPPER called)))

->
(Scall pm new-pm )
)

» This production allows the model to continue though
; NO strategy already exists.

(STRATEGIES_TRIED

(MATCHLIST =list1 =list2)
(<not> (GOAL (build a production)))

ant
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>

(

(Sadd-to wm (GOAL (build a production)) 1 1 1)
(Scall pm)

)

)
05

: Production which fires in pm after new-pm strategy is applied.
; This prevents another premise integration Cycle beginning.
; It would fail as some conditions are removed by new-pm strategy productions.

(STRATEGY_APPLIED

(

(FLAG (result-set-modified))
(result set (=rel =resultset))
(premise =premise)

)

>

($Strace-results =premise =resultset)
(Sdelete-from wm
(FLAG (result-set-modified))
(GOAL (integrate-premise))
(GOAL (build a production))
(premise =premise)

)
(Sadd-to wm (GOAL (do-something)) 1 1 1)

)
)

; Once premise is integrated, set goals to look for
; fresh input.

(READY_FOR_NEW_PREMISE

(<not> (premise =premise))
(result set (=rel =resultset))

)

->

(

(Sdelete-from wm (GOAL (integrate-premise)))
(Sadd-to wm (GOAL (do-something)) 1 1 1)

)

)

; If trying to achieve a goal, and there is nothing else
; to do, find a concept that is linked with that goal in Itm.

(MAP_GOAL_TO_CONCEPT
(
{(GOAL (build a production))

(<not> (FLAG ( UCTURE MAPPER called)))
(<not> (FLAG (result-set-modified)))

(@ltm
(=name
!headlist
(strategy 'head (=goal (map-concept =concept) !rest) tail)
'taillist)
)
)
->

(
($add-to wm (GOAL (check =concept)) 1 1 1)

)
)

; If wanting to check the current state of wm against a concept of order,
; call the Structure Mapper, giving it the current premise and resultset.

(CALL_STRUCTURE_MAPPER

()
()




(
(GOAL (check concept-of-order))
(premise =premise)
(result set (=rel =resultset))
(<not> (FLAG (STRUCTURE MAPPER called)))
)

>

(

(8add-to wm
(FLAG (STRUCTURE MAPPER called)) 111
(result set (=rel =resultset)) 1 10
(premisc =premise) 1 10

(Sdelete-from wm
(resuilt set (=rel =resultset))
(premise =premise)
(GOAL (check concept-of-order))

)
(Sconsider sm)
(Scall sm)

)

; Elcments are added to the matcher memory so that a fealure-list
; will be built.

(MATCH_ON_SMRESULT

(smresult set =smresult)

(FLAG (STRUCTURE MAPPER called))
(premise (=obl =rel =0b2) )

(<not> (GOAL (find-ltm-match)))

(<not> (SM_MATCHLIST !list1))

)

->

(3delete-from wm (smresult set =smresult))
($add-to matchmem
(GOAL (make SM_MATCHLIST)) 111
(GOAL (find-Itm-match)) 1 11
(MATCHSET =smresult) 110

)
($call mm)

)
)

(BUILD_A_NEW_BODY

(

(GOAL (build a production))
(NEWPERFORM =perform)
(MATCHLIST (=0b1 !restl) (=ob2 !rest2))

->

(
(Sdelete-from wm (NEWPERFORM =perform))
(Sadd-to wm (BODY

(=name

(result set (/=rel /=resultset))
(MATCHLIST (/=obl !restl ) (/=0b2 !rest2 ))
)

-

(
(/$delete-from wm (MATCHLIST (/=ob1 !restl) (/=0b2 !rest2)))
(/Sdelete-from wm (result set (/=rel /=resultset)))

(/Sadd-to wm (result set (/=rel
((/$perform =perform /=ob1 /=resultset /=0b2 )))) 1 1 1)

(/Swritecr =perform performed)
(/$add-to wm (FLAG (result-set-modified)) 1 1 1)

)




)1 10)
)
)

(BUILD_A_PRODUCTION

(

(GOAL (build a production))

(BODY =body)

(*not (*already-buill =body new-pm))
(SM_MATCHLIST (=0bl =E =F)(=0b2 =G =H))
)

->

(
(Sbuild-in new-pm =body)
(Sdelete-from wm
(GOAL (build a production))
(GOAL (do-something))
(FLAG (STRUCTURE MAPPER called))
(BODY =body)
(SM_MATCHLIST (=obl =E =F)(=0b2 =G =H))
)
)
)

; Retrieve an operator from Itm to make transition from
; current to goal state.

(MATCH_AGAINST_LTM
(

(consider =a-number-of =relations)
(MATCHLIST (=0bl =A =B)=0b2 =C =D))
(SM_MATCHLIST (=obl =E =F)(=0b2 =G =H))
(GOAL (find-ltm-match))

(@htm

((considering =a-number-of =relations)
((=1tm-ob1 !frontl =A 'midl =B !endl )
(=ltm-0b2 !front2 =C !mid2 =D lend2 )
=perform
(=ltm-ob1 !front3 =E !mid3 =F !end3 )
(=Itm-0b2 !front4 =G !mid4 =H 'end4 ))))

)
->
(
($add-to wm (NEWPERFORM =perform) 1 1 0)
(Sdelete-from wm (GOAL (find-ltm-match)))

)
)

; If the command is to stop, call the finishing prod's

(FINISH

(

(GOAL (=reply) )

(*or(*equal =reply stop) (*equal =reply STOP) )
)

->

(Send-trace)
($add-to wm
(FLAG (halt)) 1 1 1
(FLAG (wm waiting)) 1 1 1
(FLAG (get feedback)) 11 1
(=reply) 110

)
)

; Call an explicit halt,

(é‘IALT




(FLAG (halty)
)
->

(

(Sdelete-trom wm (FLAG (halt)) )
(Shalt)

)

)
(RESTART_NEW_PROBLEM

(

(GOAL (=reply) )

(*or(*equal =reply restart)(*equal =reply RESTART) )
)

->

(Strace-new-problem)
($add-to wm
(FLAG (wm wailing) )
(GOAL (get-feedback))

)

)
(FEEDBACK_COMMAND

((GOAL (get-feedback))
(<not> (FLAG (no-feedback)))
)

11
11

——

->

(
(Sdelete-from wm (GOAL (get-feedback)))
($add-to wm
(FLAG (get feedback)) 111
(GOAL (do-something)) 11 1
)
)

)
0.7

(GET_FEEDBACK

(

(INPUT (=reply))

(result set (=rel =resuitset) )
(FLAG (get feedback))

)

->

(Swritecr)
($writecr "result set =" =resultset )
(Swritecr)
(Swritecr "enter the correct result €g. (a b ¢) or (indeterminate)")
($add-to wm
(correctset is =reply) 1 1 0
(GOAL (give feedback )) 111
(GOAL (do-something )) 1 11

)

(Sdelete-from wm
(FLAG (get feedback))
(INPUT (=reply))

)

)

)
0.65
(GIVE_POS_FEEDBACK

(

(GOAL (give feedback))
(result set (=rel =resultset) )
(correctset is =correctset)
(*equal =resultset =correctset)
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)

>

(

(Swriteer "GIVING FEEDBACK TO LATEST ACTION™)
(Sdelete-from wm (GOAL (give feedback)))
(Sstrength-feedback new-pm + 0.1)

(Swritccr "STRENGTH FEEDBACK DONE")
(Swritecr)

(Supdate-cffort +)

{Swritecer "EFFORT UPDATE DONE")
(Swritecr)

(Sdelete-from wm (correctset is =correctset))
)

)
0.65

(INDET_RESULT_POS_FEEDBACK

(

(GOAL (give feedback))

(result set (=rel (f << 'ml * !m2 >> !b)) )
(correctsel is (indeterminate))

)

>

(

(Swritecr "GIVING FEEDBACK TO LATEST ACTION")
(Sdelete-from wm (GOAL (give feedback)))
($strength-feedback new-pm + 0.1)

(Swritecr "STRENGTH FEEDBACK DONE")

(Swritecr)

(Supdate-cffort + )

($writecr "EFFORT UPDATE DONE")

(Swritecr)

(Sdelete-from wm (correctset is (indeterminate)))

)
)
0.65
(GIVE_NEG_FEEDBACK

(

(GOAL (give feedback))

(result set (=rel =resultset) )
(correctset is =correctset)

(*not (*equal =resultset =correctset))

->

(

($writecr "GIVING FEEDBACK TO LATEST ACTION")
(Sdelete-from wm (GOAL (give feedback)))
($strength-feedback new-pm - 0.25)

($writecr "STRENGTH FEEDBACK DONE")

($writecr)

(Supdate-effort - )

(Swritecr "EFFORT UPDATE DONE")

(Swritecr)

($delete-from wm (correctset is =correctset))

)

)
0.65

; A series of productions for coping with exceptions.

