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An Analytical Approach to Generating Norms for
Skewed Normative Distributions

Introduction

It is well recognized that the normal curve has played a
prominent role in the development of the theory oif mathematical
statistics. Frequently, the latent trait measured by a test
instrument is assumed to have an underlying normal distribution
in the population from which the normative sample was drawn, and
any departures from normality of the observed raw-score
distribution are assumed to represent error due to sampling or
test—-construction problems. Raw-gcore distributions obtained
from normative samples are then transformed into normalized
scores such as T-scores (a standardized score with a mean of 50
and a standard deviation of 10). Normalization usually is
accomplished by forcing the cobserved raw-scere distribution to be
as close as possible to a normal distribution. Through the
"area" transformation, irregularities and departurses from
normality in the raw-score distribution are smoothed out,
compressed, or stretched.

One advantage of transforming to normalized scores is the
transformed distribution has a well-known form that is easily
interpretable. Anocther advantage is that the normalized scores
are “percentile-comparable® across different tests or scales (if
nermalized and converted to the same mean and standard
deviation). It makes sense to normalize scores, however, only if
the measured trait has an underlying normal distribution. If the
raw-score distribution is highly skewed, then normalization can
exaggerate or compress small raw score differences between
extreme scores.

Although it is true that most of the latent attributes
(especially ability and achievement attributes) can be reasonably
assumed to have underlying normal distributions, other
psychological traits are known to bhe skewed in their
distributions. For example, the scales in the Minnesota
Multiphasic Personality Inventory (MMPI) and the Behavior
Assessment System for Children (BASC; Reynolds and Kamphaus, in
press) are found to be highly skewed in their score
distributions. Table 1 and Figure 1 depict the degree of
skewness for scales in the BASC Parent Rating Scales and the
MMPI, respectively.

When situations arise in which the assumption of normality is
unwarranted, what is the best alternative approach to
constructing norms? The objective of this paper is to review
several approaches that are availabkle and to propose an
analytical approach for norming skewed test-score distributions.
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Approaches tc Norming Skewed Distributions

Although the statistical characteristics of skewed frequency
functions had been investigated since English biometrician Karl
Pearson, who developed a system of generalized probability curves
and published his "Tables of the Incomplete Gamma Function® in
1922, the application of this family of probability curves has
been very limited. ‘Gardner (1950) developed a method by fitting
the Pearson Type III Curves to derive an interval scale.
Unfortunately, Gardner’s scaling approach has not been accepted
by practitioners in test development field. In the following
session, the methods used in constructing norms for several well-
known personality instruments will be reviewed.

Linear T-gcores Transformation in the MMPI

In the MMPI scales, the raw scores were linearly transformed
to standardized T-scores with a mean of 50 and standard deviation
of 10 in the normative groups:

T-score = 10 [(X - Mean)/SD] + 50, (1)

where X is the raw score, and Mean and SD are the mean and
standard deviation of the raw scores in the normative sample.

Linear T-scores are standardized scores but not normalized
scores. Since the transformation is linear, the shape of the
raw-score distribution is preserved, but the mean (50) and
standard deviation (10) are the same across scales regardless of
the raw-score differences across scales.

One important advantage of linéar T-scores is that the
transformation formula can be applied to the whole range of raw
scores in the normative distribution, including the highly skewed
ones. Unfortunately, linear T-scores derived for scales with
differing distribution shapes are not percentile~comparable; this
compromises the interpretation of profiles of linear T-scores.

Normaljzed T-gcores Transformation in the MMPI

The most commonly used method for deriving percentile-
comparable standardized scores is to force every scale
distribution into a normal distribution. The normalization
process involves several steps: (1) transform the raw scores to
percentiles; (2) find the Z-score in the normal distribution
corresponding to each percentile; and (3) transform these Z-
scores to T-scores. the normalization process also can be
achieved by applying a nonlinear transformation such as square~
root or log transformation to the raw-scores, and then applying
Equation (1) to the transformed raw-scores to derive T-gcores.
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Colligan and associates (Colligan, Osborne, Swenson, & offord,
1984) have criticized the use of linear T-scores for the MMPI,
and have proposed replacing linear T-scores with normalized T-
scores. .

