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Abstract

Tnis model proposes that concepts children understand, and the
strategies they develop, depend on the complexity of their
representations, defined in terms of number of independent dimensions. A
PDP model explains why concepts of high dimensionality impose high
processing loads, and suggests that representations become
differentiated with age into more vectors, so more dimensions can be
represented in parallel. It is suggested that cognitive development also
depends on induction of schemas that can be used as mental models, and
can guide development of strategies. Processing loads can be reduced by
conceptual chunking, and by acquisition of serial processing strategies.
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Experience and Processing Capacity in Cognitive Development: A PDP
Approach

Graeme S. Halford

The theory of cognitive development which I propose can be
summarized in the following propositions:

1. Cognitive development is experience driven, but is mediated by
domain general processes, which include learning, induction, and analogy.

2. The concepts children understand, and the strategies they develop
based on that understanding, depend on the complexity of the
representations they can construct.

3. Conceptual complexity can be defined in terms of the number of
independent dimensions that need to be represented. Parallel Distributed
Processing models of the way information s represented help to explain
why the number of dimensions that can be processed in parallel is limited.
This leads to a new definition of processing capacity, which appears
capable of accounting for many phenomena, including some that have been
attributed traditionally to stages.

These propositions imply that cognitive development is an

interaction of domain specific and domain general processes, and so an
overarching goal of research is to define the nature of this interaction. An
important component of it is the growth in capacity to represent concepts
of increasing structural complexity. This capacity to represent
information controls the concepts that are acquired as a function of
experience.

The key methodological features of the approach are:

1. Explicit definition of the nature of processing capacity. This has
been done by developing a parallel distributed processing (PDP) model of
the way information is processed.

2. Objective assignment of concepts to levels of complexity, by
using computer models of the representations required.

4
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3. Experimental demonstration of capacity limitations, using the
easy-to-hard paradigm (Hunt & Lansman, 1982). This entails using a
secondary task indicator to determine whether the criterion task is

resource dependent. It is not subject to the ambiguities of some alternate
dual-task paradigms.

4. Empirical assessment of the nature of processes entailed in

cognitive tasks. Competence is only interpretable if we know how a task
is performed.

One major goal of cognitive development theory is to predict children's
cognitive capabilities. Part of this is to explain why some tasks are
typically mastered at later ages than others. Much debate has concerned
whether certain pivotal tasks, such as transitive inference and class
inclusion, are normally mastered by children under five years.

Our desire to accelerate cognitive development has often caused us to try
and explain these difficulties away, on the grounds that they result from
flawed tests, or inadequate knowledge. However, many of the claims that
children succeed with alternative tests are flawed due to either false
positives (e.g. reporting chance results as success), or failure to consider
alternative bases for the performance (Halford, 1989). Furthermore, many
of the improvements have been with children over five years, and therfore
do not account for the finding that these tasks are specially difficult for
children below this age.

Another problem is that lack of process models makes it difficult to

define test validity, resulting in circularity; "good" tests tend to be those
that children pass. Therefore it seems appropriate to conclude that while
a lot of important causes of failure have been discovered, there are still
sources of difficulty for young children that remain to be explained.
A theory of cognitive development should be able to account for this. I

will address the problem by considering the case of transitivity.

Transitive inference

Consider a transitive inference task such as that shown in figure 1.

Insert figure 1 here
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There is a reasonable concensus in the literature that such tasks are
performed by arranging the terms in order (Sternberg, 1980; Trabasso,
1977; Thayer & Collyer, 1978). Given the analogical character of human
reasoning, we can conceptualize this process as mapping the premises
into a schema, which is used as an analog.

A common ordering schema, the left-right or top-down arrangement,
is used as an analog. In effect it serves as a kind of template, or "mental
model" for imposing order on the premises. Once the premises are ordered
in this way transitive inferences are easily made by accessing the ordered
representation; e.g. we can easily see that John is fairer than Tom.

There is some difficulty in performing the mapping however. This is
because both premises must be processed to map any premise term into a

slot in the ordering schema; e.g. we need both premises to know that John
must go in first position. This decision requires cognitive effort, and it
illustrates the operation of processing load in the theory.

A mental model of the task, in the form or an ordering schema, can
be used to guide the development of strategies. We have developed a self-
modifying production system model which acquires strategies through
experience, guided by a specific example of an ordered set which is used
as an analog, as shown in the previous figure. Once such a strategy is
developed there is no further need for analogical reasoning, except where
the strategy must be modified, or transferred to a new domain.

