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ABSTRACT

A fundamental, but often neglected, problem in the study of human
auditory word recognition concerns the structural relations among the sound
patterns of words in memory and the effects these relations have on auditory
word recognition. In the present investigation, computational and
experimental methods were employed to address a number of issues related to
the representation and structural organization of spoken words in the mental
lexicon. Using a computerized lexicon consisting of phonetic transcriptions
of 20,000 words, "similarity neighborhoods" for each of the transcriptions
were computed. Among the variables of interest in the computation of the
similarity neighborhoods were: (1) the number of words occurring in a
neighborhood, (2) the degree of phonetic similarity among the words, and (3)
the frequencies of occurrence of the words in the language. The effects of
these variables on auditory word recognition were examined in a series of
behavioral experiments employing three experimental paradigms: perceptual
identification of words in noise, auditory lexical decision, and auditory word

naming (i.e., pronunciation). The results of each of these experiments
provided strong support for the hypothesis that words are recognized in the
context of similar words in the mental lexicon. In particular, it was

demonstrated that the number and nature of words in a similarity neighborhood
affect the speed and ease with which words are recognized. A neighborhood
probability rule was developed that adequately predicted identification
performance. This rule, based on Luce’s (1959) choice rule, combines stimulus
word intelligibility, neighborhood confusability, and frequency into a single
expression. Based on this rule, a model of auditory word recognition, the
neighborhocd activation model, was proposed. This model describes the effects
of similarity neighborhood structure on the process of discriminating among
the acoustic-pheonetic representations of words in memory. The results of
these experiments have important implications for current conceptions of both
human auditory word recognition and the structural organization of spoken
words in the mental lexicon.
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CHAPTER ONE

INTRODUCTION

Much attention has previously been devoted to the structural organization
of words in the mental lexicon. Typically, however, cognitive psychologists
have focused on the structure of higher-level aspects of lexical
representations, namely the semantic and conceptual organization of lexical
items in memory (e.g., Miller & Johnson-Laird, 1976; Smith, 1978). As a
consequence, little attention has been paid to the structural organization of
the information wused to gain access to these higher-level sources of
information. The goal of the present investigation was to explore in detail
this stucture and its implications for theories of auditory word recognition.

In the present set of studies, "structure" will be defined specifically
in terms of similarity relations among the sound patterns of words.
Similarity will serve as the means by which the organization of
acoustic-phonetic representations in memory will be investigated. Indeed, it
is assumed that similarity relations among the sound patterns of words
represent one of the earliest stages at which the structural organization of
the lexicon comes into play. The identification of structure with similarity
may seem to ignore more "interesting" questions relating to the structural
organization of words, in particular, phonological and morphological
structure. Clearly, the structural constraints imposed by the phonology and
morphology of the language are important considerations. However, the precise
aim of the present investigation was to gain a further understanding of the
lower-level relations betwveen stimulus input, activation of phonetic
representations, and, subsequently, recognition of a word. It is assumed that
the delineation of these processes must serve as the groundwork on which to
base more complete theories of word recognition and lexical access that
incorporate notions of phonological and morphological structure.

The identification of structure with similarity relations among sound
patterns of words raises the difficult problem of defining similarity.
Similarity, although crucial to the present investigation, is an ill-defined
concept in research on speech perception and auditory word recognition, and
one that deserves considerably more work in these areas of research (t:e
Mermelstein, 197%). However, similarity can be approximated by both
computational and behavioral predictors of confusion, the approach taken here.
Thus, similarity will be defined in terms of a computational metric for

predicting confusions among phonetic patterns as well as a behavioral, or
operativnal, metric.

Having defined structure as the similarity relations among the sound
patterns of words, the question arises: Should the structural organization of
representations in memory have consequences for auditory word recougnition?
Consider a content-addressable memory system in which there is no noise either
in the signal or the listener (Kohonan, 1980). In such a system, encoding the
acoustic-phonetic information in the stimulus word is tantamount to locating
the word in memory. In this case, the structural organization of
acoustic-phonetic representations in memory would have no consequences for
vord identification. Instead, the task of auditory word recognition would be
identical to phonetic perception, and one need only study phonetic perception
in order to understand how words are recognized.
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It is undeniable that phonetic perception is important in auditory word
recognition. It is not undeniable, however, that the human word recognition
system operates as a noiseless content-addressable system or that the
acoustic-phonetic signal itself is devoid of noise. To begin, the signal is
very often less than ideal for the purposes of the listener. Words are
typically percejved against a background of considerable &z::ient noise;
reverberation, and the voices of other talkers. In addition, coarticulatory
effects and segmental reductions and deletions substantially restructure the
phonetic information in a myriad of ways (see Luce & Pisoni, 1987). Although
such effects may indeed be useful to the listener (Church, 1983; Elman &
McClelland, 1986), they also undoubtedly produce considerable ambiguities in
the acoustic-phonetic signal, making a strictly content-addressable word
recognition system based on phonetic encoding infeasible. In short, both the
noise inherent in the signal as well as the noise against which the signal is
perceived make it unlikely that word recognition 1is accomplished by direct

access, based solely on  phonetic encoding, to acoustic-phonetic
representations in memory.

Not only is the signal noisy, so too is the recognition system of the
listener. Although the human is clearly well adapted for the perception of
spoken language, the system by which language is perceived is by no means a
perfect one. Encoding, attentional, and memory demands frequently result in
the distortion, degradation, or loss of acoustic-phonetic information. The
data on misperceptions alone attest to the fact that the auditory word
recognition system is less than perfect (Bond & Garnes, 1980; Bond & Robey,
1983). Thus, again, a strictly content-addressable system does not suffice as
a model of human auditory word recognition.

The alternative to a noiseless content-addressable system is one in which
the stimulus input activates a number of similar acoustic-phonetic
representations or candidates in memory, among which the system must choose
(Marslen-Vilson & Welsh, 1978). In this system, a considerable amount of work
involves discriminating among the lexical items activated in memory. Indeed,
many current models of word recognition subscribe to the view that word
recognition is to a great degree a process of discriminating among competing
lexical items (Forster, 1979; Marslen-Wilson & Welsh, 1°78; Morton, 1979;
Rumelhart & McClelland, 1981).

Given that one of the primary tasks of the word recognition system
involves discrimination among lexical items, the study of the structural
organization of words in memory takes on considerable importance, e<pecially
if structural relations influence the ease or difficulty of lexical
discrimination, and, subsequently, word recognition and lexical access. By
the same token, under the assumption that word recognition involves
discrimination among competing lexical items, variations in the ease or
difficulty of discriminating among items in memory can enlighten us as to the
structural organization of the sound patterns of words. In short, lexical
discrimination and structure are so inextricably tied together that the study
of one leads to a further understanding of the other.

Assuming, then, that structural relations among words should influence
auditory word recognition via the process.of discrimination, it is important
to determine that structural differences among words actually exist. Previous
research (Landauer & Streeter, 1973; Luce, 1986c) has indeed demonstrated that
words vary substantially not only in the number of words to which they are
similar, but also in the frequencies of these words. These findings suggest
that both structural and frequency relations among words may mediate lexical
discrimination. Investigation of the behavioral effects of these sorts of
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relations should help us to understand further not only the process of lexical

discrimination, but also the organization of the sound patterns of words in
memory.

The issue of word frequency takes on an important role in the
investigation of the structural organization of the sound patterns of words.
Numerous previous studies (Howes, 1957; Newbigging, 1961; Savin, 1963; Soloman
& Postman, 1952) have demonstrated that the ease with which auditorily
presented words are recognized is menotonically related to experienced
frequency, as measured by some objective count of words in the language.
However, little work has been devoted to detailing the interaction of word
frequency and structural relations among words (see, however, Triesman, 1978a,
1978k). If word frequency influences the perceptibility of the stimulus word,
it should also influence the degree of activation of similar words in memory.
Frequency is important, then, in further specifying the relative competition
among activated items that are to be discriminated among.

The goal of the present investigation was therefore to examine the
effects of the number and nature of words activated in memory on auditory word
recognition. Throughout the ensuing discussion, the term similarity
neighborhood will be employed. A similarity neighborhood is defined as a
collection of words that are phonetically similar to a given stimulus word.
(The term stimulus word will be used to refer to the word for which a
neighborhood is computed.) Similarity neighborhood structure refers to two
factors: (1) the number and degree of confusability of words in the
neighborhood, and (2) the frequencies of the neighbors. This first factor
will be referred to as neighborhood density; the latter factor will be called
neighborhood frequency. 1In addition to neighborhood structure, the frequency
of the stimulus word itself will be of interest.

PREVIOUS RESEARCH ON THE ROLE OF NEIGHBORHOOD STRUCTURE
AND FREQUENCY IN WORD RECOGNITION

Neighborhood Structure

For the most part, the present investigation constitutes a fairly novel
approach toward the study of auditory word recognition. Little previous
research has been devoted to examining the effects of neighborhood structure,
primarily  because of the lack of computational tools for determining
similarity neighborhoods for a large number of words. One early study of
visual word recognition by Havens and Foote (1963) examined the effects of the
number of competitors, or neighbors, of words on tachistoscopic
identification. The results of this study, although based on a very small
number of words and a rather imprecise measure of neighborhood membership, are
suggestive. Havens and Foote demonstrated that effects of word frequency
could be eliminated if the number of competitors for a given word are
controlled. That 1is, 1low frequency words were identified at levels of
accuracy equal to those of high frequency words when the number of competitors
vas held constant. This result suggests that the effect of frequency is

crucially dependent on the neighborhood in which the word resides 1in the
lexicon.

Similar suggestive evidence has been presented in a little known thesis
by Anderson (1962). In this study, Anderson examined the effects of the
nature and number of alternatives on the intelligibility of spoken words.
Although again the means for determining alternatives were crude, Anderson
demonstrated that intelligibility of spoken words was affected both by the
1"
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number of possible confusors as well as by the frequencies of these confusors.
In general, Anderson showed that words with many pos.ible confusors were less
intelligible than words with fewer confusors. In addition, he demonstrated
that high frequency confusors tended to depress identification performance.

Other evidence for the role of neighborhood structure in auditory word
recognition was obtained from a reanalysis of a set of data published by Hood
and Poole (1980). Hood and Poole examined the intelligibility of words
presented in white noise. They found that word frequency failed to correlate
consistently with the word intelligibility scores for their data, in apparent
contradiction to many previous findings regarding the effects of frequency on
noise-masked words (Howes, 1957; Savin, 1963). This finding indicated that
factors other than word frequency were responsible for the wide range of
intelligibility scores obtained by Hood and Poole.

To examine the possibility that similarity neighborhood structure was, at
least in part, responsible for the differences observed in intelligibility in
the Hood and Poole study, I examined their 25 easiest and 25 most difficult
wvords. Similarity neighborhoods were computed (see below) for each of these
50 words. In keeping with Hood and Poole’s observation regarding word
frequency, no significant difference 1in frequency was found between the 25
easiest and 25 most difficult words. However, it was found that the relations
of easy words to their neighbors differed substantially from the relations of
the difficult words to their neighbors. More specifically, approximately 56X
of the words in the neighborhoods of the difficult words were equal to or
higher in frequency than the frequencies of the difficult words themselves.
For the 25 easy words, however, only approximately 23% of the neighbors of the
easy words were of equal or higher frequency. Thus, it appears that the
observed differences in intelligibility were due, at least in part, to the
frequency composition of the neighborhoods of the easy and difficult words,
and were not primarily due to the frequencies of the words themselves.

Taken together, these studies strongly suggest that neighborhood
structure may play an important role in word recognition. Furthermore, these
studies suggest that the effect of the frequency of the stimulus word itself
may be mediated by neighborhood structure. Thus, the present set of studies
vas aimed first at examining the role of neighborhood structure in auditory
word recognition, and second at detailing the role of stimulus word frequency
in the context of neighbor frequencies. The study of the combined effects of
neighborhood structure and frequency should therefore 1lead to a deeper

understanding of the effects of both similarity and frequency on word
recognition.

Given that so little research has been devoted to these problems, it is
hardly surprising that current models of auditory word recognition have had
little to say about the structural crganization of acoustic-phonetic patterns
in the mental lexicon. Only cohort theory (Marslen-Wilson & Welsh, 1978) has
made any precise claims regarding structural effects, and these have primarily
been based on the claim that words are recognized at the point at which they
diverge from all other words in the mental lexicon, a claim that says little
about the structural organization of words in memory. Although a detailed
discussion of the various models of auditory word recognition will be deferred
until Chapter 6, it should be noted at this point that similarity neighborhood
structural effects have been for the most part ignored in both research and
theory on auditory word recognition.




As I hope to show, this has been a serious omission in earlier work. Indeed,
I will attempt to demonstrate that any adequate theory of word recognition
must provide a basic account of the structure of the sound patterns of words
in memory as well as how this structure affects perceptual processing.

Word Frequency

Although little work has been devoted to the study of neighborhood
structure, a voluminous body of data has been collected on the effect of word
frequency in visual and auditory word recognition (e.g., Gordon, 1983; Glanzer
& Bowles, 1976; Glanzer & Ehrenreich, 1979; Howes, 1954, 1957; Howes &
Solomon, 1951; Landauer & Freedman, 1968; Morton, 1969; Newbigging, 1961;
Rubenstein, Garfield, & Millikan, 1970; Rumelhart & Siple, 1974; Savin, 1963;
Scarborough, Cortese, & Scarborough, 1977; Soloman & Postman, 1952; Stanners,
Jastrzembski, & Westbrook, 1975; VWhaley, 1978). 1In general, these results
have demonstrated numerous processing advantages for high frequency words.
Many theories have also been proposed to account for the advantages associated
with increased word frequency. These theories have cited frequency of
exposure (Forster, 1976; Morton, 1969), age of acquisition (Carroll & White,
1973a, 1973b), and the time between the present and last encounter with the
word (Scarborough, Cortese, and Scarborough, 1977) as the underlying reasons
for the processing advantages observed for high frequency words. Whatever the
precise mechanism, it is now assumed by many researchers (Broadbent, 1967;
Catlin, 1969; Goldiamond & Hawkins, 1958; Nakatani, 1969; Newbigging, 1961;
Pollack, Rubenstein, & Decker, 1960; Savin, 1963; Soloman & Postman, 1952;
Triesman, 1971, 1978a,b) that frequency serves to bias, in some manner, the
word recognition system toward choosing high frequency words over low
frequency words. Although the claim that frequency effects arise from biases
is not wuncontroversial, many theories of the word frequency effect have
espoused such a view (see references cited above). Among these theories are
sophisticated guessing theory (Neisser, 1967; Newbigging, 1961; Pollack et
al., 1960; Savin, 1963; Soloman & Postman, 1956), criterion-bias theory
(Broadbent, 1967), and partial identification theory (Triesman, 1978a,b).
Although there has been considerable debate among the proponents of each of
these theories, all assume that word frequency, by some as yet poorly
specified mechanism, influences the decisions of the word recognition system
via some sort of bias (see also Gordon, 1983; Norris, 1982).

Although there is some agreement among researchers as to the means by
which processing advantages afforded by high frequency words arise, there has,
as previously mentioned, been 1little research on the relation between
frequency and neighborhood structure, a primary issue in the present set of
studies. Only Triesman (1978a,b) has addressed the issue of how neighborhood
structure may influence the word frequency effect (his work will be discussed
in more detail in Chapter 3). Thus, although there has clearly been a great
deal of research and theorizing on word frequency, little has been done to
examine the effects of word frequency in conjunction with the effects of
similarity neighborhood structure. The present set of studies is therefore

aimed. in part, at examining word frequency in the context of the similarity
neisitborhood.




Description of the Present Approach

As previously stated, similarity neighborhood structure was estimated
computationally, using a large, on-line lexicon. This lexicon, based on
Webster’s Pocket Dictionary (Webster’s Seventh Collegiate Dictionary, 1967),
contains approximately 20,000 entries. In the version of the lexicon used in
the present set of studies, each entry contained: (1) an orthographic
representation, (2) a phonetic transcription, (3) a frequency count based on
the Kucera and Francis (1967) norms, and (4) a subjective familiarity rating

(Nusbaum, Pisoni, & Davis, 1984). Examples of entries in the lexicon are
shown in Table 1.1.

The phonetic transcriptions, coded in a computer-readable phonetic
alphabet, were based on a general American dialect and included syllable
boundary and stress markings. The computer-readable phonetic symbols and
their IPA counterparts are shown 1in Table 1.2. (All subsequent phonetic
transcriptions will employ the computer-readable symbols.) Frequency counts,
as noted above, were obtained from an on-line version of the Kucera and
Francis (1967) corpus. These counts were based on one million words of
printed text. Although the study of frequency effects in auditory word
recognition would be best served by a count of spoken words, no such count is
available that covers the large number of words in Webster’s lexicon.
Finally, the subjective familiarity ratings for each of the words were
obtained in a large-scale study by Nusbaum, et al. (1984). In this study,
groups of college undergraduates were asked to rate the familiarity of each of
the words 1in Webster’s lexicon on a seven point scale, ranging from "don’t
know the word" (1) to "know the word and know 1its meaning" (7). The
familiarity ratings were obtained from visually presented words.

The general procedure for computing similarity neighborhood structure was
as follows: A given phonetic transcription (constituting the stimulus word)
was compared to all other transcriptions in the 1lexicon (which constituted
potential neighbors). A neighbor was defined as any transcription that could
be converted to the transcription of the stimulus word by a one phoneme
substitution, deletion, or addition in any position. For example, among the
neighbors of the word /k@t/ would be /p@t/, /kIt/, and /k@n/, which are each
derived on the basis of one phoneme substitutions in any position. Also
included as neighbors would be the words /sk@t/ and /@t/, derived on the basis
of one phoneme additions or deletions. (Plurals and inflected forms of the
stimulus vere not included as neighbors.) The number of such neighbors
constitutes the variable of neighborhood density. Neighborhood frequency
refers to the average of the frequencies, based on the Kucera and Francis
counts, of each of the neighbors. Stimulus word frequency refers to the

frequency of the stimulus word for which the neighbors were computed (e.g.,
/k@t/).

This particular algorithm for computing neighborhood membership was based
on previous work by Greenberg and Jenkins (1964) and Landauer and Streeter
(1973; see also Sankoff & Kruskal, 1983). Clearly, this method of computing
neighborhood membership makes certain strong assumptions regarding similarity.
In particular, it assumes that all phonemes are equally similar and that the
similarities of phonemes at a given position are equivalent. However, this
method of computing similarity neighborhoods provides a computationally simple
means of estimating the number and nature of words similar to a given stimulus
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Table 1.1.

Examples of entries in Webster’s lexicon.

ORTHOGRAPHY TRANSCRIPTION FREQUENCY RATING CONTENT/FUNCTION
baby bre<bi 62 7.00000 c
bachelor b’@C-1X 6 7.00000 c
bacillus bx-s’I*1xs 2 3.08333 c
back b’ gk 967 7.00000 c
bacon b’e<k|n 10 7.00000 c
bad b’@d 142 7.00000 c
bade b’@d 1 3.25000 ¢




Table 1.2

Computer-readable phonetic symbols and their IPA  counterparts. The
computer-readable symbols are given first, folloved by the IPA symbols.

P-p 1-1
t -t r -t
k -k Vo- W
b-b y -y
d - d

g - 5 i-1
C -¢ I -1
J -4y E-¢
s - S e - e
S -7 @ -2
2 - 2 a - (-
Z—S V-at
f -t Y -&l
T -6 AN oA
vV -V c - D
D-38 0 - ol
h - h 0 -0
n-n Uu-v
G-p u - u
m-m R -&




PAFulToxt Provided by ERIC

word. The real test of the algorithm, of course, lies in the demonstration of
the behavioral consequences of the similarity neighborhoods computed in this
manner. Indeed, the ensuing chapters validate, in part, the use of this
simple metric for determining neighborhood membership. As will be discussed
in Chapter 3, however, a more sophisticated means of computing neighborhood
structure, using confusion probabilities, can be devised that more closely
models the actual similarities among phonemes. Nonetheless, the present
algorithm serves as one computationally simple means of estimating
neighborhood structure, and serves as the basis for deriving the more
sophisticated algorithm discussed in Chapter 3.

The present approach thus combined computational and behavioral
techniques in the investigation of neighborhood structure and auditory word
recognition. The effects of neighborhood structure (i.e., density and
neighborhood frequency) were examined in a variety of experimental tasks,
ranging from the perceptual identification of words in noise to auditory word
naming. The use of various experimental paradigms enabled examination of
neighborhood structural effects under a variety of task situations in order to
test the generality of the effects in question and the validity of the
neighborhood analysis. In addition, unlike much previous vork in visual and
auditory word recognition, a large number of well-defined stimuli were
employed in the present set of experiments in order to estimate the magnitude
and generality of the effects of neighborhood structure across a fairly
representative sample of monosyllabic words in English. In short, the present
investigation brings to bear a number of powerful computational and behavioral

techniques to the study of the effects of neighborhood structure on auditory
vord recognition.

SUMMARY

The present investigation represents an attempt to uncover the precise
role of neighborhood structure in auditory word recognition using
computational and behavioral techniques. The precise hypothesis put forth is
that words are recognized in the context of other words in memory. More
precisely, it is predicted that the number of words that must be discriminated
among in memory will affect the accuracy and time-course of word recognition.
It is furthermore hypothesized that the frequencies of the words activated in
memory will affect decision processes responsible for choosing among the
activated words. Finally, it is proposed that the classic word f£requency
effect may be a function of neighborhood frequency and similarity, and not a
simple direct function of the number of times the stimulus word has been
encountered.
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CHAPTER TWO

EVIDENCE FROM PERCEPTUAL IDENTIFICATION

The goal of the present investigation was to specify the effects of
similarity neighborhood structure on auditory word recognition and to _xamine
the implications of these effects for the structure of words in the nmental
lexicon. As a first approximation to achieving this goal, the experiment
reported in the present chapter examined the combined effects of neighborhood
structure and frequency on the perceptual identification of words masked by
noise. As discussed in Chapter 1, the particular approach toward addressing
these problems involved the use of a computerized lexicon as a general model
of the mental lexicon. This lexicon provided a means for estimating the
structural and frequency relationships among words in order to evaluate the
role these factors play in auditory word recognition.

In the present study, the now standard paradigm of presenting words for
perceptual identification against a background of noise was employed. This
paradigm is particularly wuseful in investigating structural relationships
among words because stimulus degradation can be used to magnify the process of
discrimination among items in memory. rurthermore, this task 1is attractive
because of the naturalness of the response required of the subject. Many
current experimental paradigms require fairly artificial responses (e.g.,
word-nonvord decisions, shadowing). The identification response, on the other
hand, is a simple and straightforward extension of the normal activity of
recognizing words.

The identification task is not without its disadvantages, however. Some
investigators have raised the objection that stimulus degradation slows
processing, allowing considerable post-perceptual processes and biases to
influence the identification response (e.g., Marslen-Wilson, 1986). This
assumes, of course, that the post-perceptual processes are not an intrinsic
component of auditory word recognition under normal circumstances. For
example, frequency effects have often been attributed to response biases

arising post-perceptually. The fact that frequency effects may be
"post-perceptual," however, does not diminish their potential importance in
normal auditory word .ecognition. Frequency biases exist throughout the

cognitive system (Hashr. & Zacks, 1984) and reflect an important and
fundamental aspect of the human’s response to his/her environment. Thus,
there is no reason to assume a priori that frequency effects in the perceptual
identification of words are in some sease unimportant because they arise from
a propensity on the part of the subject to respond in a specific way to
his/her environment based on past experience (see Smith, 1980).

In the present investigation, approximately 900 words were examined. In
research on natural language, the stimuli (in this case, words) rarely
classify themselves neatly into the cells required for analysis of wvariance.
The approach taken here was thus to examine a large number of words on which
few constraints were placed. Correlation and multiple regression analyses,as
wvell as post-hoc classification strategies, were then used to interrogate the
data and verify specific hypotheses.

Two approaches to evaluating the scructural and frequency relationships
among words wusing the perceptual identification paradigm were taken. The
first, reported in the present chapter, attempted to relate similarity
neighborhood statistics computed on the basis of a computerized lexicon to
word identification. Lexical statistics were therefore computed in order to
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evaluate the combined effects of structural and frequency factors. The second
approach, discussed in Chapter 3, involved an attempt to develop a specific
rule for predicting the identification of stimulus words in the context of
their neighbors. This rule, dubbed the neighborhood probability rule, was

used to combine the effects of stimulus word intelligibility, confusability,

and frequency into a single expression that attempted to capture the phenomena
under consideration.

In summary, the goal of the present study was to determine what effects,
if any, structural relations among the sound patterns of words have on the
process of discriminating among lexical items in the perceptual identification
task. In addition, a second goal was to explore the effect of word frequency
in the context of the structural organization of lexical items in memory.

EXPERIMENT
Method
Stimuli

Nine-hundred and eighteen words were selected from Webster’s lexicon that
met the following criteria: (1) All words were three phonemes in length; (2)
all were monosyllabic; (3) all were listed in the Brown corpus of frequency
counts (Kucera & Francis, 1967); and (4) all words had a rated familiarity of
6.0 or above on a seven point scale. The familiarity ratings were obtained
from a previous study by Nusbaum, Pisoni, and Davis (1984). In this study,
all words from the Webster’s lexicon wvere presented visually for familiarity
ratings. The rating scale ranged from "don’t know the word" (1) to "recognize
the word but don’t know the meaning" (4) to "know the word" (7). The rating

criterion was established to ensure that the words would be known to the
subjects.

The 918 words were recorded by a male speaker of a Midwestern dialect.
The stimuli were recorded in a sound attenuated booth (IAC model 401A) using

an Electro-Voice D054 microphone and an Ampex AG-500 tape recorder. The
stimuli were then low-pass filtered at 4.8 kHz and digitized via a 12-bit
analog-to-digital converter operating at a sampling rate of 10 kHz. Using

WAVES, a digital waveform editor (see Luce & Carrell, 1981), each stimulus was
spliced from the entire stimulus set and placed in a separate stimulus file.
After editing the stimuli into separate files, all stimulus files were equated
for overall RMS amplitude using the program WAVMOD (Bernacki, 1981). Equating

for RMS amplitude ensured that the stimuli were approximately equal in average
intensity.

The 918 stimuli were then randomly partitioned into three stimulus set
files consisting of 306 words each. Each of the resulting stimulus set files
had approximately equal means for each of the independent variables (see
below). From two of the three stimulus sets, two practice lists of 15 words
each were selected and placed in separate stimulus set files.

Screening

Prior to conducting the identification experiment proper, each of the 918
words was screened to ensure that no clearly anomalous stimuli were included
in the final analysis. Each of the three stimulus set files were presented to
separate groups of 10 subjects, resulting in ten observations per word. For

-9 -

21




the screening experiment, each word was presented at 75 dB SPL in the absence
of masking noise. Except for the manipulation of signal-to-noise (S/N) ratio,
the procedure for stimulus presentation and data collection was identical to
that for the identification experiment (see Procedure section below). Only
those words identified at a level of 90% correct (9 out of 10 subjects) or
above were included in the final analysis. Thirty-six of the original 918
words failed to meet this criterion. Although these words were presented in
the identification experiment in order to maintain equal numbers of stimuli in
each of the three stimulus set files, these words were eliminated from
consideration in the analyses of the data.

Subjects

Ninety subjects participated in partial fulfillment of an introductory
psychology course. All subjects were native English speakers, reported no
history of speech or hearing disorders, and were able to type.

Design

All stimuli were presented at each of three S/N ratios: +15 dB, +5 dB,
and -3 dB SPL. S/N ratio was manipulated by varying the amplitude of the
stimuli against a constant level of white, band-limited, Gaussian noise. The
level of the noise was set at 70 dB SPL and was low-pass filtered at 4.8 kHz
to match the gross spectral range of the stimuli. The stimuli vere presented
at 85 dB SPL for the +15 dB S/N ratio, 75 dB for the +5 dB S/N ratio, and 65
dB for the -5 dB S/N ratio. The choice of S/N ratios was based on a pilot
experiment; the three S/N ratios were chosen to produce a level of accuracy,

collapsed across S/N ratio, approximately equal to 50 percent correct
identification.

Each of the three stimulus set files was presented to three groups of 10
subjects each. Each group of subjects heard one-third of the stimuli at +15
dB, one-third at +5 dB, and one-third at -5 dB. However, presentation at a
given S/N ratio varied randomly from trial to trial. For a given stimulus,
S/N ratio was a between-subjectis fzctor. Altogether, 10 subjects heard each
word at each S/N ratio.

Procedure

Stimulus presentation and data collection were controlled on-line in

real-time by a PDP-11/34 minicomputer. The stimuli were presented via a
12-bit digital-to-analog converter over matched and calibrated TDH-39
headphones. The stimuli and noise were first manually callibrated at 85 dB

SPL. Programmable attenuators were then adjusted for each trial to achieve
the desired S/N ratio.

Subjects were tested in individual booths in a sound-treated room. ADM
CRT terminals interfaced to the PDP-11/34 computer were situated in each of
the booths. The procedure for an experimental trial was as follows: Subjects
were first presented with the message "READY FOR NEXT WORD" on their
terminals. One second following the message, 70 dB SPL of white noise was
presented over the headphones. One-hundred msec after the onset of the noise,
a randomly selected stimulus was presented at one of the three attenuation
levels. One-hundred msec following the offset of the stimulus, the noise was
terminated until the beginning of the next trial. Following presentation of
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the stimulus and noise, a prompt appeared on each subject’s terminal.
Subjects then typed their responses on the terminals and pressed the RETURN
key when finished. Subjects were able to see their responses while typing and
were able to correct any typing errors prior to pressing the return key.
After each subject had responded, another trial was initiated. In the event
that one or more subjects failed to respond, a new trial was initiated within
30 seconds of the offset of the noise. Alphanumeric string responses wvere
collected by the PDP-11/34 and stored in disk files for later analysis.

Subjects were instructed to provide their best guesses for each word they
heard. They were also instructed to enter no response (i.e., simply press the
RETURN key) only in the event that they were completely unable to identify the
word. Following the instructions, 15 practice words, each at one of the three
S/N ratios, were presented. None of the 15 practice words were presented in
the main experiment. Following the practice 1list, the instructions were
summarized and procedural questions were answered. One of the stimulus set
files consisting of 306 words was then presented. Three short breaks were

given at equal intervals. An experimental session lasted approximately one
hour.

Data Analysis

Data files were transferred from the PDP-11/34 to the SRL VAX 11-750 for
analysis. The data files vere first combined into a master list consisting of
the responses from 10 subjects for each S/N ratio (resulting in 30 total
responses per word) for each of the 918 words. The 36 words failing to meet
the criterion established in the screening experiment were marked and excluded
from further analysis, leaving data for 882 words. In total, 26,460 (882
words X three S/N ratios X 10 observations) subject responses were included in
the master data list.