; If no Itm match is found, raise effort and relax strategy
; selection threshold to increase likelihood of a match in future.

(LTM_MATCH_FAILURE
(

(MATCHLIST (=obl =A =B)=0b2 =C =D))
(SM_MATCHLIST (=obl =E =F)(=0b2 =G =H))
(GOAL (find-Itm-match))

)

->
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{
(Sup-cffort)
(Salter-new-pm-sclection-threshold -0.05)
(Sdelete-from wm
(GOAL (find-itm-maich))
(FLAG (STRUCTURE MAPPER called))
(BODY =body)
(GOAL (build a production))

($add-to wm (bad-choice =ncw-sym) 10 1
)
)

)

; Two competing processes are working here. On one hand effort is increased

; so that if the model is close to a strategy transition threshold, it has the
; opportunity to cross.

: On the other, the criterion for considering unsuccessful productions is
; relaxed so that in the absence of fitter strategies, some existirg strategy
; may operate.

; A third point is that there is a cut-off applied so that if the model is

; completely unable to solve a problem it escapes by abandoning it.

(BAD_CHOICE

(

(BODY =body)
(*already-built =body new-pm)
)

->

(

(Sup-effort)
(Salter-new-pm-selection-threshold -0.05)
(Sprint-new-pm-selection-threshold)
(Sdelete-from wm

(FLAG (STRUCTURE MAPPER called))
(BODY =body)

($add-to wm (bad-choice =new-sym) 1 0 1)
)
)

; If the current result set contains an indeterminacy,
; and the model has aireday failed to recover any appropriate
; operator, try ignoring the indeterminacy.

(ABANDON_INDET

(MATCHLIST !f (=ob =indic indet) !b)

(result set (=rel =resultset))

(bad-choice =cl)

(bad-choice =c2)

(*not (*equal (bad-choice =c1) (bad-choice =c2)))
)

->

(

($delete-from wm
(MATCHLIST !f (=ob =indic indet) !b)
(result set (=rel =resultset))

)
($add-to wm

((Slose-matchlist-indet (MATCHLIST !f (=ob =indic indet) !b))) 0.51 0
(GOAL (find-ltm-match)) 11 1

(result set (=rel (Sremove-old-indeterminacy (=resultset)))) 11 0

)
)
)

(ABANDON_CURRENT_PROBLEM
(

(GOAL (integrate-premise))
(MATCHLIST =listl =iist2)




(bad-choice =cl)
(bad-choice =c2)
(bad-choice =c3)
(*not (*equal (bad-choice =c1) (bad-choice =c2)))
(*not (*equal (bad-choice =c1) (bad-choice =c3)))
(*not (*equal (bad-choice =c2) (bad-choice =c3)))
)

—->

(3delete-from wm
(bad-choice =cl)
(bad-choice =c2)
(bad-choice =c3)
(main goal (=goal))
(GOAL (integrate-premise))
(MATCHLIST =listl =list2)

($add-lo wm
(FLAG (problem-abandoned)) 1 1 1
(GOAL (do-something)) 111
($setq latest-action® nil) ;ensure no feedback given in error
)
(LOOK_FOR_RESTART
(

(premise =arg)

(FLAG (problem-abandoned))

(INPUT (=reply) )

(*or (*equal =reply restart)(*equal =reply RESTART)
(*equal =reply stop) *equal =reply STOP)

)

->

(
($delete-from wm (FLAG (problem-abandoged)))
($add-to wm (FLAG (no-feedback)) 1 1 1)

(Sinput-line) ;throw away feedback info from input file
)
)
(IGNORE_OTHER_GOALS
(
(FLAG (problem-abandoned))
(GOAL (=reply) )
(@Itm (recognized-commands !f =reply !b))
)

->

(

(Sdelete-from wm (GOAL (=reply)))
(Sadd-to wm (GOAL (do-something)) 1 1 1)
)

)

; If a problem has already been abandoned as insoluble,
; ignore further information,

(IGNORE_INPUT

(

(INPUT (!new-input))
(FLAG (problem-abandoned))
)

>

(
(Sdelete-from wm (INPUT (!new-input)))
($add-to wm (GOAL (do-something)) 111)

)
(RemoveSMFlag
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(smresult set =smresult)
(FLAG (STRUCTURE MAPPER called))
)

->

(
(Sdclete-from wm (FLAG (STRUCTURE MAPPER called)))
)

)
0.5

; Productions which output a judgement on the state of the result set.
(JUDGE

((GOAL (=reply))
)(‘or (*equal =reply judge) (*equal =reply JUDGE))

->

(

($delete-from wm (GOAL (=reply)))

(Sadd-to wm (GOAL (say-if-compatible)) 1 1 1)
)

)
(ASK_FOR_ORDER

((GOAL (say-if-compatible))
)
->

($writecr possible order please), in the form : (x yz))
($add-to wm (correct? (Sinput-line)) 1 1 1)
(3delete-from wm (GOAL (say-if-compatible)))
)

)

(ACCEPT

(correct? =order)
(result set (=rel =order))

->

(Sjudgement-trace =order accepted)
(writecr Order: lorder is correct)
($add-to wm (GOAL (do-something)) 1 1 1)
($delete-from wm (correct? =order))
)
)

(INDETERMINATE
(

(correct? =order)

(result set (=rel =resultset))

(*or (*equal =order (*perform remove_indet obl =resultset ob2))
(*equal =order (*perform switch ob1 =resultset ob2)))

->

($judgement-trace =order order-indeterminate)
($dm-dump wm dmfile)
(writecr Order: !order is indeterminate)
($add-to wm (GOAL (do-something)) 1 1 1)
($delete-from wm (correct? =order))
)

)

(REJECT
(
(correct? =order)
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(result set (=rel =order2))
(*not (*equai =order =order2))

->

{$judgement-tracc =order rejected)

(writecr Order: 'order is incorrect)

(Sadd-to wm (GOAL (do-something)) 1 1 1)
(Sdelete-from wm (correct? =order))

)
)

(OUTPUT_AN_ORDER

(GOAL (say-order))
(result set (=rel =resuitset))
(*not (*member * =resultset))

>

(Swritecr order is =resultset)
(Sjudgement-trace "order is " =resuitset)
(Sdelete-from wm (GOAL (say-order)))
(Sadd-to wm (GOAL (do-something)) 1 1 1)
)

)
0.4

(OUTPUT_ONLY_ORDER

(

(GOAL (other-order))

(result set (=rel =resultset))
(*not (*member * =resultset))

—->
(Sjudgement-trace "there is no other order” " ")

(Sdelete-from wm (GOAL (other-order)))
(Sadd-to wm (GOAL (do-something)) 1 1 1)

)
)
04

(OUTPUT_BEST_INDET

(

(GOAL (say-order))

(result set (=rel (!f * !b)))

)
->

(

(Swritecr order is ($Sperform remove_indet ob1 (!f * 1b) ob2)}
($judgement-trace "order is" ((Sperform remove_indet obl (!f * !b) ob2)))
($delete-from wm (GOAL (say-order)))

($add-to wm (GOAL (do-something)) 1 1 1)

)

)
(OUTPUT_OTHER_INDET

(
(GOAL (other-order))
(resuit set (=rel (!f * 'b)))

->

(
(Swritecr order is ($perform switch obl (!f * !b) ob2))
($judgement-trace "order is " (($perform switch obl (!f ~ !b) ob2)))
(Sdelete-from wm (GOAL (other-order)))
($add-to wm (GOAL (do-something)) 1 1 1)
)

)

(=g
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(SAY_ORDER

(

(GOAL (=rcply))

(*or (*equal =reply say) ("cqual =rcply SAY))
)

>

( .
($add-to wm (GOAL (say-order)) 1 1 1)
(Sdelcte-from wm (GOAL (=reply)))

)

)

(OTHER_ORDER

(GOAL (=reply))
(®or (*equal =reply other) (*equal =reply OTHER))
)

->

((Sadd-to wm (GOAL (other-order)) 1 1 1)
(Sdelete-from wm (GOAL (=reply)))

)
)

; report on the state of the problem.
(REPORT

((GOAL (=reply))
(*or (*equal =reply report) (*equal =reply REPORT))
)

->
(
(Sadd-to wm (GOAL (say-if-decidable)) 1 1 1)
)

)

; Print a message if a problem is undecideable,
; i.e. the result set is indeterminate.