Once developed the strategies become autonomous in most familiar
applications, but their initial development depends on ability to represent
the structure of the concept. That is, children cannot autonomously
develop their own strategies for transitive inference unless they can
represent the concept of order adequately. This means they must have a
mental model of an ordered set of at least three elements, with an

asymmetric, transitive, binary relation between them. This is an instance
of a principle that I believe to be of general validity, which is that
autonomous strategy development depends on adequate representation of a
concept of the task.

The capacity required to represent a concept will depend on its
structural complexity. In order to explore the reasons for this, we must
consider the way concepts are represented. We have gained considerable

6
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insights into the problem by considering how to represent concepts in
parallel distributed processing (PDP) architectures.

PDP implications for processing capacity

We will examine how concepts of varying complexities are
represented. The representation of a binary relation, such as LARGER THAN
is shown in figure 2.

Insert figure 2 here

A vector is used to represent the predicate, LARGER THAN, and
another vector is used to represent each argument. In this example, there
is a vector representing arguments elephant and dog. The predicate-
argument binding, that is, the fact that elephant is larger than a dog, is
represented by the tensor product of the three vectors, as shown in figure
2. Because LARGER-THAN is a binary relation, with two arguments, it is

represented by a rank 3 tensor product, that is, one with three vectors.

Dimensionality

The rank of a tensor product can be shown to relate to a conceptual
complexity metric originally devised by Halford & Wilson (1980). The
complexity of a concept is defined in terms of its dimensionality; i.e. the
number of independent items of information required for the computations
the concept entails. Dimensionality is quite similar to the idea of degrees
of freedom. The idea is that all aspects of a task that enter into a
particular computation must be represented in parallel, and aspects which
are free to vary independently must be represented as separate
dimensions. The number of vectors required for a representation is one
more than the number of dimensions. Hence a binary relation, which is 2
dimensional, is represented by a tensor product of rank 3.

Insert figure 3 here

There are four levels of relations, unary, binary, ternary, and
quaternary, represented by tensor products. Each level of relation
corresponds to a level of dimensionality, because each argument of a
relation corresponds to an independent source of variation. Higher
dimensional representations permit more complex associations to be

computed; e.g. with a ternary relation R(a,b,c), we can compute how a
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varies as a function of b, how a varies as a function of c, how b varies as a
function of c, how a varies as a function of b and c, etc. With a binary
relation only one type of association, a as a function of b, is possible.

It has been shown elsewhere (Halford, 1993) that the four levels of
dimensionality bear a broad correspondence to Piaget's (1950) major
stages, as shown. It has also been shown that representations of higher
dimensionality impose higher processing loads (Halford et al., 1986;
Maybery et al., 1986).

A tensor product of higher rank imposes a higher computational cost,
because the number of tensor product units increases exponentially with
the number of vectors, and the number of connections increases
accordingly. The PDP model therefore provides a natural basis for the
increase in processing load that has been observed empirically.

Insert figure 4 here

Now we will consider the levels of representation in more detail. Unary
relations include simple categories, defined by one attribute, such as the
category of large things. They also include categories defined by a
collection of attributes that can be represented as a single chunk, such as
the category of dogs. One vector (shown vertically) would represent the
category label DOG. The other vector would represent the instances.
Representations of different dogs would be superimposed on this set of
units. Thus vectors representing each known dog would be superimposed,
so the resulting vector would represent the central tendency of the
person's experience of dogs. It would represent the person's prototype dog.
However the representations of the individual dogs can still be recovered.
Questions such as "are chihuahuas dogs", or "tell me the dogs you know"
can be answered by accessing the representation. Note that the
representation is one dimensional because if one component is known, the
other is determined. Thus if the argument vector represents a labrador,
the other vector must be "dog". Similarly, if the predicate vector
represents "dog", the argument vector must represent one or more dogs.

Unary relations also include ability to represent variable-constant
bindings. The well-known A not-B error in infant object constancy
research can be thought of as requiring ability to treat hiding place as a



variable. That is, when an infant has repeatedly retrieved an object from
hiding place A, then continues to search for it at A despite having just
seen it hidden at B, the infant is treating the hiding place as a constant.
However if hiding place were represented as a variable this perseveration
would be overcome. This requires a rank 2 tensor to represent the binding
between the object and its location.