The master list was edited to correct misspellings. Corrections for
misspellings were performed by correcting transpositions, deleting single
letter insertions, inserting single letter omissions, and correcting single
letter substitutions. Single letter substitutions were corrected only when
the key of the incorrect letter was within one key of the target letter on the
keyboard or wvhen the correct letter would have been produced if the same
keystroke had been performed by the opposite hand. Only responses
constituting nonwords were corrected in this manner. Approximately 2.5% of
the responses were corrected for misspellings.

In addition to correction of misspellings, responses were coded in four

vays: (1) 1inflected forms (i.e., past tense and plural forms) of the target
words were marked as "f"; (2) homophones of the target word were marked as
"h"; (3) nonwords were marked as "n"; and (4) illegal responses (i.e.

responses forming neither words nor phonotactically legal nonwords) were
marked as "i." Null responses were entered as blanks.

Following editing of the master list, the following information from
Webster’s lexicon was included for each of the subjec., responses in the
master list: phonetic transcriptions, Kucera and Francis (1967) frequencies,
and familiarity ratings (Nusbaum et al., 1984). 1In the case that a word
response was not included in Webster’s lexicon, a transcription was inserted
by the experimenter and the frequency was determined from the original Kucera
and Francis count. When no frequency count was available, the response was

given a frequency of 1. In the absence of familiarity ratings for these
words, a value of 7 was assigned to the responses. For nonwords,
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transcriptions based on the orthography were inserted by the experimenter and
frequencies and familiarity ratings were set to O. Upon completion of the
editing of the master list, percentages correct (hereafter, "scores") for each
word at each S$/N ratio were computed. Responses were scored as correct if the
phonetic transcription constituted an identical match to the target word or if
the response was flagged with an “f," indicating that the response was an

inflected form of the target word, or flagged with an "h," indicating a
homophone.

Computation of Lexical Statistics

Similarity neighborhood statistics for each of the phonetic
transcriptions of each of tha 882 stimulus words were recomputed based on
Vebster’s lexicon. The method of computing the similarity neighborhood
statistics was identical to that discussed in Chapter 1, with two exceptions.
These two exceptions were designed to ensure that the lexical items included
in the similarity neighborhoods of the stimulus words were at least those
produced as responses in the identification experiment. First, subject
responses not originally present in the lexicon were added to the lexicon.
Second, the familiarity rating criterion for inclusion in the neighborhood
analysis was set at 5.5. That is, only words with a familiarity rating of 5.5
or above were considered as possible neighbors. Inspection of the familiarity
ratings of subject responses revealed that the majority of responses had
familiarity ratings of 5.5 or above. As previously discussed, adoption of a
rating criterion for inclusion in the neighborhood analysis helped to ensure
that words unknown to a majority of subjects were not included as neighbors.

All subsequent analyses were based on this augmented lexicon with a rating
criterion of 5.5

Aside from these two modifications, similarity neighborhoods were
computed as described in Chapter 1  The transcription of a given stimulus
word vas compared with each transcription in Webster’s Jlexicon. A neighbor
was defined as a word tnat could be converted to the ta' get word itself by a
one phoneme insertion, deletion, or substitution in any position.

Neighborhood Variables

Three variables from the neighborhood analysis were of interest: (1) the
frequency of the stimulus word itself, or stimulus word frequency; (2} the
number of words in a given neighborhood, or the density of the neighborhood;
and (3) the mean frequency of the neighbors, or mean neighborhood frequency.
Two variants of the frequency statistics were employed: raw frequencies and
Standard Frequency Indices (SFI's). (SFI's are log transforms of the raw
frequencies computed according to the formula, SFI = 40 + 10 X (log(no.
occurrences/corpus size)+10.); Carroll, 1970; see also Whaley, 1978). Mean
neighborhood frequency was computed both on the raw frequencies of the
neighbors and on the SFI's of the neighbors. Word frequency was also examined
in terms of both raw frequencies and SFI's.

In addition to the neighborhood variables, duration of the target word in
msec wvas also included in the following analyses. This variable was included
to determine the extent to which the absolute physical duration of the target
word contributed to identification performance. The six variables and their
mnemonics are listed in Table 2.1.
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Results

Analyses over All S/N Ratios
The scores for the 882 words at eazh S/N ratio were averaged across all
S/N ratios, combined with the six variables of interest, and subjected to
correlation and regression analyses. Summary statistics for each variable as

well as the identification scores are shown in Table 2.2. Means, standard
deviations, and minimum and maximum values are shown for each variable.

Correlation Analyses

The correlations of the word scores with each of the six variables are
shown in Table 2.3. Significant correlations are indicated by an asterisk.
All but one correlation was significant at the 0.05 level, namely NHF-SFI.
Stimulus word frequency based on SFI’'s produced the highest correlation, r =

0.2465, followed by stimulus duration, r = 0.1791. Small but significant
correlations were also obtained for stimulus word frequency based on raw
frequencies (SWF-RAW), r = 0.0850," neighborhood density (DEN), r = -0.0840,

and mean neighborhood frequency based on raw frequencies (NHF-RAW), r =
-0.0979.

Aside from the correlations of the variables with the word scores, two
additional correlations among the predictor variables themselves are of
interest: Both density and mean neighborhood frequency based on SFI’s showed
moderate negative correlations with the duration variable (r=-0.3185, p<0.05,
and r=-0.3081, p<0.05, respectively). Essentially, given the high
intercorrelation of neighborhood frequency and density (r=0.9908), this
correlation suggests that as neighborhood density decreases, the duration of
the stimulus word increases. Because neighborhood density indicates the
degree of phonemic overlap among words, and thus the degree to which the
constituent phonemes of a given word are shared by other words, the
correlation of density and duration implies that phonemes shared by a large
number of words tend to be shorter in duration. That is, increases in
density, and the concomitant increases in phoneme frequency, are accompanied
by decreases 1in stimulus duration. This correlation indicates that more
frequently used phonemes tend to be shorter in duration than less frequent
phonemes (see Dewey, 1970; Miller, 1951; Zipf, 1935).

Regression Analyses

To determine the degree to which the combined effects of these variables
contributed to the overall proportion of variance accounted for, a
hierarchical multiple regression analysis was performed. Because of the
superior correlation of stimulus word frequency based on SFI’'s, the dependent
variables based on raw frequencies were excluded from the regression analysis.
The four remaining variables were entered in the following order: (1)
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Table 2.1

Neighborhood Analysis: Lexical Statistics. Variables and mnemonics.

VARIABLE MNEMONIC
1. Raw stimulus word frequency SWF-RAV
2. SFI stimulus word frequency SWF-SFI
3. Neighborhcod Density DEN
4. Mean neighborhood frequency NHF-RAV
based on raw frequencies
5. Mean neighborhood frequency NHF-SFI
based on SFI's
6. Duration of stimulus word DUR
in msec




Table 2.2

Neighborhood Analysis: Lexical Statistics. Summary statistics for variables
for all signal-to-noise ratios.

VARIABLE MEAN STANDARD MINIMUM MAXIMUM
DEVIATION VALUE VALUE

1. SWF-RAW 129.1564 556.2139 1.0000 10595.0000
2. SWF-SFI 52.1884 8.4655 40.0000 80.2500
3. DEN 16.5011 6.7651 1.0000 35.0000
4. NHF-RAV 205.9523 349.8718 2.6000 4389.000"
5. NHF-SFI 52.0241 3.1903 42.5508 66.4250
6. DUR 0.4968 0.0691 0.3012 0.7358
7. SCORE 0.4969 0.2218 0.0000 1.0600
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Table 2.3

Neighborhood

Analysis: Lexical Statistics. Correlations

between

identification scores and predictor variables for all signal-to-noise ratios.

VARTABLE r
SWF-RAW 0.0850*
SWF-SFI 0.2465%
DEN -0.0840%
NHF-RAW ~-0.0979*
NHF-SFI -0.0258
DUR 0.1791+*

DO
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SWF-SFI, (2) DEN, (3) NHF-SFI, and (4) DUR.

The results of the stepwise multiple regression analysis are shown in
Table 2.4. The variables are listed in the order they were entered into the
regression equation. Multiple R’s and multiple R2’s are shown at each step.
Also shown is the change in R2 at each step, indicating the unique
contribution to the total proportion of variance accounted for by that
variable. Finally, the change in R2 at each step as a function of the
explained variance is shown in the rightmost column. These values indicate
the proportion of the explained variance (i.e., the multiple R2 at the final
step) contributed by each variable. For example, the chance in R2 as a
function of the explained variance for the variable SWF-SFI was computed by
dividing the change in R2 as a function of the total variance (0.0607) by the
total explained variance (0.1105), which indicates that the SWF-S¥I variable
accounted for 54.93% of the explained variance.

As shown in Table 2.4, the four independent variables combined produced a
multiple R = 0.3324 and a multiple R2 = 0.1105. Thus, all four variables
combined accounted for approximately 11% of the total variance. Stimulus word
frequency based on SFI’s accounted for 6.07% of the total variance and 54.93%
of the exlained variance. Neighborhood density accounted for approximately 1%
of the total variance and 8.42% of the explained variance. Mean neighborhood
frequency based on SFI’s accounted for 1.13% of the total variance and 10.23%
of the explained variance. And, stimulus duration accounted for 2.91% of the
total variance and 26.33% of the explained variance. Thus, although the total
proportion of variance explained was small, the proportion of the explained
variance accounted for by the two neighborhood variables combined (DEN and
NHF-SFI) was approximately 18%.

Analyses at Each S/N Ratio

Correlation Analyses

To evaluate the role of the frequency and neighborhood structure
variables independently of S/N ratio, the predictor variables were submitted
to separate correlation and regression analyses at each S/N ratio. The

correlations of each of the six variables with identification scores are shown
in Table 2.5.

Significant correlations of SWF-RAV with identification performance were
obtained at the +15 and +5 S/N ratios, and significant correlations for
SWF-SFI were obtained at all S/N ratios. Note that for SWF-SFI, the
correlations increased with decreasing S/N ratio, suggesting an increase in
frequency-biased responding with increased stimulus degradation. Only two
correlations were significant for the neighborhood variables. Neighborhood
density and mean neighborhood frequency based on raw frequencies resul ed in
small negative correlations at the +5 and -5 S/N ratios, respectively.
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Table 2.4

Neighborhood Analysis: Lexical Statistics. Results of hierarchical multiple
regression analysis for all signal-to-noise ratios. Shown are the multiple
R’s, multiple R2’'s, changes in R2 as a function of the total variance, and

changes in R2 as a function of the explained variance at each step.

VARIABLE R R2 ADR2 D R2
(TOTAL) (EXPLAINED)
1. SWF-SFI 0.2465 0.0607 0.0607 0.5493
2. DEN 0.2647 0.0701 0.0093 0.0842
3. NHF-SFI 0.2853 0.0814 0.0113 0.1023
4, DUR 0.3324 0.1105 0.0291 0.2633
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Table 2.5

Neighborhood Analysis: Lexical Statistics. Correlations between
identification scores and predictor variables for each signal-to-noise ratio.

VARIABLE r

+15 S/N +5 S/N -5 S/N
1. SWF-RAV 0.0750% 0.0790% 0.0475
2. SWF-SFI 0.1711% 0.2145% 0.2253%
3. DEN -0.0228 ~0.1097* -0.0653
4. NHF-RAV -0.0281 -0.0180 -0.0936%
5. NHF-SFI -0.0466 -0.0131 -0.0002
6. DUR 0.1429% 0.1961% 0.0727%
*p<0.05
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Finally, duration correlated positively with performance at each S/N ratio.

Regression Analyses

Hierarchical multiple regression analyses were performed for each S/N
ratio separately. Again those variables based on raw frequencies were
excluded from the regression analyses. The ordering of the variables was

identical to that for the overall analysis. The results for each S/N ratio
are shown in Table 2.6.

For the +15 S/N ratio, a multiple R = 0.2525 and a multiple R2 = 0.0637
wvere obtained. All wvariables except neighborhood density (DEN) contributed
significantly to the multiple R. SWF-SFI uniquely accounted for 2.93% of the
total variance and 46.00% of the explained variance. NHF-SFI uniquely
accounted for 1.11% of the total variance and 17.43%Z of the explained

variance. And, DUR account for 2.43% of the total variance and 36.73% of the
explained variance.

For the +5 S/N ratio, all variables contributed significantly to the
proportion of wvariance accounted for, rendering a multiple R = 0.3147 and a
multiple R2 = 0.0991. 1In terms of total variance accounted for, SWF-SFI
accounted for 4.60% of the variance, DEN 1.46% of the variance, NHF-SFI 0.68%
of the variance, and DUR 3.17% of the variance. 1In terms of the proportions

of explained variance, SWF-SFI accounted for 46.42%, DEN 14.73%, NHF-SFI
6.86%, and DUR 31.997%.

Finally, for the -5 S/N ratio, all variables except DUR contributed
signficantly to the proportion of variance accounted for, rendering a multiple
R = 0.2488 and a multiple R2 = 0.0619. SWF-SFI contributed 5.07% to the total
variance and 81.91% to the explained variance. DEN contributed 0.59% and
9.53% to the total and explained variance, respectively. NHF-SFI contributed
0.53% to the toctal variance and 8.56% to the explained variance.

DISCUSSION

The multiple regression analysis performed on the data collapsed across
S/N  ratios revealed significant effects of stimulus word frequency,
neighborhood density, mean neighborhood frequency, and stimulus duration.
Although the effects of these variables in terms of the total proportion of
variance accounted for were small, they nevertheless revealed that stimulus
word frequency and neighborhood structure have predictable and measureable
effects on identification performance. As stimulus word frequency increased,
so too did identification performance. Furthermore, as neighborhood density
and mean neighborhood frequency increased, identification performance dropped,
indicating that both the number and. nature of competitors affects
identification performance. Although the proportions of the total variance
accounted for by *he neighborhood variables was small, their contribution to
the overall proportion of explained variance was substantial in the overall
analysis. In particular, neighborhood density and mean neighborhood frequency
together accounted for over 18% of the explained variance.
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Table 2.6

Neighborhood Analysis: Lexical Statistics. Results of hierarchical multiple

regression analysis for each signal-to-noise ratio. Shown are the multiple
R’s, multiple R2’s, changes in RZ2 as a function of the total variance, and

+15 S/N
VARIABLE R R2 A R2 AR2
(TOTAL) (EXPLAINED)
1. SWF-SFI 0.1711 0.0293 0.0293 0.4600
2. DEN (not significant)
3. NHF-SFI 0.2008 0.0403 0.0111 0.1743
4. DUR 0.2525 0.0637 0.0243 0.3673
+5 S/N
VARIABLE R R2 AR2 2\ R2
(TOTAL) (EXPLAINED)
1. SWF-SFI 0.2145 0.0460 0.0460 0.4642
2. DEN 0.2462 0.0606 0.0146 0.1473
3. NHF-SFI 0.2595 0.0674 0.0068 0.0686
4. DUR 0.3147 0.0991 0.0317 0.3199
-5 S/N
VARIABLE R R2 A R2 A R2
(TOTAL) (EXPLAINED)
1. SWF-SFI 0.2253 0.0507 0.0507 0.8191
2. DEN 0.2380 0.0566 0.0059 0.0953
3. NHF-SFI 0.2488 0.0619 0.0053 0.0856
2. DUR {not significant)




In addition to the effects of the neighborhood variables, it 1is of
interest that a significant effect of word frequency was observed in the
overall analysis. Again, 1in terms of the total proportion of variance
accounted for, the effect was small. However, given that all stimuli were
highly familiar to subjects, the observation of a frequency effect indicates
that whereas the effects of word frequency and subjective familiarity are
highly correlated, they can be dissociated. That is, there appears to be a
word frequency effects above and beyond the familiarity of the items. This
finding suggests that despite the judged familiarity of the word, degree of
exposure somehow influences ide~tification performance, implicating a

mechanism sensitive to the degree of repeated exposure (see also Nusbaum &
Dedina, 1985).

The regression analyses at each S/N ratio also revealed effects of
stimulus word frequency, neighborhood density, and mean neighborhood
frequency. Significant effects of mean neighborhood frequency were obtained
at each S/N ratio, and effects of neighborhood density were observed at the +5
and -5 S/N ratios. Although the contributions of these variables to the total
proportion of wvariance accounted for were small, their contributions to the
explained variance were substantial, ranging from 17% to 21%. Thus, within
the levels of the proportions of variance accounted for by the combination of
all of the variables examined, the neighborhood structural variables had
measurable effects on identification performance.

Summary and Conclusions

The results from the present study provide reliable, albeit modest
evidence, for the role of neighborhood structure (i.e., neighborhood density
and mean neighborhood frequency) in the perceptual identification of words.
In general, the proportions of total variance accounted for by each of the
independent variables were small. However, the neighborhood variables, as
wvell as stimulus word frequency and duration, each contributed substantially
to the proportion of variance explained by the combination of each of the
variables. In particular, the results demonstrated that words in high density
neighborhoods (excluding those presented at +15 S/N ratio) were identified
less accurately than those in low density neighborhoods, and words in high
frequency neighborhoods were identified less accurately than those in low
frequency neighborhoods. The present study thus strongly suggests that
neighborhood structure 1is an important determinant of identification
performance and therefore provides strong motivation for a more detailed
analysis of the roles of stimulus woerd frequency and neighborhood structure in
the perceptual identification of words. Thus, in order to more closely
examine neighborhood structure and frequency, a more sophisticated means of
determining neighborhood membership was employed in Chapter 3. 1In particular,
effects of basic segmental intelligibility and confusability were incorporated

in the computation of similarity neighborhoods in an attempt to better predict
identification performance.
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CHAPTER THREE

NEIGHBORHOOD PROBABILITY RULES

As stated in the conclusion to Chapter 2, predicted effects of
neighborhood structure (i.e., neighborhood density and frequency) were
observed for various S/N ratios, although these effects were small. Upon
reconsideration of the algorithm used to compute similarity neighborhoods in
Chapter 2, it is perhaps not too surprising that neighborhood structure played
a relatively small role in accounting for the observed variance. Recall that
a neighbor of a stimulus word was defined as a word that could be transformed
into the target word itself by a one phoneme substitution, insertion, or
deletion. This is a scmewhat imprecise measure of similarity. In particular,
no index of basic segmental confusability is included in such a determination
of neighbors. For example, the stimulus word /k@t/ would have neighbors such
as /p@t/, /r@t/, /k@d/, and /k@n/, among others, and all would be equivalent
as neighbors. However, because all segments are not equally confusable {see,
for example, Miller and Nicely, 1958), each of these neighbors will vary
according to the degree to which they are confusable with the stimulus word.
Thus, the simple computation of neighborhood membership based on one phoneme
substitutions, deletions, and insertions most likely constitutes too imprecise

a measure of similarity to predict adequately the identification of words in
noise.

In addition to the failure to include measures of basic segmental
confusability, the algorithm employed in Chapter 2 included no direct measure
of the relations among the frequencies of the stimulus word and its neighbors.
Although mean frequency of the neighbors was included in the analyses as an
index of the influence of neighbor frequencies on the identification of the
stimulus word, a more precise measure of neighborhood frequency should perhaps
include a determination of the relation of the frequency of the stimulus word
to the frequencies of the words in its neighborhood. That is, how does the

frequency of the target word in relation to the frequencies of its neighbors
influence identification performance?

A final shortcoming of the present algorithm for computing neighborhood
membership discussed in Chapter 2 was the failure to take into account the
combined effects of segmental confusability and frequency relations. On a
priori grounds, segmental confusability and frequency relations should act in
concert. A high frequency neighbor that is also highly confusable with the
stimulus word should prove to be a more formidable competitor than a high
frequency word that is less confusable with the stimulus word. Likewise, low
frequency neighbors may be quite strong competitors if highly confusable with
the stimulus word, but much less so than when less confusable with the target
word. If one adds to these variables a consideration of the frequency and
basic intelligibility of the stimulus word itself in relation to its
neighbors, a more complex and presumably more powerful measure of neighborhood
structure should be obtained. Thus, as a further step toward specifying more
precisely the role of neighborhood structure in auditory word identification,
an attempt was undertaken to determine a neighborhood probability rule that
would predict word identification based on neighborhood structure.

In order to devise a rule to predict word identification performance
based on stimulus word frequency, word intelligibility, neighbor frequency,
and neighbor confusability, an independent means of determining segmental
intelligibility and confusability was required. Therefore, a second,
independent experiment was performed in order to obtain confusion matrices for
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all possible initial consonants, vowels, and final consonants. The confusion

matrices were then used to investigate the combined effects of stimulus
intelligibility and neighborhood confusability.

EXPERIMENT
Method
Stimuli

All possible consonant-vowel (CV) sequences and all possible
vowel-consonant (VC) sequences were generated as follows: The 23 possible
initial consonants (including a null consonant) were combined with the 15
possible vowels to produce 345 CV sequences. Likewise, the 22 possible final
consonants (again including a null consonant) were combined with the 15
possible vowels to produce 330 VC sequences. Initial consonants, vowels, and
final consonants are shown in Table 3.1. (The IPA counterparts of the
phonetic symbols are shown in Table 1.2.)

The 345 CV sequences and 330 VC sequences were randomized and recorded by
the same male speaker vwho read the words for the perceptual identification
study reported in Chapter 2. The procedure for recording, digitizing, and
editing the CV and VC syllables was identical to the procedure reported in
Chapter 2. All CV and VC syllables were also matched in overall amplitude to
the average amplitude of the words used in the word identification experiment.

Subjects

One-hundred and twenty subjects participated in partial fulfillment of an
introductory psychology course. All subjects were native English speakers and
reported no history of speech or hearing disorders.

Design

The CV and VC syllables were presented for identification of either the
consonant alone or the vowel alone at the three S/N ratios used in the word
identification experiment: +15 dB, +5 dB, and -5 dB SPL. Syllable type (CV
or VC) and response type (consonant response or vowel response) vere
between-subject factors. S/N ratio was a within-subject factor. This
resulted in four conditions in which (1) subjects heard CV syllables and
attempted to identify the consonant, (2) subjects heard CV syllables and
attempted to identify the vowel, (3) subjects heard VC syllables and attempted
to identify the consonant, or (4) subjects heard VC syllables and attempted to
identify the vowel. A given subject participated in only one of the four
conditions. The experimental design is shown in Figure 3.1.
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Table 3.1

Confusion Matrix Experiment. Initial consonants, vowels, and final consonants
composing CV and VC syllables.

OCOE <L CO NP PEEO K
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S/N ratio varied randomly throughout a given session and was
counterbalanced across conditions. No subject heard a given stimulus more
than once. Ten observations per syllable type, response type, and S/N ratio

wvere obtained. Manipulation of signal and noise levels was identical to that
reported in Chapter 2.

Procedure

Method of stimulus presentation was identical to that employed in the
word 1identification experiment. However, the procedure for data collection
was modified. At the beginning of each session, subjects were given answer
booklets containing numbered blanks. At the top of each page of the answer
booklet, a key was provided. The key indicated the particular letter or
letiers the subject was to use as responses. Examples of words for each sound
vere also provided in the key in ambiguous cases. In the conditions in which
a vowel response was required, all vowels were accompanied by example words.
Examples of the keys for each condition are shown in Table 3.2. (Note that in
order to distinguish /T/ and /D/, subjects were instructed to circle the "th"
corresponding to /D/ but not the "th" corresponding to /T/.)

Subjects were instructed that they would hear a €V syllable or a VC
syllable (depending on the condition) embedded in noise. The subjects were
instructed to identify either the consonant or vowel (again depending on the
condition) and to indicate the sound they thought they heard in the
appropriate blank on their answer booklets. Subjects were instructed to refer
to the key at the top of each page of the answer booklets in order to
determine the letter or letters that should be associated with each sound.

The experiment consisted of three phases: (1) familiarization, (2)
practice, and (3) testing. In the familiarization phase, subjects heard
examples of the stimuli at 75 dB SPL in the absence of masking noise. The

stimuli were presented in the order in which they appeared in the key at the
top of their answer booklets. Subjects were instructed simply to listen to
each syllable and to familiarize themselves with the particular letter or
letters that were to be used for each sound. For the CV-syllable
consonant-response condition, subjects heard each of the consonants preceeding
the vowels /u/, /i/, and /a/ in the order in which they were 1listed in the
answer key. For the VC-syllable consonant-response condition, subjects heard
each of the consonants following the same vowels. For the two vowel-response
ccnditions, subjects heard each of the vowels in isolation in the order in

which they appeared in the answer key. The Sseries of vowels was repeated
three times.

In the practice phase of the experiment, subjects heard one token of each
initial consonant, vowel, or final consonant, depending on the condition. In
this portion of the experiment, the syllables were presented in noise, with
S/N ratio varying from trial to trial. In the practice phase, subjects were
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SYLLABLE TYPE: cv vc_
(N=345) (N=330)

RESPONSE TYPE: C v v e
(N=23) (N=135) (N215) IN=22)

Figure 3.1. Experimental design for the confusion matrix experiment.
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Table 3.2

Confusion Matrix Experiment. Response keys for initial consonant, vowel, and
final consonants conditions.

INITIAL CONSONANTS:

b ¢ d f g h j k 1 m n p r s sh t (hth v
get jet then thin

VOVELS:

EE I E ATl A AA oW IY U AW oI o 00 UU ER
feet hit peck maid sad sock shout hide bud pawed void toad good food bird

FINAL CONSONANTS:

b c¢h d £ g ge j k 1 m =n p r s sh t th <;?
dog beige judge math bathe
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instructed to respond with their best guess on each trial. In the event that
they were completely unable to identify a consonant or vowel, subjects were
instructed to respond with a check mark in the appropriately numbered blank.

Following practice, the instructions were summarized and any procedural
questions were answered. The subjects were then instructed that they would
hear a much longer list of syllables. They were again encouraged to provide
their best guesses on each trial. Subjects were also instructed that although
some of the syllables would form real words, they were to treat all syllables
on an equal basis and to focus on either the consonant or the vowel, ignoring
the irrelevant portion of the syllable. During both the practice and testing
phases of the experiment, subjects were provided with four seconds in which to
respond. Short breaks were provided in order to allow time to turn the pages

in the answer booklets. An experimental session lasted approximately one
hour.

Results

Confusion mairi-es were constructed from the data for initial consonants,
vewels, and £:.:5! c¢onsonants at each S$/N ratio. The confusion matrices were
collépsed acros- the :rrelevant consonant or vowel for a given condition. For
example, the pncnesre /p/ occurred in initial position in 15 syllables (i.e.,
b iore each of the 15 vowels). The data for syllable-initial /p/ were
therefore s1iapsed across the 15 different syllables in which /p/ occurred.
Given 10 obsccvations per syllable, collapsing across the 15 syllables in
which /p/ occurred in initial position rendered 150 possible responses for
/p/. Thus, for each initial and final consonant, a total of 150 responses was
obtained. Confusion matrices for the vowels were constructed in a somewhat
different manner: Two separate vowel confusion matrices were first
constructed, one from the CV syllables and one from the VC syllables. For the
vowel confusion matrices based on the CV syllables, 230 observations per vowel
wvere obtained; for the VC syllables, 220 observations per vowel were obtained.
Recall that for the CV syllables, each vowel was paired with 23 initial
consonants. Given 10 observations per syllable, collapsing across initial
consonants renders 230 observations per vowel. Likewise, for the VC
syllables, 1in which each vowel was paired with 22 final consonants, 220
observations per vowel were obtained. The confusion matrices for the vowels
based on the CV and VC syllables were then combined, resulting in 450
observations for each vowel.

The confusion matrices for initial consonants for each S/N ratio are
shown in Tables 3.3, 3.4, and 3.5. The confusion matrices for final
consonants for each S/N ratio are shown in Tables 3.6, 3.7, and 3.8. And, the

confusion matrices for the vowels for each S/N ratio are shown in Tables 3.9,
3.10, and 3.11.

Stimuli are represented by the rows and responses by the columns. The
numbers in each cell represent the raw frequencies of identification.
Probabilities for initial and final consonants can be obtained by dividing

each cell frequency by 150. Probabilities for vowels can be obtained by
dividing each cell frequency by 450.
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Table 3.6

Confusion matrix for vowels for the +15 signal-to-noise ratio. Stimuli are

represented by the rows, responses by the columns. Also shown are the column
sums.

+15 S/N

i I E e @ a ¥ Y ~ ¢ 0 o U u R g
i 408 3 17 3 2 o0 1 3 o 3 5 2 O 2 1 O
I 538 29 5 4 3 1 10 2 2 1 1 5 6 7 1
E 1 20372 12 15 1 O 2 9 1 2 4 O 3 6 2
e 9 4 10371 13 9 2 5 1 5 3 2 6 3 6 1
@ 2 1 32 17362 12 12 1 o0 3 o0 o0 1 2 4 1
a 0O 6 5 0 35173 13 1 518 5 10 6 2 3 2
) 1 1 1 2 2 038 1 3 19 8 13 8 4 2 O
Y 0O 26 0 38 3 0 13722 o o0 6 1 1 1 1 O
" 1 4 39 0 26 7 1 0297 9 1 23 25 5 10 2
c 0 3 4 2 12 8 16 1 825 6 41 13 1 5 2
0 1 3 1 3 2 2 17 6 1 5386 10 9 2 2 O
0 1 1.0 0 O 01 0 1 1 8392 9 13 8 O
U 2 3 4 3 5 2 7 3101 3 8 19240 43 7 O
u 2 1 2 1 3 0 12 o0 10 2 1 10 81323 1 1
R 0o 310 0 1 0 o0 1 11 1 2 5 5 5405 1

*@ indicates "no response"




Table 3.7

Confusion matrix for vowels for the +5

represented by the rows, responses by
sums.

signal-to-noise
the columns.

Also shown are the column

+5 S/N

i I E e @ a WV Y -~

i 415 3 4 4 0O O 1 5 2
I 8265 3 9 5 0O 6 5 18
E 5 35299 28 36 7 2 5 7
e 9 6 11372 15 3 0 4 1
@ 2 3 3 735% 7 12 2 4
a 0O 1 4 5 41170 22 15 16
) o 0 2 2 8 139 3 O
Y 2 16 1 246 7 5 0370 6
~ 0O 8 28 2 36 21 13 2 253
c 1 1 1 0 13 5 14 0 8
0 3 8 6 13 4 1 6 7 13
0 2 3 4 15 4 1 26 1 14
U 1 26 23 3 2 1 5 1 84
u 55 15 13 3 4 1 5 4 10
R 1 7 27 2 2 1 2 3 3

—

[y
OWOWRWOUNWNREWWO®OE

3]
I S
~

*@ indicates "no response"
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Table 3.8

Confusion matrix for vowels for the -5

regresented EX the rows, responses by the columns.

sums.

signal-to-noise

ratio.