(UNDECIDABLE_PROBLEM

(
(GOAL (say-if-decidable))
(result set (=relationx (!front << lob1 * lob2 >> !rest)))

-->

(

(Swritect The problem is undecidable. The order of lobl and !ob2 is unknown.)
(Sdelete-from wm (GOAL (say-if-decidable)))

($add-to wm (GOAL (do-something)) 1 1 1)

)

)
; Print a message if a problem has an unambiguous solution.
(DECIDABLE_PROBLEM
(
(GOAL (say-if-decidable))
(resuit set (=relationx !resultset))
(<not> (result set (=relationx (!front << !obl * 1ob2 >> !rest))))

-->

(Swritecr The order is determinate. The order is )
(Swrite !resultset)

(Sdelete-from wm (GOAL (say-if-decidable)))
($add-to wm (GOAL (do-something)) 1 1 1)

)

)




)iend build-in pm

; The following productions fire sequentially to build up a feature list for cach object
. in the current premise, based on 1ts position in the current result set.

: The two elements: (GOAL (make =matchlist)) and (MATCHSET 'REST) are placed

. in malchmem by the productions, INTEGRATE_OTHER_PREMISES and
MATCH_ON_SMRESULT,

; which call the matching memory (mm).

: Indet is f{irst noted, then removed before {inding the other features.
; So the matchlist has the form:

: ((ob1 absentlpresent|frontjback unmarked]indet)
(ob2 absent|present|frontfback|in-front unmarked}indet))

(build-in mm

; If you have a goal to {ind the features associated with the
; objects in the current premise, as they occur in the result set,
; then tag each object so it can be fed through the matching productions.

(ASSERT_MATCH_ELEMENTS

((GOAL (make =matchlist))
(@wm (premise (=obl =rel =o0b2)))
)

->

(

(Sadd-to matchmem (=matchlist)
matchmem (match =obl)
matchmem (match =ob2))

)

)

(REMOVE_INDET

; [f the MATCHSET contains an indeterminate part, then add it to matchmem
; as a new element and remove the indeterminacy markers from MATCHSET.

(

(GOAL (make =matchlist))

(MATCHSET (!front << !'m * !m2 >> !back))
)

->

(

(8delete-from matchmem (MATCHSET (!front << !m * !m2 >> !back)))

(Sadd-to  matchmem (MATCHSET (($remove-old-indeterminacy (!front << !'m * !m2
>> !back))))

matchmem (INDET (!m}))
matchmem (INDET (!m2))

)

)
)

(MATCH_OBJ_INDET

(

(GOAL (make =matchlist))

(match =ob)

(match =other_ob)

(=matchlist !f (=ob =pos) !b)

(INDET (!front =ob !back))

(*not (*member =other_ob ( !front !back)))
(<not> (=matchlist !f (=ob =pos indet) !b))
)

->

(Sdelete-from matchmem (=matchlist !f (=ob =pos) !b))
($add-to  matchmem (=matchlist !f (=ob =pos indet) !b))
)

)
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(MATCH_OBJ_UNMARKED

(

(GOAL (make =malchlist))

(match =ob)

(MATCHSET !REST)

(=matchlist !f (=ob =pos) !b)
(<not> (INDET (!front =ob !back)))
)

->

(Sdelete-from maichmem (=matchlist !f (=ob =pos) Ib))
($add-to  matchmem (=matchlist !f (=0b =pos unmarked) !b))
)

)

(MATCH_OBJ_ABSENT
(

(GOAL (make =matchlist))

(MATCHSET !REST)

(=matchlist !list)

(match =ob)

(<not> (MATCHSET (!front =ob !back)))

(<not> (=matchlist !f (=ob absent !other) b))
(<not> (MATCHSET (!front << !middle >> Iback)))
)

->

(Sdelete-from matchmem (=matchlist !list))
($8add-to  matchmem (=matchlist !list (=0b absent )))
)

)

(MATCH_OBJ_PRESENT

(

(GOAL (make =matchlist))

(=maichlist Hist)

(maltch =ob)

(MATCHSET (!front =ob !back))

(<not> (=matchlist !f (=ob !other) !b))

(<not> (MATCHSET (!front << !middle >> Iback)))
)

>

(3deiete-from matchmem (=matchlist !list))
($add-to  matchmem (=matchiist !list (=ob present)))
)

)

(MATCH_OBJ_FRONT
(

(GOAL (make =matchlist))

(=matchlist !f (=ob =pos !other) !b)

(<not> (=matchiist !f (=ob front !other) b))

(<not> (=matchlist !f (=ob in-front lother) !b))
(match =ob)

(MATCHSET (=0b !back))

(<not> (MATCHSET (!front << !middle >> !back)))
)

->

($delete-from matchmem (=matchlist !f (=ob =pos !other) !b))
(Sadd-to  matchmem (=matchlist !f (=ob front lother) !b))
)

)

(MATCH_OBJ_BACK

(

(GOAL (make =matchlist))
(=matchlist !f (=ob present !other) !b)
(match =ob)

(MATCHSET (!front =ob))

b




(<not> (MATCHSET (!front << 'middle >> !back)))
)

-->

(Sdelete-from matchmem (=matchlist !f (=ob present tother) tb))
(Sadd-to  matchmem (=matchlist !f (=ob back !other) b))
)

)

(MATCH_OBIJ_IN-FRONT

(

(GOAL (make =matchlist))

(@wm (premise (=obi =rel =0b2)))

(MATCHSET (!front =ob2 !middle =ob1 !back))
(=matchlist (=obl =posl =otherl) (=ob2 =pos2 =other2 ))
(*not (*equal =pos2 in-front))

->

(
(Sdelete-from matchmem

(=matchlist (=obl =posl =otherl) (=0b2 =pos2 =other2 )))
($add-to matchmem

(=matchlist (=obl =posl =otherl) (=o0b2 in-front =other2)))
)
)

; Ensure that the objects are in the correct positions in the
; matchlist. If they are not, then switch them.

(ORDER_MATCHLIST

(

(GOAL (make =matchlist))

(@wm (premise (=obl =rel =0b2)))
(=matchlist (=ob2 !pos2) (=obl !posl))
)

->

(
(8delete-from matchmem (=matchlist (=ob2 !pos2) (=obl !post)))
(Sadd-to  matchmem (=matchlist (=obl !pos1) (=ob2 !pos2)))
)
)

(FINISHED_MATCHING

(GOAL (make =matchlist))
(=matchlist (=obl !posl) (=0b2 !pos2))
)

->

(

($add-to wm (=matchlist (=ob1l !posl) (=ob2 !pos2)) 11 1)
(Sclear-dm matchmem)

(Scall pm) ;retumn to main series productions

)

);build-in mm




Appendix B

List of Productions Produced during run of model on 4 sets of problem
forms 110 12.