Although normalized transformation brings about percentile
comparability, it also can pose some problems. As noted earlier,
it makes sense to normalize scores only if the measured trait has
an underlying normal distribution. oOtherwise, small raw score
differences between extreme scores may be exaggerated or
compressed by the normalization. Another disadvantage of
normalized transformation is that clinically meaningful
information on the extreme scores could be lost by the
normalization, with consequent loss of validity (Hsu, 1984).

h* ized T- es rmation

Achenbach (1991) cowbined the normalized T-scores
transformation and some arbitrary conversion rules to scale the
Child Behavior checklist. For a positively skewed raw-scores
distribution, a T score of 50 is assigned to raw scores less than
or equal to the 50th percentile. For raw scores between the 50th
and the 98th percentile, normalized T-score transformation is
applied. For raw scores above the 98th percentile (T=70), linear
interpolation is applied to assign T scores from 71 to 100 in as
many increments as there were raw scores on a gscale.

Achenbach’s T-score scale has the same characteristics as
nermalized T-scores for T scores between 50 and 70. For T-scores
above 70, it is an arbitrary scale, which is different from
linear T-scores or normalized T-gcores.

For the MMPI-2, a uniform T-score transformation was adopted.
According to Tellegen and Ben-Porath {in press), "the uniform T-
Scores are percentile-comparable, yet, unlike normalized T-
scores, depart minimally from the familiar linear T-scores."

The development of uniform T-scores involves two major steps.
First, a composite or average distribution of the raw scores (or
linear T-scores) of the normative samples on the eight clinical
scales was derived. This "prototype" distribution shows the
expected positive skew (skewness is .7). Second, for each of the
eight scales, a polynomial regression formula was derived that
transforms the raw scores into scores that approximate the
composite T-score values:

Uniform T-scores = Bg + ByX + B,D? + B,D3, (2)

where X is the raw score to be transformed into the predicted
uniform T-score, Bg is the intercept, and By, By, and B; are

Y
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regression weights, and where D = (C - X) if X < ¢, and otherwise
D = 0, and C equals the value of X corresponding to a composite
linear T-score of 60 (85th percentile on the composite
distribution).

tniform T-score transformation is a compromise between linear
and normalized T-score transformation. It maintains the positive
skewness of the transformed scales, and it minimizes the
departure from linear T-scores. Equation (2) indicates that when
X approaches ¢, the transformation becomes linear.

Uniform T-score transzformation is an iwprovement over
normalized T-score transformation. XHowever, there is no
theoretically driven evidence to show that the slightly skewed
prototype distribution is the underlying distribution shape for
all the scales. Forcing scales with distinguished degree of
skewness to a prototype distribution still can pose sonme
problenms.

An analytical Approach to Norming the BASC

During the development of the BASC, several methods of
constructing norms, including the methods menticned above, were
carefully considered. The project team decided that both T-score
and percentile norms should be developed for clinical
interpretation.

As indicated in Table 1, the degree of skewness across scales
in the BASC varies greatly. Since there is no theoretically
driven assumption about the shape of the underlying distribution,
we assume that the shape of the observed raw—-score distribution
reflects the underlying distribution in the population. To
preserve the shape of the raw-score distribution, both linear T-
scores transformation and a Johnson curves fitting procedure were
used in developing norms for the BASC scales. T-scores were
derived by linear transformation, and percentiles were developed
by Johnson Curves translation.