Stimuli

Also shown are the column

D XD @O 3 e

e o OoOn

-5 S/N

v Yy =~
3 5 1
2 5 20
5 5 27
4 4 5
31 13 6
24 54 13
219 41 14
59 233 6
26 22 119
27 10 14
5 2 20
6 6 18
4 5 33
1 7 20
5 6 39
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*@ indicates "no response"
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Table 3.10
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Table 3.11

Confusion matrix for final consonants for the signal-to-noise ratio.

for for -5
Stimull are represented by the rows, responses by the columns. Also shown are
the column sums. - - -

-5 S/N

p t k b 4 g € J s S z f T v D n m 1 t 6 2 9@
p 27 24 31 1 0 1 27 0 11 6 1 7 1 2 o 0 1 1 0 0 1 8
t 11 36 29 0 1 2 20 4 10 4 O 4 & 2 1 2 2 0 2 0 2 14
Kk 11 39 3% 1 Oo 2 22 2 13 3 1 S5 1 o o 2 0 O 1 o 1 11
b 5 13 7 27 15 33 1 &4 1 3 1 2 2 2 1 2 1 0o 1 39 17
d 2 7 3 6 20 22 9 7 8 6 1 5 3 8 2 12 2 3 0 1 11 17
g 3 8 10 8 8 46 S 5 3 3 3 8 1 8 0 0 2 0 1 6 10 12
C 6 21 12 0 1 0 70 2 6 11 0 3 2 0 2 1 0 0 1 0 ) 7
J 7 8 4 8 11 23 10 11 S 8 4 2 S 2 1 8 0 O 2 1 19 11
s 9 21 26 2 1 6 18 3 246 5 1 s 3 3 o 2 0 2 1 2 3 13
S 6 14 16 2 1 0 42 1 s 29 0 3 8 1 1 1 0 0 0 0 6 14
z 2 2 0 6 11 13 2 5 3 1 5 2 111 6 17 2 2 S 6 22 26
£ 9 36 24 1 3 4 16 1 12 10 O 13 3 1 3 1 1 0 0 0o 0 12
T 9 29 29 0 1 7 21 0 12 7 0 6 4 1 3 3 1 2 0 0 1 14
v 2 2 ) 7 11 23 1 5 2 1 13 2 1 17 2 5 3 8 4 4 13 19
D 4 4 3 6 11 28 2 8 1 O S5 4 3 1 4 4 2 9 3 4 12 13
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Neighborhood Probability Rules

Having obtained confusion matrices for the initial and final consonants
and vowels, the question becomes: How can the segmental intelligibility of
the stimulus word, estimated from the confusion matrices, be combined with the
segmental confusability of its neighbors, also estimated from the confusion
matrices, to provide an index of the identifiability of the stimulus word?
One means of accomplishing this goal is to devise a neighborhood probability
rule (NPR) incorporating the probability of identifying the stimulus word and
the probabilities of confusing the neighbors with the stimulus word. Stated
diffarently, can a neighborhood probability rule be devised that expresses the
probability of identifying the stimulus word given the probabilities of
identifying its neighbors? Luce’s (1859) ¢ »~ice rule provides a
straightforward means of computing such probabil .cies. Very simply, Luce’'s
choice rule states that the probability of choosing a particular item i is
equal to the probability of item i divided by the probability of item i plus
the sum of the probabilities of j other items. A general form of the rule is:

(3.1) oo )
p(i) + Z p(3)

Thus, Luce’s choice rule provides a means for computing the probability of
choosing a given item from a collection of other items.

The applicability of Luce’s general choice rule to the problem at hand is
transparent. Specifically, it provides a means for attempting to predict the
probability of choosing a stimulus word from among its neighbors and thus
provides the basis for devising a neighborhood probability rule. Accordingly,
a neighborhood probability rule assumes the following general form: The
probability of identifying the stimulus word is equal to the probability of
the stimulus word divided by the probability of the stimulus word plus the sum
of the probabilities of identifying the neighbors. Thus:

p(S)
(3.2) p(ID) = ——-———- T
P(S) + ZPp(Nj)
it
where p(JD) is the probability of correctly identifying the stimulus word,

p(S) 1is the probability of the stimulus word, and p(Nj) is the probability of
the jth neighbor.

Stimulus Word Probabilities

The data from the confusion matrices can be used to compute the
probability of the stimulus word and the conditional probabilities of its
neighbors. The probability of the stimulus word can be computed as follows:
For each phoneme in the stimulus word, the conditional probability of that
phoneme given itself can be obtained from the confusion matrices. Assuming
independent probabilities, the obtained conditional phoneme probabilities can
be multiplied. This product renders a stimulus word probability (SWP) based
on the probabilities of the individual phonemes of the stimulus word. Note
that the probability for the stimulus word is based on the product of the
conditional probabilities of identifying each phoneme independently, obtained
from the confusion matrices. Thus, the stimulus word probability can be
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computed as follows:

[n}
(3.3) SWP = T p(PSi|Psi),

vhere p(PSi|PSi) is the conditional probability of identifying the ith phoneme
of the stimulus word given that phoneme, and n is the number of phonemes in
the word. For example, the stimulus word probability of the word /dcg/ is:

(3.4) SWP(dcg) = p(did) * p(clc) * p(glg),
where, again, the conditional probabilities of the individual phonemes are
determined from the confusion matrices for the initial consonants, vowels, and

final consonants. Note that the SWP of /dcg/ can be construed as the
conditional probability of the word /dcg/ given /dcg/, or p(dcg|dcg).

Neighbor Word Probabilities

In this manner, conditional probabilities for each neighbor of the
stimulus word can also be computed. Thus, the neighbor word probability (NWP)
can be computed by finding the conditional probabilities of each of the
phonemes of the neighbor given the stimulus word phonemes. Multiplying these
probabilities renders an index of the probability of the neighbor, or the NWP.
Neighbor word prebability can be computed as follows:

a
(3.5) NWP = Tl p(PNi|PSi),

[

where PNi is the ith phoneme of the neighbor, PSi is the ith phoneme of the
stimulus word, and n is the number of phonemes. (This description assumes, of
course, an equal number of phonemes in the stimulus word and the neighbor.

Moreover, the conditional probabilities can only be obtained from the
available confusion matrices if the ith phonemes of the stimulus word and

neighbor are both consonants or both vowels. These qualifying assumptions
will be discussed in more detail below.)

To return to the example of the stimulus word /dcg/ given above, the
neighbor word probability for the neighbor /t@g/ can be computed as:

(3.6) NWP(t@g) = p(t|d) * p(@|c) * p(glg),

which can also be construed to be the probability of identifying /t@g/ given
/dcg/, or p(t@gl|dcg).

Unweighted Neighborhood Probability Rule

Given these designations of stimulus word and neighbor word
probabilities, the appropriate substitutions of terms in equation (3.2) render
a neighborhood probability rule based on the general choice rule:

5
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SWP

(3.7) p(ID) = -——moomem ,

n
SWP + 2 NWPj
=t

where p(ID) is the probability of identifying the stimulus vord and n is the
number of neighbors.

The complete expanded form of the neighborhood probability rule is shown
in equation (3.8).

1)
TT p(psi|psi)

et

(3.8) P(ID) = =—m=——mmmmmmmmmmmmm e
N nNn a
TTp(Psi|PSi) + . [TIp(PNij|PSi)]

L ):\ ot

where PSi is the ith phoneme of the stimulus word, PNij is the ith phoneme of
the th neighbor, n is the number of phonemes, and nn is the number of
neighbors. (This rule will be referred to as the unveighted probability rule
because it does not take into account stimulus word or neighbor frequency.)

Again, note that this particular form of the rule applies only to
stimulus words and neighbors that are equal in length. 1In addition, given
that the probabilities entering into the rule are based on separate confusion
matrices for initial consonants, vowels, and final consonants, it is strictly
only possible -- given the available confusion data -- to apply this rule to
stimulus words and neighbors having the form consonant-vowel-consonant.
Indeed, these restrictions (with a few modifications; see below) were adopted
for the present analysis. Of course, there need be no inherent limitations in
the rule itself; the restrictions on its application arise here only because
of the available confusion matrix data. There is no reason to assume that a
larger set of confusion data could not be obtained using a variety of
structures in order to generalize the present approach beyond CVC words.

The neighborhood probability rule shown in equation (3.8) exemplifies one
means of determining the probability of identifying a stimulus word in the
context of its neighbors. Note that the rule takes into account both the
basic intelligibility of the stimulus word (the SWP) as well as the
probabilities of identifying the neighbors of the stimulus wvord (the NWPj’s).
Note also that the meaning of the term "neighbor" now takes on a somevhat
different meaning than employed in Chapter 2. In essence, every word is a
neighbor of every other word. However, each "neighbor" has an associated
conditional probability that can range, in theory, from zero to one. Thus,
neighborhood membership is not categorical, as in the previous analysis of
neighbors based on one phoneme substitutions, insertions, or deletions.
Instead, each neighbor 1is represented in the neighborhood with some
probability derived from the confusion matrices.

A number of properties of the neighborhood probability rule are worthy of

mention. First, intelligibility of the phonemes of the stimulus word itself
will determine, in part, the role of the neighbors in determining the
predicted probability of identification. Stimulus words with high phoneme

probabilities (i.e., words with highly intelligible phonemes) will tend to
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have neighbors with low phoneme probabilities, owing to the fact that all
probabilities in the confusion matrices are conditional. Likewise, stimulus
words with low phoneme probabilities (i.e., those with less intelligible
phonemes) will tend to have neighbors with relatively higher phoneme
probabilities. However, the output of the neighborhood probability rule is
not a direct function of the stimulus word probability. Instead, the output
of the rule 1is dependent on the existence of lexical items that contain
phonemes that are confusable with the phonemes of the stimulus word. For
example, a stimulus word may contain highly confusable phonemes. However, if
there are few actual lexical items (i.e., neighbors) that contain phonemes
confusable with those of the stimulus word, the sum of the neighbor word
probabilities will be low. The resulting output of the neighborhood
probability rule will therefore be relatively high. Likewise, if the phonemes
of the stimulus word are highly intelligible, but there are a large number of
neighbors that contain phonemes that are confusable with the stimulus word,
the probability of identification will be reduced. In short, the output of
the neighborhood probability rule is contingent on both the intelligibility of
the stimulus word and the number of neighbors that contain phonemes that are
confusable with those of the stimulus word. Thus, intelligibility of the
stimulus word, confusability of the neighbors, and the nature of lexical items
act in concert to determine the predicted probability of identification.

In the context of the neighborhood probability rule, then, the role of
“neighborhood density" becomes more complex. The previous definition of
neighborhood density in Chapter 2 relied on the categorical inclusion and
exclusion of words in the neighborhood of the stimulus word based on one
phoneme substitutions, additions, and deletions. However, once neighbors are
assigned probability values, the role of neighborhood density depends on the
neighbor word probabilities themselves. For example, one stimulus word may
have a high number of low probability neighbors. However, another stimulus
word may have a low number of high probability neighbors. In these two
situation., the predictions of the neighborhood probability rule could be
identical. Thus, predicted identification need not be a function of
neighborhood density per se. Instead, the number as well as nature of
neighbors serves to predict observed identification performance.

Frequency-Weighted Neighborhood Probability Rule

The neighborhood probability rule discussed thus far has incorporated no
means for representing the frequency of the stimulus word or the frequencies
of the word’s neighbors. Although there are undoubtedly numerous ways to
incorporate frequency in the neighborhood probability rule, frequency was

incorporated in the neighborhood probability rule by wveighting
(multiplicatively) the probabilities of the stimulus word and its neighbors by
their log-transformed frequencies. Thus, frequency was incorporated in

equation (3.8) as shown in equation (3.9):

[a}
[(TTp(PSi|PSi)] * FreqS

A

(3.9)  P(ID) = =mmmmmmmmmommmmmemmmm oo ;
: A nn n
([TTp(PSi|PSi)] * Freqs} + 2 ({TIp(PNij|PSi)] * FreqNj)
o+ BEX! A
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wvhere PSi is the probability of the ith phoneme of the stimulus word, PNij is
the probability of the ith phoneme of the jth neighbor, n is the number of
phonemes in the stimulus word and the neighbor, FreqS is the frequency of the
stimulus word, FreqNj 1is the frequency of the jth neighbor, and nn is the
number of neighbors. This rule will be referred to as the frequency-weighted
neighborhood probability rule (FWNPR). Given the superior correlation of
stimulus word frequency based on Standard Frequency Indices (SFI's, see
Carroll, 1970) reported in Chapter 2, only these indices of frequency were
used as frequency weights in the computation of the rule.

In FWNPR, the frequencies of the stimulus word and the neighbors will
serve to amplify to a greater or lesser degree the word probabilities of the
stimulus word and its neighbors. Note that frequency 1in this rule is
expressed in terms of the relation of the frequency of the target word to the
frequencies of its neighbors. Thus, the absolute frequency of the stimulus
wvord may have differential effects on predicted identification performance
depending on the frequencies of the word’s neighbors. For example, given two
stimulus words of equal frequency, the stimulus word with neighbors of lower
frequencies will produce a higher predicted probability than the stimulus word
with neighbors of higher frequencies. The degree to which the frequencies of
the neighbors will play a role in determining predicted identification
performance will, of course, depend on the neighbor word probabilities. The
frequencies of the neighbors with low probabilities of confusion will play
less of a role than those with high probabilities of confusion. Simply put,
neighborhood structure will play a role in determining predicted
identification performance in terms of the combined effects of the number and
nature of the neighbors, the frequencies of the neighbors, the intelligibility
of the stimulus word, and the frequency of the stimulus word.

Predicting Identification Performance Using the
Neighborhood Probability Rules

Computation of rules

In order to evaluate the relative efficacy of the proposed neighborhood
probability rules, the data from the perceptual identification study reported
in Chapter 2 were reanalyzed in terms of the unweighted and frequency-weighted
rules using the confusion matrix data from the experiment reported in the
present chapter. Given that confusion matrices were obtained only for
consonants occurring in initial and final position, only those words of the
form consonant-vowel-consonant from the original data set were analyzed.
Altogether, 811 CVC words were analyzed. In addition, in order to simplify
the computational analysis, only monosyllabic words contained within the
Vebster’s lexicon were used to compute the neighborhood probability rules.
Inspection of the error responses revealed that this was not an unreasonble
simplification, given that a significant majority of the error responses were
in fact monosyllabic, which 1indicates that subjects typically perceived
monosyllabic  words. The restriction of monosyllabic neighbors was
necessitated by the particular procedure used to determine neighbor word
probabilities (see below).

The general method for computation of the neighborhood probability rules

was as follows: The stimulus word probability was first determined for a
given stimulus word. This probability was computed from the confusion
matrices using equation (3.3). Following computation of the stimulus word

probability, the transcription of the stimulus word was compared to the
transcriptions of all other monosyllabic words in Webster’s lexicon. These
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comparisons produced the neighbor word probabilities. The vowel of the
stimulus word was first aligned with the vowel of the neighbor being analyzed.
The conditional probabilities of the vowel and the consonants flanking the
vovel for the neighbor were then determined from the appropriate confusion
matrices. In the event that the neighbor was a CVC word, the neighbor word
phoneme probability was computed using equation (3.3). That 1is, the
conditional probability of the initial consonant of the neighbor given the
initial consonant of the stimulus word was determined, as were the conditional
probabilities of the vowel and the final consonant.

A problem arises as to the treatment of neighbors containing either
initial consonant clusters, final consonant clusters, or both. In these
cases, the transcriptions for the stimulus word and the neighbor were aligned
at the vowel. However, when initial and/or final clusters were present in the
neighbor word, those consonants not immediately adjacent to the vowel fail to
overlap with anything in the stimulus word. For example, if the stimulus word
is /k@t/ and the neighbor is /skId/, the /k/ of the stimuius word would .l gn
with the /k/ of the neighbor, /@/ would align with /I/, and /t/ would align
with /d/. However, the /s/ of the neighbor /skId/ would align with no phoneme
in the stimulus word. 1In this event, the probability of the phoneme /s/ was
determined by finding the conditional probability of /s/ given the null
phoneme from the confusion matrix for initial consonants, or p(s|f), where ngn
is the null phoneme. In essence, this is the probability of perceiving /s/
when in fact no phoneme has “een presented. The conditional precbabilities for
the neighbor /skId/ would thus be: p(s|f#), p(k|k), p(I|@), and p(dft). The
procedure for final consonant clusters was identical, except that the
probability of the neighbor phoneme given the null phoneme was computed from
the final consonant confusion matrix. This method of dealing with initial and
final clusters in the neighbor word makes the simplistic assumption that
clusters are phonetically and acoustically equivalent to the sum of their
constituent phonemes. However, in the absence of confusion matrices for all

possible clusters as well as singletons, this simplification &ajppeared
reasonable.

A similar problem arises when the neighbor is shorter than the stimulus
word. In these cases, however, the solution is much more straightforward.
The stimulus word and neighbor are once again aligned at the vowel. The empty
slot in the neighbor is then assumed to contain the null phoneme, in which
case the conditional probability for that phoneme can be easily determined
from the appropriate confusion matrix. For example, if the stimulus word is
/k@t/ and the neighbor /@t/, the neighbor /@t/ 1is assumed to have the
transcription /#@t/. The conditional probabilities for the neighbor phonemes
would then be: p(@|k), p(@|@), and p(t|t).

In this manner, neighbor word probabilities were determined and the
neighborhood probability rules were computed for each of the 811 CVC stimulus
words. The neighborhood probability rules were computed separately for each
S/N ratio for each word using the confusion matrices appropriace to that S/N
ratio. When computing the neighborhood probability rules for a given S/N
ratio, the confusion matrix obtained at that S/N ratio was used to determine
the stimulus and neighbor word probabilities. That 1is, three predicted
identification scores for each neighborhood probability rule were computed for
each word, one for each of the three S/N ratio.

wDh
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Analyses over All S/N Ratios

The output of the unweighted and frequency-weighted neighborhood
probability rules were combined with the scores for the 811 CVC words and
submitted to correlation and regression analyses. In addition to the
predicted identification scores from the neighborhood probability rules, four
other variables were examined: (1) duration in msec of the stimulus word
(DUR), (2) SFI of the stimulus word (SWF-SFI), (3) the urweighted stimulus
word probability (UWSWP) obtained from the confusion matrix data, and (4) the
frequency-veighted stimulus word probability (FWSWP). (The frequency-weighted
SWP's were computed by multiplying the SWP by its SFI.) The unveighted and
weighted stimulus word probabilities were included to provide baselines
against which to compare the performance of the unweighted and

frequency-weighted neighborhood probability rules. The resulting variables
and their mnemonics are shown in Table 3.1Z2.

The first set of analyses was performed on the entire data set averaged
across all three S/N ratios. That is, identification scores, SWP’s, and the

predictions of the rules were each averaged across S/N ratios and submitted to
correlation and regression analyses.

Correlation Analyses

Summary statistics for the predictor variables and word scores are shown
in Table 3.13. Means, standard deviations and minimum and maximum values for
each variable are shown in this table. The correlations of each of the six
predictor variables with the identification scores are shown in Table 3.14.
Variable mnenomics are given in Table 3.12.

All correlations were significant beyond the 0.05 level of significance.
The obtained correlations, ranked from lowest to highest, were: (1) stimulus

duration (DUR), r = .1599; (2) stimulus word frequency (SWF-SFI), r = .2760;
(3) unveighted stimulus word probability (UWSWP), r = L3676 (4)
frequency-veighted stimulus word probability (FWSWP), r = .4253; (5)
unveighted neighborhood probability rule (UWNPR), r = .4339; and (6)
frequency-weighted neighborhood probability rule (FWNPR), r = .4750. Thus,

the frequency-weighted neighborhood probability rule (FWNPR) correlated most
highly with performance, followed by the unweighted neighborhood probability
rule (UWNPR). In the overall analysis, therefore, inclusion of the
frequency-weighting factor improved performance of the neighborhood
probability rule. In addition, both neighborhood probability rules proved to
be better predictors o0f identification performance than either the unveighted
or frequency-veighted stimulus word probabilities. This result demonstrates
that both stimulus intelligibility and neighborhood confusability combined
served to better predict identification performance than stimulus
intelligibility alone. Finally, and not surprisingly, the frequency-wveighted
stimulus word probability proved to be a better predictor of identification

Q - 27 - -
« 5

¢




Table 3.12

Neighborhood Analysis: Neighborhood Probability Rules.

Variables and

mnemonics.

1. Duration of stimulus word in msec
based on SFI’s

2. SFI stimulus word frequency
3. Unweighted stimulus word probability
4. Frequency-weighted stimulus word probability

5. Unveighted neighborhood probablity
rule

6. Frequency-weighted neighborhood
rule

du

SWF-SFI

UVSWP

FWSWp

UWNPR




Table 3.13

Neighborhood Analysis: Neighborhood Probability Rules. Summary statistics
for variables for all signal-to-noise ratios.

VARIABLE MEAN STANDARD MINIMUM MAXIMUM
DEVIATION VALUE VALUE

1. DUR 0.4961 0.0695 0.3012 0.7358
2. SWF-SFI 52.1626 8.4686 40.0000 80.2510
3. UWSWP 0.2144 0.1051 0.0082 0.5148
4. FWSWP 11.1826 5.8049 0.3293 31.2158
5. UWNPR 0.3559 0.1530 0.0152 0.7199
6. FWNPR 0.3567 0.1536 0.0108 0.7093
7. SCORE 0.4947 0.2241 0.0000 1.0000

2




Table 3.14

Neighborhood Analysis: Neighborhood Probability Rules. Correlations between
identification scores and predictor variables for all signal-to-noise ratios.

VARIABLE r
1. DUR 0.1599%
2. SWF-SFI 0.2760*
3. UWSWP 0.3676%
4. FWS¥? 0.4253*
5. UWNPR 0.4339%
6. FWNPR 0.4750%




performance than the unweighted stimulus word probability.

Regression Analyses

In order to evaluate the performance of the UWNPR and FWNPR against the
other independent variables of interest, hierarchical multiple regression
analyses vere performed. Three sets of analyses were conducted, one examining
the performance of the UWNPR, one examining the performance of the FWNPR, and

one comparing the two rules. In the first set of multiple regression
analyses, the UWNPR was evaluated in conjunction with stimulus duration (DUR)
and unweighted stimulus probability (UWSWP). This analysis was aimed at

determining the performance of the neighborhood probability rule in the
absence of stimulus word or neighbor frequency. Two different orders of the
independent variables (DUR, UWSWP, and UWNPR) were examinecd in the multiple
regression analyses. These two orders were determined a prior according to
the predicted contribution of each independent variable to the proportion of
variance accounted for.

The first ordering of the variables was designed to proceed from the
variable predicted to account for the smallest proportion of variance to the
variable predicted to account for the largest proportion of variance, namely,
from (1) DUR to (2) UWSWP to (3) UWNPR. By so ordering the independent
variables, it is possible to determine the proportion of variance accounted
for by the UWNPR after the effects of stimulus duration and stimulus word
probability have been removed. Any additional variance contributed by the
rule serves as an index of the effects of neighborhood structure above and
beyond the effects of stimulus duration and stimulus intelligibility.

The second ordering of the independent variables was designed to proceed
from the largest predicted proportion of variance accounted for to the
smallest proportion of variance account for, that is, from (1) UWNPR to (2)
UWSWP to (3) DUR. This ordering enables examination of the degree to which
UWSWP and DUR contribute to the proportion of variance accounted for above and
beyond that accounted for by UWNPR.

These same orderings of the independent variables were applied to the
FWNPR. The ordering from "smallest" to “"largest" was: (1) DUR, (2) FWSWP,
(3) FWNPR. Again, by so ordering the independent variables in the regression
analysis, it is possible to determine the proportion of variance accounted for
by FWNPR after the effects of stimulus duration, stimulus word probability,
and stimulus word frequency have been removed, thus providing an independent
estimate of the effects of the frequency-weighted neighborhood structure. The
reverse ordering of variables--proceeding from "laigest" to '"smallest"
predicted proportion of variance accounted for--was also examined for the
FWNPR, namely, from (1) FWNPR to (2) FWSWP to (3) DUR.

In addition to the two sets of hierachical multiple regression analyses
on the UWNPR and the FWNPR, a third analysis was performed that compared the
two rules. The extent to which the frequency-weightings incorporated in the
FWNPR improve prediction was evaluated by entering the UWNPR followed by the
FWNPR. Any additional variance accounted for by the FWNPR once the effects of
the UWNPR have been removed will serve as an index of what improvement, if
any, is provided by the frequency-weights associated with the stimulus word
and its neighbors incorporated in the FWNPR.

b
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The results of the two multiple regression analyses ("smallest to
largest" and "largest to smallest") for the UWNPR are shown in the top panel
of Table 3.15. Multiple R’s, multiple R2’'s, changes in R2’s as a function of

the total variance, and changes in R2’s as a function of the explained
variance are shown at each step.

For the ordering of variables proceeding from smallest to largest for the
UVNPR, a multiple R = 0.4472 and a multiple R2 = 0.2000 were obtained.
Stimulus dura:ion (DUR) accounted for 2.56% of the total variance and 12.80%
of the explained variance. Unweighted stimulus probability (UWSWP) accounted
for 13.78% of the total variance and 68.30% of the explained variance.
Finally, the UWNPR accounted for 3.67% of the total variance and 18.35% of the
explained variance. Thus, the UWNPR contributed a substantial proportion of
variance above and beyond that contributed by stimulus duration and stimulus
intelligibility, as indexed by UWSWP. That s, even when the effects of
stimulus intelligibility are removed, neighborhood structure, as indexed by
the UWNPR, accounted for approximately 18% of the explained variance, thus
clearly demonstrating that neighborhood structure is an important determinant

of identification performance above and beyond the intelligibility of the
stimulus word itself.

For the ordering of the variables proceeding from largest to smallest for
the UWNPR, a multiple R = 0.4472 and a multiple R2 = 0.2000 were again
obtained. The UWNPR accounted for 18.83% of the total variance and 94.15% of
the explained variance. The unweighted stimulus word probability and stimulus
duration each contributed little to the total proportion of variance accounted
for  (0.56% and 0.61%, respectively) as well as to the proportion of explained
variance (2.80% and 3.05%, respectively). This result demonstrates that
stimulus intelligibility and duration contribute little to the proportion of
variance accounted for beyond that accounted for by the UWNPR.

The results for the FWNPR are shown in the middle panel of Table 3.15.
Both orderings of the independent variables produced a multiple R = 0.4973 and
a multiple R2 = 0.2473. For the ordering proceeding from smallest to largest,
stimulus duration accounted for 2.56% of the total variance and 10.35% of the
explained variance. The FWSWP accounted for 18.52% of the total variance and
74.88% of the explained variance. Finally, the FWNPR accounted for 3.65% of
the total variance and 14.76% of the explained variance. Again, the
neighborhood probability rule contributed a substantial proportion of variance
beyond that contributed by the other independent variables. Indeed, even vhen
stimulus duration, stimulus word frequency, and stimulus word probability are
removed, the FWNPR accounted for over 14% of the explained variance, once
again demonstrating that neighborhood structure has a marked effect on

identification performance independent of stimulus duration, frequency, and
intelligibility.

For the ordering of variables proceeding from largest to smallest, the
neighborhood probability rule again accounted for the majority of the
variance. The FWNPR account for 22.56% of the total variance and 91.23% of
the explained variance. The FWSWP and stimulus duration contributed small
proportions to both the total variance accounted for (1.44% and 0.72%,
respectively) and the explained variance (5.82% and 2.91%, respectively).
Thus, the FWNPR appears to capture most of the effects of stimulus word
frequency, stimulus word intelligibility, and stimulus duration.
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Table 3.15

Neighborhood Analysis: Neighborhood Probability Rules. Results  of
hierarchical multiple regression analyses for all signal-to-nolse ratios.
Shown are the results for the varfables entered from "smallest to largest” and
"largest to smallest™ for the UWNPR and the FWNPR. Also shown are the
regression analyses comparing UWNPR and FWNPR. Multiple R’s, multiple R2's,
changes in RZ as a function of total variance, and changes in R2 as a function
of explained variance are shown at each step.

VARIABLE R ) R2 A R2 A R2
(TOTAL) (EXPLAINED)
1. DUR 0.1599 0.0256 0.0256 0.1280
2. UWSWP 0.4042 0.1634 0.1378 0.6890
3. UWNPR 0.4472 0.2000 0.0367 0.1835
LARGEST TO SMALLEST
1. UWNPR 0.4339 0.1883 0.1883 0.9415
2. UVSWP 0.4403 0.1939 0.0056 0.0280
3. DUR 0.4472 0.2000 0.0061 0.0305
ANALYSIS OF FWNPR
SMALLEST TO LARGEST
1. DUR 0.1599 0.0256 0.0256 0.1035
2. FVWSWP 0.4591 0.2108 0.1852 0.7488
3. FWNPR 0.4973 0.2473 0.0365 0.1476
LARGEST TO SMALLEST
1. FWNPR 0.4750 0.2256 0.2256 0.9123
2. FWSWP 0.4899 0.2400 0.0144 0.0582
3. DUR 0.4973 0.2473 0.0072 0.0291
COMPARISON OF UWNPR AND FWNPR
1. UWNPR 0.4339 0.1882 0.1883 0.6749
2. FWNPR 0.5282 0.2790 0.0908 0.3254
o




The results of the hierachical multiple regression analysis comparing the
performance of the UWNPR and the FWNPR are shown in the bottom panel of Table
3.15. The UWNPR alone contributed 18.83% to the total variance and 67.49% to
the explained variance. Once the effects of the UWNPR were removed, however,
the FWNPR contributed an additional 9.08% to the total variance and 32.54% to
the explained variance. Clearly, the frequency-weightings incorporated in the
FWNPR result in a substantial improvement 1in the proportion of variance
accounted for, even once the effects of stimulus intelligibility and
unveighted neighborhood structure are partitioned out, further demonstrating
that identification performance is a function of the combined effects of
stimulus intelligilibility, stimulus word frequency, neighborhood
confusability, and neighborhood frequency.

Analyses at Each S/N Ratio

In order to examine the effects of the independent variables at each S/N
ratio separately, the same correlation analyses performed on the data average
across S/N ratios were performed for each of the three S/N ratios. These
analyses were undertaken to determine what differential effects, if any, the

independent variables may have as a function of variations in stimulus
degradation.