(token-1 ((result set (=rel =resultset))
(MATCHLIST (=o0b1 back unmarked) (=ob2 absent unmarked)))
->
(($delcte-from wm
(MATCHLIST (=obl back unmarked)
(=0b2 absent unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))
(Sadd-to wm
(Sncwadd
(result set
(=rel (($perform append =ob1 =resultset =0b2))))))
(Swritecr append performed)

($add-to wm (Snewadd (FLAG (result-set-modified))))))
1.6 2775

(token-2 ((result set (=rel =resultset))
(MATCHLIST (=ob1 front unmarked) (=ob2 back unmarked)))
-->
(($delete-from wm
(MATCHLIST (=ob1 front unmarked)
(=0b2 back unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))

($add-to wm
(Snewadd
(result set
(=rel
(($perform delete_append
=0bl
=resultset
=0b2))))))

(Swritecr delete_append performed)

(Sadd-to wm ($newadd (FLAG (result-set-modified))))))
0.2725 0.75

(token-3 ((result set (=rel =resultset))
(MATCHLIST (=ob1 absent unmarked) (=ob2 front unmarked)))
-->
((3delete-from wm
(MATCHLIST (=0b1 absent unmarked)
(=ob2 front unmarked)))
($delete-from wm (result set (=rel =resultset)))
{$add-to wm
(Snewadd
(result set
(=rel ((Sperform insert =obl =resultset =ob2))))))
($writecr insert performed)

($add-to wm ($newadd (FLAG (result-set-modified))))))
1.44 2575

(token-12 ((result set (=rel =resultset))
(MATCHLIST (=o0b1 front unmarked) (=ob2 absent unmarked)))
-->
(($delete-from wm
(MATCHLIST (=0b1 front unmarked)
(=0b2 absent unmarked)))
($delete-from wm (result set (=rel =resultset)))

(Sadd-to wm
(Snewadd
(result set
(=rel
((Sperform append_indet
=0bl
=resultset

YN
bo
2




=0b2))))))
(Swntecr append_indet performed)
(Sadd-to wm (Sncwadd (FLAG (result-set-modified))))))
0.826 18

(token-13 {(result set (=rel =resultset))
(MATCHLIST (=obl back indet) (=ob2 in-front indet)))
->
((Sdelete-from wm
(MATCHLIST (=o0b1 back indet) (=ob2 in-front indet)))
(Sdeicte-from wm (result set (=rel =resultset)))
($add-to wm
($newadd
(result set
(=rel
(($perform switch =obl =resultset =0b2))))))
(Swritecr switch performed)
(Sadd-to wm ($newadd (FLAG (result-set-modified))))))
0.9975 1.8

(token-14 ((result set (=rel =resultset))
(MATCHLIST (=obl absent unmarked) (=ob2 back unmarked)))
->
((Sdelete-from wm
(MATCHLIST (=obl absent unmarked)
(=0b2 back unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))

($add-to wm
($newadd
(result set

(=rel

((Sperform insert_indet
=obl
=resultset

=0b2)}))))

(Swritecr insert_indet performed)
($add-to wm ($newadd (FLAG (result-set-modified))))))
0.7835 1.8

(token-15 ((result set (=rel =resultset))
(MATCHLIST (=obl present indet) (=ob2 in-front indet)))
->
((Sdelete-from wm
(MATCHLIST (=obl present indet)
(=ob2 in-front indet)))
(Sdelete-from wm (result set (=rel =resultset)))
($add-to wm
(Snewadd
(result set
(=rel
(($perform switch =ob1 =resultset =0b2))))))
(Swritecr switch performed)
($add-to wm ($newadd (FLAG (result-s «t-modified))))))
0.7417 14

(token-16 ((result set (=rel =resultset))
(MATCHLIST (=ob1 present indet) (=ob2 back indet)))
-->
(($delete-from wm
(MATCHLIST (=obl present indet) (=ob2 back indet)))
(Sdelete-from wm (result set (=rel =resuitset)))

($add-to wm
($newadd
(result set
(=rel
((Sperform remove_indet
=0bl
=resuliset
=0b2))))))

($writecr remove_indet performed)
($add-to wm ($newadd (FLAG (result-set-modified))))))

Py

'RV




0.7185 1.4

(token-17 ((result set (=rel =resultset))

(MATCHLIST (=ob1 front indet) (=0b2 present indet)))
-->

(($delete-from wm

(MATCHLIST (=0bl front indet) (=ob2 present indet)))
(Sdelete-from wm (result set (=rel =resultset)))

(Sadd-to wm
(Snewadd
sult set

(=rel

(($perform remove_indet
=obl
=resuliset

=0b2))))))

(Swritecr remove_indet performed)

(8add-to wm (Snewadd (FLAG (result-set-modified))))))
0.7283 1.4

(token-18 ((result set (=rel =resultset))
(MATCHLIST (=ob1 absent unmarked) (=ob2 absent unmarked)))

>
((Sdelete-from wm
(MATCHLIST (=obl absent unmarked)

(=ob2 absent unmarked)))
(Sdelete-from wm {result set (=rel =resultset)))

($add-to wm
($newadd
(result set
(=rel
((Sperform concat_indet
=0bl
=resultset
=0b2))))))

(Swritecr concat_indet performed)

(%add-to wm ($newadd (FLAG (result-set-modified))))))
0.8235 1.8

(token-19 ((result set (=rel =resultset))

(MATCHLIST (=ob1 present indet) (=ob2 present indet)))
“->
(($delete-from wm

(MATCHLIST (=ob1 present indet)
(=0b2 present indet)))
(Sdelete-from wm (result set (=rel =resultset)))
($add-to wm

($newadd
{result set
(=rel
(($perform remove_indet
=ob1l
=resultset
=0b2))))))

(Swritecr remove_indet performed)

($add-to wm (Snewadd (FLAG (result-set-modified))))))
0.7334 14

(token-20 ((result set (=rel =resultset))

(MATCHLIST (=ob1 front unmarked) (=ob2 back unmarked)))
->

(($delete-from wm
(MATCHLIST (=obl front unmarked)
(=0b2 back unmarked)))
($delete-from wm (result set (=rel =resuitset)))
($add-to wm
($newadd
(result set
(=rel
((Sperform leave_alone
=obl




=resultset
_ =0b2)))})))
(Swritecr leave_alone performed)

(Sadd-to wm (Sncwadd (FLAG (result-set-modified))))))
09019 16

Notc. As new productions are buiit, names are assigned by the running model. In these

appendices a consistent renaming has been applied so that the names always refer io the
same production.

pos o~
{ <




Appendix  C

Sequence of Productions Fired in the Solution of Problem Forms 1, ,2, and 3.

READY
GEFT_NEFW INPUT
NEXT COMMAND
ASK_OR_PREMISE
INTEGRATE_FIRST_PREMISE
GET_NEW_INPUT
NEXT_CGMMAND
ASK_FOR_PREMISE
INTEGRATE _OTHER_PREMISES
ASSERT \r{AlCH ELEMENTS
MATC H_OHJ_PRF.SENT
MATCH_OBJ_ABSENT
MATCH_OBJ_BACK
MATCH OBl UNMARKED
MATCH OBJ UNMARKED
HENISHIED \lel(lllNG
IRY_ l‘(lSI'NG STRATEGIES
STRAIT: GIES TRIED
\tAP_(:()Al _lO_( ONCEPT
CALL_STRUCTURE_MAPPER
MATCH _ON SMRESULT
ASSERT MATCH _ELEMENTS
MATCH_OB]__PRESENT
MATCII_OBJ_PRESENT
MATCH_ OBJ FRONT
MATClI OBJ “UNMARKED
MATCH_OBJ_BACK
MATCIL_OBI_UNMARKED
FINISHED_MATCHING
MATCH_AGAINST_L'T™™
BUILD_A_NEW_BODY
BUILD_A_PRODUCTION
TRY_EXISTING_STRATEGIES
STRATEGIES_TRIED
token-1
STRATEGY_APPLIED
GET_NEW_INPUT
NEXT_COMMAND
ASK_FOR_PREMISE
INTEGRATE_OTHER_PREMISES
ASSERT \dATCH ELEMEN'IS
MATCH OB.I PRESENT
VIATCH_OBJ__PRESENT
MATCH_OBJ_FRONT
MATCH_OBJ_UNMARKED
MATCH_OBJ_BACK
MATCH_OBJ_UNMARKED
FINISHED_MATCHING
TRY_EXISTING_STRATEGIES
STRATEGIES_TRIED
MAP_GOAL_TO_CONCEPT
CALI isUCl‘URE MAPPER
MATCH _ON SMRESULT
OOLRT MATCH ELEMENTS
MATCH OBJ PRESENT
MAT CH_O BJ_P RESENT
MATCH_OBJ_FRONT
MATCH_OBJ_UNMARKED
MATCH_ OHJ BACK
MATCH OB.I UNMARKED

