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1. Introduction.

Given T joint observations on K variables, it is frequently

useful to consider the weighted average or scaled score:

Yt= EkXtkwk t = 1,,T
In matrix notation,

y = Xw = XWe (1)

In expression (1),

X = a TxK data matrix to be scaled (the input);

y = a column vector of T scaled scores (the output);

w = a column vector of K weights;

e = a column vector of K units (1's); and

W = a KxK diagonal matrix whose nonzero elements

are the weights (w = We).

This paper introduces L-scaling as a technique for

determining the weights. The technique is so called because of

its formal resemblance to the Leontief matrix of mathematical

economics. L-scaling is compared to several widely-used

procedures for data reduction, but no attempt is made to survey

the voluminous literature on scaling methods. The discussion

proceeds in terms of descriptive statistics since the various

techniques have sampling properties that are either unknown or

intractable.

To deal with the "apples and oranges" problem that arises in

scaling incommensurable variables, it is assumed that the data

have been standardized. That is,

R = X'X (2)

is a correlation matrix of order K. (This premise is relaxed in

section 5, where equivariance is discussed.) Another assumption
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is that the K variables are not perfectly correlated: the rank of

R exceeds 1. In applications, the rank of R is usually the

smaller of T and K since there is unlikely to be an exact linear

relationship among the variables.

2. L-scaling.

Because the variables are imperfectly correlated, there are

potentially TxK discrepancies between the weighted average y and

its components XW. In view of expression (1), L-scaling defines

such a discrepancy as Xtkwk yt/K. In matrix notation, the TxK

discrepancy matrix is

D = XW - ye' /K

= XW - XWee'/K from (1)

= XW(I - ee'/K) (3)

where I is the identity matrix of order K. L-scaling chooses the

weights to minimize the sum of the squared discrepancies. In

other words, the weights minimize the trace (tr) of D'D, just the

sum of that matrix's diagonal elements:

tr(D'D) = tr{[XW(I - ee' /K)]'[XW(I - ee'/K)])

= tr {XW(I - ee'/K)][XW(I - ee' /K)]'} (4)

since in general tr(PQ) = tr(QP) for conformable matrices.

Moreover, (I ee'/K) is an idempotent matrix, so expression (4)

becomes

tr(D'D) = tr[XW(I - ee'/K)WX'] (5)

In expression (5), the t-th diagonal element of the bracketed

matrix is

,

EX2tkwk - (1 /K)ZEXtiXtkwjwk , (6)

where the summations over j and k run from 1 to K. Since the X

data are standardized, it follows from expression (6) that the
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L-scaling minimand is

tr(D'D) = w' (I R/K)w (7)

where R is defined in expression (2) and w = We is the column

vector of K weights.

To avoid the trivial solution (w = 0), expression (7) must be

minimized subject to a normalization of the weights. L-scaling

adopts the constraint that the reights should add to 1:

w'e = 1 (8)

Whether the constrained minimum is unique depends on the rank

of (I - R/K) = (KI - R)/K. The matrix is evidently singular if

and only if K is an eigenvalue of R. But then the rank of R is 1,

contrary to assumption; and the K variables collapse to a single

variable. Barring this, the rank of R exceeds 1, the inverse of

(I - R/K) exists, and the L-scaling minimum is unique. This

conclusion is valid whether or not T K and even if some (but

not all) of the X variables are linearly dependent.

When the quadratic form (7) is minimized with respect to w

and subject to the normalizing constraint (8), the L-scaling

weights are

w = c(I R/K)-le (9)

In expression (9), the positive constant

c = 1/e'(I - R/K)-le (10)

makes the weights add to 1. In addition, c is the value of the

quadratic form (7) at its constrained minimum. Substitution of

the weights into expression (1) produces the scaled scores y.

5
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3. L-scaling and the Leontief matrix.

In many applications of scaling, all the correlations are

positive; in other words, the K variables tend to rise and fall

together. While L-scaling can certainly be a7Tlied in other

situations, it will be assumed in this section that R is a

positive matrix.

In that case, the array (I - R/K) bears a formal resemblance

to the Leontief matrix that has a prominent role in the theory of

linear economic models. Such matrices are positive definite.

Moreover, they have positive elements on the principal diagonal

and negative elements elsewhere. Hawkins and Simon (Ref. 1) show

that these properties guarantee a strictly positive inverse:

(I - R/K)-1 > 0 . (11)

It follows from expressions (9) and (10) that the L-scaling

weights are also strictly positive. Blankmeyer (Ref. 2) gives a

concise proof of the Hawkins-Simon result.

Waugh (Ref. 3) shows that the Leontief inverse can be

expanded in power series. For L-scaling the expansion is, apart

from the factor c,

y = X(I - R/K)-ie = Xe + XRe/K + XR2e/K2 + +

XRne/Kn + , (12)

where n is a positive integer. The sequence converges since Re/K

< e.

The first term in the sequence is Xe, just the row totals of

the data matrix. The n-th term in the sequence approximates the

largest eigenvector of R if n is a large integer. Accordingly,

the L-scaling solution subsumes two well-known scaling

techniques: simple row means and the first principal component of
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the correlation matrix. The relationships among these scaling

methods are further developed in the next section.

4. L-scaling and other techniques.

Table 1 provides a direct comparison of three multivariate

methods: L-scaling, the first principal component, and what Raj

(Ref. 4, 16-17) has called the best weight function. (While each

method generally leads to a different solution, the symbols w and

y are used for all three methods to simplify notation.) Several

comments may be helpful.

(1) In all three methods, the scaled scores are computed as y

= Xw once the weights have been obtained.