The fact that children can represent category membership at about one
year, and the A not-B error disappears about the same time, is consistent
with ability to represent rank-2 tensor products at that age. Thus Piaget's
preconceptual stage appears to require this level of representation.

At the next level binary relations, and univariate functions can be
represented. These are all 2 dimensional concepts (given any two
components, the third is determined), and they entail tensor products of
rank 3. Based on an assessment of the cognitive development literature
Halford (1982, 1993) suggests they develop at approximately two years of
age. They correspond to Piaget's observation that in the intuitive stage
children process one binary relation at a time.

At the next level concepts based on ternary relations, binary
operations, and bivariate functions, are represented. These are 3-
dimensional, and require tensor products of rank 4. Well known examples
include transitivity and class inclusion, but there are many other concepts
that belong to this level, including conditional discrimination, the
transverse pattern task, the negative pattern task, dimension checking in
blank trials task, and many more (Halfcrd, 1993). The familiar binary
operations of addition and subtraction belong to this level. One vector
represents the operation (+ or x) while two others represent the addends
(multiplicands), and the fourth vector represents the sum (product). Note
that if you know three of these, the fourth is determined; e.g. if you know
the numbers are 2,3,5 you know the operation is addition; if you know the
numbers 2, ?, 5, and the operation is addition, you know the missing
number is 3, and so on. (Readers interested in PDP might note that there is
no catastrophic forgetting when addition and multiplication are
superimposed on a rank 4 tensor product).
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More complex concepts are represented by structures with more
vectors. The representation of transitivity requires a rank 4 tensor
product, as shown in figure 5.

Insert figure 5 here.

Given that transitive inferences are made by organizing premise
information into an ordered set of three elements, as shown in Figure 1,
the core of the transitivity concept is a ternary relation. That is,
transitivity is a relation with three arguments, corresponding to a,b,c or
top, middle, bottom, depending on the particular instantiation.

Consequently, it has to be represented by a tensor product of higher
rank than a binary relation, such as LARGER-THAN.

Insert figure 6 here

Class inclusion will be represented as shown in figure 9. There is a
vector representing the concept, and three vectors representing its
arguments, the superordinate, the first subordinate, and its complement.

All of these tasks are performed by about five years of age, but cause
considerable difficulty below this age. In a broad sense, this level of
processing corresponds to Piaget's concrete operational stage, which can
be conceptualized as ability to process binary operations, or compositions
of binary relations (Halford, 1982, 1993; Sheppard, 1978).

At the fourth level concepts based on Itteffetry relations, and
compositions of binary operations, can be represented. These include
understanding proportion and concepts such as distributivity, that are
based on compositions of binary opersations. In a broad sense this level of
processing corresponds to Piaget's formal operations stage, which entails
relations between binary operations (Halford, 1993). The representation of
proportion is shown in figure 7.

Insert figure 7

The representation of the balance scale is shown in figure 8.

Insert figure 8
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A PDP model has been developed which shows that these representations
are capable of carrying out the computations relevant to each concept.

Chunks and dimensions

We have argued (Halford 1993; Halford et al., in press) that the number of
dimensions can be identified with the number of chunks. An attribute on a
dimension, like a chunk (Miller', 1956) is an independent unit of
information that can vary in size. For example letters, digits, and words
vary considerably in the amount of information they contain, but each is a
chunk because it is an independent unit. Similarly, an attribute on a
dimension can represent varying amounts of information, and attributes on
different dimensions are independent.

Working memory research suggests that the number of chunks that adults
process in parallel is about four (Schneider & Detweiler, 1987; Halford et
al., in press). Therefore we would predict that adults can process a
maximum of four dimensions in parallel. We have also produced some
empirical evidence supporting this prediction (Halford et al., in press).
This would mean that the most complex tensor product representations
that can be processed would be rank 5, i.e. with five vectors.

Age and dimensionality nresentations

This argument enables us to reform,, ,te the longstanding question of
whether processing capacity changes with age. The question becomes, not
whether overall capacity changes, but whether representations become
more differentiated so that tensor products of higher rank can be
processed. This would mean that concepts of higher dimensionality would
be represented, enabling higher-order relations to be understood.