Q

FINISHED_MATCHING
MATCH AGAINST LT™
BUILD A NEW_ BODY
BUILD A “PRODUCTION
TRY H(]S'ITNG STRATEGIES
STRA'IEG[ES TRIED

token-2
STRATEGY_APPLIED
GET_NEW_INPUT
NEXT_COMMAND
RESTART NEW_PROBLEM
PEEDBACK COMMAND
GET_NEW | INPUT

GET FEEDBACK
GWE_VEG_FEEDBACK
READY

GET_NEW_INPUT

NEXT COMMAND
ASK_FOR_PREMISE
INTEGRATE_FIRST_PREMISE
GET_NEW_INPUT
NEXT_COMMAND
ASK_FOR_PREMISE
LNTEGRATE OTHER_PREMISES
ASSERT | MATCH EI EMENTS
MATCH OBl ABSE.NT
MATCH OBJ_PRESENT
MATCH OBJ UNMARKED
MATCH_OB]__FRONT
MATCH_OBJ_UNMARKED
FINISHED MATCHING
TRY_EXISTING_STRATEGIES
STRATEGIES_TRIED
MAP_GOAL_TO_CONCEPT
CALL STRUCTURE_MAPPER
MATCH_ON_SMRESULT
ASSERT _MATCH_ELEMENTS
MATCH_OBJ_PRESENT
MATCH_OBJ_PRESENT
MATCH_OBJ_FRONT
MATCH OBJ UNMARKED
MATCH_ OBl _BACK
MATCH_OB]_UNMARKED
FINISHED MATCHING
MATCH AGAINSI' L™
BUILD _ A NEW | BODY
BUILD A _ PRODUCTION
TRY_ E.XISITNG STRATEGIES
S’I‘RA’I‘EEIES_’IRIE.D

token-3
STRATEGY_APPLIED
GET_NEW_INPUT
NEXT_COMMAND

ASK | FOR PREMISE
H‘J’I‘EGRATE OTHER_PREMISES
ASSERT | MATCH ELEMENTS
MATCH_ "OBJ PRESENT
MATCH_OBJ_PRESE.NT
MATCH_OBJ_FRONT
MATCH_OBJ_UNMARKED

"—’*‘4 »" VQ 'Au.

MATCH_OBJ_BACK
MATCH OB.I "UNMARKED
FINISHED MA’PCHING

TRY hXISTlNG STRATEGIES
S'I‘RA'IEGH:S TRIED
MAP_GOAL TO CONCEPT
CA.LL S’I‘RUCI‘URE MAPPER
MATCH ON SMRESULT
ASSERT_MATCH_ELEMENTS
MATCH_OBJ_PRESENT
MATCH_OBJ_PRESENT
MATCH_OBJ_FRONT
MATCH_OBJ_UNMARKED
MATCH_OBJ_BACK
MATCH OBJ UNMARKED
ﬂNISHED MATCHING
MATCH AGAINST LT™M
BUILD_A_NEW_BODY
BAD_CHOICE
TRY_EXISTING_STRATEGIES
MAP_GOAL_TO_CONCEPT
token-2
STRATEGY_APPLIED
GET_NEW_INPUT
NEXT_COMMAND
RESTART NEW _PROBLEM
FEEDBACK_COMMAND
GET_NEW _INPUT
GET_FEEDBACK
GIVE_NEG_FEEDBACK
READY

GET_NEW_INPUT
NEXT_COMMAND
ASK_FOR_PREMISE
INTEGRATE FIRST PREMISE
GET_NEW_INPUT
NEXT_COMMAND
ASK_FOR_PREMISE
INI'EGRATE OTHER_PREMISES
ASSERT | MATCH ELEMENTS
MATCH OB} PRESENT
MATCH OBJ ABSENI'
MATCH_OBJ_FRONT

MAP_GOAL_TO_CONCEPT
CALL_STRUCTURE_MAPPER
MATCH_ON_SMRESULT
REMOVE INDET

ASSERT MATCH_ELEMENTS
MATCH OBJ PRESENT
MATCH_OBJ_PRESENT
MATCH_OBJ_INDET
MATCH_OBJ_FRONT
MATCH_OBJ_UNMARKED
MATCH_OBJ_BACK
FINISHED MATCHING

Ft o~

MATCH_AGAINST_I'T™M
BULLD A NEwW B()DY
BUILD A PRODUCI'ION
lRY_l.XISI]\G_S TRATEGIES
STRATEGIES_TRIED
token-12
STRATEGY_APPLIED
GET_NEW_INPUT
NEXT_COMMAND
ASK_FOR_PREMISE
INTEGRATE_OTHER_PREMISES
REMOVE_INDET

ASSERT MATCH_EI EMENTS
MATCH_OBJ_PRESENT
MATCH_OBJ_INDET
MATCH_OBJ_PRESENT
MATCH_ _OBJ_ “INDET
MATCH_ OBl _IN-FRONT
MATCH_ Ol:U BACK
FINISHED MATCHLNG
'IRY_EX]STING_S'I‘RATEG[ES
STRATEGIES_TRIED
MAP_GOAL_TO_CONCEPT
CALL _STRUCTURE_MAPPER
MATCH_ON_SMRESULT
ASSERT MATCH ELEMENTS
MATCH OBl PRESENT
MATCH_OB.I_PRESEN'I‘
MATCH_OBJ_UNMARKED
MATCH_OBJ BACK
MATCH_ "OBJ UVMARKED
FINISHED_MATCHING
MATCH_AGAINST L'T™
BUILD A_NEW_BODY
BUILD_A_PRODUCTION
TRY_EXISTING_STRATEGIES
STRATEGIES_TRIED
token-13
STRATEGY_APPLIED
GET_NEW_INPUT

NEXT _COMMAND

FINISH

HALT

VLVERABLE

ERIC

Aruitoxt provided by Eic:

Wl Wi b




Appendix D

Summary of results using the Problem Forms used in Experiment 2.