Correlation Analyses

Summary statistics for the predictor variables and identification scores
for each of the three S/N ratios are shown in Table 3.16. Means, standard
deviations, and minimum and maximum values for each variable are shown in this
table. The correlations of each of the six predictor variables with the

identification scores are shown in Table 3.17. Variable mnemonics are given
in Table 3.12

All correlations were significant at the 0.05 level or beyond. Looking
across S/N ratios, a number of patterns emerge. In particular, the
correlations of stimulus word frequency and identification tend to increase
with  decreasing S/N ratio. Thus, stimulus word frequency played an
increasingly stronger role as stimulus degradation 1increased. This result
suggests either that words of higher frequency tend to be more resistant to
degradation or that subjects adopt more strongly frequency-biased strategies
of response generation as stimulus degradation increases. The first
hypothesis is at least partially ruled out by the intercorrelations betwveen
stimulus word probability and SFI. If stimulus word probability is taken as
an index of intelligibility, and high frequency words are, in fact, more
resistant to degradation, then the correlations of stimulus word probability
and stimulus frequency would be expected to increase with decreasing S/N
ratio. However, no significant correlations between these two variables wvere
observed at any of the S/N ratios. Thus, the identifiability of the
constituent phonemes of high frequency versus low frequency words does not
appear to vary differentially with S/N ratio, suggesting that the increase in
the correlation of SFI across S/N ratio is due to an increased frequency btias
on the part of subjects when presented with more degraded stimuli.
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Table 3.16

Neighborhood Analysis: Neighborhood Probability Rules. Summary statistics
for variables for each signal-to-noise ratio.

+15 S/N
VARIABLE MEAN STANDARD MINIMUM MAXIMUM
DEVIATION VALUE VALUE
1 DUR 0.4961 0.0695 0.3012 0.7358
2 SWF-SFI 52.1626 8.4686 40.0000 80.2510
3. UWSWP 0.4342 - 0.1958 0.0206 0.8585
4. FWSWP 22.6564 10.9409 0.8240 54.6457
5. FWNPR 0.6292 0.2378 0.0258 0.9911
6 UWNPR 0.6276 0.2377 0.0364 0.9930
7 SCORE 0.7821 0.2771 0.0000 1.0000
+5 S/N
VARIABLE MEAN STANDARD MINIMUM MAXIMUM
DEVIATION VALUE VALUE
1 DUR 0.4961 0.0695 0.3012 0.7358
2 SWF-SFI 52.1626 8.4686 40.0000 80.2510
3. UVWSWP 0.1914 0.1214 0.0023 0.6448
4. FVWSWP 9.9727 6.5662 0.0920 37.9026
5 UWNPR 0.3897 0.2155 0.0049 0.9881
6 FUNPR 0.3910 0.2166 0.0035 0.9903
7 SCORE 0.5600 0.3326 0.0000 1.0000
-5 S/N
VARIABLE MEAN STANDARD MINIMUM MAXIMUM
DEVIATION VALUE VALUE
1 DUR 0.4961 0.0695 0.3012 0.7358
2 SWF-SFI 52.1626 8.4686 40.0000 80.2510
3. UWSWP 0.0176 0.0182 0.0002 0.1326
4, FVWSWP 0.9187 0.9804 0.0096 7.7878
5. UWNPR 0.0505 0.0480 0.0007 0.3029
6 FWNPR 0.0499 0.0486 0.0007 0.3434
7 SCORE 0.1419 0.2041 0.0000 1.0000
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Table 3.17

Neighborhood Analysis: Neighborhood Probability Rules. Correlations between
identification scores and predictor variables for each signal-to-noise ratio.

VARIABLE r

+15 S/N +5 S/N -5 S/N
1. DUR 0.1134%* 0.1819%* 0.0764%
2. SVF-SFI 0.2082%* 0.2329% 0.2470%
3. UVWSWP 0.3832%* 0.2941% 0.1279%*
4. FWSVP 0.4123* 0.3355%* 0.1702%
5. UWNPR 0.3758%* 0.4364% 0.1805%
6. FWNPR 0.4043% 0.4687% 0.2276%*
*E(0.0S




The correlations of stimulus word probability and identification
performance also varied systematically as a function of S/N ratio. As S/N
ratio decreased, the correlations between stimulus word probability and
identification scores also decreased. Thus, the relative identifiability of
the constituent phonemes played a  decreasing role in determining
identification performance as stimulus degradation increased, suggesting a

decreased reliance on the information in the stimulus itself as degradation
increased.

Finally, the pattern of correlations for the two neighberhood probability
rules showed a trend for highest correlations at the +5 §/N ratio,
intermediate correlations at the +15 S/N ratio, and lowest correlations at the
-5 S/N ratio. In short, the neighborhood probability rules tended to predict
performance best at the intermediate level of stimulus degradation. The
finding that the neighborhood probability rules tended to correlate more
highly with identification performance at the +5 S/N ratio may be related to
the simple fact that more variance was available for explanation at the +5 S/N
ratio.l In light of this fact, direct comparisons among the correlations at
each S/N ratio are somewhat tenuous when the correlations vary as a function
of the total proportion of variance available for explanation.

Regression Analyses

To further examine the performance of the neighborhood probability rules,
hierarchical multiple regression analyses vere performed at each S/N ratio.
The regression analyses were identical to those performed for data averaged
over S/N ratio. The results of these analyses are shown in Tables 3.18, 3.19,
and 3.20.

For all analyses, the results revealed largest multiple R’s for the +5
/N ratio and smallest multiple R’s for the -5 S/N ratio, again demonstrating
that the best prediction was obtained at the intermediate level of stimulus
degradation. The results also revealed consistently larger multiple R’s for

the analyses containing the FWNPR than for those analyses containing the
UWNPR.

For the analyses proceeding from smallest to largest at each S/N ratio,
it was once again found that the neighborhood probability rule contributed
significantly to the proportion of variance accounted for beyond that
accounted for by the other independent variables. In particular, the UWNPR
uniquely accounted for 1.62% of the total variance and the +15 S/N ratio,
7.61% of the total variance at the +5 S/N ratio, and 2.38% of the total
variance at the -5 S/N ratio. Obviously, the UWNPR performed best at the +5
S/N ratio. However, in terms of the proportion of explained variance, the
UWNPR contributed significantly larger proportions of “variance as stimulus
degradation increased, namely, 13.78% at the +15 S/N ratio, 38.61% at the +5
S/N ratio, and 50.00% at the -5 S/N ratio. This result suggests that, in
terms of the proportion of variance actually explained by the combination of
the independent variables, neighborhood structure plays an increasingly
stronger role as stimulus degradation increases.

G
- &

31 -




Table 3.18.

Neighborhood Analysis: Neighborhood  Probability Rules. Results of
hierarchical multiple regression analyses for the +15 signal-to-noise ratio.
Shown are the results for the variables entered from "smallest to largest" and
"largest to smallest” for the UWNPR and the FWNPR. Also shown are the
regression analyses comparing UWNPR and FWNPR. Multiple R’s, multiple R2’s,
changes in R2 as a function of total variance, and changes in RZ as a function

of explained variance are shown at each step. T

VARIABLE R R2 AR2 AR2
{TOTAL) (EXPLAINED)

1. DUR 0.1134 0.0129 0.0129 0.0726
2. UWSWP 0.4018 0.1615 0.1486 0.8367
3. UWNPR 0.4215 0.1776 0.0162 0.1378

LARGEST TO SMALLEST
1. UWNPR 0.3758 0.1412 0.1412 0.8134
2. UWSwWP 0.4167 0.1736 0.0324 0.1866
3. DUR (not significant)

ANALYSIS OF FWNPR

SMALLEST TO LARGEST
1. DUR 0.1134 0.0129 0.0129 0.0625
2. FWSWP 0.4306 0.1854 0.1725 0.8354
3. FWNPR 0.4545 0.2065 0.0211 0.1022

LARGEST TO SMALLEST
1. FWNPR 0.4G43 0.1634 0.1634 0.8057
2. FWSWP 0.4504 0.2028 0.0394 0.1943
3. DUR (not significant)

COMPARISON OF UWNPR AND FWNPR

1. UWNPR 0.3758 0.1412 0.1412 0.7182
2. FWNPR 0.4434 0.1966 0.0554 0.2818




Table 3.19.

Neighborhood Analysis: Neighborhood  Probability Rules. Results  of
hierarchical multiple regression analyses for the +5 signal-to-noise ratio.
Shown are the results for the variables entered from "smallest to largest" and
"largest to smallest™ for the UWNPR and the FWNPR. Also shown are the
regression analyses comparing UWNPR and FWNPR. Multiple R’s, multiple R27s,
changes in RZ2 as a function of total variance, and changes in R2 as a function
of explained variance are shown at each step.

VARIABLE R R2 AR2 A R2
(TOTAL) (EXPLAINED)
1. DUR 0.1819 0.0331 0.0331 0.18679
2. UWSWP 0.3479 0.1210 0.0879 0.4460
3. UWNPR 0.4440 0.1971 0.0761 0.3861
LARGEST TO SMALLEST
1. UWNPR 0.4364 0.1904 0.1904 0.9690
Z. UWSWP " .(not significant)
3. DUR 0.4432 0.1965 0.0060 0.0305
ANALYSIS OF FWNPR
SMALLEST TO LARGEST
1. DUR 0.1819 0.0331 0.0331 0.1471
2. FUSwp 0.3860 0.1490 0.1159 0.5151
3. FWNPR 0.4743 0.2250 0.0760 0.3378
LARGEST TO SMALLEST
1. FWNPR 0.4687 0.2197 0.2197 0.9764
2. FUSWP (not significant)
3. DUR 0.4743 0.2250 0.0053 0.0236
COMPARISON OF UWNPR AND FWNPR
1. UWNPR 0.4364 0.1904 0.1904 0.7644
2. FWNPR 0.4991 0.2491 0.0587 0.2356




Table 3.20

Neighborhood Analysis: Neighborhood Probability Rules. Results of
hierarchical multiple regression analyses for the -5 signal-to-noise ratio.
Shown are the results for the variables entered from "smallest to largest" and
"largest to smallest"™ for the UWNPR and the FWNPR. Also shown are the
regression analyses comparing UWNPR and FUNPR. Multiple R’s, multiple R27s,
changes in R2 as a function of total variance, and changes in R2 as a function

of explained variance are shown at each step.

VARIABLE R R2 AR2 AR2
(TOTAL) (EXPLAINED)
1. DUR 0.0764 0.0058 0.0058 0.1218
2. UUSWP 0.1542 0.0238 0.0179 0.3761
3. UWNPR 0.2182 0.0476 0.0238 0.5000
LARGEST TO SMALLEST
1. UWNPR 0.1805 0.0326 0.0326 0.7426
2. UWswp 0.2096 0.0439 0.0113 0.2574
3. DUR (not significant)
ANALYSIS OF FWNPR
SMALLEST TO LARGEST
1. DUR 0.0764 0.0058 0.0058 0.0838
2. FWSWP 0.1925 0.0371 0.0312 0.4509
3. FVNPR 0.2630 0.0692 0.0321 0.4639
LARGEST TO SMALLEST
1. FWNPR 0.2276 0.0518 0.0518 0.7908
2. FWSWP 0.2559 0.0655 <.0137 0.2092
3. DUR (not significant)
COMPARISON OF UWNPR AND FWNPR
1. UWNPR 0.1805 0.0336 0.0326 0.3357
2. FWNPR 0.3115 0.0971 0.0645 0.6643




A similar pattern of results was obtained for the analyses containing the
FWNPR. The FWNPR uniquely accounted for 2.11% or the total variance and
10.22% of the explained variance at the +15 S/N ratio, 7.60% of the total
variance and 38.61% of the explained variance at the +5 S/N ratio, and 3.21%
of the total variance and 46.39% of the explained variance at the -5 S/N
ratio. What is of primary importance, however, is the finding that the FWNPR
significantly contributed to the variance accounted for at each S/N ratio even
when stimulus duration, stimulus intelligibility, and stimulus frequency had
been removed, again demonstrating that neighborhood structure has a pronounced

effect on identification performance beyond the effects of stimulus
intelligibility and frequency.

The analyses proceeding from largest to smallest for both the UWNPR and
FWNPR revealed that the rules captured most of the explained variance, leaving
little or no additional explained variance to be accounted for by the other
independent variables. For the UWNPR, the rule accounted for 81.34% of the
explained variance at the +15 S/N ratio, 96.90% at the +5 S/N ratio, and
74.26% at the -5 S/N ratio. Similar results were obtained for the FWNPR: The
frequency-veighted rule accounted for 80.57% of the explained variance at the
+15 S/N ratio, 97.64% at the +5 S/N ratio, and 79.08% at the -5 S/N ratio.
Clearly, both rules performed optimally at the +5 S/N ratio. Indeed, at this
S/N ratio, neither the UWSWP nor the FWSWP contributed significantly to the
variance. It is of special note that the entire effect of stimulus word
frequency was accounted for by the FWNPR at the +5 S/N ratio, indicating that
the relations of the frequency of the stimulus word to its neighbors entirely
captured the effect of stimulus word frequency. However, at both the +15 and
-5 S/N ratios, the UWSWP and FWSWP did contribute additional variance,
indicating that the neighborhood probability failed to capture all of the
effects of stimulus intelligibility and frequency at these S/N ratios.

The multiple regression analyses comparing the performance of the UWNPR
and FWNPR are also shown in Tables 3.18, 3.19, and 3.20. For each S/N ratio,
the FWNPR uniquely contributed over 5.00% to the total variance accounted for.
As in the overall analysis, therefore, these results demonstrate the the
frequency-veighting factors incorporated in the FWNPR result in substantial
increases in the proportion of variance accounted for, again demonstrating
that identification performance is a function of stimulus word frequency,

stimulus word intelligibility, neighborhood frequency, and neighborhood
confusability.

Summary

The results from the analyses of each S/N ratio separately support the
general conclusions obtained from the analyses of the data collapsed across
S/N ratios. For each S/N ratio, it was shown that the neighborhood
probability rule contributes significantly to the proportion of variance
accounted even when the effects of stimulus duration, stimulus intellibility,
and--in the case of the FWNPR--stimulus frequency are removed. Thus, the
present results further support the claim that neighborhood stcucture 1is an
important determinant of identification performance. In addition, these
results also demonstrate that the FWNPR 1is the single best predictor of
identification performance of the variables examined.

The analyses at each S/N ratio further revealed that the effects of
neighborhood structure become more pronounced as stimulus degradation
increases. Not surprisingly, this result demonstrates that increasing
stimulus degradation increases the confusability of the stimulus word with its
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neighbors. Also of note is the relatively poor performance of  the
neighborhood probability rules at the -5 S/N ratio. Clearly, the rules fare
more poorly under the condition of extreme stimulus degradation. However,
nearly 70% of the words in this condition were responded to correctly by at
most one subject. Thus, there is far less variance available for explanation
at this S/N ratio. In general, given the extreme level of degradation of both
the words and the CVs and VCs used to compute the stimulus and neighbor word
probabilities at the -5 S/N ratio, systematic prediction of identification

scores may fare more poorly given increased noise in the word and confusion
matrix data.

In summary, the present study clearly demonstrates that neighborhood
structure is an important determinant of the preceptual identification of
words in noise. Stimulus intelligibility, neighborhood confusability, and the
frequency relations among the stimulus word and its neighbors act in concert
to determine identification. Inh particular, it was demonstrated that a choice
rule could be formulated that captures the complex interrelationships of the

stimulus, its neighbors, and the frequencies of the stimulus and its
neighbors.

GENERAL DISCUSSION
Factors Influencing Performance of the Rules

At first glance, the correlations between the FWNPR and identification
performance at each S/N ratio may appear somewhat moderate. However, a number
of factors must be considered in evaluating the success of the rule in terms
of its correlation with performance. First, the obtained correlations were
computed for a large number of stimuli (N = 811). The number of stimuli in
fact virtually exhaust the population of highly familiar
consonant-vowel-consonant words in English. The success of FWNPR, as indexed
by the proportion of variance accounted for, is thus rather remarkable given
the large number of stimuli examined.

The performance of the rule is even more striking given that no specific
information about the idiosyncratic acoustic structures of the individual
stimuli, aside from stimulus duration, was included in the rule. Only
information concerning the relative intelligibility and confusability of the
individual segments was included, and this information was obtained from an
independent source of data, namely, the confusion matrices obtained in a quite
different experiment. Thus, the rule was able to achieve the obtained level
of performance in the absence of specific measurements of the spectral,
durational, and amplitude characteristics of the specific segments of the
individual word stimuli. Thus, the information entered into the rule was to a
large extent independent of the idiosyncratic acoustic structures of the
individual words.

The frequency-weighted neighborhood probability rule also incorporates
three sources of information that may introduce considerable noise in
prediction of identification. The first comes from the confusion matrices.
Recall that the confusion matrices were obtained from a separate pool of
subjects and were based on consonant-vowel and vowel-consonant syllables. The
pattern of confusions obtained from CV and VC syllables may differ in
fundamental ways from the pattern of cqnfusions evoked by real word stimuli.
In particular, response biases frequently observed in confusion matrices of
this type may introduce significant sources of noise in predicting confusions
among real word stimuli (see also Klatt, 1968; Miller & Nicely, 1955; Wang &
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Bilger, 1973). Inspection of the column sums for the confusion matrices shown
in Tables 3.3 to 3.11 reveals strong response biases for particular phonemes.
Response bias is indexed by the deviation of the column sums from the row
sums. Thus, for the consonant confusion matrices, deviations of the column
sums from 150 indicate biases toward or against responding with a particular
phoneme. Obtaining confusion matrices for individual segments in a task
requiring absolute identification of these segments in nonsense syllables may
therefore reflect biases that may be inappropriate for predicting confusiocns
among segments in real word stimuli.

In addition, given that confusions for a particular segment were
collapsed across the various phonetic contexts in which the segment was
uttered, specific effects of coarticulation within the word stimuli themselves
may have been attenuated or ignored. In short, a considerable amount of noise
in predicting word identification using the FWNPR may have arisen from the
confusion matrices themselves. This does not mean that the use of confusion
matrices to determine stimulus and neighbor word probabilities was misguided
(see Moore, 1977). Indeed, the use of confusion matrices provides the only
independent means of assessing stimulus intelligibility and confusability.
However, in assessing the performance of the rule, it must be kept in mind
that the confusion matrices provide less than perfect estimations of
intelligibility and confusability of real word stimuli. In light of these

observations, then, the performance of the neighborhood probability rule 1is
even more impressive.

A second source of possible noise introduced in FWNPR arises from the
lexicon used to compute neighborhood structure. Despite the controls placed
on the inclusion of words in the neighborhoods of the stimulus words, the
lexicon used may tend either to under- or overestimate the mental lexicons of
the subjects themselves. The lexicon serves as only a very general model of
the mental lexicon of the subject, thus introducing a potentially large source
of noise in the estimation of neighborhood structure. However, in the absence
of well-controlled techniques for estimating the nature and number of lexical
items in the mental lexicon of a particular subject, the lexicon used in the
present study provides an invaluable tool for determining neighborhood
structure. Indeed, prior to the advent of computerized lexicons containing
phonetic transcriptions, such estimations of neighborhood structure wvould have
been nearly impossible.

A third source of noise in predicting identification may have arisen from
the use of the Kucera and Francis frequency counts. These counts are not only
somevhat dated, having been obtained in the 1960’s, but are also based on
printed text. However, given that frequency counts were required for a large
number of words, the use of available counts of spoken words was not feasible.
Thus, the Kucera and Francis counts, although problematic, provided one of the

single best estimates of word frequency available for a large number of
stimuli.2

Once these factors are taken into consideration, the performance of the
FWUNPR proved to be more than adequate, and the results clearly demonstrate the
role of neighborhood structure in word identification. Indeed, more important
than the absolute correlation of the FWNPR with identification performance is
the relative performance of the rule in comparison to the other wvariables
examined. In every instance, the FWNPR proved to be a much better single
predictor of performance than stimulus intelligibility or frequency, thus
demonstrating that identification performance is a function of the complex
interaction of stimulus intelligibility, neighborhood confusability, and the
relations of stimulus and neighbor frequency.
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One additional factor that may have contributed to the moderate
correlations  of the neighborhood probability rules and identification
performance is the relatively low number of observations per stimulus word.
Because of the large number of stimuli words employed, it was necessary to
restrict the number of observations to 10 responses per stimulus word per GS/N
ratio. (Even with 10 observations per stimulus word, it was necessary to
collect 27,540 observations: 918 stimulus words X 3 S/N ratios X 10
observations.) Thus, a considerable amount of variance may have been
introduced by the relatively low number of observations per stimulus word.

One may ask, then, how much of the observed variance is due to the
relatively low number of observations alone. To answer this question, the
proportion of variance accounted for by the number of observations alone was
simulated for each stimulus word. This vas done by first assuming that the
obtained identification scere of a given stimulus word represented its true
probability. A random number generator was then consulted and the resulting
random number was compared to the probability of the stimulus word. If the
random <umber was less than or equal to the probability of the stimulus word,
a "correct" response was tallied. This process was repeated 10 times for each
word and a pseudo-identification score was computed for each word based on the
10 observations. This simulation was performed 20 times for each of 811
stimulus words at each of the S/N ratios separately.

The output of the simulation produced 20 simulated identification scores
per word per S/N ratio. These 20 identification scores were then correlated
with the actual obtained identification scores and the proportions of variance
accounted for were averaged for the 20 simulations. Ideally, if the number of
observations were infinite, then the pseudo-identification scores should
converge almost perfectly on the obtained identification scores (which were
taken to be the true probabilities of the words). However, given fever
observations per word, the simulated data will tend to correlate less well
with the obtained data, and the unexplained variance provides an estimation of
the variance introduced by the number of observations alone. The results of
this simulation are shown in Table 3.21.

The proportions of variance accounted for in the obtained data by the
simulated data are shown for each S/N ratio. The degree to wh':h these
proportions differ from 1 represents an estimation of the variance introduced
by the number of observations alone. On the average, 11% of the overall
variance in the obtained data for the +15 and +5 S/N ratios and 16% of the
variance for the -5 S/N ratio was due to the lov number of observations alone.
That is, over 10% of the overall variance at each S/N ratio can be attributed
to the number of observations per word. Thus, the predictor variables
examined previously need explain approximately only 90% of the overall
variance, given that 10 to 16% of the variance observed would be expected to
arise from the number of observations per word alone. In short, although the
relatively low number of observations per word did not ‘atroduce an overly
large degree of variability in the overall variance, at least as indexed by
the simulation, consideration of this variance demonstrates that the
neighborhood probability rule performed better than actually indicated by the
original analyses.




Table 3.21

Simulated proportion of variance contributed by number of observations.

S/N Ratio
+15 +5 -5
Mean proportion of variance
accounted for over 20 0.8937 0.8914 0.8419

simulations

Estimated variance

contributed by number 0.1063 0.1086 0.1581
of observations




Qualitative Predictions of the
Neighborhood Probability Rules

Up to this point, the analyses have been primarily concerned with
demonstrating the degree to which the neighborhood probability rule correlates
with or classifies identification performance. The results of these analyses
support the hypothesis that a word is identified in the context of similar
words and that the frequency relations among the stimulus word and its
neighbors are important determinants of identification performance.
Heretofore, there has been little attention paid to the precise predictions of
the neighborhood probability rule. In this section, I turn to a discussion of
some of the qualitative predictions of the neighborhood probability rules
adopted from the previous analyses and the implications of these predictions
for auditory word recognition. A closer examination of these predictions

should delineate more specifically the type of model necessary for describing
auditory word recognition.

Recall that the frequency-weighted neighborhood probability rule (which
proved most predictive of identification) has the form:

SWP*Freq$S
(3.10) p(ID) = oo, RS Eiataitet ;
SWP*FreqS +2.NWPj*FreqNj
3%

wvhere p(ID) is the probability of identifying the stimulus word, SWP is the
stimulus word probability obtained from the confusion matrices, NWPj is the
neighbor word probability of neighbor j obtained from the confusion matrices,
FregNj is the frequency of the jth neighbor, and FreqS is the frequency of the
stimulus word. Basically, this rule states the probability of choosing the
stimulus from among its neighbors. Note that frequency is built into the rule

in terms of a frequency weight applied to the stimulus word and each of its
neighbors.

The rule thus predicts that identification performance is a function of
the intelligibility of the stimulus word, the confusability of its neighbors,
and the frequencies of the stimulus word and its neighbors. Frequency thus
serves to bias, positively or negatively, the choice of a word from its
neighborhood. Note that the effects of frequency are contingent on the nature
of the words residing in the similarity neighborhood. As in Triesman’s
(1978a,b) partial identification theory (see below), frequency effects are
assumed in the rule to be relative. For example, high frequency stimulus
words residing in neighborhoods containing high frequency neighbors are
predicted by the rule to be identified at approximately equal levels of
performance to low frequency words residing in low frequency neighborhoods,
assuming that stimulus intelligibility and neighborhood confusability are held
constant. That is, the frequency of the stimulus word alon will not determine
identification performance. Instead, stimulus word frequency must be
evaluated in terms of the frequencies of the neighbors of the stimulus word,
as well as the confusability of the neighbors. Thus, the rule implies a
complex relation between the stimulus werd and its neighbors, such that
stimulus frequency, neighbor frequency, stimulus intelligibility, and
neighborhood confusability will act in combination to determine identification
performance.




The rule therefore makes a number of important predictions depending on
the stimulus word probability and the sum of the neighbor probabilities. For
simplicity, I will define the sum of the frequency-veighted neighbor word
probabilities as the overall frequency-weighted neighborhood probability, or
FWNP. Inspection of equation (3.10) reveals that if the FWSWP (i.e.,
SWP*FreqS) is held constant, as FWNP increases, predicted identification will
decrease. Likewise, if FWNP is held constant, then increases in FWSWP will
result in corresponding  increases in predicted identification. The
interesting cases arise, however, when both the FWSWP and FWNP are alloved to
vary. Consider the four cases in which the FWSWP and FWNP can take on either
high or low values: (1) FWSWP high-FWNP high, (2) FWSWP high-FWNP low, (3)
FWSWP low-FWNP high, and (4) FWSWP low-FWNP low. The predictions of the
neighborhood probability rule for these four cases is shown in Table 3.22.

As shown in Table 3.22, the rule predicts best performance of those words
with high FWSWP’s and low FWNP’'s. These are words that, in a sense, "stand
out" in their neighborhoods. The lowest performance is predicted for words
vith low FWSWP’s and high FWNP’s. These are words that are least
distinguishable in their neighborhoods. Interestingly, hovever, the rule
predicts intermediate levels of performance for the remaining two cases. That
is, words with high FWSWP‘s and high FWNP’'s are predicted to show
approximately equal levels of identification performance to words with low
FUSWP’s and low FWNP’s. Thus, the rule does not always predict an advantage
for high frequency words over low frequency words. In addition, the rule
predicts that words matched on FWSWP may show differential 1levels of

performance depending on the FWNP, or freciiency-veighted neighborhood
structure.

To determine if the general pattern of predictions stated in Table 3.22
hold for the present set of identification data, the following analyses were
performed. For each of the 811 words, median values for the FWSWP’s and
FWNP’s collapsed across S/N ratio were determined. These median values were
then used to divide the stimulus words into classes having high and low
FWSWP’s and high and low FWNP’s. Altogether, four cells were analyzed (two
levels of FWSWP X two levels of FWNP). Mean identification scores, collapsed

across S/N ratio, were then computed for words falling into each of the four
cells.

The results for the classification of word scores by FWSWP and FWNP are

shown in Table 3.23. Predicted levels of performance are shown in
parentheses.

As shown in this table, the pattern of results predicted by the
neighborhood probability were clearly present in the identification data. As
predicted, words with high FWSWP’s and low FWNP's vere responded to with the
highest levels of accuracy; words with low FWSWP’'s and high FWNP’s were
responded to with the lowest levels of accuracy. The remaining two cases, as
predicted, showed intermediate and nearly identical levels of identification
performance. Note that words matched on FWSWP were responded to quite

37 -




Table 3.22

Predicted identification performance as a function of frequency-weighted
stimulus word probability and frequency-weighted neighborhood probability.

FREQUENCY-WEIGHTED
STIMULUS WORD PROBABILITY

LOowW HiGH
LOW Intermediate High
FREQUENCY-WVEIGHTED
NEIGHBORHOOD PROBABILITY
HIGH Low Intermediarte




Table 3.23

Obtained identification performance
frequency-veighted stimulus  word
neighborhood probability.

(percent correct) as a function of
probability and frequency-weighted
Qualitative predictions are in parentheses.

FREQUENCY-WEIGHTED
STIMULUS WORD PROBABILITY

LOW HIGH
LOW 50.56 64.03
(Intermediate) (High)
FREQUENCY-WEIGHTED
NEIGHBORHOOD PROBABILITY
HIGH 37.76 54.73
(Low) (Intermediate)
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differently depending on the FWNP, demonstrating that stimulus word frequency
is a direct function of the neighborhood in which the stimulus word occurs.
This is also demonstrated by the cases shoving intermediate levels of
performance. Although the words in these cells differ substantially in their
FWSWP's, they show nearly identical 1levels of identification performance,
owing to the composition of their similarity neighborhooods. In short, the
present analysis provides further support for the claim that auditory word
recognition is the result of a complex interaction of stimulus word

intelligibility, stimulus word frequency, and neighborhood confusability and
frequency.

Neighborhood Activation Model

The neighborhood probability rules developed above provide the groundwork
on which to base a model of auditory word identification, which will be called
the neighborhood activation model. The basic postulate of the model is that
the process of word identification involves discrimination among lexical items
in memory that are activated on the basis of stimulus input. This is a
fundamental principle in almost every current model of word recognition (e.g.,
Forster, 1976, 1979; Marslen-Wilson & Welsh, 1978; Paap, Newsome, McDonald, &
Schvaneveldt, 1982). Indeed, one of the most important issues in auditory
word recognition concerns the processes by which discrimination among lexical
items in memory is achieved. The present model attempts to specify those
factors responsible for the relative ease or difficulty of recognizing words
arising from the processes involved in discriminaticn among sound patterns of
vords. Thus, a second fundamental principle of the model is that
discrimination is a function of the number and nature of lexical items

activated by the stimulus input. The ‘"nature" of lexical items refers
specifically to the acoustic-phonetic similarity among the activated lexical
items as well as their frequencies of occurrence. The model will thus be

concerned with the long-standing issue of word frequency. However,
characterizing the effects of word frequency is only a part of the present
model. Instead, the model focuses primarily on structural issues concerning
the process of lexical discrimination. Word frequency 1is important in the

model only as a factor affecting the structural relationships among lexical
items.

The hypothesis that lexical discrimination is a function of the nature
and number of activated lexical items implies that word recognition cannot be
represented by a "no cost" system, as at least one recent theory has proposed
(see HMarslen-Wilson, 1986). Instead, the ease of word recognition is
predicted to vary as a function of the degree of difficulty in discriminating
among lexical items. A corollary of this claim is that words vary in terms of
their structural relationships to other words. That is, words vary in the
number and nature of lexical items that they will activate in memory. Given
this set of hypotheses, it becomes incumbent on the model to provide an
adequate account of the effects of neighborhood structure on word recognition.