Linear T-Scores Transformation in the BASC

As defined in Equation (1), a linear T-score is an expression
of the distance of a raw score from the normative sample’s mean
raw score, in standard deviation units. A linear T-score
transformation assumes that the distances between scale points
reflect true differences in degree of problem in a scale,
regardless of the shape of the distribution. Because of lack of
percentile-comparability in the linear T-score transformation,
the BASC norm tables present both T-scores and percentiles for
each scale. The intention of providing both T~scores and
percentiles in the BASC norm tables is to help clinicians more
accurately use the profile to make clinical inferences. As noted



by Tellegen and Ben-Porath (1991), lack of percentile-
comparability in linear T-scores “does not compromise strictly
actuarial interpretations of profile types". The problems arise
only "when clinicians’ profile interpretations involve inferences
regarding differential psychological characteristics that they
associate with elevation differences among the clinical scales".
Providing both T-scores and percentiles can avoid the problems
associated with clinical inferences in profile interpretations.
Perc i :
Moments

The BASC percentiles have been calculated using an algorithm
developed by Hill (1976), Hill, Hill, and Holder (1976), and Roid
(1989) that is based on systems of frequency curves described by
Johnson (1949).

Johnson (1949) described a system of frequency curves
consisting of:

A) the lognormal system: z = 7 + § 1n (x -£ ), §<x, (3)
B) the unbounded system: z = 7 + § sinh-! ({x -¢ ) /A7), (4)
C) the bounded system: z = 7 + gln ((X -£)/(t+a - %)),

E< X <E+aA, (5)

where 2z is a standardized normal deviate, x is the raw score, and
Y & g , and A are parameters in Johnson curves.

Given the mean, standard deviation, skewness, and kurtosis of
a scale’s observed raw-score frequency distribution, one of the
three Johnson curves listed above is selected by the computer
program and the parameters are estimated. Using the selected
transformation, raw scores are transformed to standard normal
variable z-scores. Z-scores are then converted to percentiles
using a normal curve function. It is importani to note that the
Johnson curves transformation is used onl!y to derive the
percentile estimates for the BASC scales. The transformed normal
deviates are not used to obtain normalized T-scores. The fitted
curves preserve the skewness and kurtosis of the olserved raw-
score distributions, and yield percentile estimates that are
smoothed. The Johnson-curve-fitting procedure can be applied to
data with a variety of distribution shapes, including those with
extremely skewed distributions.

Table 2 is an example of fitting Johnson curves by moments.
The Depression scale for the child level of the BASC Parent
Rating Scales is used to demonstrate the procedure. The table
shows the four moments of the raw-score distribution, the
Johnson-curve parameter estimates, and the results of Johnson=-
curve transformation. The table also shows the normalized T-
scores, linear T-scores, and the results of fitting Pearson Type
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III Curves. The Pearson Type III curve was fitted using a set of
Salvosa’s "Tables of Pearson Type III Function® in which areas
for curves with unit standard deviations are tabled for skewness
values ranging from 0.0 to 1.1 (Salvosa, 1930). The observed and
fitted relative frequency distributions are shown in Figure 2. a
close look at Figure 2 indicates that the Johnson curve fits the
observed data very well.

Discussions and Conclusions

The Johnson-curve-fitting procedure and linear T-scores
transformation were applied to each of the BASC scales. The
results indicate that the procedure can be applied effectively to
a variety of skewed data sets. The method can be used as an
efficient curve smoothing procedure, and the percentile norms can

. be generated easily by the computer program.

It is not surprising that T-scores derived from fitting
Pearson Type III Curves with the same degree of skewness are
similar to T-scores derived from linear transformation, as
indicated in Table 2. The "Tables of Pearson Type III Function®
are tabulated with the standard unit as the ordinate, which is
similar to the definition of linear T-scores.

Unlike the normalized or uniform T-scores transformation, the
Johnson curves transformation method can generate smoothed
percentiles and still preserve the shape and characteristics of
the observed raw-scores frequency distribution. The combined use
of percentiles and linear T-scores in the interpretation of
profile can minimize problems in clinical inferences. 1In
addition, the proposed method, being a computerized and
analytical procedure, has the promise of saving considerable time
and avoiding possible error created by hand calculations in the
process of norms development.
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Table 1

Degree of Skewness for Scales in the Behavior
Assessment System for Children  (BASC)
Parent Rating Scales, Child Level