Premise Resultset Effort Production fired
a>b ab 0.6

a>c acb 0.6 token-4
b>c abc 0.95 token-5
b>c bc 0.94

a>c bac 0.94 token-6
a>b abc 1.21 token-7
b>c bc 1.2

a>b abc 1.2 token-3
a>c ach 1.2 token-2
a>b ab 1.4

b>c abc 1.4 token-1
a>c abc 1.39 token-20
b>c bc 1.38

a>b abc 1.38 token-3
a>c abc 1.38 token-20
a>b ab 1.37

b>c abc 1.37 token-1
a>c abc 1.36 token-20
a>b ab 1.36

b>c abc 1.36 token-1
a>c abcg 1.35 token-20
b>c bc 1.34

a»c <<b®*a>>c¢ 1.34 token-14
a>b abc 1.34 token-15
b>c¢c bc 1.33

a>c <<b®*a>>c 1.33 token-14
a>b abc 1.32 token-15
a>b ab 1.32

a>c a<<cb>> 1.32 token-12
b>c abc 1.31 token-13
b>c bc 1.3

a>b abc 1.3 token-3
a>c abc 1.3 token-20
a>b ab 1.29

a>c a<<c’*b>> 1.29 token-12
b>c abc 1.28 token-13
b>c bc 1.28

a>c <<b™a>>c¢ 1.28 token-14
a>b abg 1.27 token-15
b>c bc 1.26




a>b abc 1.26 token-3

a>c abcg 1.26 token-20
a>b ab 1.25

a>c a<<c"b>> 1.25 token-12
b>c abc 1.25 token-13
b>c¢ bc 1.24

a>b abcg 1.24 token-3
a>c abc 1.23 token-20
a>b ab 1.23

a>c a<<c *b>> 1.27 token-12
b>c abc 1.22 token-13
b>c bc 1.21

a>c <<b™a>>c¢ 1.21 token-14
a>b abc 1.21 token-15
a>b ab 1.2

b>c abc 1.2 token-1
a>c abc 1.2 token-20
b>c bc 1.19

a>c <<b®a>>c 1.19 token-14
a>b abc 1.18 token-15
a>b ab 1.18

b>c abc 1.18 token-1
a>c abc 1.17 token-20
b>c bc 1.17

a>b abc 1.17 token-3
a>c abc 1.16 token-20
a>b ab 1.16

a>c a<<c’b>> 1.16 token-12
b>c abc 1.15 token-13
a>b ab 1.14

b>c abg¢ 1.14 token-1
a>c¢ abc 1.14 token-20

Additional productions built in the course of this simulation.

(token-4 ((result set (=rel =resultset))

(MATCHLIST (=ob1 present unmarked) (=0b2 in-front unmarked)))
-->

((Sdelete-from wm
(MATCHLIST (=obl present unmarked)
(=0b2 in-front unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))

(Sadd-to wm
($newadd
(result set
(=rel
((Sperform delete_irsert
=obl
=resultset

-7
n




=0b2))))))
(Swriteer delete_insert performed)
(Sadd-to wm (Sncwadd (FLAG (result-sct-modificd))))))
0513 1.1

(token-S ((result set (=rel =resultsct))
(MATCHLIST (=obl absent unmarked) (=ob2 front unmarked)))
>
((Sdelete-from wm
(MATCHLIST (=ob! absent unmarked)
(=0b2 front unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))
(Sadd-to wm
(Snewadd
(result sct
(=rel ((Sperform insert =obl =resultset =0b2))))))
(Swritecr insert performed)
(Sadd-to win ($newadd (FLAG (result-set-modified))))))
0877 1.6

(token-6 ((result sct (=rel =resultset))
(MATCHLIST (=obl front unmarked) (=0b2 back unmarked)))
>

((Sdelete-from wim
(MATCHLIST (=0b1 front unmarked)
(=ob2 back unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))

(Sadd-to wm
(Snewadd
(result set

(=rel

((Sperform delete_append
=obl
=resultset
=0b2))))))

(Swritcer delete_append performed)
(5add-to wm (Snewadd (FLAG (result-set-modified))))))
0.391 0.875

(token-7 ((result set (=rel =resultset))
(MATCHLIST (=ob1 back unmarked) (=ob2 absent unmarked)))
->
((Sdelete-from wm
(MATCHLIST (=o0b1 back unmarked)
(=0b2 absent unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))
(3add-to wm
(Snewadd
(result set
(=rel (($perform append =ob1 =resuliset =ob2))))))
(Swritecr append performed)
(Sadd-to wm ($newadd (FLAG (result-set-modified))))))
0835 1.6




77—*1

Appendix E
Summary of Model's Performance on Problem Forms used in Experiment 3.
Problem Form  Premise Resultset Effort  Production fired
Problem Form  Premise Result set Effort Production
fired
7 a>b ab 0.6
b>c¢c abe 0.6 token-1
c>d abcd 0.597 token-1
13 a>b ab 0.594
a>x a<<x”*b>> 0.594 token-12
a>b a<<x"b>> 1.207 token-20
14 a>b ab 1.201
x>b axb 1.201 token-6
a>b axb 1.401 token-20
13 a>b ab 1.551
a>x a<<x’*b>> 1.551 token-12
a>b axb 1.543 token-21
8 a>b ab 1.657
c>d <<ab’*cd>> 1.657 token-18
b>c abcd 1.649 token-19
" b>c bc 1.641
a>b abc 1.641 token-9
c>d abcd 1.633 token-1
10 b>c bc 1.624
c>d becd 1.624 token-1
a>b abcd 1.616 token-9
15 a>b ab 1.608
b>c abc 1.608 token-1
X>b <<a*x>>bc 1.7 token-23
16 b>c be 1.692
a>b abc 1.692 token-9
b>x abc<<x*co> 1.762 token-24
17 a>b ab 1.754
a>x a<<x”*b>> 1.754 token-12
b>c axbc 1.856 token-1
16 b>c bc 1.892
a>b abc 1.892 token-9
b>x ab<<x*co>> 1.892 loken-24
order is abxc
order is abcx
9 b>c¢c bc 1.919
a>b abc 1.919 token-9
c>d abcd 1.919 token-1
order is abcd

there is no other order

7 a>b ab 1.91
b>c abc 191 token-1
c>d abcd 191 token-1
order is abcd
there is no other order
17 a>b ab 1.9
a>x a<<x"b>> 1.9 token-12
b>c axbc 1.944 token-1




order s axbc¢
there 1s no other order

1 a>b ab 1.958
b>c abc 1.958 token-1
a»c abc 1.958 token-20
order is abc

there is no other order

2 b>c¢c bc 1.948
a>b abc 1.948 token-9
a>c abc 1.948 token-20
order is abc
there is 1o other order
5 a»c ac 1,938
a>b a<<b*c>> 1.938 token-12
b>c abc 1.938 token-16
order is abe
there is no other order
13 a>b ab 1.929
a>x a<<x*b>> 1.929 token-12
a>b a<<x*b>> 1.929 token-21
order is axb
order is abx
6 a>c ac 1.919
b>c abc 1.919 token-6
a>b abc 1.919 token-22
order is abgc

there is no other order

4 b>c bc 1.909
a>c bac 1.909 token-6
8 a>b ab 1.962°
c>d <cab*cd>> 1.962 token-18
b>c abced 1.962 token-19
order is abcd
there is no other order
15 a>b ab 1.952
b>c abc 1.952 token-1
x>b <<a*x>>bc 1.952 token-23
order is axbc
order is xabc
14 a>b ab 1.942
X>b axb 1.942 token-6
a>b axb 1.942 token-20
order is axb

there is no other order

10 b>c bc 1.957
c>d bcd 1.957 token-1
a>b abcd 1.957 token-9
order is abcd
there is no other order
11 c>d cd 1.947
a>b <<cd®*ab>> 1.947 token-18
b>c abcd 1.947 token-13
order is abcd

there is no other order

12 c>d cd 1.937
b>c bcd 1.937 token-9
a>b abcd 1.937 token-9
order is abcd

there is no other order

-/




3 a>b ab 1.927

a>c a<<c"bo>> 1.927 wken-12
b>c ach 1.927 token-13
order is acb

there is no other order

18 b>c bc 1.946
X>¢C bxc 1.946 token-6
a>b abxc 1.946 token-9
order is abxc

there is no other order

The following are additional productions built in the course of solving the novel problem forms of
Experiment 3 and hence not listed in Appendix B.