The precise form of the model owes much to Triesman’s (1978a,b) partial
identification theory. Triesman’s earlier work presages many of the concepts
of the neighborhood activation model. In partial identification theory, a
given stimulus word serves to define an acoustic subvolume of words that are
similar to the stimulus word. Although other theories of auditory word
identification have made similar propositions (e.g., sophisticated guessing
theory, Broadbent, 1967; see also Catlin, 1969, Newbigging, 1961, Savin, 1963,
and Soloman & Postman, 1952), Triesman’s partial identification theory
emphasizes that word frequency effects may vary as a function of the nature of
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the acoustic subvolume activated. 1In particular, Triesman argues that a given
acoustic subvolume may be "dense" or "rarified." Moreover, the words within an
acoustic sutbvolume may be high or low in frequency. Triesman predicts that
wvord frequency cffects wiil vary as a function of the number and nature of
vords activated in a given acoustic subvolume.

The present model bears a strong resemblance to partial identificaticn
theory with respect to the effects of neighborhood structure (acoustic
subvolume) on word identification. However, the present set of data extends
partial identification theory in a number of important ways. First,
Triesman’s arguments stem from an analysis of data obtained in closed response
formats using highly restricted sets of words (letters or digits). The
present data used both an open response format and a relatively highly
unconstrained set of consonant-vowel-consonant words. In addition, Triesman
defined acoustic subvolumes on the basis of the error responses. In the
present set of experiments, similarity neighborhoods for the words were
computed on two independent sources of data: phoneme confusion matrices and
Webster’s lexicon. Thus, the present data, although subject to more
variability than the data examined by Triesman, compose a much more
"naturalistic" data base. Nevertheless, to the extent that the present data
demonstrate that the classic word frequency effect 1is a function of the
neighborhood in which the stimulus word resides, these data provide support
for Triesman’s theory.

A flow chart of the neighborhood activation model is shown in Figure 3.2.

Upon presentation of stimulus input, a set of acoustic-phonetic patterns
are activated in memory. - Tt 1is assumed that all patterns are activated
regardless of whether they correspond to real words in the lexicon or not, an
assumption required by the fact that listen:rs can recognize the
acoustic-phonetic form of novel words and nonwords. As in Triesman's partial
identification theory, the acoustic-phonetic patterns are activated in a
multidimensional acoustic-phonetic space in which the dimensions ccrrespond to
phonetically-relevant acoustic differences among the patterns. Specification
of the nature of these dimensions poses an important problem for any complete
theory of speech perception and auditory word recognition (see Luce & Pisoni,
1987). However, the present model is neutral with respect to the dimansions
of the space. The only requirement of the model is that the dimensions of the
space produce relative activation levels among the acoustic-phonetic patterns

that are isomorphic with the dimensions of similarity to which subjects are
sensitive.

The acoustic-phonetic patterns then activate a system of word decision
units tuned to the patterns themselves. A diagram of a single decision unit
is shown in Figure 3.3.

Only those acoustic-phonetic patterns corresponding to words in iemory will
activate a word decision unit. Neighborhood activation is assumed to be
identical to the activation of the word decision units. The claim that
decision wunits are not tuned to every acoustic-phonetic pattern activated is
supported by the demonstration of differential effects of neighborhood

SN

- 39 -




Neighborhood Activation Model (NAM)

Higher-Level Lexical
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(Frequency)
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Figure 3.2. Flow chart for the neighborhood activation model.
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confusability on perceptual identification. Vere the decision units tuned to
every pattern, each neighborhood would be maximally dense prior to the biasing
effects of frequency. Thus no effects of neighborhood confusability

independent of frequency should be observed, a prediction contradicted by the
present set of data.

Once activated, these decision units monitor the activation levels of the
acoustic-phonetic patterns to which they correspond. Following activation of
the word decision wunits, these units then begin monitoring higher-level
lexical information relevant to the words to which they correspond. Word
frequency is included in this higher-level lexical information. In addition
to monitoring higher-level lexical information 1in long term memory, the
decision units are also assumed to monitor any information in short term
memory that is relevant to making a decision on the identity of a word.

The system of word decision units is the crucial aspect of the
neighborhood activation model. These units serve as the interface between
acoustic-phonetic information and  higher-level lexical information.
Acoustic-phonetic information drives the system by activating the word
decision units, affording priority to bottom-up information, as in cohort
theory (Marslen-Wilson & Welsh, 1978). Higher-level lexical information such

as frequency is assumed to operate by biasing the decision units. These
biases operate by adjusting the activation levels of the acoustic-phonetic
patterns represented in the decision wunits. The biases introduced by

higher-level lexical information need not be under volitional control nor need
they be conscious (see Smith, 1980). Instead, these biases are assumed to be
a fundamental aspect of word perception that enable optimization of the word
recognition process via the employment of a priori probabilities and
contextual information.

Each word decision unit 1is therefore responsible for monitoring two
sources of information, acoustic-phonetic pattern activation and higher-level
lexical information. In addition, the decision units are assumed to be
interconnected in such a way that each unit can monitor the overall level of
activity in the system of units, as well as the activity level of the
acoustic-phonetic patterns to which the units correspond (see Elman &
McClelland, 1986). As analysis of the stimulus input proceeds, the decision
units continuously compute decision values. These values are assumed to be
computed via a rule of the type described by the neighborhood probability
rule. In the neighborhood probability rule, the stimulus word probability
(SWP) corresponds to the activation level of the acoustic-phonetic pattern.
The sum of the neighbor word probabilities (NWPj’s) corresponds to the overall
level of activity in the decision system. Frequency information serves as a
bias, as in the frequency-weighted neighborhood probability rule, by adjusting
the activation levels of the acoustic-phonetic patterns represented 1in the
wvord decision units.

As processing of the stimulus input proceeds, the acoustic-phonetic
pattern corresponding to the stimulus input is resolved or "refined" (see
Pisoni, Nusbaum, Luce, & Slowiazcek, 1985). As the pattern is refined, the
activation levels of similar patterns drop and the decision values computed by
the word decision unit monitoring the pattern of the stimulus steadily
increase. Once the output of a given decision unit reaches criterion, all
information monitored by that decision unit is made available to working
memory . "Word recognition" is accomplished once the word decision unit for a
given acoustic-phonetic pattern surpasses criterion (i.e., the
acoustic-phonetic pattern is recognized). "Lexical access" occurs when
higher-level lexical information (i.e., semantic and syntactic information,
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pragmatic information) is made available to working memory. The term lexical
access is actually somewhat misleading in the context of the neighborhood
activation model. Lexical information is monitored by the word decision units
once these units are activated. However, this information is used only in the
service of choosing among the activated acoustic-phonetic patterns and is
therefore not available to working memory. Lexiczl access in the neighborhood
activation model is thus assumed to occur when lexical information is made
available for further processing. The word decision wunits in the model
therefore serve as gates on the lexical information available to the system
(see Morton, 1979). 1In so doing, the units prevent the cognitive system from
"over-resonating," making information available only once a decision is made
as to the identity of the stimulus input.

The system of word decision units 1is, obviously, quite powerful.
However, the system 1is no more powerful than current interactive-activation
models (Elman & McClelland, 1985; McClelland & Rumelhart, 1981). Indeed,
further research may reveal that the system of decision wunits can be
adequately described by an interactive-activation system consisting of
interconnected nodes. The decision values themselves may be computed via
inhibitory and excitatory links among the decision units. At the present
time, however, the decision units will be assumed to make decisions on the
basis of the overall activation level of the system as well as the activation
level of the acoustic-phonetic patterns.

The postulation of a system of word decision units is based on the
finding that the frequency-weighted neighborhood probability rule adequately
predicted identification performance. Indeed, the system of word decision
units is simply a processing instantiation of the neighborhood probability
rule. However, the neighborhood activation model, by instantiating the
neighborhood probability rule in a system of decision units, makes a number of
important claims. First, it is assumed that the word recognition system is,
at least initially, completely driven by the stimulus input. Frequency
information is thus assumed only to bias the decision units and not to affect
the encoding c¢f the acoustic-phonetic patterns. Thus, frequency information
is not assumed to be an intrinsic part of the activation levels of the
acoustic-phonetic patterns, but 1is assumed to be a bias that must be
interpreted in the context of the frequencies of all other words. If
frequency information were assumed to be intrinsic to the activation levels of
the acoustic-phonetic patterns and no decisions were made based on the total
activity of the system, low frequency words would be responded to less
accurately than high frequency words regardless of their neighborhood
structures, which is clearly in contradiction to the data reported above.

The neighborhood activation model thus captures an important component of
the word frequency effect that is not accounted for by models of word
recognition that assume differential thresholds for high and 1low frequency
wvords. For example, Morton’s (1979) logogen theory assumes that high
frequency words have lower thresholds than low frequency words. In logogen
theory, frequency effects arise from the claim that high frequency logogens
require less evidence to surpass threshold than low frequency words. Fixed
thresholds cannot account for the results discussed above that stimulus word
frequency must be evaluated in the context of the frequencies of the neighbors
of the stimulus word. Search (e.g., Forster, 1976, 1979) and verificaticn
(e.g., Becker, 1976; Paap et al., 1982) models may fare somewhat better. In
these models, a neighborhood of items may be activated and then searched or
verified sccording to frequency. However, the search and verification models,
as well as the threshold models, are difficult to countenance in light of the
findings that word frequency effects may be attenuated or severly reduced
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given certain task requirements (Balota and Chumbley, 1984, 1985), response
sets (Pollack, Rubenstein, & Decker, 1959), or contextual information
(Grosjean & Itzler, 1984; Luce, 1983; Miller, Heise, & Lichten, 1951). In
particular, it is difficult for these models to account for the finding that
frequency effects are absent when the response set is known to the subject, at
least within limits (Pollack et al., 1959). Although assumptions could be
incorporated in each of these models to account for such a finding, the fact
that the effect of frequency is a biasing effect not intrinsic to the decision
unit system provides a straightforward means of interpreting various results
regarding word frequency. In particular, greater or lesser weight can be
added to the frequency bias in the decision units depending on the
requirements of the task. In the case in which the response set is known and
the stimuli have equal probabilities, it may be assumed that the decision
units will optimize performance by ignoring a priori probabilities. In short,
one of the advantages of the neighborhood activation model is that frequency
is not an intrinsic part of the units responsible for producing word frequency
effects. The 1lability of frequency effect~ 1is thus accounted for by the
relative 1importance attached to the biasin, properties of frequency
information on the word decision units.

At present, the neighborhood activation model makes no claims about the
temporal course, or left-to-right nature, of word recognition, an issue of
primary importance in cohort theory (Marslen-Wilson & Welsh, 1978).
Undoubtedly, some of the aspects of cohort theory may have to be incorporated
into the present model to account for the fact that words are processed in
time, or "left-to-right." Specification of the time-course of lexical
activation is, of course, a crucial issue, and cohort theory has provided an
elegant account of the possible processes involved 1in the left-to-right
processing of words. However, cohort theory to date has been evaluated almost
entirely on the basis ¢f the processing of relatively long words, which prove
most amenable to demonstrations of temporal processing. The present data, on
the other hand, is based on short, monosyllabic words. It has yet to be shown
that the claims of cohort theory hold for such short stimuli (see Grosjean,
1985). For the moment, then, the issue of the time-course of processing will
be deferred. I will adopt the assumption that, within the relatively short
time windows provided by the stimuli used in the present study, the activation
levels across time are more or less equivalent. Thus, no priority will be
afforded to the early portions of words in the neighborhood activation model,
at least for short words (see Luce, 1986a).

Having laid out a framework for interpreting neighborhood stuctural and
frequency effects, I will now turn to a discussion of how the neighborhood
activation model accounts ifor the results of the perceptual identification
study reported in this chapter and Chapter 2. Recall that the neighborhood
activation model, under normal circumstances, recognizes a word once the
decision value for a given word exceeds criterion. It is assumed that
stimulus degradation affects the word recognition system by impeding complete
processing of the stimulus input. That is, only so much information can be
obtained from the stimulus input when it is masked by noise. Given imperfect
information, then, it is assumed that, in the long run, no decision unit will
reach criterion, and a decision will thus be forced on the available
information. The "available information" is the state of the decision system
at the point at which processing of the acoustic-phonetic information is
completed. In perceptual identification, therefore, a response is made on the
basis of the values of the decision units at the point at which processing is
completed. Thus, the neighborhood probability rule developed above expresses
the probability of choosing the stimulus word actually presented. If the
stimulus input results in a large number of highly confusable, high frequency
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neighbors, the probability of actually recognizing the stimulus word will be
low. Likewise, if the stimulus input results in only a few confusable, low
frequency neighbors, the probability of identification will be high.

Note that because the decision units monitor both the activation levels
of the acoustic-phonetic patterns as well as the overall activation of the
decision system, probability of identification will not depend solely on the
intelligibility of the stimulus word nor on neighborhood confusability. Words
of low intelligibility with few confusable neighbors are predicted by the
model to be equivalent to words of high intelligibility with many confusable
neighbors. Indeed, as shown above, this prediction was borne out. In short,
perceptual identification is a function of the values of the decision units
computed at the completion of stimulus processing. Furthermore, the role of

stimulus degradation is assumed to be one of impeding complete processing of
the stimulus input.

Summary and Conclusions

The neighborhood activation model provides a framework for instantiating
the neighborhoed probability rules developed here. To the extent that the
neighborhood probability rules predict identification performance, the model
can be deemed an adequate account of the word identification process. Indeed,
these rules were shown to make a number of precise predictions about the
relative effects of stimulus intelligibility and neighborhood structure that
were borne out by the data. In particular, the neighborhood probability rule
predicts a complex interrelationship between the stimulus word and its
neighbors. In addition, the frequency-weighted neighborhood probability rule
was able to account for the stimulus word frequency effect in terms of the
frequency relationships between the stimulus word and its neighbors. Indeed,
it was shown that stimulus frequency alone was a poor predictor of
identification performance. The picture that emerges from the present set of
data is one that emphasizes the roles of discrimination and decision in
auditory word recognition. Finally, both the data and the neighborhood
activation model underscore the degree to which the structure of the mental
lexicon influences word identification: Precise accounts of the process of
auditory word recognition are crucially tied to detailed accounts of the
structural relationships among lexical items in memory.
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Footnotes

l Some caution must be taken in comparing directly the results from the
three different S/N ratios. The results for the +15 dB S/N ratio are highly
skeved toward the upper end of the distribution; that is, most words at the
+15 dB S/N ratio were identified with a high level of accuracy. Likewise, the
results for the -5 dB S/N ratio show a similar skewing toward the lower end of
the distribution. The skewness for both of these distributions results in
relatively smaller degrees of overall variance, compared to the +5 dB S/N
ratio. Simply put, more variance is available for explanation at the +5 S/N
ratio than at either of the two other S/N ratios. Thus, direct comparisons

among the three S/N ratios in terms of proportion of variance accounted for by
each variable is dubious.

2 0ne alternative to the use of the Kuce:a and Francis frequency counts
was to use the familiarity ratings obtained by Nusbaum, et al. (1984). To
determine if the familiarity ratings may be in fact superior estimates of
frequency for the present data, all the analyses previously reported were
conducted using the familiarity ratings. The correlations of the familiarity
ratings were consistently smaller than those for the SFI. 1In addition, the
use of familiarity ratings in the neighboihood probability rules resulted in
lower correlations than the use of the Kucera and Francis frequencies. The
failure of the familiarity ratings +o correlate more highly with
identification performance than the SFi’s may have been due to the fact that
the stimulus words used in this study all had familiarity ratings of 6.0 or
above on a seven point scale. There was thus far less variability in the
familiarity ratings than in the Kucera and Francis frequencies, and this
reduced variability may have resulted in lower overall correlations.
Nevertheless, <he familiarity ratings proved less satisfactory than the Kucera
and Francis frequencies and were thus not used as frequency indices in the
present study.
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CHAPTER FOUR

EVIDENCE FROM AUDITORY LEXICAL DECISION

The results from the perceptual identification experiment reported in
Chapters 2 and 3 lend strong support to the notion that subjects’ accuracy at
identifying words masked by noise is critically dependent on the number and
nature of words activated in memory by the stimulus word. In particular, it
was shown that the degree of confusability of the neighbors of a stimulus
word, as well as the frequencies of these neighbors, influences identification
performance in predictable and systematic ways. Furthermore, stimulus word
frequency per se proved to be a poor predictor of identification performance.
Instead, it was shown that word frequency must be interpreted in the context

of the frequencies of the words activated in memory. A neighborhood
probability rule wvas developed that incorporated stimulus wvord
intelligibility, frequency, and neighborhood structure inte a single
expression that adequately predicted identification performance. Finally,

based on the neighborhood probability rule, a working model of auditory word
recognition was proposed--the neighborhood activation model--that attempts to
describe the effects of neighborhood structure on auditory word recognition.

The purpose of the present chapter is to explore further the effects of
neighborhood structure on auditory word recognition. In particular, the
lexical decision paradigm was employed to examine these effects. In the
lexical decision paradigm, a subject 1is presented with a real word or a
nonsense word, or nonword. The subject’s task is to decide as quickly but as
accurately as possible whether a given stimulus is a word or nonword. The
lexical decision task has proven quite useful in visual word recognition
research in examining the effects of such variables as word frequency
(Stanners, Jastrzembski, & Westbrook, 1975; Whaley, 1978; see also Forster,
1979). In general, it has been shown that high frequency words tend to be
classified as words more quickly than low frequency words. Indeed, this has
been a very robust finding in the literature, although there are numerous, and
often times conflicting, accounts of frequency effects in lexical decision
(Balota & Chumbley, 1984; Glanzer & Ehrenreich, 1976; Gordon, 1983; Paap,
McDonald, Schvaneveldt, & Noel, 1986). An auditory analog of the visual
lexical decision task thus presents a useful means of examining word frequency
effects and the effects of neighborhood stiucture on auditory word
recognition.

The use of the lexical decision task is also attractive for two other
reasons. First, investigation of the process of auditory word recognition can
be carried out in the absence of stimulus degradation. Although the
perceptual identification experiment reported in Chapters 2 and 3 provided
useful data regarding the effects of stimulus word frequency and neighborhood
structure, a more robust test of these effects hinges on the demonstration
that neighborhood structural effects can be demonstrated in the absence of
stimulus degradation. In other words, it is important to demonstrate that the
effects of neighborhood structure generalize beyond words that are
purposefully made difficult to perceive.

The second advantage of the auditory lexical decision task is the ability
to collect reaction time data. The reaction time data may aid in uncovering
some of the temporal aspects of the effects of neighborhood structure on
auditory word recognition. Furthermore, it 1is of «crucial importance to
demonstrate that neighborhood structure affects not only the accuracy of word
recognition, but also the time course. Thus, the auditory lexical decision
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task provides a useful means of corroborating and extending the findings from
the previous perceptual identification study.

The approach taken in the present chapter is similar to that 1in Chapter

2. Similarity neighborhood statistics, computed on the basis of Webster’s
lexicon, served as independent variables. The statistics of interest were
again: (1) the number of words similar to a given stimulus word, or

neighborhood density; (2) the mean frequency of the similar words or
neighbors; and the (3) frequency of the stimulus word itself. On the basis of
the neighborhood activation model, the following general predictions were
tested: First, it was predicted that the number of words similar to a given
stimulus word or nonword will affect classification time and accuracy. In
particular, it was hypothesized that increasing neighborhood density will
increase the time it takes to discriminate among lexical items activated in

memory. Furthermore, increases in density may be accompanied by lower levels
of accuracy, given increased competition among items in memory. It was
turthermore predicted that the frequencies of the neighbors will influence
classification time and accuracy. Specifically, higher frequency

neighborhoods should produce slower reaction times and lower levels of
accuracy than lov frequency neighborhoods, owing to the higher degree of
competition associated with high frequency neighbors. 1In short, the goal of
the present experiment is to examine further the effects of neighborhood
density, neighborhood frequency, and stimulus word frequency in order to gain
further support for the neighborhood activation model

EXPERIMENT
Method
Stimuli

Words. The same 918 words used in the perceptual identification study
reported in Chapters 2 and 3 yere used in the auditory lexical decision
experiment. As reported in Chapter 2, the 918 words were randomly partitioned
into three stimulus set files consisting of 306 words each. Although all 918
wvords were presented for lexical decision, the 36 words failing to reach
criterion in the screening experiment reported in Chapter 2 were excluded from

all subsequent analyses. The method of stimulus preparation was described in
Chapter 2.

Similarity neighborhood statistics for each of the word stimuli were
computed according to the procedure described in Chapters 1 and 2. The
phonetic transcription for each stimulus word was compared to the phonetic
transcriptions of all other monosyllabic words having familiarity ratings of
5.5 or above. A neighbor of a stimulus wvord was defined as a word that could
be converted to the stimulus word itself by a one phoneme insertion, deletion,
or substitution in any position. Neighborhood densities, neighborhood
frequencies, and stimulus word frequencies were determined in this manner for
each word.

Nonword~. In order to construct a list of phonotactically legal nonwords
matched in phoneme length to the word stimuli, a lexicon of nonwords was
constructed in the following manner: For all three phoneme words in Webster's
lexicon, all initial two-phoneme sequences and aii final two-phoneme sequences
vere determined. That is, for all three phoneme words, P1-P2-P3, all P1-P2
sequences and all P2-P3 sequences were determined. All initial and final
sequences sharing P2 were then cecmbined. Three phoneme sequences not
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containing a vowel were excluded. Also excluded were any sequences
corresponding to a real word in Webster’s lexicon. Because both the initial
and final biphones of the nonwords actually occurred in real words, the
resulting nonword lexicon thus contained three phoneme sequences that strongly

followed the phonotactic constraints of real words. Altogether, 3123 nonwords
vere constructed.

Similarity neighborhood statistics for each of the 3123 nonwords were
then computed. The similarity neighborhood statistics were computed by
comparing each nonword with each word in Webster’s lexicon. Similarity
neighborhoods were once again computed on the basis of one phoneme
substitutions, additions, and deletions. For the nonwords, two variables were
of interest: (1) neighborhood density, or the number of words similar to a
given nonword, and (2) .ean neighborhood frequency, or the mean frequency of
the words similar to a nonword. Note that the neighborhood statistics for the
nonvords were computed based on words only.

Three-hundred and four stimuli were selected from the nonword lexicon
that fell into one of four cells, resulting in 76 nonwords per cell. The four
cells were produced by crossing two levels of density (high and low) with two
levels of mean neighborhood frequency (high and low). These cells were: (1)
high density-high neighborhood frequency, (2) high density-low uz:ighborhood
frequency, (3) low density-high neighborhood frequency, and (4) 1low
density-low neighborhood frequency. Selection of the 76 nonwords for each of
the four cells was achieved via an algorithm that first rank--ordered each of
the 3123 nonwords on each of the two independent variables. A method of
minimizing and maximizing squared deviations of successively ranked nonvords
was then employed to ensure that cells that were matched on a given variable
(e.g., both high density) were maximally alike and that cells intended to
differ on a given variable (e.g., one high and one low density) were maxinally
different. Nonwords occurring in high density neighborhoods had an average of
17.78 neighbors; nonworas occurring in low density neighborhoods had an
average of 8.10 neighbcrs. The mean frequency of high frequency neighborhoods
wvas 156.96; the mean frequency of low frequency neighborhoods was 11.84.

The nonwords were recorded by the same male speaker who produced the
words. The method for recording and digitizing the nonwords was identical to
that for the words (see Chapter 2). Overall RMS amplitude for the nonwords
was equated to the overall amplitudes of the words.

Subjects

Thirty subjects participated in partial fulfillment of an introductory
psychology course. All subjects were native English speakers and reportec no
history of speech or hearing disorders.

Design and Procedure

Three stimulus set files were constructed by combining each of the three
set files of words with the set file containing the nonwords. Each of the
thi.o set files thus contained 306 words and 304 nonwords, producing 610
stimuli. (Three-hundred and four nonwords, instead of 306, were selected to
enable equal partitioning of the nonwords into the four cells. It was assumed
that the slight discrepancy between the number of words and nonwords would
have little or no effect on the obtained results given the large number of
words and nonwords used.) Each set file was presented to a total of 10
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subjects. Thus, 10 observations were obtained for each word, whereas 30
observaticns were obtained for each nonword, given that the same set of
nonwords were presented to each group of subjects.

Stimulus presentation and data collection were controlled by a PDP-11/34
minicomputer. The stimuli were presented via a 12-bit digital-to-analog
converter at a 10 kHz sampling rate over matched and calibrated TDH-39
headphones at a comfortable listening level of 75 dB SPL.

Groups of five or fewer subjects were tested in a sound-treated room.
Each subject sat in an individual booth equipped with a two-button response
box. The button on the left-hand side of the response box was labeled "WORD";
the button on the right-hand side of the response box was labeled "NONWORD." A
small light was situated above each button for feedback. In addition, a cue
light was situated at the top of the box to warn the subject that a stimulus
vas about to be presented. Subjects were instructed that they would hear real
words in English and nonsense words, or nonwords. They were instructed that
after presentation of each stimulus, they were to respond whether they heard a
word or a nonword by pressing the appropriately labeled button on the response
box. The instructions stressed both speed and accuracy.

A given trial proceeded as follows: The cuelight at the top of the
response box was illuminated for one second warning the subject that a
stimulus was about to be presented. Five-hundred msec after the offset of the
cuelight, a randomly selected auditory stimulus was presented. Immediately
after the subject responded word or nonword, the light above the button that
should have been pressed for a correct response was illuminated for one
second. Reaction times were recorded from the onset of the auditory stimulus
to the response. After each subject had responded, a new trial was initiated.
If one or more subjects failed to respond within 4000 msec of the onset of the
auditory stimulus, incorrect responses for those subjects were tallied and a
new trial was initiated. An inter-trial interval of 500 msec elapsed between
the end of one trial and the beginning of the next. The 510 experimental
trials were preceded by 30 practice trials consisting of an equal number of
randomly presented words and nonwords. None of the words or nonwords
presented in the practice phase of the experiment were presented in the
experiment proper. An experimental session lasted approximately one hour.

Results

Analysis of Word Responses

To factor out the effect of stimulus word duration on reaction times, the
duration of each stimulus word in msec was subtracted from each subject’s
reaction time to that word. The adjusted reaction times for correct word
responses were then entered into a stimulus word-by-subjects array. Means and
standard deviations for each stimulus as well as each subject were then
computed. Those reaction times falling above or below 2.5 standard deviations
of both the subject and stimulus means were deleted and replaced according to
the procedure suggested by Viner (1971). Reaction times were then averaged
across subjects, producing a mean reaction time for each stimulus word. The

number of correct responses for each stimulus word were also tallied and
converted to percentages.

The output of the similarity neighborhood statistics were combined with
the mean reaction times and percentages correct and submitted to correlation
and regression analyses. As stated above, three neighborhood statistics were
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of interest for the words: neighborhood density, mean neighborhood frequency,
and the frequency of the stimulus word itself. Two variations of each of the
frequency-based statistics (stimulus word frequency and mean neighborhood
frequency) were computed, one based on raw frequencies and one based on
Standard Frequency Indices (SFI’s). SFI’s are basically log transforms of the
rav frequencies (see Chapter 2). In total, five independent variables were
examined. These variables, as well as their mnemonics, are shown in Table
4.1. The five variables were: (1) raw stimulus word frequency (SWF-RAW), (2)
SFI of the stimulus word (SWF-SFI), (3) neighborhood density (DEN), (4) mean
neighborhood frequency based on raw frequencies (NHF-RAW), and (5) mean
neighborhood frequency based on SFI‘s (NHF-SFI). Table 4.2 shows the means,
standard deviations, and minimum and maximum values for each of the
independent variables. Also shown 1in Table 4.2 are means, standard
deviations, and minimum and maximum values for the adjusted reaction times
(RT) and percentages correct (SCORE).

Correlation Analyses

Each of the five independent variables was first correlated with the

reaction times and percentages correct for each word. The results of these
correlation analyses are shown in Table 4.3.

For the reaction times, only stimulus word frequency based on the SFI’'s
produced a significant correlation, r=-.2776. Reaction times were negatively
correlated with frequency, demonstrating that high frequency words tended to
be responded to more quickly than low frequency words. No significant effects
of neighborhood density or neighborhood frequency were observed for the
reaction times. For the percentages correct, stimulus word frequency and
neighborhood density produced significant correlations, r=.2999 and r=.1173,
respectively. The significant positive correlation of stimulus word frequency
and percent correct demonstrates that high frequency words tend to be
classified correctly more often as words than low frequency words. The
positive correlation of density and percent correct indicates that subjects
were better able t» correctly classify words that occurred in high density
neighborhoods than those occurring in low density neighborhoods. Note that
this correlation is contrary to the predicted effect of density on

classification accuracy. I will return to a detailed discussion of this
finding beleow.
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Table 4.1

Neighborhood Analysis: Auditory Lexical Decision.

Variables and mnemonics.

e e e e e . ——— i ——— o —

1. Raw stimulus word frequency
2. SFI stimulus word frequency
3. Neighborhood Density

4. Mean neighborhood frequency
based on raw frequencies

5. Mean neighborhood frequency
based on SFI’s

SWF-RAV
SWF-SFI
DEN

NHF-RAW

NHF-SFI




Table 4.2

Neighborhood Analysis: Auditory Lexical Decision. Summary statistics.

VARIABLE MEAN STANDARD MINIMUM MAXTMUM

DEVIATION VALUE VALUE
1. SWF-RAW 129.1564 556.2139 1.0000 10595.0000
2. SWF-SFI 52.1884 8.4655 40.0000 80.2500
3. DEN 16.5011 6.7651 1.0000 35.0000
4. NHF-RAW 205.9523 349.8718 2.6000 4389.0000
5. NHF-SFI 52.0241 3.1903 42.5508 66.4250
6. RT 424.4785 115.5683 128.0000 931.0000
7. SCORE 0.8961 0.1473 0.1000 1.0000

D
C.




Table 4.3

Neighborhood Analysis: Auditory Lexical Decision. Correlations of predictor
variables with accuracy scores and reaction times.

r
VARIABLE P(C) RT
1. SWF-RAW .0522 -0.0609
2. SVWF-SFI .2999% -0.2776%
3. DEN .1173% 0.0324%
4. NHF-RAV .0345 0.0051
5. NHF-SFI .0657 -0.0551

ter
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Regression Analyses

To further examine the relative roles of the five independent variables
on word classification times and accuracy, Stepwise multiple regression
analyses were performed separately on reaction times and percentages correct.
The results of these analyses are shown in Table 4.4. Shown are the multiple
R’s, multiple R2’s, and change in R2 at each step.