Scale Male Female Total
Hyperactivity 0.784 0.720 077
Agression 1.008 0.847 1.030
Conduct Problems 1.234 1.122 1,333
Anxiety _ 0.627 0.646 0.583
Deprassion 1.032 0.96% 1.025
Somatization 1.050 1.052 1.057
Atypicality 1.620 1.480 1.5583
Withdrawal 0.769 0.927 0.899
Attention Problems 0.324 0.669 0.495
Adaptability ~0.265 -0.277 -0.270
Social Skills -0.019 -0.128 ~0.072
Leadership ~0.015 =0.041 -0.027

10
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Table 2

An Example of Fitting Johnson Curves by Moments, Derivations of Linear T-Scores, and Fitting
Pearson Type Wl Curves: Depression Scale from the BASC Parent Rating Scales, Child Level

MEAN: 6.77 TYPE OF JOHNSON CURVE: The Bounded System
SD: 423 GAMMA VALUE: 44397
SKEWNESS:  1.03 DELTA VALUE: 2.1503
KURTOSIS: 1.61 LAMBDA VALUE: 85.2339
X1 VALUE: -3.5290
Area
Under Percentile | Normalized Linear | Pearson Type Il Curve
Raw Score Curve Y 4 Rank T-Score | T-Score t T-Score
0 0.010262 | -2.32 1 27 34 -1.59 34
1 0.039743 | -1.75 4 32 36 ~1.37 36
2 0.097165 | -1.30 10 37 39 -1.14 3g
3 0.180556 | -0.91 18 41 41 -0.90 41
4 0.281186 | -0.58 28 44 43 ~0.66 43
5 0.388469 | ~0.28 39 47 46 -0.42 46
6 0.493338 | -0.02 49 50 48 -0.18 48
7 0.589584 | 0.23 59 52 51 0.06 51
8 0.673844 | 0.45 67 55 53 0.30 53
9 0.744983 | 0.66 74 57 55 0.54 55
10 0.803360 | 0.85 80 59 58 0.77 58
11 0.850183 1.04 85 60 60 1.01 60
12 0.887047 | 1.21 89 62 62 1.24 62
13 0.915626 | 1.38 92 64 65 1.48 85
14 0.937484 | 1.53 o4 65 67 1.7 67
15 0.954041 1.69 95 67 69 1.94 69
16 0.966440 | 1.83 97 68 72 217 72
17 0.975651 1.97 98 70 74 2.40 74
18 0.982441 2.11 98 7 77 2.63 76
19 0.987410 | 2.24 99 72 79 2.86 79
20 0.991024 | 2.37 99 74 81 3.10 81
21 0.993635 | 2.49 99 75 84 3.33 83
22 0.995511 2.81 99 78 86 3.56 86
23 0996850 | 2.73 99 77 88 3.79 88
24 0.997802 | 2.85 99 78 91 4.03 90
25 0.998475 | 2.96 99 80 93 4.26 93
26 0.998947 | 3.08 89 81 95 4.50 95
27 0.999277 | 3.19 99 82 98 4,74 97
28 0.999507 | 3.29 89 83 100 4.98 100
29 0.999666 | 3.40 99 84 103 5.22 102
30 0.999775 | 3.51 99 85 105 5.46 105
31 0.959849 | 3.61 99 86 107 5.70 107
32 0.959899 | 3.72 99 87 10 5.95 110
33 0.999934 | 3.82 99 88 112 6.21 112
34 0.999958 | 3.92 99 89 114 6.45 114
35 0.909972 | <03 99 80 17 6.72 117
36 0.999982 | 4.13 99 91 119 6.98 120
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Skewness of MMPI*and MMPI—2"Scales
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Figure 1l: Degree of Skewness of MMPI and MMPI-2 Scales

a
The MMPI skewness data obtained from Celligan, Osborne,
& Offord, 1980.

b

The MMPI-2 skewness data as described by Tellegen and
Ben-Porath (in press) in Figure 3.
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Figure 2: Observed and Smoothed Relative Frequency Distributions for
Depression Scale of the BASC Parent Rating Scales, child Level
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