(token-21 ((result set (=rel =resultset))
(MATCHLIST (=ob1 front unmarked) (=ob2 back indet)))
-->
((Sdelete-from wm
(MATCHLIST (=ob1 front unmarked) (=ob2 back indet)))
(Sdeicte-from wm (result set (=r¢l =resultset)))
(Sadd-to wm
(Snewadd
(result set
(=rel
((Sperform leave_alone =obl =resultset =0b2))))))
(Swritecr leave_alone performed)
($add-to wm (3newadd (FLAG (result-set-modified))))))
0.4502 0.975

(token-22 ((result set (=rel =resultset))
(MATCHLIST (=ob1 front unmarked) (=ob2 present unmarked)))
-—>
((3delete-from wm
(MATCHLIST (=ob1 front unmarked)
(=0b2 present unmarked)})
(Sdelete-from wm (result set (=rel =resultset)))

(Sadd-to wm
($newadd
(result set

(=rel

((Sperform leave_alone
=obl
=resultset

=0b2))))))

(Swritecr leave_alone performed)
(Sadd-to wm (Snewadd (FLAG (result-set-modified))))))
0.5735 1.1

(token-23 ((result set (=rel =resultset))
(MATCHLIST (=ob1 absent unmarked) (=ob2 present unmarked)))
>
((Sdelete-from wm
(MATCHLIST (=ob1 absent unmarked)
(=0b2 present unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))

(Sadd-to wm
(Snewadd

(result set
(=rel
((Sperform insert_indet

. =0bl
=resultset
=0b2))))))

(Swritecr insert_indet performed)
(Sadd-to wm ($newadd (FLAG (resuit-sct-modified))))))
0.6117 1.2




(token-24 ((result set (=rel =resultset))
(MATCHLIST (=obl present unmarked) (=ob2 absent unmarked)))

((Sdeluc from wm
(MATCHLIST (=obl present unmarked)
(=ob2 absent unmarked)))
(Sdelete-from wm (iesult set (=rel =resultset)))

(Sadd-to wm
(Snewadd
(result set
(=rel
(($perform append_indet
=0bl
=resultset
=0b2))))))

(Swritecr append_indet performed)
(Sadd-to wm (Snewadd (FLAG (result-sct-modificd))))))
0.4123 0975




Appendix F

Tuble of Results Summarizing the Model's Output for Problem Forms used in
Experiments 4 und S.

Form  Premise Resultset Effort Rule Fired Order Judgement
ab 0.6
abec 0.6 token-1 é accepled
abc 0.6 token-20 ¢ rejected
ac 0.597
abc 0.597 token-6 : accepted
abc 0.597 loken-9 accepted
2 b>c bc 0.594
a>b abec 0.594 token-3 abc accepled
a>c abc 0.594 token-20  bac rejected
4 b>c bce 0.591
a>c¢ bac 0.591 token-6 bac accepted
a>b abc 0.591 token-7 abc accepled
It c>d cd 0.588
a>b <<cd*ab>> 0.588 token-18 cdab indeterminate
b>c bcda 1.206 token-5 abcd rejected
3 a>b ab 1.404
a>c a<<c"b>> 1.404 token-12  abc indeterminate
b>c abc 1.749 token-5 abec accepted
8 c>d cd 1.74
a>b <<cd*ab>> 1.74 token-18 cdab indeterminate
b>c bcda 1.89 token-5 bcda accepied
3 a>b ab 1.918
a>c a<<c*b>> 1918 token-12  acb indeterminate
b>c abc 1.965 loken-5 bac rejected
11 c>d cd 1.955
a>b <<cd*ab>> 1.955 token-18 cdab indeterminate
b>c bcda 1.955 token-5 bcda accepied
1 a>b ab 1.967
b>c abc 1.967 token-1 abc accepted
a>c abc 1.967 token-20 bac rejected
; 2 b>c bc 1.957
i a>b abc 1.957 token-3 abc accepied
| a>c abc 1.957 token-20  acb rejected
6 a>c ac 1.947
b>c abc 1.947 token-6 bac rejected
a>b abc 1.947 token-9 ach rejected
5 a>c ac 1.937
a>b a<<b®c>> 1937 token-12  achb indeterminate
b>c abc 1.937 token-16 abc accepted
11 c>d cd 1.928
a>b <<cd*ab>> 1.928 loken-18 cdab accepled
b>c bcda 1.928 token-5 abcd rejected
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4 b>¢ bc¢ 1.946

a>c¢ bac 1.946 token-6 abc
a>b abc 1.946 token-7 ach
11 c>d cd 1.936
a>b <<cd”*ab>> 1936 token-18 cdab
b>c bcda 1.936 token-S bcda
5 a>c ac 1.952
a>b a<<b”*co>> 1.952 oken-12 abc
b>c abc 1.952 token-16 bac
2 b>c bc 1.942
a>b abc 1.942 token-3 abce
a>c abc 1.942 token-20 abc
1 a>b ab 1.932
b>c abc 1.932 token-1 abce
a>c abc 1.932 token-20 abc
11 c>d cd 1.923
a>b <<cd""ab>> 1.923 token-18 cdab
b>c <<bcd™a>> 1.967 token-5 abcd

Additional productions built in the course of this simulation.

(token-8 ((result set (=rel =resultset))
(MATCHLIST (=obl present unmarked) (=ob2 back unmarked)))
-2
((Sdelete-from wm
(MATCHLIST (=obl present unmarked)
(=o0b2 back unmarked)))
(3delete-from wm (result set (=rel =resultset)))

(Sadd-to wm
(Snewadd
(result set

(=rel

((Sperform delete_append
=ob1l
=resultset
=0b2))))))

(Swritecr delete_append performed)
($add-to wm (Snewadd (FLAG (result-set-modified))))))
0.190 0.2

(token-9 ((result set (=rel =resultset))
(MATCHLIST (=ob1 front unmarked) (=0b2 present unmarked)))
->
(($delete-from wm
(MATCHLIST (=ob1 front unmarked)
(=ob2 present unmarked)))
(8delete-from wm (result set (=rel =resultset)))

($add-to wm
($newadd
(result set

(=rel

(($perform delete_append
=obl
=resultset
=0b2))))))

(Swritecr delete_append performed)
($add-to wm ($newadd (FLAG (result-set-modified))))))
0.187 0.2

rejecied
rejecled

indetertminate

acoepued

indetermtnate
rejected

accepted
accepted

accepted
accepled

indeterminate
rcjected




(token- 10 ((result set (=rel =resultset))
(MATCHLIST (=ob1 absent unmarked) (=0b2 absent unmarked)))
-->
((Sdclete-from wm
(MATCHLIST (=0bl absent unmarked)
(=o0b2 absent unmarked)))
(Sdelete-from wm (result set (=rel =resultset)))
{$add-10 wm
(Snewadd
(result set
(=rel
((Sperform concat =ob1 =resultset =0b2))))))
{Swritecr concat performed)
(Sadd-t0 wm (Snewadd (FLAG (result-set-modified))))))
0318 0S5

(token-11 ((result set (=rel =resultset))
(MATCHLIST (=ob! present unmarked) (=ob2 present unmarked)})
-->
((Sdelete-from wm
(MATCHLIST (=obl present unmarked)
(=ob2 present unmarked)))

A3delete-from wm (result set (=rel =resultset)))
($add-to
t

(=rel

((Sperform delete_insert
=ob1l
=resultset
=0b2)))))

(Swritecr delete_insert performed)
(3add-to wm ($newadd (FLAG (result-set-modified))))))
0.348 0.6
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Table 2

Hypothesised processes for 3-term and 4-term problems

Problem Form Solution with  Most common
integration  solution without
integration

AB, BC, AC ABC ACB
BC, AB, AC ABC ACB
AB, AC, BC ABC ABC

Three-term adjacent-and-nonadjacent 1
2
3.
4. BC, AC, AB ABC ABC
5
6

AC, AB, BC ABC ACB
AC, BC, AB ABC ACB

Four-term adjacent only 7. AB,BC, CD ABCD ABCD
8. AB,CD,BC ABCD ABCD
9. BC, AB, CD ABCD ABCD
10. BC, CD, AB ABCD ABCD
11. CD, AB, BC ABCD BCDA

12. CD, BC, AB ABCD ABCD

NG
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Table 3

Four scts of twelve problem forms.