Our developmental work suggests that the dimensionality of
representations does increase with age: Children can represent one
dimension in parallel at a median age of one year, two dimensions at 2
years, 3 at five years, and 4 at 11 years. There are indications that this
factor is at least partly maturational (Halford, 1983, Chapter 3), but more
data are needed.

1.1
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Chunking and segmentation

Concepts more complex than four dimensions can be processed by either
conceptual chunking or segmentation. Conceptual chunking entails recoding
concepts of higher dimensionality into fewer dimensions, most commonly
into one dimension; i.e. it entails reducing multiple chunks to a single
chunk. An example would be the concept of velocity, defined as v = s/t. It

is 3 dimensional, and requires a tensor product of rank 4. However it is

also possible to think of velocity as a single dimension, such as the
position of a pointer on a dial.

Insert figure 9

When velocity is chunked as a single dimension, it can be represented by a

single vector, and combined with up to three other dimensions. Thus

velocity can now be used to define acceleration, a = (v
v1

)t
-1.

Acceleration in turn can be chunked, and combined with up to three other
dimensions. Thus force, F = ma can be defined as the product of mass and
acceleration. Conceptual chunking enables us to bootstrap our way up to
concepts of higher and higher dimensionality, without exceeding the
number of dimensions that can be processed in parallel.

If the number of dimensions can be reduced by chunking, is the limit in
processing capacity meaningful? It is meaningful because when
representations are chunked, we lose the ability to recognize relations
within the representation. When velocity is represented as a single
dimension, we can no longer compute the way velocity changes as a
function of J.me or distance, or both. Similarly, we cannot compute what
happens to time if distance is held constant, and velocity varies, and so
on. This example illustrates the point that any computation requires a
minimum number of dimensions to be represented.

Segmentation entails developing serial processing strategies. In this case
tasks are segmented into steps, each of which is small enough not to
exceed the capacity to process information. Only that part of a concept
that is the focus of attention is represented at any one time.

12



12

However autonomous development of strategies requires a concept of the
task, and this requires that there be sufficient processing capacity to
represent the dimensions of the concept. Where children cannot represent
sufficient dimensions for a particular concept, they will default to lower
dimensionality representations, which will result in strategies that are
partly correct, but which lead to errors on some variants of the task
(Halford et al., 1992).

Capacity overload

A child (or adult) who was unable to construct a representation of the
dimensionality required for a task would have three options:

1. Chunk the task to a lower dimensional representation. However this
requires the ability to "unpack" the chunks to represent the relations they
contain, and it also depends on previous experience with mapping
components into chunks.

2. The task can be segmented into smaller components that are processed
serially. However this requires a strategy the development of which
depends on ability to represent the concept of the task, so there is a catch
22 involved here. This difficulty can be overcome by instruction, but
generalization will be limited if the child cannot represent the task
concept.

3. The child can default to a lower level representation. This typically
results in performance which is partly correct, but will be invalid on
telltale aspects of the tasks that depend on representing more complex
relations.

The performance of a child who cannot construct representations of
adequate dimensionality is analogous to analysing (say) a three-factor
experiment as a series of two-way ANOVAS. Most findings will be a
correct account of the data, just as the hypothetical child's performance
will be mostly correct. There will be however, at least in certain telltale
cases, higher order interactions that will be missed. Similarly, the child
who deals with an N-dimensional concept using representations of

dimensionality less than N is really looking at the task through restricted

1 `3
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windows. Sooner or later telltale performances will occur which show
that the representation was not really adequate.

Much of controversy that has dogged cognitive development may be
attributable to this situation. Advocates of precocious development can
always point to those aspects of young children's performance that appear
adequate. However advoctes of capacity limitations can point to what they
regard as telltale failures on more complex features of the tasks.
Resolution of this polemic depends on more precise definition of

competence in each domain.

Learning. and strategy development

If we accept that knowledge acquisition is a major component of cognitive
development, it follows that learning, defined as acquisition of knowledge
through experience, must play a significant role. The conspicuous lack of
attention to the role of learning is probably because it is associated with
behavioristic learning theories which have not been found to offer many
solutions. However there are contemporary learning theories which do
have the potential to explain how children acquire important concepts, and
are worthy of further study by cognitive developmentalists.