For the reaction times, stimulus word frequency based on SFI’'s entered
first, accounting uniquely for 7.71% of the variance. Word frequency based on
rav frequencies also contributed a significant, small additional proportion of
the variance, namely .64%. The two variables combined produced a multiple
R=.2889 and a multiple R2=.0835. None of the other three variables entered
into the equation. For the percentages correct, stimulus word frequency based

on SFI’s again accounted for the largest proportion of variance: 9.00%. In
addition, neighborhood density and raw stimulus word frequency contributed
significantly to the total proportion of variance accounted for. Density

contributed an additional 1.05% of the variance and raw word frequency an

additional .92%. All three variables combined to produce a multiple R=.3311
and a multiple R2=.1096.

Discussion of Correlation and Regression Analyses. For both reaction
times and percentages correct, significant correlations of word frequency were
obtained. Thus, despite the fact that all words were previously judged to be
highly familiar to subjects, frequency based on an objective word count proved
to be significantly correlated with reaction times and accuracy levels. Tais
result demonstrates once again that frequency and subjective familiarity are
separate, albeit highly correlated variables, underlying subjects’ performance
in recognizing words.

Neither the correlation nor the regression analyses revealed significant
effects of the neighborhood variables on reaction time. Only the SFI of the
stimulus word proved to be a significant predictor of reaction times.
However, neighborhood density, or the number of words in a similarity
neighborhood, significantly predicted accuracy, although the unique proportion
of variance accounted for by the density variable was small. 1In addition, the
correlation between density and percentage correct appears  somewhat
counterintuitive: Words with many neighbors were, in the long run, classified
correctly more often than words with few neighbors.

The finding that density correlated positively with word classification
accuracy 1is in contradiction to the general findings from the perceptual
identification study reported in Chapters 2 and 3. In that experiment, it was
found that words with many confusable neighbors were identified less well than
words with fewer confusable neighbors. Why, then, should a reversal of this
finding be found for auditory lexical decision, such that words in high
density neighborhoods were classified better than words in low density
neighborhoods?

The perceptual identification and the auditory 1lexical decision ftasks
differ on one important respect. In the perceptual identification task,
subjects are required to identify only real words. One may therefore assume
that subjects are attempting primarily to discriminate among the words
activated in memory by the stimulus word. In the auditory lexical decision
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Table 4.4

Neighborhood Analysis: Auditory Lexical Decision. Results of stepwise
regression analysis accuracy and reaction time data. Shown are the variables

entered into the equation at each step. Also shown are the multiple R's,
multiple R2’s, and changes in RZ at each step.

VARIABLE R R2 HR2
1. SFI 0.2999 0.0900 0.0%00
2. DEN 0.3169 0.1004 0.0105
3. RWF 0.3311 0.1096 0.0092

VARIABLE R R2 AR2
1. SFI 0.2776 0.0771 0.0771
3. RWF 0.2889 0.0835 0.0064




task, however, subjects are required to discriminate among both word and
nonword patterns in memory. This factor may underlie the differing results
for the perceptual identification and lexical decision tasks for the following
reasons: First, words occurring in high density neighborhoods have fewer
confusable nonwords by virtue of the fact that most of their neighbors are
actual words. Lexical decisions may therefore tend to be more accurate for
words in high density neighborhoods because of the lower probability of
choosing a similar nonword. Likewise, words in low density neighborhoods,
which contain more possible nonword patterns, may tend to be classified less
accurately due to a higher probability of choosing a similar nonword. Thus,
it 1is possible that lexical decision accuracy is positively correlated with
neighborhood density because both word and nonword patterns must be
discriminated among in the auditory lexical decision task.

This analysis of the auditory lexical decision task also suggests
interactions among the neighborhood variables and stimulus wora frequency. In
particular, high and low frequency words may be differentially sensitive to
neighborhood density and neighborhood frequency when both words and nonwords
are presented. Assuming that sound patterns corresponding to low frequency
words have lower activation levels in memory, arising from lower levels of
frequency bias, discrimination between low frequency words and nonwords may be
more difficult than discrimination between high frequency words and nonwords.
The neighborhood variables examined may therefore have had quite different
effects for high and lov frequency words, given that these variables do not
explicitly take into account the differential competition of nonword patterns
with high and low frequency words. If interactions of this type exist, then
the correlations of the neighborhood variables with reaction times and
percentages correct may have been deflated. For example, if neighborhood
density has differential effects on high and low frequency words because of
the effects of nonwords, the correlation of density across the entire set of
vords may have been considerably reduced. In short, any interactions of the
neighborhood variables across words of different frequencies may have served
to reduce or eliminate the correlations of the neighborhood variables with
reaction times and percentages correct.

Analysis of Partitioned Word Response Data

In order to examine the possibility of interactions  among the
neighborhood variables and word frequency, the set of words were partitioned
into orthogonal cells and submitted to analyses of variance. The partitioning
of the stimuli was achieved by performing median splits on the values of each
of the three independent variables: stimulus word frequency, neighborhood
density, and mean neighborhood frequency. That is, the median frequency of
the stimulus words was first determined and words falling above the median
were coded as high frequency words; those equal to or less than the median
wvere coded as low frequency words. The same procedure vas applied to assign
words to high density neighborhoods or low density neighborhoods and to high
frequency neighborhoods or low frequency neighborhoods. Based on this coding
scheme, each word was assigned to one of eight cells produced by the
orthogonal combination of two levels of stimulus word frequency (high and
low), two levels of neighborhood density (high and low), and two levels of
neighborhood frequency (high and low). The resulting high frequency words had
a mean frequency of 254.12; low frequency words had a mean frequency of 5.22.
High density neighborhoods contained an average of 21.92 neighbors; 1low
density neighborhoods contained an average of 11.07 neighbors. The mean
frequency of high frequency neighborhoods was 370.32; the mean frequency of
low frequency neighborhoods was 46.29.
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Reaction times and percentages correct for each subject were averaged
across words within a cell and submitted to analyses of variance. Because the
entire set of words was split into thirds and presented to separate groups of
equal numbers of subjects, a grouping factor was included in the analysis,
producing a 2 (stimulus word frequency) X 2 (neighborhood density) X 2
(neighborhood frequency) X 3 (groups) repeated measures analysis of variance.

Accuracy Data. Analysis of the percentages correct revealed significant
effects of stimulus word frequency, F(1,27)=135.94, p<0.05, neighborhood
density, F(1,27)=39.39, p<0.05, and mean neighborhood frequency, F(1,
27)=4.93, p<0.05. No effect of groups was obtained, F(2,27)=3.13, p>0.05. A
significant interaction of stimulus word frequency and neighborhood density
was also obtained, F(1,27)=17.07, p<0.05. No other interactions were
significant. Mean percentages correct and standard deviations for each cell,
collapsed across groups, are shown in Table 4.5. These same results are
plotted in Figure 4.1. High frequency words are plotted in the left-hand
panel and low frequency words in the right-hand panel. Words occurring in
high density neighborhoods are represented by dotted lines with circles; words
occurring in low density neighborhoods are represented by solid lines with
X’s. Neighborhood frequency is plotted on the X axis.

On the average, high frequency words were responded to 7.39% better than
low frequency words. Words in high density neighborhoods werc responded to
3.38% better than words in low density neighborhoods. &nd, words occurring in
low frequency neighborhoods were responded to 1.39% better than words
occurring in high frequency neighborhoods. The effect of density was the same

as that revealed by the correlation analysis: Words in high density
neighborhoods were classified correctly more often than words in 1low density
neighborhoods. However, the significant interaction of stimulus word

frequency and density indicates differential effects of neighborhood density
as a function of word frequency. The interaction of frequency and density is
plotted in Figure 4.2. High density words are represented by dotted lines
with circles; 1low density words are represented by solid lines with X’s.
Stimulus word frequency is plotted on the x axis.

Separate analyses based on the interaction of word frequency and density
revealed significant effects of word frequencv at both levels of density.
High frequency words were responded to 4.48% better than low frequency words
in high density neighborhoods, F(1,27)=40.48, p<0.05. High frequency words
were also responded to 10.31% better than low frequency words in low density
neighborhoods, F(1,27)=81.51, p<0.05. Thus, significant effects of frequency
vere observed at each level of neighborhood density.

Separate analyses revealed no significant effect of density for high
frequency words for the accuracy data, F(1,27)<1.0). However, a significant
effect of density was observed for low frequency words, F(1,27)=6.29, p<0.05.
For low frequency words, words in high density neighborhoods were responded to
6.29% better than words in low density neighborhoods. Thus, the effect of

density on correct classification of words was observed only for low frequency
wvords.
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Table 4.5

Neighborhood Analysis: Auditory Lexical Decision.

Means and standard
deviations for the accuracy data.

HIGH LOW
HIGH 92.59 92.58
(4.29) (5.20)
MEAN NEIGHBORHOOD
FREQUENCY
LOW 94.73 93.82
(4.83) (5.80)

HIGH LOY
HIGH 88.80 82.19
(7.75) (9.21)
MEAN NEIGHBORHOOD
FREQUENCY
LoV 89.57 83.59
(7.24) (8.05)
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Reaction Time Data. Analysis of the reaction time data revealed
significant main effects of word frequency, F(1,27)=70.39, p<0.05,
neighborhood density, F(1,27)=14.32, p<0.05, and neighborhood frequency,
F(1,27)=14.15, p<0.05. No effect of groups was obtained, F(2,27)=2.32,
p>0.05. A significant interaction of word frequency and neighborhood dernsity
was also obtained, F(1,27)=14.15, p<0.05. Means and standard deviations for
each cell are shown in Table 4.6. The same data are plotted in Figure 4.3.

Overall, high frequency words were responded to 55 msec faster than low
frequency words. Words occurring in high density neighborhoods were responded

to 13.5 msec slower than words in low density neighborhoods. And, words in
high frequency neighborhoods were responded to 17.5 msec slower than words in
lov frequency neighborhoods. Although there was an overall 13.5 msec

advantage for words in low density neighborhoods over words in high density
neighborhoods, the significant interaction of word frequency and density
indicates differential effects of one or both of these variables. This
interaction is plotted in Figure 4.4.

Separate analyses based on this interaction revealed significant effects
of word frequency at each level of density. In high density neighborhoods,
high frequency words were responded to 47.5 msec faster than low frequency
words, F(1,27)=60.35, p<0.05. In low density neighborhoods, high frequency
words were responded to 62 msec faster than low  frequency words,
F(1,27)=54.45, p<0.05. Significant effects of neighborhood density were
obtained only for high frequency words for the reaction time data. For high
frequency words, words in low density neighborhoods were rusponded to 21 msec
faster than words in high density neighborhoods, F(1,27)=18.33, p<0.05. No
effect of density was observed for lov frequency words, F(1,27)=1.75, p>0.05.

Summary of Word Data. To summarize the data thus far presented,
significant effects of word frequency were obtained for both the accuracy and
reaction time data. Overall, high frequency words wvere responded tc faster
and with a higher 1level of accuracy than low frequency words. Significant
effects of neighborhood frequency were also observed for both the accuracy and
reaction time data. Words occurring in high frequency neighborhoods were
responded to less accurately and more slowly than words in low frequency
neighborhoods. This result demonstrates that high frequency neighbors tend to

slow response time and contribute to higher error rates in  word
classification.

Effects of neighborhood density were also observed for the accuracy and
reaction time data, although the overall effects were in opposite directions.
For the accuracy data, words in high density neighborhoods were classified
more accurately than words in 1low density neighborhoods. However, the
reaction time data revealed the opposite pattern of results: Words in high
de sity neighborhoods were responded to more slowly than words in low density
neighborhoods. This pattern of results suggests a speed-accuracy trade-off.
However, analyses of the interactions of word frequency and density indicated
that density had differential effects on accuracy and reaction time for high
and low  frequency words. Specifically, density affected accuracy of
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Table 4.6

Neighborhood Analysis: Auditory Lexical Decision. f'cans and

standard
deviations for the reaction time data.

HIGH LoV
HIGH 409 382
(74) (75)
MEAN NEIGHBORHOOD
FREQUENCY
LOW 392 377
(113) (104)

HIGH LOW
HIGH 451 463
(105) (126)
MEAN NEIGHBORHOOD
FREQUENCY
LOW 445 421
(111) (105)
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classification only for low frequency wvords, such that 1low frequency words
with many neighbors were classified correctly more often than lov frequency
words with fewer neighbors. In terms of reaction times, density affected only
high frequency words. 1In particular, high frequency words with many neighbors
were responded to less quickly than high frequency words with fewer neighbors.

Before discussing the implications of these findings, the results for the
nonword data will be discussed.

Analysis of Nonword Responses

Prior to analysis of the nonword response data, stimulus durations were
subtracted from the correct nonword reaction times and outliers were
eliminated and replaced according to the procedure described for the word
response data. Because the nonwords were originally assigned to four separate
cells representing the orthogonal combination of neighborhood density and
neighborhood crequency, only analyses of variance were performed. In
addition, because each subject heard the same set of nonwords, no grouping
factor was included in the analyses of variance.

Accuracy Data. A two-vay repeated measures analysis of variance
(neighborhood density X neighborhood frequency) on the accuracy data for the
nonwords revealed significant main effects of neighborhood density,
F(1,29)=26.54, p<0.05, and neighborhood frequency, F(1,29)=17.68, p<0.05. In
addition, the interaction of neighborhood density and neighborhood frequency
was significant, F(1,29)=24.75, p<0.05. Means and standard deviations for the
accuracy data for each cell are shown in Table 4.7. The same data are plotted
in Figure 4.5. Nonwords occurring in high density neighborhoods are
represented by the dotted line with circles; nonvords occurring in low density
neighborhoods are represented by the solid line with X’s. Mean neighborhood
frequency is plotted on the x axis.

Nonwords occurring in high density neighborhoods were responded to 3.34%
worse than nonwords occurring in low density neighborhoods. Nonwords
occurring in high frequency neighborhoods vere responded to 3.02% worse than
nonwords occurring in low frequency neighborhoods. Separate analyses based on
the significant neighborhood density-by-neighborhood frequency 1interaction
revealed a significant effect of density only for nonwords in high frequency
neighborhoods, F(1,29)=51.03, p<0.05. In high frequency neighborhoods,
nonwords having many word neighbors were responded to 5.53% worse than
nonvords having few word neighbors. In addition, a significant effect of
neighborhood frequency was observed only for nonwords occurring in high
density neighborhoods, F(1,29)=30.49, p<0.05. 1In high density neighborhoods,
nonvords with high frequency neighbors were responded to 5.22% worse than
nonwords with low frequency neighbors. Both of these effects appear to be due
to the lower mean percent correct for nonwords occurring in high density, high
frequency neighborhoods.

Reaction Time Data. For the reaction time' data for correct nonword
classifications, significant main effects were obtained for neighborhood
density, F(1,29)=60.81, p<0.05, and neighborhood frequency, F(1,29)=5.39,
p<0.05. "The interaction of neighborhood density and neighborhood frequency
was not significant, F(1,29)<1.0. .1 1 -

~ t)
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Table 4.7

Neighborhood Analysis: Auditory Lexical Decision.
deviations for the accuracy data tfor the nonvords.

Means and standard

HIGH LoV
HIGH 84.08 89.61
(6.85) (4.96)
MEAN NEIGHBORHOOD
FREQUENCY
LOW 89.30 90.44
(6.74) (4.56)
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Means and standard deviations for the reaction times for each cell are shown
in Table 4.8. The same data are plotted in Figure 4.6.

Nonwords occurring high density neighborhoods were classified 39.5 msec
slower than nonwords occurring in low density neighborhoods. In addition,
nonwords occurring in high frequency neighborhoods were classified 11.5 msec
slower than nonwords occurring in low frequency neighborhoods.

Summary of Nonword Data. Significant effects of neighborhood density and
neighborhood frequency ~were observed for both the accuracy and reaction time
data for the nonword responses. On the average, nonvords with many neighbors
wvere responded to more slowly and with lower levels of accuracy than nonwords
vith few neighbors. In addition, nonwords with high frequency neighbors were
responded to more slowly and with lower level: of accuracy than nonwords with
lowv frequency neighbors. For the accuracy data, however, it was found that
neighborhood density only affected nonwords in high frequency neighborhoods.
And, a significant effect of neighborhood frequency was obtained only for

nonwords in high density neighborhoods. The implications of these findings
will now be considered.

DISCUSSION

The results from both the word and nonword data demonstrate the role of
neighborhood structure in word-nonword classification accuracy and reaction
time. 1In addition, a significant effect of stimulus word frequency was
observed for the words. The overall pattern of results for both the word and
nonwvord data, while demonstrating effects of neighborhood structure, are not
easily accounted for by an independent combination of the variables of word
frequency, neighborhood density, and neighborhood frequency. In particular,
it is unclear why neighborhood density interacted with word frequency
differently for accuracy and reaction time. Thus, in order to account for
this pattern of results, the lexical decision paradigm will be considered in
light of the neighborhood activation model developed in Chapter 3.

Lexical Decision in the Neighborhood Activation Model

Recall that the neighborhood activation model states that stimulus input
first activates a set of acoustic-phonetic patterns in memory. The activation
levels of the patterns are assumed to be direct functions of the similarity of
each pattern to the stimulus input. Once the acoustic-phonetic patterns have
been activated, decision units for words begin  monitoring the
acoustic-phonetic patterns to which they correspond. Each decision unit also
monitors higher-level lexical information corresponding to the word for which
the wunit 1is responsible. 1In particular, once a decision unit is activated,
frequency information serves to bias the decision units by multiplying the
activation 1level of the acoustic-phonetic pattern by its frequency of
occurrence. Each decision unit continuously computes values for its word
based on the frequency-adjusted activation 1level of jts pattern and the
overall level of activation in the system of decision wunits. As stimulus
processing proceeds in time, the acoustic-phonetic information within the
stimulus is further resolved, or "refined" (see Pisoni, Nusbaum, Luce, &
Slowiaczek, 1985). The resolution of the acoustic-phonetic information serves
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Table 4.8

Neighborhood Analysis: Auditory Lexical Decision. Means and standard
deviations for the reaction time data for the nonwords.

HIGH LOW
HIGH 455 419
(118) (116)
MEAN NEIGHBORHOOD
FREQUENCY
Low 447 404
(115) (99)
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to reduce the activation levels of similar patterns in memory, until the
output of one decision unit reaches criterion. (This is true only for stimuli
that are neither degraded nor impoverished; see Chapter 3.) The decision units
are assumed to compute values via a decision rule of the sort described in
Chapter 3. Once a value exceeds criterion, all information monitored by that
decision unit is made available to working memory.

Because decision units only correspond to words actually occurring in
memory, lexical decision in the context of the neighborhood activation model
can only be achieved by accepting or rejecting words. In particular, lexical
decisions are assumed to be based on one of two criteria being exceeded (see
Coltheart, Develaar, Johasson, & Besner, 1976). A word response 1is executed
if a decision unit determines that the activation level of the pattern it is
monitoring exceeds the criterion, the normal procedure for recognizing a word
and depositing 1its 1lexical information in working memory. However, the
procedure for executing a nonword response is contingent on surpassing a
lover-level criterion. A nonword response is executed if the total activation
level monitored by the decision units falls below a lower-level criterion,
indicating that no word is consistent with the stimulus input. According to
the neighborhood activation model, therefore, word-nonword classification is
based on the activity vithin the decision system surpassing or falling below
one of two criteria, which can be referred to as the "word" and ‘"nonword"
criterion levels.

Under circumstances in vhich subjects are required to classify a clearly
presented word or nonword under no time constraint, it is assumed that
classification accuracy will be near perfect. Exhaustive analysis of the
stimulus input would result in few, if any, errors in classification.
However, once time constraints are imposed by instructions to respond as
quickly as possible, accuracy levels will vary as a function of the amount of
stimulus processing carried out prior to the response. It is assumed that
subjects will attempt to classify an item prior to a self-imposed reaction
time deadline. The assumption of a reaction time deadline is motivated by the
fact that subjects are attempting to respond as quickly as possible and will
allow only a given amount of time to pass before executing a response,
regardless of the processing achieved at that moment in time. This assumption
has its precedent in earlier models of visual lexical decision (Coltheart et
al., 1976). The notion of a self-imposed deadline leads to a further
assumption regarding subjects’ behavior in the lexical decision task, which I
will refer to as the accuracy assumption. The accuracy assumption states that
differences in classification accuracy will only be observed when the response
time deadline has been exceeded. If stimulus processing is completed before
the deadline, few errors in classification should be observed. However, 1if
stimulus processing is incomplete at the expiration of the deadline, subjects
will be forced to execute a response based on only partial information, thus
producing errors in classification. Simply put, according to the accuracy
assumption, only those stimuli requiring processing times exceeding the
response time deadline should produce errors in classification. 1In addition,
if certain stimuli consistently require processing times that exceed the
deadline, reaction times to these stimuli will tend to be equal to the
deadline itself. If the deadline is reached prior to exceeding either the
word or nonword «criteria, classification is based on the overall level of
activity in the decision system. If this activity is high, a word response
will be executed; otherwise, a nonword response will be made.

To summarize, lexical decisions in the neighborhood activation model are
assumed to be made via the decision units for words. Word responses are
executed once a decision unit surpasses the upper-level, word criterion.
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Nonword responses are executed once the total level of activation for words
falls below the lower-level, nonword criterion. Furthermore, if neither of
these criteria are exceeded prior to a self-imposed reaction time deadline, a
decision is forced based on the overall activity in the decision system, which
may lead to erroneous classification responses. Having devised a reasonable
framework for understanding how subjects make lexical decisions, I will now
turn to a discussion of the specifics of the data obtained in the present
experiment, beginning with the word response data.

Vord Responses

Three main effects vere observed for the word response data. High
frequency words were classified more quickly and more accurately than low
frequency words. Words in low frequency neighborhoods were classified more
quickly and more accurately than words in high frequency neighborhoods.
Finally, words occurring in high density neighborhoods were classified more
slowly but more accurately than words in low density neighborhoods. Although
this last result suggests a speed-accuracy t.ade-off, the significant
interactions of neighborhood density and word frequency for both reaction
times and accuracy revealed differential effects of density on accuracy and
reaction time as a function of word frequency. High frequency words in high
and low density neighborhoods were classified equally as accurately. However,
classification time was slower for high frequency words in high density
neighborhoods. A different pattern of results was observed for the 1low
frequency words. No reaction time differences were observed as a function of
neighborhood density. However, low frequency words in high  density

neighborhoods were classified better than low frequency words in low density
neighborhoods.

Before considering the interesting interactions of density and word
frequency for the accuracy and reaction time data, consider first how the
neighborhood activation model explains the effects of word frequency and
neighborhood frequency on word classification responses. Recall that word
frequency increases the activation 1level of the acoustic-phonetic pattern
represented in the decision units. Thus, high frequency words will tend to
have higher levels of activation in the decision system than 1low frequency
vords. These higher levels of activation thus lead to faster word responses
for high frequency words given that the word criterion is surpassed more
quickly as stimulus processing proceeds. Thus, high frequency words show
faster reaction times than low frequency words. And, given the accuracy

assumption stated above, slower processing times associated with low frequency
words will result in higher error rates.

Neighborhood frequency affects classification times for wvords by slowing
the time for a decision unit to reach criterion. Recall that the decision
units monitor overall activity in the decision system. Because high frequency
neighborhoods result in overall higher activity levels, the time for a given
decision unit to surpass the criterion will be extended. Thus, high frequency
neighbors serve as stronger competitors by virtue of the fact that they raise
the overall level of activity within the decision system.

Effects of neighborhuod density can be explained by the same basic
principle used to explain the effects of neighborhood frequency. In
particular, heightened overall activity in the decision system extends the
time needed for a given decision unit to surpass the criterion. VWords with
many neighbors produce high levels of activity in the decision system, thus
slowing response time. Such an effect was observed for high frequency words.
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No effect of density was observed for the accuracy data for high frequency
words presumably because decisions for high frequency words, in the long run,
vere made prior to the response-time deadline. However, no effect of density
on reaction times was observed for low frequency words. The failure to
observe reaction time differences for low frequency words may have arisen from
the fact that, on the average, decision units failed to surpass the criterion
level for the low frequency words by the time the response-time deadline had
expired. Thus, reaction times for the low frequency words simply reflect a
forced decision at the dead.ine. According to the accuracy assumption, then,
density efrects, if they exist for low frequency words, should be observed
only for the accuracy data. Indeed, it was found that low frequency words in
high density neighborhoods were classified more accurately than lov frequency
words in low density neighborhoods. Given that decisions that are forced at
the response time deadline are based on the overall level of activity in the
decision svstem, low frequency words with many word neighbors would have
higher levels of overall activity and would thus be classified more accurately
as words. The somewhat counterintuitive finding that low frequency words with
many neighbors were classified more accurately than low frequency woraus with

few neighbors can therefore he accounted for by the neighborhood activation
model.

Within the context of the neighborhood activation model, then, the
present pattern of results for the word responses can at least be described.
Clearly, independent tests of the assumptions regarding both the model and
subjects’ behavior in the lexical decision task are required. However, the
neighborhood activation model provides at least a prima facie, coherent
account of the results obtained for the word responses. Nevertheless, the
results from the word data demonstrate once again the effects of neighborhood
structure on auditory wo.d recognition, <csupporting the general claim that
vords are recognized in the context of similar words 1in memory. Further

support for this c¢laim was obtained from the nonword data as well, which I
will now consider.

Ncnword Responses

The results for the reaction time data for the nonwords are easily
accounted for by the neighborhood activation model. Recall that it was
assumed that a nonword response is executed whenever the overall activity in
the decision system falls below a lower-level criterion. Thus, any factor
that slows the time for the activity level to drop in the decision system
should slow the time to correctly classify a nonword pattern. Indeed, the
results for the nonwords showed significant main effects of neighborhood
density and neighborhood frequency. Nonwords with many neighbors were
responded to more slowly than nonwords with few neighbors. Because the
activity level in the decision system takes longer to decay when there are
many similar words activated by the nonword stimulus, nonword classification
times were longer for nonwords in high density neighborhoods than for nonwords
in low density neighborhoods (see also Forster, 1976; Rubenstein, Richter, &

Kay, 1975). The same reasoning applies to nonwords 1in high frequency
neighborhoods. Given the overall higher activity level associated with high
frequency neighborhoods, nonwords with high frequency neighbors were

classified more slowly than words with low frequency neighbors.

For the accuracy data for the nonwords, an interaction of density and
neighborhood frequency was observed. This interaction was due to one cell,
namely that for nonwords occurring in high density, high frequency
neighborhoods. The accuracy levels for all other nonwords were approximately
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equal. The mean reaction time for nonwords occurring in high density, high
frequency neighborhoods was also the longest, and was approximately equal to
the maximum reaction observed in the experiment as a whole. Thus, under the
accuracy assumption, it is possible that the reduced accurazy for these
nonwords was due to response-time deadline expiration. In the case in which a
nonword stimulus activates a set of high frequency similar words, the overall
activity level in the decision system may have at times failed to drop below
the criterion for a nonword response. In this case, the overall activity
level in the system would be examined in order to determine a response. Given
that the activity level would tend to be high for nu.words with many high
frequency word neighbors, errors in nonword classification would be expected
to arise in this case.

Summary and Conclusions

The data from both the word and nonword responses revealed significant
effects of neighborhood structure on classification time and accuracy.
Although the correlation and regression analyses for the word responses
revealed only a small effect of density on response accuracy, the subsequent
analyses using median splits of the data revealed significant interactions
that would have attenuated the correlations of the variables of interest. In
particular, these interactions demonstrated that the effects of neighborhood
density wvaried as a function of word frequency for both the accuracy and
reaction time data. 1In addition, although the correlation and regression
analyses failed to show significant effects of neighborhood frequency, the
analysis of variance did reveal small but significant effects when the data
was partitioned into cells. These latter results thus confirm the effects of
neighborhood structure on word classification times and accuracy.
Furthermore, the results from the nonword data support the conclusions based
on the word data. The effects of neighborhood structure on word recognition
are therefore not restricted to degraded stimuli. 1In addition, the reaction
times for the word and nonword responses support the conclusions drawn from
the perceptual identification study. Although the effect of density on
classification accuracy for low frequency words ran counter to the results
observed in the identification study, it was argued that the neighborhood
activation model can, in fact, account for this result via the same mechanisms
invoked to account for the identification data.

The neighborhood activation model thus provides a coherent framework for
interpreting the effects of neighborhood structure on word and nonword
classification times. Although much of the interpretation of the effects of
neighborhood structure on both word and nonword responses relies on a small
number of crucial assumptions regarding the behavior of subjects in the
lexical decision task, the neighborhood activation model permits a unified
account of the data observed in the 1lexical decision task. Many of the
particulars of the model, and the characterization of subjects’ behavior in
the lexical decision task, necessarily require further independent testing
based on the predictions of the model. The results nonetheless show
explicable and consistent effects of neighborhood structure. Furthermore, the
data obtained from the lexical decision task reveal that neighborhood
structure is an important determinant of the ease and speed with which words
are recognized in this experimental paradigm.
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CHAPTER FIVE

EVIDENCE FROM AUDITORY WORD NAMING

The present chapter attempts to gather further support for the
neighborhood activation model developed in the previous chapters by examining
the effects of neighborhood structure in the context of a different
methodological paradigm. Specifically, the paradigm used in the present
chapter is auditory word naming (see Andrews, 1982; Frederiksen & Kroll, 1976;
Forster, 1981; Forster & Chambers, 1973). 1In the auditory word naming task, a
subject is presented with an auditory word stimulus and is required to repeat
or pronounce the word as quickly as possible. The dependent variable is the
time required to initiate the naming response.

The use of the auditory word naming task is motivated by a number of
factors. First, as shown previously, auditory lexical decision proves
somevhat problematic in examining neighborhood density and frequency effects
by virtue of the fact that the task requires discrimination among both word
and nonword patterns. Although the results from the previous lexical decision
study provided evidence for the effects of neighborhood structure, these
effects may have been attenuated or altered given that subjects were required
to consider both words and nonwords in making their responses. In the absence
of any systematic control for the nonword patterns that may be activated in
memory by subjects, manipulation of neighborhood structure on the basis of
words alone makes precise control of neighborhood structure difficult in a
task requiring discrimination among words and nonwords both. Thus, the naming

task provides a means of collecting reaction times to word stimuli without
presenting nonwords.

A second motivation for using the auditory word naming task comes from
recent findings in the visual literature on the role of word frequency in the
naming task. Balota and Chumbley (1984) have presented evidence that word
frequency effects are severely reduced in the visual word naming task, as
compared to the lexical decision task. In addition, these researchers have
argued that the small word frequency effects obtained in the naming task are
due to factors related to the pronunciation of the visually presented item and
not to the frequency of the word itself (Balota & Chumbley, 1985). Finally,
Paap, McDonald, Schvaneveldt, and Noel (1986) have argued that the visual word
naming task circumvents lexical access and thus circumvents access to
frequency information. Paap et al. argue that naming a wvisually presented

word simply requires grapheme-to-phoneme conversion with no access to the
mental lexicon.