Premise

a>b
b>c¢
a>c¢

b>c
a>b
a>c

a>b
a>c
b>c

b>c
a>c
a>b

a>c
a>b
b>c

a>c
b>c
a>b

a>b
b>c
c>d

a>b
c>d
b>c

b>c
a>b
c>d

b>c
c>d
a>b

c>d
a>b
b>c

c>d
b>c
a>b

a>b
b>c
a>c

b>c

Resultset

ab
abc
acb

bc
abc
achb

ab
a<<c*b>>
abc

bc
<<b®a>>c¢
abc

ac
a<<b”*co>>
abc

ac
<<a’b>>c¢
abc

ab
abc
abcd

ab
<<ab*cd>>
abcd

bc
abc
abcd

bc
bcd
abcd

cd
<<cd*ab>>
abcd

cd
bcd
abcd

ab
abc
abc

bc

Effort

0.6
0.6
0.6

0.95
0.95
1.213

1.409
1.409
1.409

1.402
1.402
1.402

1.395
1.395
1.395

1.388
1.388
1.388

1.381
1.381
1.381

1.374
1.374
1.374

1.368
1.368
1.368

1.361
1.361
1.361

1.354
1.354
1.354

1.347
1.347
1.347

1.34
1.34
1.34
1.334

Production fired

token-1
token-2

token-3
token-2

token-12
token-13

token-14
token-15

token-12
token-16

token-14
token-17

token-1
token-1

token-18
token-19

token-3
token-1

token-1
token-3

token-18
token-13

token-3
token-3

token-1
token-20

<




abc 1.334 token-3

abc 1.334 token-20
ab 1.327
i<<cb>> 1.327 token-12
abc 1.327 token-13
b¢ 1.32
<<b*a>>c 1.32 token-14
abc 1.32 token-15
ac 1.314
a<<b™c>> 1.314 token-12
abc 1.314 loken-16
ac 1.307
<<ab>>c 1.307 token-14
abc 1.307 token-17
ab 1.301
abc 1.301 token-1
abgcd 1.301 token-1
ab 1.294
<<ab”®cd>> 1.294 token-18
abcd 1.294 token-19
bc 1.288
a>b abc 1.288 token-3
c>d abcd 1.288 token-1
b>c¢ bc 1.281
c>d bcd 1.281 token-1
a>b abcd 1.281 token-3
c>d cd 1.275
a>b <<cd™ab>> 1.275 ioken-18
b>c abcd 1.275 token-12
c>d cd 1.269
b>c bcd 1.269 token-3
a>b abcd 1.269 token-3
a>b ab 1.262
b>c abc 1.262 token-1
; a>c abc 1.262 token-20
| b>c be 1.256
a>b abc 1.256 token-3
a>c abc 1.256 token-20
a>b ab 1.25
a>c a<<c’b>> 1.25 token-12
b>c abg 1.25 token-13
b>c bc 1.243
a>c <<b™a>>c 1.243 token-14
a>b abg 1.243 token-15
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a>c¢
a>b
b>c

a>cC
b>c
a>b

a>b
b>c
c>d

a>b
c>d
b>c

b>c
a>b
c>d

b>c
c>d
a>b

c>d
a>b
b>c

c>d
b>c
a>b

a>b
b>c
a>c

b>c
a>b
a>c

a>b
a>c
b>c

b>c
a>c
a>b

a>c
a>b
b>c

a»c
b>c
a>b

a>b
b>c
c>d

ac
a<<b®c>>
abc

ac
<<a’b>>c
abcg

ab
abc
abcd

ab
<<ab®cd>>
abcd

bc
abcg
abcd

bc
bcd
abcd

cd
<<cd®ab>>
abcd

cd
bcd
abcd

ab
abc
abc

bc
abc
abcgc

ab
a<<c*b>>
abc

bc
<<b®a>>c
abc

ac
a<<b”"c>>
abc

ac
<<ab>>c
abcgc

ab
abc
abcd

1.237
1.237
1.237

1.231
1.231
1.231

1.225
1.225
1.225

1.219
1.219
1.219

1.213
1.213
1.213

1.207
1.207
1.207

1.201
1.201
1.201

1.195
1.195
1.195

1.189
1.189
1.189

1.183
1.183
1.183

1.177
1.177
1.177

1.171
1.171
1.171

1.165
1.165
1.165

1.159
1.159
1.159

1.153
1.153
1.153

loken-12
token-16

token-14
token-17

token-1
token-1

token-18
token-19

token-3
token-1

token-1
token-3

token-18
token-13

token-3
token-3

token-1
token-20

token-3
token-20

token-12
token-13

token-14
token-15

token-12
token-16

token-14
token-17

token-1
token-1

&

~
'
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a>b
¢>d
b>c

b>c
a>b
¢>d

b>c
c>d
a>b

c>d
a>b
b>c

c>d
b>c¢
a>b

ab
<<ab"cd>>
abcd

bc
abc
abcd

bc¢
bcd
abcd

cd
<<cd™ab>>
abcd

cd
becd
abcd

1.148
1.148
1.148

1.142
1.142
1.142

1.136
1.136
1.136

1.13
1.13
1.13

1.125
1.125
1.125

token-18
token-19

token-3
token-1

token-1
token-3

token-18
token-13

token-3
token-3




ristlerminate Proplem forms used in ExgAriment 3

possibie
orders

00ssible
Jrders

B C
CD
AC

ABCD
BACD

Three-term indeterminates

AB 14. AC
AC BC
AB AC
ABC ABC
ACB BAC

Four-term indeterminates

16. BC 17 AB 18
AB AC
B D BD
ABCD ABCD
ABDC ACBD
ABDC

BD
CD
A B

CABD
ACBD
ABCD
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baby
foal

Figure 1. Tensor product representation of predicate-argument binding.

woman —— T
predicate bundle
{MOTHER_OF(_,_)}
baby |
|
l
I
:
mare — I
T :
t
predicate bundle
{MOTHER_OF(_,_)}
argument bundle
{foal}

Figure 2. Solution process for simple analogy in STAR model.




Structure ‘ Tensor

mapping Definitdon product
diagram represcatation
source eeR redicate
= -t

E . g
3 s M: R(e)e— R(e) g
A\ & Q:Q
& § &

target e'eR

source e e
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.§ 2 M:R(ej.e )R e))
3 §' e.8. (>b)e—e= (c>d)
< £

target ¢ e
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£ S Ehe)her)
e E e.2. (a>b>)
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X
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Figure 3. Dimensionality of representation required for levels of structure mapping
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above

above above

. ,,»—————_—-\\
top middle bottom

Tom Bill John
\_/

happier than

happier than
above
above above
//f’———“\\\ //,——————\\\
top middle bottom

Tom John Bill
\__/

sadder than

happier than

larger than

Concept of order
(base) larger than larger than

Problem Tom John Bl
(target) [ hapoler } l haspier 4
than than
happter
tran

Figurc4. Consistent (A) and inconsistent (B) mapping of transitive inference
problem into top-down schema, or (C) into concrete representation.
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John
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Figure 5. Tensor product representation of transitive inference.
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Figure 6. Goal hierarchy.

&
~1




Constructed

Order Premise Action
.- asb inis& in
ab b>c¢ append
abc

Figure 7. Sequence of steps in simple transitive inference problem.

{ ({constructed order ( <relation> <obj1...... objn>))
(new premise <obj 1> <relation> <obj2>)

(match obj1 objn))

(add-to WM (perform APPEND <objn> <obj2>}}}

[nstantiati
new
working-memory premise working-memory
contents contents
ab b>c abc

Figurc 8. Production built in performing problem a>b, b>c.
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constructed

order premise action
Fs%ggg%r;al --- c>d insertin WM
cd a>b concatenate
cdab b>c delete - insert
bcda
System .- cd insert in WM
Strategy
cd a>b concat indet
{cd)*(ab) b>c switch
abcd
* InGaterminacy marker

Figure 9. Steps in relational and system strategies.
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Correct comparison set incorrect comparison set

g

Standard set

]

fncorrect comparison set Correct comparison set

Standard set

Figure 10. Training (A) and transfer (B) problems for ordered set mapping experiment.
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highar than

stangard nigher than higher than
set
tall medium short
narrow medium wide
correct wider than wider than

comparison set

wider than

higher than

standara higher than higher than
set
tali medium short
tall short medium
incorrect

comparison set

higher than

Figure 11.  Structure mapping required for ordered set mapping experiment.
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Figure 12.  Proportion of correct determinacy judgments in first or second question in Experiment 3.
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