A theory of learning is needed to explain how children acquire knowledge
about the structure of the world. A reinterpretation of some established
learning phenomena, including classical conditioning (Rescorla, 1988) and
discrimination learning (Ha !ford, 1993, Chapter 4) shows that humans and
(other) animals possess very basic and effective learning mechanisms for
this purpose. Theories of this process have been proposed by Holland et al.
(1986) and by Holyoak, Koh & Nisbett (1989). Furthermore PDP theory
provides powerful explanations for our ability to extract regularities
from experiences which include a lot of randomness.

The second aspect of learning is acquisition of skills and strategies. There
are well-substantiated computational models of skill acquisition
(Anderson, 1987) which can be applied to showing how children acquire
reasoning strategies. One such model (Halford, et al. 1992; Halford, er al.
on contract) shows how transitive inference strategies can be acquired.
These models recognize the active, constructive role of the child in

14'
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building its own knowledge base, and are a far cry from passive
acsociationistic theories of the past.

Domain-General versus domain-specific acquisitions

Processing capacity, defined as the number of dimensions that can be
represented in parallel, is a domain-general factor. It would affect any
performance which depended on central representations. This would
include all strategies and cognitive skills which develop under the
guidance of a concept of the task. Most intellectual activities such as
reasoning, mathematics and understanding of concepts, would be subject
to this factor. We have not yet attempted to model language processing
explicitly in this architecture, but there are indications that it also would
be affected in this way. Specifically, no more than four dimensions would
be processed in parallel. The difficulty of understanding complex centre-
embedded sentences appears to be amenable to explanations in these
terms; the sentence "The boy the man the girl saw met slept" exceeds
human processing capacity because it requires five dimensions to be
processed in parallel.

Learning, induction, and the mechanisms underlying strategy development,
such as analogy and means-end analysis (the "weak" methods) are domain
general, in that they appear to operate with more or less equivalent
efficiency indendently of domain. However experience necessarily occurs
within some domain. Given that cognitive development is experience
driven, it will therefore be domain dependent. This means that domain-
general factors which relate to the core cognitive processes must
interact with domain-specific experience to produce the cognitive skills
and concepts that children acquire.

Cognitive growth

Cognitive growth depends therefore on four main factors:

The first is learning and induction, which enables the child to build
up an extremely rich store of world knowledge. This is the "raw material"
of the schemas which can be used as mental models in reasoning and
problem solving.

5
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The second factor is conceptual chunking, which entails recoding
representations into fewer vectors, so they can be combined into more
complex representations, without overloading processing capacity.

The third factor is the development of serial processing strategies
which permit tasks to be performed in smaller steps, timesharing the
available representational capacity.

The fourth factor is the development of ability to represent
concepts of higher dimensionality. The first three factors are essentially
experiential, but the fourth is probably at least partly maturational. The
actual mechanism is not yet known, but it probably entails differentiating
distributed representations into more vectors. This entails rearranging
the connections, to make the representations equivalent to higher rank
tensor products. It would not increase overall processing capacity, but
would enable higher orders of relationship to be represented.

The type of thdnge that is envisaged 4.Fere is analogous to splitting
an experimental design into more independent variables. The total number
of conditions represented might not change, but the orders of interaction
that can occur do change; e.g. if we take a two-way ANOVA with four
levels of one factor and two levels of another, and convert it into a three
factor design with two levels on each factor, we still have the same
number of conditions (8), but now we have added three-way interactions.
Thus the most important change is in the or 'srs of relations that can be
represented. Similarly, growth in processing capacity through
development is more likely to mean that higher order relations can be
represented, rather than that more information can be stored. This ability
to represent more dimensions in parallel enables children to conceptualize
tasks more adequately, and thereby to construct more effective strategies
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Figure Captions

Figure 1. Transitive inference problem mapped into an ordering

schema.

Figure 2. Tensor product representation of predicate-argument

binding.

Figure 3. Four levels of relations, with dimensionality, tensor

product representation, and equivalent Piagetian stage.

Figure 4. Tensor product representation of Dog category.

Figure 5. Tensor product representation of transitivity.

Figure 6, Tensor product representation of class inclusion.

Figure 7. Tensor product representation of proportion.

Figure 8. Tensor product representation of balance scale.

Figure 9. Unchunked and chunked representation of velocity concept.
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Piagetian Formal Dimensionality PDP
Stage Specification Implementation

Preconceptual Unary relations

Intuitive

Concrete
Operational

Formal
Operations

Binary relations,
univariate functions.

Ternary relations,
binary operations,
bivariate functions.

Quaternary relations,
compositions of
binary operations.
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