These findings suggest an interesting test of the neighborhood activation
model. Recall that the model proposes that acoustic-phonetic patterns similar
to the stimulus input are activated in memory. These patterns then activate
decision units corresponding to words that monitor the acoustic-phonetic
patterns as well as higher-level 1lexical information, which includes word
frequency. The decision units continuously compute probability values based
on the activation level of the acoustic-phonetic patterns they monitor and the
overall level of activity within the system. Frequency information is assumed
to bias the decision wunits by adjusting the: activation levels of the
acoustic-phonetic patterns represented in the units.

The system of decision units is therefore driven by the a~tivation of
acoustic-phonetic patterns, giving acoustic-phonetic pattern similarity
priority in the decision system. Word frequency, on the other hand, serves as
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a biasing factor that may or may not come into play in the decision-making
process, depending on the requirements of the task situation (see Chapter 3).
Thus, in the model, similarity and frequency effects arise from two distinct
sources and operate in fundamentally different wvays in influencing decisions.

If the visual and auditory word naming tasks are sufficiently similar,
auditory word naming should not be sensitive to the biasing properties of word
frequency information. The model predicts, however, that pattern similarity
is fundamental to the system of decision units and cannot be bypassed, at
least in situations involving an open response set. Therefore, if the
predictions of the neighborhood activation model are correct, robust effects
of neighborhood density should be observed on naming times regardless of
vhether frequency information acts to bias the decision units. In particular,
high density neighborhoods should produce longer naming times than low density
neighborhoods. However, if the auditory naming task does not invoke the
biasing properties of word frequency information, as predicted by the visual
word naming studies, no effects of stimulus word frequency or neighborhood
frequency should be observed. The auditory naming task may thus aid in
dissaciating the effects of similarity and bias (i.e., frequency), providing
further support for the predictions of the neighborhood activation model.

EXPERIMENT
Method
Stimuli

Four-hundred words were selected from the 882 words used in the
perceptual identification and auditory lexical decision experiments. (Recall
that 918 words in total were used in the previous experiments. However, 36 of
these words were excluded from the analyses because of failure to reach
criterion in a screening experiment.) Only consonant-vowel-consonant words
vere selected. The words were chosen in order to construct eight cells with
50 words per cell. The eight cells were constructed by orthogonally combining
two levels (high and 1low) of each of the following independent variables:
Stimulus word frequency, neighborhood density, and neighborhood frequency.
The neighborhood density and neighborhood frequency variables were computed
for each word in the same manner as described in Chapters 2 and 4. The
phonetic transcriptions of each stimulus word were compared with each
monosyllabic word in Webster’s lexicon having a familiarity ratirg of 5.5 or
above. A neighbor of the stimulus word was defined as any word that could be
converted to the stimulus word via a one phoneme addition, substitution, or
deletion in any position. Neighborhood density again refers to the number of
neighbors of a given stimulus word and neighborhood frequency refers to the
mean frequencies of these neighbors.

Selection of the 50 words for each cell was achieved via an algorithm
that first rank-ordered each of the 882 words on each of the three independent
variables. A method of minimizing and maximizing squared deviations of
successively ranked words was then employed to ensure that cells that were
matched on a given variable (e.g., both high density) were maximally alike and
that cells intended to differ on a given variable (e.g., one high and one low
density) were maximally different. In addition, words were chosen such that
the mean stimulus durations for each cell were not significantly different.
High frequency words had a mean of 145.95; low frequency words had a mean of
4.33, Words occurring in high density neighborhoods had an average of 22.12
neighbors; words occurring in low density neighborhoods had an average of
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11.44 neighbors. The mean frequency of high density neighborhoods was 245.17;
the mean frequency of 1low frequency words was 60.50. Details of the
preparation of the auditory stimuli are given in Chapter 3.

Subjects
Eighteen subjects participated as paid volunteers. Subjects received

$3.50 for their participation. All subjects were native English speakers and
reported no history of speech or hearing disorders.

Design and Procedure

The 400 stimulus words were combined in a single stimulus set file. Each
subject heard each of the 400 stimulus words in a different random order. In
addition, subjects were given 30 practice trials prior to the experiment
proper on a separate set of words. Stimulus presentation and data collection
wvere controlled by a PDP 11/34 minicomputer. The stimuli were presented on

matched and calibrated TDH-39 headphones at a comfortable listening level of
75 dB SPL.

Each subject was run individually in a sound treated room. An
Electro-Voice D054 microphone was situated immediately in front of the
subject. The microphone was interfaced to a voice xey that was interfaced to
the PDP 11/34. The wvoice key registered a response at the onset of the
subject’s naming response. The subject was positioned such that his/her lips
were approximately 12 inches from the microphone. The subject was instructed
to maintain the 12 inch distance at all times. 1In addition, each subject was
instructed to avoid unnecessary noise.

The subjects were instructed that they would hear words over their
headphones which they were to repeat back or name as quickly but as accurately
as possible. The subjects were told that the microphone would register when
they began speaking and that the time it took them to name the stimulus would
be recorded by the computer. The experimenter was seated in a booth next to
the subject and monitored an ADM CRT terminal. On each trial, the stimulus
word appeared on the terminal and the experimenter listened to the subject’s
naming response. After the subject’'s response, the experimenter would
indicate on the computer terminal whether the subject had responded correctly

or incorrectly. If an incorrect response was made, the experimenter typed the
mistake on the terminal.

A given trial proceeded as follows: Subjects first saw the prompt "GET
READY FOR NEXT TRIAL" on a CRT screen situated above the microphone. One
second following the prompt, a word was presented over the headphone. The
experimenter then scored the subject’s response and initiated a new trial.
Reaction times were measured from the onset of the auditory stimulus to the
onset of the subjects response. A given experimental session lasted
approximately one hour.




Results

Reaction times were first entered into a stimulus word-by-subject array
and means and standard deviations were computed for each word and each
subject. Any reaction time falling 2.5 standard deviations above and below
both the subject and stimulus means was eliminated and replaced according to
the procedure suggested by Winer (1971). Mean reaction times were then
computed for each subject for each cell. Preliminary inspection of the data
revealed correlations of reaction time with the identity of the initial
segment of the stimulus word. In particular, fricatives were associated with
longer reaction times, presumably due to the differential sensitivity of the
microphone and voice key to the identity of the initial segment of the naming
response. Because the identity of initial segments was not evenly distributed
across cells, it was deemed necessary to factor out the effects of the initial
segment. In order to do this, the number of initial segments falling in each
of six manner classes for each cell was tallied. The five manner classes
were: stops, strorg fricatives, weak fricatives, nasals, liquids and glides,
and affricates. These numbers were then entered as covariates for the
reaction times in a repeated measures analysis of variance. In addition to
the reaction time data, percentages of correct responses vere computed for
each subject for each cel! and submitted to analysis of variance.

Accuracy Data. A 2 (stimulus word frequency) X 2 (neighborhood density)
X 2 (neighborhood frequency) repeated measures analysis of variance was
computed on the percentages correct. The main effects of stimulus word
frequency, F(1,17)=24.73, p<0.05, and neighborhood density, F(1,17)=4.89,
p<0.05, vere obtained. No effect of neighborhood frequency was observed,
F<1.0. In addition, none of the interactions were significant. Means and
standard deviations are shown in Table 5.1 for each cell.

Inspection of Table 5.1 reveals that the significant effects of stimulus word
frequency and neighborhood density on accuracy were extremely small. High
frequency words were responded to .89% better than low frequency words. Words
occurring in high density neighborhoods were responded to .28% worse than
words occurring in low density neighborhoods. In addition, it should be noted
that the accuracy levels overall vere very high, the lowest cell percentage

being 96.78%. Thus, naming an auditory stimulus appears to be quite easy for
subjects to perform

Reaction Time Data. A 2 X 2 X 2 repeated measure analysis of covariance
vas performed on the reaction times. Recall that the covariates were the
number of initial segments in each cell falling into one of the six manner
classes., Only the main effect of neighborhood density was observed for *he
reaction times, F(1,11)=5.10, p<0.05. Neither stimulus word frequency,
F(1,11)=1.71, p<.05, nor neighborhood frequency, F(1,11)<1.0, reached
significance. In addition, no significant interactions were observed. Means
and standard deviations are shown in Table 5.2.
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Table 5.1

Neighborhood Analysis: Naming. Means and

standard deviations for the

accuracy data.

HIGH
MEAN NEIGHBORHOOD
FREQUENCY
LOW
HIGH
MEAN NEIGHBORHOOD
FREQUENCY
LOW

HIGH Low

57.67 98.56
(2.30) (1.79)
98.78 98.56
(1.70) (1.92)

HIGH Low

96.78 97.11
(2.76) (3.01)
53.00 58.11
(2.38) (2.11)




Overall, words occurring in high density neighborhoods were responded to
approximately 102 msec slower than words in low density neighborhoods. The
effect of density -as consistent across word frequency and neighborhood
frequency in all cases but one. Virtually no reaction time differences
between words in high and lov density neighborhoods were observed for low
frequency words occurring in high frequency neighborhoods. However, the
three-vay interaction suggesting a lack of statistical significance for this
cell was far from significant, F(1,11)=0.64. Thus, although there was clearly
a reduction of the effect of density for low frequency words in high frequency
neighborhoods, there was no stastical support for any differential effects of
density across word frequency or neighborhood frequency.

In summary, small effects of word frequency and neighborhood density were
observed for the accuracy data. Although both effects were in the predicted
direction, the magnitude of the differences were so small as to be almost
negligible. However, a large effect of density was observed for the reaction
time data. Words occurring in low density neighborhoods were named an average
of 102 msec faster than words in high density neighborhoods.

DISCUSSION

The results of the naming study lend further support to the notion that
the neighborhood structure of words in the mental lexicon strongly affects
auditory word recognition. The reaction time data demonstrate that words with
many neighbors are named more slowly than words with few neighbors. Perhaps
the more interesting and crucial £finding, however, 1is that no frequency
effects wvere observed either in terms of stimulus word frequency or

neighborhood frequency. This is in contrast to the findings from the
perceptual identification and auditory lexical decision studies, in which
consistent effects of frequency were observed. Although the present study

examined only a subset of the words used in the previous studies, the number
of stimuli was still quite large, and the difference in frequency between the
high and low frequency words was substantial (mean for high frequency words =

145.95; mean for low frequency words = 4.33), as was the difference in mean
frequency between high and lowv frequency neighborhoods (mean for high

frequency neighborhoods = 245.17; mean for low frequency words = 60.15).
Thus, there 1is therefore no reason to expect that the use of a subset of
stimuli was responsible for the 1lack of frequency effects. Instead, the

failure to observe word frequency and neighborhood frequency effects may lie
in the circumvention of bias effects in the naming task.

As previously discussed, a precedent for the finding that frequency does
not affect naming times can be found in the literature on visual word
recognition. Balota and Chumbley (1984) compared lexical decision and naming
times for high and low frequency printed words and found 2 marked reduction in
the frequency effect for naming as compared to lexical decision. In a later
study, Balota and Chumbley (1985) found that frequency effects in the naming
of visually presented words may be due to the structure of the words
themselves. They argued that any frequency effects observed in the naming
task are due to factors correlated with frequency that affect articulation.
The main conclusion to be drawn from these studies is that the naming task
fails to reveal frequency effects that are unrelated to differences in the
articulation of high and low frequency words.
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Table 5.2

Neighborhood Analysis: Naming. Means and standard deviations for the
reaction time data.

HIGH Low
HIGH 840 144
(183) (175)
MEAN NEIGHBORHOOD
FREQUENCY
Low 852 716
(168) (171)

HIGH Low
HIGH 731 736
(179) (192)
MEAN NEIGHBORHOOD
FREQUENCY
Low 867 685
(178) (174)
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Paap, et al. (1986) have argued that the naming task for wvisually
presented words does not require lexical access. Instead, they argue that a
visually presented word may be named via a grapheme-to-phoneme route that
bypasses the lexicon. The authors assume that frequency effects are only
apparent once lexical access has been achieved, at which time frequency
information 1is made available to the processing system. Paap et al. in fact
showed that when the naming task is modified to require multiple lexical
decisions prior to the naming response, large and consistent effects of
frequency are observed. The effect of the lexical decisions is presumably to

force subjects to access the lexicon, thus gaining access to frequency
information.

Although the present results corroborate the finding that frequency
effects are not obtained in the naming task (when highly controlled stimuli
are used), the explanation put forth by Paap et al. does not account for
finding that neighborhood density affected naming time. As previously
mentioned, Paap et al. argue that visually presented words can be named by a
direct mapping of graphemes onto phonemes; units corresponding to words need
not be activated in order to name the visual stimulus. If one assumes that an
auditorily presented word can be named by some sort of process that maps
phoneme-to-phoneme, again circumventing activation of units corresponding to
wvords, no effect of neighborhood density should be observed. This prediction
vas not supported by the results obtained in the present study, in which a
large effect of neighborhood density was found.

It is therefore more reasonable to assume that the naming task requires
activation of wunits corresponding to words, namely the decision units in the
neighborhood activation model, but that word frequency information does not
bias these decision units. The crucial question arises, then, as to why the
naming task does not invoke the biasing properties of word frequency. One
explanation may lie in the nature of the response required by the naming task.
In this task, subjects are simply required to repeat back the stimulus word.
No explicit decision is required regarding the lexicality of the item, as in
lexical decision. Frequency biases in lexical decision may help to optimize
decision times by allowing certain items to surpass the word or nonword

criterion faster than would be expected with no bias. Nor 1is an explicit
decision required as to the identity of a degraded item, as in perceptual
identification. In perceptual identification, subjects may optimize

performance by choosing words of higher probabilities of occurrence in the
face of incomplete stimulus information. In contrast, no higher-level lexical
information is required to make a naming response. Behavior in this task is
optimized by simply deciding on the acoustic-phonetic identity of the stimulus
word. Because the naming response requires a precise analysis of the
acoustic-phonetics of the stimulus word in order to build an articulatory plan
for executing a response, biases not based on the acoustic-phonetics
themselves (e.g., frequency biases) may indeed hinder response generation.
Given the response required by the naming task, therefore, subjects may
optimize performance by focusing on discriminating among the acoustic-phonetic
patterns and ignoring higher-level lexical information. Thus, frequency
effects would not be expected to affect naming times. However, because an
acoustic-phonetic pattern must be isolated in order to make the naming
response, neighborhood density, or the number of similar acoustic-phonetic
patterns corresponding to words in memory, would be expected to influence the

time needed to generate a naming response. Indeed, this pattern of results
was obtained in the present study.
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Whatever the precise explanation for the failure to observe word
frequency or neighborhood frequency effects in the auditory naming task, the
results of the present study demonstrate thar neighborhood density effects are
clearly separate from frequency effects. 1In other words, the present study
demonstrates that stimulus similarity and decision biases are separate effects
that have differential effects on the levels of processing within the word
recognition system. The present study also confirms the prediction of the
neighborhood activation model that stimulus word frequency and neighborhood

frequency effects must occur, or not occur, in tandem. That 1is, the model
does not predict stimulus word frequency effects when no neighborhood
frequency effects are present, and vice versa. Thus, the absence of one

effect requires the absence of the other. Although unequivocal support for
this prediction cannot be offered on the basis of ‘two null results, the
present study at least does not disconfirm the prediction.

In summary, the results of the auditory naming task support the basic
tenets of the neighborhood activation model, in particular the claim that
density effects are distinct from the effects of frequency. The results also
provide further strong support for the not.on that neighborhood structure
affects auditory word recognition, such <that increasing the size of the
neighborhood increases the time needed to discriminate among items in memory.
Finally, once again, the results from the present study demonstrate that
effects of neighborhood structure can be obtained even when stimulus words are
not degraded. Thus, the results from the present auditory naming task mesh
well with the predictions of the neighborhood activation model and provide
further support for the notion that a word is recognized in the context of
similar words in memory.
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CHAPTER SIX

CONCLUSION

The goal of the present research was to examine how the structural
organization of the sound patterns of words in memory influences auditory word
recognition. The term "structural organization" was defined specifically in
terms of similarity relations among the sound patterns corresponding to words
in the mental lexicon. In particular, the effects of the structural
organization of "similarity neighborhoods" were examined. A "neighborhood"
was defined as a collection of words that are phonetically similar to the
stimulus word. 1In addition to structural relations among words, the relative
effects of word frequency wer: examined in the context of similarity
neighborhoods. It was hypothesized, and subsequently confirmed, that stimulus
word frequency effects are a function of the neighbors of the stimulus word as
well as the frequencies of these neighbors.

The present investigation adopted the approach of many current models of
stimulus identification (see Broadbent, 1967; Nakatani, 1970; Smith, 1980), in
which word identification was assumed to be a function of similarity and bias.
Similarity defines the set of alternatives that are to be discriminated and
chosen among in deriving a response. Bias refers to those higher-level
factors that adjust the probability of choosing among the alternatives
activated in memory. In the present investigation, the biasing properties of
word frequency were examined.

Unfortunately, "bias" has taken on a somewhat pejorative sense in the
literature, referring to some ill-specified process by which the subject
explicitly chooses among possible alternatives based on a priori probabilities
of occurrence or previous contextual information. It was assumed in the
present approach, however, that biases arising from information regarding word
frequency constitute an important aspect of the process of word recognition
and serve to optimize recognition in situations requiring identification of a
degraded stimulus or a speeded response to a stimulus presented in the clear.
The term "response bias" has been cautiously avoided because this term implies
that frequency biases are only important in influencing subjects’ volitional
generation of responses in laboratory task situations. There is no evidence
that frequency bias effects are restricted to the laboratory, nor that such

effects are under the conscious control of the subject (Hasher & Zacks, 1984;
Smith, 1980).

Thus, bias is assumed to be a crucial component in word recognition and
not an artifactual effect that should be treated as a nuisance in the study of
the "pure" perceptual prccessing of words. Indeed, current
interactive-activation models of -ord recognition incorporate bias effects in
the recognition system in such a way that the effects of bias and perception
are virtually indistinguishable (McClelland & Rumelhart, 1981; see alss
Slowviaczek, Nusbaum, & Pisoni, 1987). 1In short, in the present research,
frequency effects were assumed to arise from biases in the word recognition
system that constitute important and fundamental aspects of the process of
word recognition. In addition, frequency effects were assumed to operate in
an extremely sophisticated manner, influencing the entire neighborhood of
words activated in memory by stimulus input.

The effects of similarity neighborhood structure (i.e., density and
neighborhood frequency) and stimulus word freauency wvere examined in a number
of experiments which ijacluded perceptual identification of auditorily
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presented words, auditory lexical decision, and auditory word naming. Each of
these studies provided robust evidence for the role of similarity neighborhood
structure in auditory word recognition, although each of the tasks produced
somewhat different patterns of results. It was shown that the neighborhood
activation model (NAM) provided a reasonable account of the results for each
of the experimental tasks. In addition, NAM was shown to describe adequately
the combined effects of similarity neighborhood structure and word frequency.
Basically, NAM proposes that stimulus input activates a set of
acoustic-phonetic patterns in memory that are monitored by a system of word
decision units sensitive to higher-level lexical information. Choi-~es within
the decision system are based on the overall level of activity in the system,
the activity level of the acoustic-phonetic patterns, and biases stemming from
higher-level lexical information, which includes word frequency. Before
discussing NAM in detail and its comparison to other current models of
auditory word recognition, I turn to a brief review of the empirical results
reported in the previous chapters.

REVIEW OF MAJOR RESULTS
Perceptual Identification

In Chapters 2 and 3, the effects of neighborhood structure and word
frequency were examined in a perceptual identification experiment.
Approximately 900 three-phoneme monosyllabic words were presented for
identification at three S/N ratios. Accuracy of identification served as the
dependent variable. Although effects of neighborhood structure vere observed
in Chapter 2, in which neighborhoods were computed on the basis of one phoneme
substitutions, additions, and deletions, the effects were small and provided
at best moderate evidence for effects of similarity neighborhood structure. A
further attempt at computing similarity neighborhoods based on basic segmental
intelligibility and confusability proved much more successful. It was shown
that a choice rule--dubbed the neighborhood probability rule--could be
developed that adequately predicted identification performance. This rule
incorporates estimates of stimulus word intelligibility and neighbor
confusability in predicting the probability of choosing a stimulus word from
among its phonetically similar neighbors. In addition, it was shown that
frequency-veighting factors incorporated in the rule improved prediction.
These frequency-veighting factors were bias parameters that adjusted the
initial probabilities of the acoustic-phonetic patterns of the neighbors
relative to the pattern of the stimulus word. One important finding regarding
the frequency-veighted neighborhood probability rule was that frequency of the
stimulus word per se was a poor predictor of identification performance.
Instead, it was shown that the relations among the frequencies of the stimulus
word and its neighbors served to better capture the effects of word frequency.
The results demonstrated that the frequency effect is a relative one crucially
dependent on the frequencies of the neighbors of the stimulus word.

Auditory Lexical Decision

As a further test of the role of neighborhood structure in auditory word
recognition, an auditory lexical decision task was employed in Chapter 4. The
goal of this study was to examine the effects of similarity neighborhoed
structure in the absence of stimulus degradation. In addition, the auditory
lexical decision task enabled the collection of response times in order to
determine if similarity neighborhood structure affects not only the accuracy
of word recognition but also the time course.
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Regression analyses on the word data showed no effects of similarity
neighborhood structure on reaction time, although an effect of neighborhood
density was observed for the accuracy data. However, this latter effect was
in the opposite direction of that predicted. It was argued that the effect of
density on accuracy suggested interactions in the data that may have served to
eliminate or attenuate the results of the regression analyses. In particular,
it wvas argued that the discrimination among words and nonwords required by the
lexical decision task may have had differential effects for high and low
frequency words, thus producing interactions that may have attenuated the
correlations of the neighborhood variables with the reaction time and accuracy
data.

In a subsequent analysis in which the original vord data were partit: ned
into orthogonal cells and submitted to analyses of variance, neighborhood
density was in fact found to interact with word frequency. In addition, the
interactions of neighborhood density and word frequency were opposite for the
reaction time and accuracy data. Effects of neighborhood density on
classification time were observed for high frequency words but not for low
frequency words. High frequency words in dense neighborhoods were responded
to more slowly than high frequency words in sparse neighborhoods. 1In terms of
the accuracy data, density effects were only observed for low frequency words,
and these effects were opposite to those predicted: Lov frequency words in
dense neighborhoods were responded to at higher levels of accuracy than low
frequency words in sparse neighborhoods.” In addition to the effects of

density, consistent effects of word frequency and neighborhood frequency were
obtained.

An analysis of the auditory lexical decision task in the context of NAM
demonstrated that the relative effects of neighborhood density on reaction
time and accuracy could be accounted for under the assumption of reaction-time

deadline expiration. Very simply, it was assumed that neighborhood density
would affect reaction times if a response could be initiated prior to the
eXpiration of the deadline. However, 1if a response could not be intiated

prior to the deadline, it was assumed that no effect of density on accuracy
should be observed. Conversely, if decisions were forced at the reaction-time
deadline, only effects of density on accuracy should be observed. Given that
low frequency words require longer processing times than high frequency words,
the differential effects of density became explicable in the context of NAM.

Analyses of the nonword responses provided further strong support for the
role of neighborhood structure. Nonwords in high density neighborhoods were
responded to more slowly than nonwords in low density neighborhoods. And,
nonvords in high frequency neighborhoods were responded to more slowly than
nonwords in low frequency reighborhoods. It was again shown that NAM could
easily account for these effects.

Altogether, the results from the auditory lexical decision experiment
provided further support for the notion that similarity neighborhood structure
affects auditory word recognition in predictable and systematic vays. In
addition, these results demonstrated that similarity neighborhood structure
affects processing time as well as accuracy and that the effects of
neighborhood  structure are demonstrable in the absence of stimulus
degradation. Finally, the overall pattern of results for the auditory lexical

decision experiment proved consistent with the claim that decision units only
monitor words in memory.
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Auditory Word Naming

In a final experiment, the effects of neighborhood structure were
examined using the auditory word naming task. The motivation for using this
task was two-fold: First, it avoids the requirement of word-nonword
discriminations wvhich may have attenuated the effects of neighborhood
structure in the auditory lexical decision task. Second, recent evidence from
visual word naming studies (Balota & Chumbley, 1984, 1985) suggested that the
naming task is insensitive to word frequency effects. It was hypothesized
that whereas the effects of word frequency may be circumvented by the naming
task, effects of neighborhood density should nonetheless remain, given that
neighborhood density effects arise at the earliest level of analysis in the
system and are inherent in the activation levels of the word decision units.

Th.. results of this study confirmed that the naming task is 1insensitive
{w sti.ulus word frequency and neighborhood frequency effects when the stimuli
i+ carefully constructed. However, a large effect of neighborhood density

vas still observed: Words in high density neighborhoods were named
approximatziy 100 msec slower than words in low density neighborhoods, a
result c¢r.wixc2nt with the predictions of NAM. The failure to observe

stimulus -ord frequency and neighborhood frequency results was attributed to
the Jevel of analysis required to produce a response in the naming task. It
was furthermore argued that the results of this study provided support for the
notir of frequency as a biasing factor in the system of word decision units
postu:..ed in NAM. In particular, it was argued that frequency must be a
higher-level biasing factor in order to countenance the result that the effect
of frzaquency can be circumvented by task requirements. If frequency were an
inhecent aspect of word thresholds or activation levels, effects of frequency
would not be expected to disappear in the naming task. It was furthermore
argued that the word decision units had to be activated in the naming task in
order to produce the neighborhood density effect. If only phonemes or
segments vere synthesized in order to produce the naming response, the number
of neighbors should have made no difference in naming response times. Thus,
it was argued that information regarding words must have been activated at
some level, despite the fact that frequency information was not used in
producing a naming response.

The results of each of the experiments summarized above lend strong
support to the proposal that the number and nature of items activated in
memory by the stimulus input influence the speed and accuracy of auditory word

recognition. These results strongly suggest a model of auditory word
recognition in which multiple acoustic-phonetic patterns are activated,
discriminated among, and decided upon  according to the inherent

acoustic-phonetic similarity of the patterns and higher-level lexical
information biasing word decisions. In short, these studies demonstrate that
wvords are recognized in the context of similar words in memory and that
recognition 1is a function of the number of items that must be discriminated
among as well as the biases influencing the decisions based on these
discriminations.
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SUMMARY OF THE NEIGHBORHOOD ACTIVATION MODEL

The neighborhood activation model (NAM) was developed to explain the
results of the perceptual identification experiment and wvas extended to the
findings from the auditory lexical decision and auditory word naming studies.
The model is primarily a processing instantiation of the frequency-veighted
neighborhood probability rule developed in Chapter 3. Basically, the model
assumes that a set of similar acoustic-phonetic patterns are activated in
memory on the basis of stimulus input. The activation levels of these
patterns are assumed to be a direct function of their similarity to the
stimulus input. These patterns are further assumed to represent both words
and nonwords. Over the course of processing, stimulus input serves to resolve
or "refine" a pattern in a manner suggested by Nusbaum’s Phonetic Refinement
Theory (see Pisoni et al., 1985). That 1is, as processing proceeds, the
pattern corresponding to the stimulus input is refined, receiving successively
higher levels of activation, while the activation levels of similar patterns
are reduced.

Vords emerge in NAM when a system of word cdecision units tuned to the
acoustic-phonetic patterns are activated. The activation of the decision
units is assumed to be direct, in the sense of logogen theory (Morton, 1979)
and cohort theory (Marslen-%ilson & Welsh, 1978). 1In addition, as in cohort
theory, the system of worg units is assumed to be based only on the activation
of the acoustic-phsuetic patterns. That is, word recognition is assumed to
be, at least initially, completely bottom driven. Once the word decision
units are activated, they monitor a number of sources of information. The
first source of information 1is the activation of the acoustic-phonetic
patterns, which have previously served to activate the decision wunits
themselves. The word decision wunits also monitor the overall level of
activity in the decision system itself, much like processing units monitcr the
net activity level of the system in the TRACE model (Elman & McClelland,
1986). Finally, the decision wunits are tuned to higher-level lexical
information, which includes word frequency. This information serves to bias
the decisions of the wunits by multiplying the activity levels of the
acoustic-phonetic patterns by the frequencies of the words to which they
respond. The values that serve as the output of the decision units are
assumed to be computed via a rule similar to the frequency-weighted
neighborhood probability rule discussed in Chapter 3.

Word recognition in NAM may be accomplished in a number of ways,
depending on the requirements of the task. In situations in which the
stimulus input is degraded, word recognition is accomplished by evaluating the
values computed by the decision units and picking a response based on these
values. When speeded responses are required, it is assumed that the subject
sets a criterion for responding that, once exceeded by the output of a
decision unit, results in the recognition of a word. Word recognition is
defined explicitly as the choice of a particular pattern by the system of
decision units. Lexical access is assumed to occur once a decision unit makes
all of the information it was monitoring available to working memory. Thus,
the decision wunits act as gates on the acoustic-phonetic and lexical
information available to the processing system. If insufficient evidence for
a word is provided by the decision system, the activation levels of the
acoustic-phonetic patterns themselves may be consulted, resulting in the
recognition of a nonword pattern.

NAM places much of the burden of auditory word recognition on the
discrimination among similar acoustic-phonetic patterns corresponding to words
and the decisions necessary for choosing among these patterns. In addition,
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NAM accounts for word frequency effects by allowing frequency information to
bias the decisions of the word decision units. However, because each word
decision unit computes values based on its acoustic-phonetic pattern as well
as the overall level of activity in the decision system, decisions are assumed
to be context sensitive. Thus, frequency is assumed to be a relative factor.
That is, if many decision units are receiving strong frequency biases, a
decision unit for a given high frequency word may compute relatively low
values. Likewise, a decision unit for a low frequency word may quickly begin
to output high values if there is little other activity in the system. Thus,
effects of frequency are not assumed to be absolute, but dependent on the
activity level of the decision system as a whole.

Comparison of NAM to Other Models of Word Recognition

As previously mentioned, NAM bears a strong resemblance to other models
of auditory word recognition, and many of the concepts incorporated in the
model have precedents in previous theories of auditory word recognition.
However, as will be argued below, NAM makes certain predictions that are
inconsistent with current models of auditory word recognitio , in particular
with regard to the roles of frequency and similarity. I will now turn to a
discussion of some of the more influential models of word recognition in order
to highlight the fundamental differences and similarities between NAM and
these models.

Logogen Theory

Morton (1969, 1979) has proposed a model of word recognition based on a
system of "logogens" that monitor bottom-up sensory information and top-down
contextual and lexical information. Information from either of these sources
serves to drive the logogens toward threshold. Once a threshold is reached,
the information to which the logogen corresponds is made available to the
processing system and a word is said to be recognized and accessed. Morton
accounts for word frequency effects in the logogen model by assuming that high
frequency words require less evidence than low frequency words for crossing
threshold. Morton thus refers to logogen theory as an evidence-bias model.

The resemblance between Morton’s system of logogens and the system of
word decision wunits in NAM is quite strong. Both logogens and word decision
units monitor top-down and bottom-up information. In addition, both logogens
and word decision units are assumed to prohibit information from becoming
available to the general processing system until a decision regarding the
identity of the word has been made. However, word decision units differ from
logogens in a number of crucial ways.

First, logogens can be activated on the basis of ejther top-down or
bottom-up information. A logogen 1is insensitive to the source of the
information it monitors. In contrast, word decision units are activated only
on the basis of acoustic-phonetic input. This aspect of NAM ensures that
stimulus input will not activate a clearly inconsistent word decision unit.
Morton (1979) argues against such a system by citing evidence of responses to
degraded word stimuli that appear to be clearly dissimilar to the stimulus
word. However, this argument fails to acknowledge that under extreme levels
of degradation, the stimulus input may be so degraded as to activate what may
appear to be phonetically dissimilar words. That is, under conditions of
extreme stimulus degradation, the available acoustic-phonetic information may
overlap with a large number of words, given that this information is so
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impoverished. Indeed, Broadbent (1967) and Triesman (1978b) both argue that
similarity among items in memory increases as stimulus degradation increases.
Thus, under high levels of degradation, words quite dissimilar to the stimulus
input may be produced as responses. This does not vitiate the claim, however,
that the initial activation of the word decision units is based on the
acoustic-phonetic input. Morton’s results simply demonstrate that many
disparate items may be considered as similar to the stimulus input when
stimulus degradation is high.

Perhaps the most crucial difference between logogens and the word
decision units hinges on the problem of accounting for neighborhood structural
effects. Logogens are assumed to be independent processing units with no
interconnections. The lack of crosstalk among logogens makes it difficult to
account for the findings that words in highly dense or confusable
neighborhoods take longer to respond than words in less dense or less
confusable neighborhoods. Because logogens are independent processing units,
stimulus input should push a given logogen over threshold at the same point in
time, regardless of vhether the stimulus input activates many or few logogens.
Granted, accuracy differences between dense and sparse neighborhoods may arise
because there is a higher probability that logogens corresponding to similar
words may surpass threshold prior to the logogen corresponding to the stimulus
input. It is not so clear, however, how logogen theory would account for
neighborhood density effects on reaction times. When presented with clearly
specified acoustic-phonetic information, as in auditory lexical decision or
auditory word naming, the logogen corresponding to the stimulus input should
always cross threshold at the same point in time, regardless of the activity
levels of other logogens, assuming that word frequency is held constant. The
results for the high frequency words for the auditory lexical decision task
reported in Chapter 4 contradict this prediction, as do the results for the
auditory word naming task.

The most fundamental problem that the present set of results poses for
logogen theory concerns the robust findings that frequency effects are
dependent on the neighborhood structure of the stimulus word. In the
perceptual identification study, it was shown that certain classes of high and
low frequency words are responded to at equal levels of accuracy 1if the
neighborhood structures  of the words are equated. Because logogens
corresponding to high and 1low frequency have differing thesholds, 1low
frequency words should always require more evidence than high frequency words
in order to cross threshold. Because a single logogen has no knowledge of the
activation levels of other logogens, it is difficult to explain within logogen
theory how the frequencies of neighbors could influence recognition of the

stimulus word. One could again assume that the effects of neighborhood
frequency and density on accuracy reflect incorrect logogens surpassing
threshold. That 1is, it 1is possible that both neighborhood density and

neighborhood frequency increase the probability of incorrect logogens reaching
threshold, thus depressing accuracy of identification for words occurring in
high density and/or high frequency neighborhoods. However, such an account
does not explain the effects of neighborhood density and neighborhood
frequency on reaction times observed in the auditory lexical decision
experiment. The time for a given logogen to reach threshold cannot be
influenced by the activations of other logogens, and thus logogen theory fails
to account adequately for the present set of results.

Finally, logogen theory has no mechanism for explaining the results of

the naming study. Recall that in the naming study it was argued that word

units must have been accessed by subjects in order to produce the effect of

neighborhood density. Hovever, no effects of word frequency or neighborhood
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frequency were observed. It is perhaps possible that the thresholds for
logogens corresponding to high and low frequency words were temporarily
equated due to some unspecified property of the naming task. However, not
only is this solution extremely inelegant and unparsimonious, it seriously
calls into question logogen theory’s claim that thresholds are intrinsic to

the logogens themselves and arise over time as a function of degree of
exposure to words.

A final problem for logogen theory concerns the nonvord data from the
auditory lexical decision experiment. It has been proposed that nonword
decisions in the logogen model are made in a similar manner to nonword
decisions in NAM (Coltheart, et al., 1976). Specifically, a nonword decision
is executed when no logogen fires. However, because the activation levels
within the logogens are not available for inspection (i.e., logogens are
either above or below threshold), it is difficult to account for the finding
that the number and nature of words activated by the nonword stimulus
influence reaction time. As logogen theory stands, there is no means for
evaluating the overall level of activity in the logogen system, and there is
therefore no mechanism for making faster decisions to nonwords with fewer
neighbors or lower frequency neighbors. The nonword data from the auditory
lexical decision experiment thus prove problematic for a system of independent
processing units that respond only upon surpassing an intrinsic thresholds.

NAM, on the other hand, provides a coherent description of the present
set of results by assuming that the decision units are interconnected and that
frequency effects arise from biases stemming from higher-level sources of
information. Modifications of logogen theory may be possible to account for
the present results, but it is very likely that the resulting model would bear
a strong resemblance to NAM. Nonetheless, there are important similarities
between NAM and logogen theory, owing to the fact that NAM incorporates many
ideas from logogen theory. In particular, NAM assumes a system of word
decision units that serve as the interface between the acoustic-phonetic input
and higher-level information, as proposed by logogen theory. Howvever, due to
the interconnectedness of the system of word decision units, NAM is able to

account for the effects of neighborhood structure, whereas logogen theory
apparently is not.

Cohort Theory

Perhaps the most influential of current models of auditory word
recognition is cohort theory, proposed by Marslen-Wilson (Marslen-Wilson &
Welsh, 1978; Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 1984, 1986).
According to this theory, a "cohort" of words is activated in memory on the
basis of the initial acoustic-phonetic input of the stimulus word. Words in
the cohort are then eliminated by tvo sources of information: continued
acoustic-phonetic input and top-down contextual information. That 1is, words
in the cohort are rulea out or deactivated by continued processing of the
stimulus information as well as by inconsistent contextual information. A
given word is recognized when it is the only word remaining in the cohort.

Cohort theory has provided a number of valuable 1insights into the
temporal processing of spoken words. In previous versions of the theory,
however, no attempt was made to account for word frequency effects. In a
recent version of the theory, though, Marslen-Wilson (1986) has incorporated a
mechanism for accounting for word frequency effects by assuming wvords in a
cohort have differing levels of activation depending on their frequencies of
occurrence. Words with higher levels of activation take longer to eliminate
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from the cohort tiian words with lower levels of activation, thus affording at
least an initial advantage to high frequency words. Because the latter
version of cohort theory represents a significant improvement over the initial

formulation of the theory, only this version will be considered in the present
discusssion.

Cohort theory and NAM are similar in the respect that both models assume
bottom-up priority in the activation of items in memory. Furthermore, both
models assume that a set of items are activated and processed in parallel. In
addition, both models state that items receive reduced levels of activity as
disconfirming acoustic-phonetic information 1is presented. Unlike cohort
theory, however, NAM at this stage of formulation has little to say about the
time course of effects in the word recognition system, primarily due to the
fact that the model was developed on the basis of data from very short words.
Indeed, as stated earlier, some of the aspects of cohort theory may have to be
incorporated into NAM in order to account for the recognition of longer words.
Nonetheless, cohort theory and NAM do make fundamentally different
predictions, at least for short stimuli.

Marslen-Wilson (1986) argues that because cohort theory is realized as a
parallel system, no effects of set size should be observed on recognition.
Words in a cohort are assumed to be activated at no cost. NAM 1is also
realized as a system of parallel processing units, but the fundamental claim
of NAM is that the nature and number of items activated in memory influence
the accuracy as well as the speed of recognition. This prediction of NAM

- stems from the claim that the word decision units are sensitive to the overall

level of activity in the decision system and are therefore influenced by the
number and nature of competing items. Evidence for this claim was provided by
each of the experiments previously reported.

Marslen-Wilson (1986) argues for the claim that set size has no effect on
recognition performance on the basis of a set of experiments examining lexical
decisions for nonwords. He claims that if nonwords are matched according to
the point at which they diverge from words, no effect of set size is observed
on reaction times. This is in contradiction to the findings in the lexical
decision experiment reported earlier in which large effects of neighborhood
density (i.e., set size) and neighborhood frequency were observed for
nonwords. Note that because of the manner in which these nonwords were
constructed, each of the nonwords diverged from words at the third phoneme
(see Chapter 4). Thus, set size effects were demonstrated even when
divergence points were equated. Given that Marslen-Wilson’s claim of no
effects of set size are based on null results, the positive findings reported
in Chapter 4 for the nonwords seriously call this claim into question.

Indeed, each of the experiments reported previously fail to support the
notion that the number of items activated 1in memory has no influence on
recognition performance. Although Marslen-Wilson may object to the results
from the perceptual 1identification study, claiming that the use of "noisy"
stimuli induce post-perceptual processes, the results from the lexical
decision study as well as the auditory naming study clearly contradict a
fundamental claim of cohort theory. Indeed, it is not even clear that the
postulation of some vague "post-perceptual" processes indicts the results from
the perceptual identification study, which showed significant effects of
neighborhood structure on identification performance. In short, the results

of the present set of studies taken together refute certain crucial claims of
cohort theory.
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The results of the naming study also provide counter evidence to cohort
theory’s treatment of vord frequency. All words used in the naming study can
be assumed to have had approximately equal divergence points or isolation
points by virtue of their short length (see Luce, 1986a). Indeed, it has yet
to be shown for short word stimuli that divergence points influence on-line
recognition. Thus, one can safely assume that these stimuli did not differ in
important ways in terms of their isolation points. However, despite
equivalent 1isolation points, high frequency words were named no faster than
low frequency words, in contradiction to the predictions made by the most
recent version of cohort theory. In addition, because there was a strong
effect of density, it cannot be assumed that lexical items were bypassed in
the generation of the naming response. Thus, the current version of cohort

theory further fails to account for the results obtained in the present
investigation.

As previously argued, an adequate model of auditory word recognition
cannot assume differing inherent activation levels or thresholds for the units
monitoring high and low frequency words. 1Instead, the effects of frequency
are best described as biases on the decision units responsible for choosing
among activated lexical items. By treating the effects of frequency as biases
on the decision process, one can account for results demonstrating the
lability of the frequency effect depending on task requirements (e.g.,
Pollack, et al., 1959) and higher-level sources of information (Grosjean &
Itzler, 1984). Thus, the instantiation of frequency in the latest version of
cohort theory 1is difficult to countenance. NAM, however, provides a more
principled explanation of the effects of word frequency on both the stimulus
word and its neighbors.

As it stands, cohort theory is clearly inconsistent with a number of
findings from the previous studies. Although cohort theory still makes a
number of important claims regarding the temporal processing of longer spoken
words, which NAM has yet to address, certain fundamental aspects of the cohort
theory appear at this point to be mistaken.

Other Theories of Word Recognition

Although Morton’s logogen theory and Marslen-Wilson’s cohort theory
constitute the dominant theories of auditory word recognition at the present
time, it is perhaps wise to consider briefly a few additional models based
primarily on research on visual word recognition. It is suggested that these
models fall prey to many of the same problems encountered by logogen and
cohort theory, namely the inability to account adequately for effects of
neighborhood structure and word frequency.

Forster’s Search Theory. Forster’s (1976, 1979) search theory has been
very influential 1in research on visual word recognition, although the theory
attempts to account for auditory word recognition as well. In terms of the
auditory recognition of words, Forster’s theory claims that access to the
mental lexicon is gained through a peripheral access file containing phonetic
codes for words. A "bin" of these codes is first selected based on
acoustic-phonetic similarity. The entries within this bin are assumed to be
arranged ' according to frequency, such that high frequency words are searched
prior to low frequency words. When a match is made in the peripheral access
file, search 1is terminated and a pointer is used to locate the word in the
master lexicon, where all information regarding the word resides. A

post-access check is then made to ensure that the entry in the master lexicon
matches the stimulus input.
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Can the search model account for the neighborhood structure effects
observed in the previous studies? If a bin of codes is activated based on
similarity, density effects may be observed. Because a large number of codes
may be activated for dense neighborhoods, it should take longer to search the
bin in order to locate the <code corresponding to the stimulus input.
Furthermore, 1if the bin contains highly similar items, errors in locating the
correct entry may arise, thus producing the effects of neighborhood density on
accuracy previously observed. Finally, if the set of codes to be searched are
high in frequency (i.e., constitute a high frequency neighborhood), it will
take longer to locate the code 1in the bin, owing to the fact that high
frequency words are searched first, thus producing effects of neighborhood
frequency. In short, Forster’s search model may in fact produce the observed
effects of neighborhood density and frequency. However, it 1is difficult to
state with precision that the model would predict the precise effects of
neighborhood structure observed. 1In particular, because bins are first chosen
on the basis of similarity and subsequently ordered by frequency, the model
may predict larger effects of neighborhood frequency than are actually
observed. In short, it 1is not clear how similarity and frequency would
interact in the search model. If the peripheral access codes are arranged
according to frequency, less similar items may have to be searched prior to
more similar items simply because of the frequency ordering. This suggests a
less than optimal system that is perhaps too strongly biased by frequency.

Although the search model may account for neighborhood structural
effects, it cannot easily account for the findings that frequency effects may
be circumvented in the naming task, whereas density effects cannot. It 1is a
fundamental claim of the model that the access codes are arranged according to
frequency, and there is no means in the model by which frequency effects may
be bypassed, especially once a bin is activated (which 1is a necessary
prerequisite for effects of density). Thus, although the search model may at
first appear to be able to produce the effects of neighborhood structure
previously demonstrated, it cannot in its present formulation produce effects
of density without frequency effects. Moreover, it 1is possible that the
frequency-ordering of the peripheral access file would overestimate

neighborhood frequency effects and thereby underestimate the effects of
neighborhood similarity.

Activation-Verification Model. The activation-verification model
proposed by Paap et al. (1982, see also Becker, 1976) is similar to Forster's
search theory. 1In this model, a set of similar items are activated in memory

and verified against the stimulus input. Verification 1is assumed to be
ordered by frequency, such that high frequency words are verified before low
frequency words. Again, as 1in the search theory, neighborhood density and

frequency effects may be predicted by the model, although it 1is wunclear
precisely how these effects will interact. As with the search model, further
tests of the effects of neighborhood structural effects are required to
evaluate the performance of the activation-verification model; there are no
fundamental theoretical problems in the activation-verification model that
prevent it from showing density and neighborhood frequency effects. Hovever,
because frequency is inherent in the process of verification, it is difficult
to state how density effects may arise in the absence of frequency effects.
Furthermore, it is not certain that the locus of the frequency effect in the
activation-verification model 1is actually at the stage of verification. If,
as suggested by Dobbs, Friedman, and Lloyd (1985), frequency effects arise
prior to wverification, it 1is even more difficult to account for density
effects in the absence of frequency effects in the naming task.
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Interactive-Activation Model. Interactive-activation models of visual
(McClelland & Rumelhart, 1981) and auditory word recognition (Elman &
McClelland, 1986) have been increasingly popular in recent years, primarily
due to the breadth of phenomena accounted for by these models. Basically,
interactive-activation models assume a set of primitive processing units that
are densely connected to one another. In models such as TRACE (Elman &
McClelland, 1985), processing units or nodes have excitatory connections
between levels and inhibitory connections among levels. These connections
serve to raise and lower activation levels of the nodes depending on the
stimulus input and the activity of the overall system. As noted earlier, the
system of decision units proposed in NAM may very well be realized as an
interacting set of processing units. NAM may therefore turn out to be
virtually indistinguishable from an interactive-activation model. Indeed, the
decision values computed by the decision units in NAM may very well arise in a
system of interconnected nodes having excitatory and inhibitory connections.
McClelland and Rumelhart (1981) 1in fact discuss the possibility that
neighborhood structure (both density and frequency) may be accounted for by

their model, although they admit that further work is necessary in order to
confirm their speculations.

At present, little can be said regarding the effects of neighborhood
structure in an interactive-activation model short of actually conducting the
simulations required for testing the model. One potential problem is the
treatment of frequency within the interactive-activation f-amework as an
inherent component of the activation levels of words in memory. As pteviously
argued, the present data strongly suggest a labile frequency bias, and not an

inherent threshold or activation level. Thus, it 1is wunclear that an
interactive-activation model that assumes higher levels of activation for high
frequency words can account for the present set of data. Nonetheless, the

interactive-activation approach 1is suggestive of an interesting means of

further specifying NAM, although additional research and model development is
clearly required.

Summary of Word Recognition Models

The previous discussion of current models of word recognition suggests
that none of the models can adequately account for the neighborhood structural
effects observed in the previous experiments. In particular, logogen theory
and cohort theory appear to be the most difficult to reconcile with the
present data, although this may simply be a function of the degree of
specificity of description provided by each of these mcdels. Search and
verification theories may provide potential accounts of neighborhood structure
and frequency, although they are hard-pressed to explain the findings of
density effects in the absence of frequency effects. Finally, the
interactive-activation approach may wultimately prove most successful in
accounting for the present set of findings, although it was again argued that
any model not treating frequency as primarily a bias effect on decisions
cannot adequately account for the present data. In short, NAM appears at
present to provide the most consistent account of the effects observed,
primarily due to the interactive nature of the word decision wunits and the
biasing effect of frequency on these units.
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ADDITIONAL CONSIDERATIONS AND FUTURE DIRECTIONS

Contextual Effects. Little has been said about the roles of context in
NAM, mainly because these issues have yet to be addressed empirically in terms
of precise manipulations of contextual and priming effects on neighborhood
activation. Hovwever, some speculative comments about the incorporation of
contextual information within the model are possible at this time.

First, it has been wvell documented that words are more easily perceived
in biasing or constraining contexts (Leventhal, 1973; Lieberman, 1963; Luce,
1983; Miller, Heise, & Lichten, 1951) than in isolation or in neutral or
inhibitory contexts. Within NAM, it 1is assumed that prior constraining
contextual information will operate via the same mechanism as word frequency.
That is, higher-level lexical information activated on the basis of prior
context will serve to bias the decision units. Thus, the activation levels of
the acoustic-phonetic patterns will be adjusted according to the bias
introduced by contextual information acting on the decision units.
Facilitation may thus be observed for contextually consistent words via
increased activation levels in the decision units. Inhibition 1is also
predicted, in that higher-level information would be assumed to bias incorrect
alternatives, thus raising the activation levels of competitors and lowering
the levels of the acoustic-phonetic patterns consistent with the stimulus
input. Contextual effects in NAM are therefore assumed to operate via the
same fundamental mechanism as word frequency. Thus, like cohort theory and
logogen theory, NAM incorporates a means for producing contextual effects in
auditory word recognition. However, unlike cohort theory, NAM assumes that

context serves to bias decision processes and not to eliminate words from the
cohort.

Priming Effects. Slowiaczek, Nusbaum, and Pisoni (1987) have recently
conducted an interesting test of cohort theory using a phonological priming
technique. They presented word and nonwvord primes before target words
embedded in noise. The word and nonvord primes varied in the degree to which
they overlapped phonologically with the target words. Slowiaczek et al.
showed that increasing phonological overlap increased subjects’ ability to
identify the target words. The results showed equivalent effects of priming
regardless of whether the overlap was from the beginnings or ends of the prime
and the target, calling into question cohort theory’s claim that cohorts are
activated on the basis of word-initial information. In addition, the authors
demonstrated effects of priming by nonwords, although these effects were
smaller than those observed for the nonword primes.

Phonological priming may arise in the system of decision units via
adjustment of the bias parameters in the word decision units. Because of
expected contingencies between the prime and the target induced by the task
(see Tveedy & Lapinski, 1977), the _ystem of decision units may adjust their
bias parameters based on presentation of the priming stimulus. Thus, upon
presentation of the target word, the decision units activated by the prime
will reach higher-levels of activation, thus producing higher decision values
for those words overlapping with the prime. Nonword primes would likewise
adjust the decision units because they would increase the activation levels of
similar words. Hovever, because no word would be consistent with a nonword
prime, the decision units would not have reached levels of activation as high
as in the case in vhich a word prime was presented. Thus, smaller effects of
a nonvord prime on the decision units for words would be expected. This
explanation 1is similar to one offered by Nusbaum and Slowiaczek (1985),
although the locus of the effect in the present account is placed on the
decision units and is assumed to act via biases.
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An important test of the explanation of NAK of these results would be to
vary the probability of overlap between the target and the prime. If the
effects of priming are bias effects on the word decision units, situations in
which there is a very low probability of prime-target overlap should produce
little or no priming; situatioas in vhich there is a high probability of
prime-target overlap should produce stronger and more consistent priming
cffects. However, equivalent effects of priming in both cases would rule out
the decision bias explanation and suggest that the prime acts to increase the
activation levels of similar acoustic-phonetic patterns prior to their
activation of word decision units.

Neighborhood Structural Effects in Visu. . Word Recognition. Although NAM
was developed to account for auditory word recognition, there is evidence in
the visual word recognition literature for neighborhood structural effects.
In particular, Havens and Foote (1963) have demonstrated that frequency
effects in the identification of tachistiscopically presented words are
mediated by the number of competitors, or neighbors, of the stimulus wori.
These results bear a strong similarity to those reported in the previous
experiments on auditory word recognition.

In a recent study, Luce (1986b) further examined the role of neighborhood
structure for visually presented, masked items. As in the present experiments
on auditory word recognition, neighborhood density, neighborhood frequency,
and stimulus word frequency were orthogonaliy combined, and printed words
falling into each of two classes (high and low) of each of these variables
were presented for whole report identification. The results showed consistent
effects of each of these variables. High frecuency words were responded to

more accurately than low frequency words. Words in high frequency
neighborhoods were responded to less accurately than words in low frequency
neighborhoods. However, an interesting result was obtained for neighborhood

density: Visually presented words with many neighbors were actually responded
to better than visually presented words vith few neighbors.

Although this effect is contrary to the effect observed for neighborhood
density on auditorily presented words, it was shown that neighborhood density
was highly correlated with another factor previously shown to affect visual
word recognition, namely letter positional frequency (Mason, 1975; Massaro,
Venezky, & Taylor, 1979; Rumelhart & Siple, 1974). Words in high density
neighborhoods have letters of higher positional frequency than words in low
density neighborhoods, and it has previously been demonstrated that high
letter positional frequency enhances identification of visually presented
words (see references cited above). Thus, the reverse effects of density were
presumably due to the confounding of density and letter positional frequency.
Further analysis of the data revealed that although density enhanced
identification of letters, neighborhood frequency had no effect on accuracy of
letter identification. Instead, neighborhood frequency affected only word
identification, such that the words in high density neighborhoods were
sidentified less well than words in lov density neighborhoods. It was argued
that letter positional frequency, or density, aids in letter identification,
but that neighborhood frequency inhibits word identification by interfering
with word response selection based on the correctly perceived letters.

As it stands, NAM cannot account for the finding that visually presented
words in high density neighborhoods are identified better than words in low
density neighborhoods, although the effect of neighborhood frequency is easily
explicable in the model. However, it may be possible to build a revised model
for visual and auditory word recognition in which a separate level of
frequency is coded at the letter level. Nonetheless, the results from the
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visual identification study suggest that visual and auditory word recognition
may operate via very different mechanisms. In particular, letter frequency
has been shown to be an important determinant of the recognition of printed

words, whereas no such effects of frequency on the segment-level have been
demonstrated for auditorily presented words.

Frequency and Familiarity. One final result of the present studies
concerning the relationship of frequency and familiarity deserves mention.
Recall that the word stimuli employed in each of the previous experiments vere
all rated as highly familiar to subjects in a previous study by Nusbaum,
Davis, and Pisoni (1984). However, despite this fact, consistent effects of
frequency based on objective word counts were observed in the perceptual
identification and auditory lexical decision experiments. Similar findings
have been reported for visual lexical decision (Nusbaum & Dedina, 1985).
Taken together, therefore, these results suggest that two separate phenomena
underlie rated familiarity and experienced frequency as indexed by word
counts. Although objective frequency and subject familiarity are highly
correlated (Nusbaum et al., 1984), there nonetheless appears to be an effect
of repeated exposure of a word that 1is independent of subjects judged
familiarity, contrary to previous claims (Gernsbacher, 1984). What is
important in the present set of experiments is the demonstration that word
frequency effects are present even when the words are well known to subjects.
Further research on the frequency-familiarity distinction should help to
uncover precisely how frequency and familiarity information 1is coded in
memory. Nevertheless, the present findings implicate the role of repeated
exposure to words above and beyond the judged familiarity of the words.

Future Directions in the Development of NAM

NAM constitutes only a preliminary model of auditory word recognition.
Undoubtedly, further tests of the basic claims of the model are in order, in
particular the claim that word recognition is best described by processes of
activation and decision. In addition, the claim of NAM that higher-order
information only acts to bias decisions among acoustic-phonetic patterns is
worthy of more intense study. Although NAM provides a basic framework for
interpreting neighborhood structural effects, it is neutral with respect to a
number of important issues, some of which I will now discuss.

The Nature of the Similarity of Speech Sounds. Throughout much of the
preceding exploration of neighborhood structure, a relatively simple means of
determining neighborhood membership was employed, namely, one phoneme
substitutions, additions, and deletions. Although it was demonstrated that a
more sophisticated algorithm for computing similarity relations could be
devised based on confusion matrices, this approach has limited applicability.
In particular, it is strictly only valid to use the confusion matrix data to
predict identification performance for words presented under the same
conditions in which the confusions were obtained. This approach proved useful
for predicting identification performance but was not generalizable to the
prediction of similarity relationships when stimuli were presented 1in the
absence of noise. Thus, future work on similarity neighborhood structure will
depend on developing more sophisticated methods for determining the similarity
of speech sounds (see Carroll & Wish, 1974; Mermelstein, 1976; Shepard, 1972;
Vish & Carroll, 1974).

One possible means of deriving more sophisticated similarity measures is
to employ multidimensional scaling techniques (see Carroll & Wish, 1974; Wish
& Carroll, 1974, Shepard, 1972). Pairwise comparisons of CV and VC syllables
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can be wused to obtain similarity judgments. Multidimensional scaling
solutions can then be derived in order to determine the underlying variables
contributing to these similarity judgments. These variables can then be
employed in algorithms for computing similarity neighborhoods of words. Such
an approach may provide more accurate estimates of similarity neighborhood
structure and may enable the development of neighborhood probability rules for

predicting accuracy levels and reaction times obtained in tasks in which the
stimulus word is not degraded by noise.

Thus, a crucial question in the present research project concerns the
perceptual dimensions relevant to the activation of acoustic-phonetic patterns
in memory. It is hoped that continuing the present line of research will aid
in wuncovering the relevant perceptual dimensions of similarity and relating
these to the effects of neighborhood structure on auditory word recognition.

The Nature of the Units of Representation. An important question related
to the issue of the perceptual dimensions of the space in which
acoustic-phonetic patterns are activated concerns the precise nature of the
processing wunits in NAM (see Pisoni & Luce, 1986). Thus far, the model has
been more or less neutral with respect to the units of representation and
processing. NAM assumes activation of acoustic-phonetic "patterns,™" although
a precise specification of what constitutes a pattern 1is left wunspecified.
Indeed, there may be no need to postulate units of patterns per se. As in
Nusbaum’s phonetic refinement theory (Pisoni et al., 1985), the

acoustic-phonetic patterns may  simply be a byproduct of constraint
satisfaction in a multidimensional space.

The nature of the word decision units in NAM may not be so easily
dismissed. It has been heretofore assumed that these correspond to words or
word-like units, although this assumption may or may not be correct. Further
research on longer word stimuli should enable more precise specification of
the nature of these units. The word decision units may actually correspond to
morphemes (Fowler, Napps, & Feldman, 1985; Morton, 1969; Napps, 1983) or to
syllable units, although at present the postulation of either of these wunits
in perceptual processing is controversial (see Jakimik & Hunnicutt, 1981
Cutler, Mehler, Norris, & Sequi, 1983). If the word decision wunits actually
correspond to units below the word, it may therefore be necessary to build
further connections among the decision units to explain syllable-level effects
on the auditory word recognition (see Cole, 1983). In short, further research
is necessary to define the precise nature of the word decision units.

Effects of Syllable Stress. On a related issue, it will be important to
specify the role of lexical stress in NAM. Specifically, it is important to
determine the nature of the similarity neighborhoods for stressed and
unstressed syllables. Given that the stressed syllable may be the bootstrap
for the recognition system (Grosjean & Gee, 1986), it becomes incumbent on the
model to describe in precise terms the differential effects that syllable
stress may have on similarity neighborhood structure. Indeed, the overall
effects of similarity neighborhood structure may vary as a function of stress,
in which case it may be necessary to specify in more detail the effects of the
number and nature of words in a similarity neighborhood as a function of

syllable stress. Obviously, these questions await further experimentation and
modeling.

- 82 - 14L;’




O

~ERIC

Aruitoxt provided by Eic:

CONCLUSION

The structure of the mental 1lexicon has been a long-standing and
important issue. To date, however, little attention has been directed to
specifying the structural organization of the acoustic-phonetic patterns in
memory that are used to gain access to the mental lexicon. The present
investigation serves as an initial attempt at characterizing that structure
and 1its effects on auditory word recognition. The picture that begins to
emerge from the results reported in previous chapters is one of a perceptual
and cognitive system optimized for the recognition of words under a variety of
circumstances. This optimization is achieved by a simultaneous activation of
alternatives based on the stimulus input, and by a sophisticated system that
attempts to maximize decisions among these alternatives. The fact that the
auditory wvord recognition system is capable of considering numerous
alternatives in parallel helps to assure the best performance of the system in
the face of stimulus input that is often impoverished, degraded, or poorly
specified. However, as the previous experiments have demonstrated, this
optimization 1is rot without its processing costs. Both the number and nature
of words activated by the stimulus input affect not only the accuracy of word
recognition, but also the time required to decide among the activated
candidates. Nevertheless, such processing costs subserve the ultimate goal of
the human auditory system, namely to maximize the speed and accuracy with
wvhich words are recognized 1in real-time. In short, the study of the
structural organization of the neighborhoods of words in the mental lexicon
has provided deeper insights into one important aspect of the fundamentally
and uniquely human capacity to communicate with the spoken word.
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