(2) The L-scaling criterion was introduced in section 2. It

provides a least-squares fit between a scaled score yt and each

of its weighted components Xtkwk; there are potentially TxK such

discrepancies. Under principal components, a least-squares

approximation to the X matrix is the matrix yw', whose rank is 1

and which gives a row-and-column representation of X. Again,

there are TxK discrepancies. The best weight function minimizes

the variance of the scaled scores (whose means are zero); this

least-squares problem involves just T discrepancies.

(3) The choice of a normalization rule is important. If

either L-scaling or the best weight function is minimized on the

unit sphere (w'w = 1) rather than on the plane (w'e = 1), the

principal-components solution is obtained. In particular, the

weights that minimize on the unit sphere

w' (I - R/K) w

= w'w - w'Rw/K

= 1 - w'Rw/K (13)
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evidently minimize -w'Rw or equivalently maximize w'Rw.

(4) Both L-scaling and principal components provide solutions

as long as the rank of R exceeds 1. The best weight function,

however, requires the inverse of R, which implies that the rank

of R = K T . This is a limitation. For example, if 10 cities

were to be ranked on the basis of 15 quality-of-life variables (T

= 10, K = 15), the best weight method could not be used to obtain

a scaled score for each city.

(5) If all correlations are positive, L-scaling and the first

principal component have positive weights; but the best weight

function may have zero or negative weights. In some applications,

negative weights may make the.results hard to interpret.

(6) As long as the scaling problem is subject only to a

normalizing constraint, computer solutions for all three methods

are straightforward. L-scaling and the best weight function

require inversion of a KxK matrix, while the weights for the

first principal-component are calculated by raising R to a

sufficiently large power. In some applications, however, it may

be useful to apply linear constraints (equations or

inequalities). For example, one might want to know how all the

scaled scores are affected when the third observation is ranked a

priori at least as high as the seventh: y3 y7 or equivalently

E(X3k-X7k)wk O. Under such constraints, L-scaling and the best

weight function become exercises in quadratic programming, fcr

which algorithms are available. On the other hand, it might be

less straightforward to compute the first principal component

subject to a set of linear inequalities.

(7) When the data matrix X may be contaminated by outliers, a

3
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robust scaling technique is required. An approach which retains

all the algebraic properties of L-scaling is the weighted

least-squares minimand (Ref. 5):

EE(Xtkwk Yt/K) 2Htk , (14)

where the weight Htk = 1/IXtkwk Yt/KI unless the discrepancy is

zero, in which case Htk = 0. Expression (14) is therefore

equivalent to:

EEIXtkwk Yt/KI (15)

subject to the T+1 constraints I = Xe and w'e = 1. As a

multivariate version of a median, expression (15) is relatively

resistant to outliers. The solution may be obtained by linear

programming. If the dual form.is applied and the upper-bound

constraints are handled implicitly, the problem involves just

TxK+1 non-negative variables and K explicit constraints [Wagner

(Ref. 6)]. At the maximum of the dual linear program, the shadow

price of constraint k is the weight wk. The initial simplex

tableau is described in Table 4.

(8) Perhaps the simplest scaling method of all is row means

(y = Xe/K), where each weight is set equal to 1/K without regard

to the information contained in the correlation matrix. When are

equal weights optimal ? All three methods summarized in Table 1

produce equal weights if the correlations among the K variables

happen to be identical. The methods of Table 1 also produce equal

weights if the correlation matrix exhibits a pattern like the

example in Table 2, due to Morrison (Ref. 7, 245-246). Unless R

displays such regularities, at least approximately, the

equal-weight solution may provide a poor fit in comparison with

the other methods discussed in this section.
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(9) If R has rank K, there are K distinct principal

components. Together, they reproduce R, accounting for all the

correlation among the variables. Can L-scaling also generate

several indices from the same data ? Having once calculated y and

w, one can compute the discrepancy matrix D in equation (3) and

replace R by i-or in equations (9) and (10). This leads to a

second y and w, and the steps can be repeated. Unlike principal

components, the various L-scalirg indices are not orthogonal and

do not reproduce R. In this respect, L-scaling more nearly

resembles the factor-analytic methods used in psychology and

sociology, where allowance is made for sampling error. In factor

analysis, one hopes to explain most of the correlation structure,

but one does not expect to account for all of it in a mechanical

way.

5. Eauivariance.

Index numbers measure what extent several variables move

in lockstep. In other words, do all the variables tend to change

in proportion ? It is reasonable to require that this

proportionality be preserved after a resealing of some

variable(s). Geometrically, the plane of best fit still passes

through the origin; the resealing should merely alter its tilt.

However, it is not reasonable to expect that proportional

variation will survive an arbitrary shift in the zero of one or

more variables, since the plane of best fit is then displaced

from the origin, contrary to the hypothesis of proportionality.

Accordingly, the scaling techniques in Table 1 are not --and

should not be-- equivariant for shifts in the origins of the

data. The measurement of proportional variation logically

111
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requires a decision about the appropriate zero of each variable.

As to the effect of rescaling a variable, the first principal

component is altered drastically:

"This dependence on the unit of measurement is obviously a

weakness of the principal component technique....If a variable is

measured in such small units that its numerical values dominate

those of the other...variables, the first principal component

will reflect the value of this variable rather closely...."

[Then (Ref. 8), 55].

Nor does the use of a correlation matrix really avoid the

dilemma, for standardization is itself a choice of units. There

are, after all, many ways to make the data dimensionless. (For

example, one might divide each variable by its mean.) Each

rescaling leads to a different principal-component index, and the

various indices may give subtantiallly different impressions of

the degree of proportional variation.

Of course, factor analysis is invariant to any single-valued

transformation of the variables. However, the many proposals for

"rotating" the factor-analytic solution show that there remains a

fundamental indeterminacy about the choice of units.

Unlike the first principal component, the L-scaling index

adjusts in a simple way when a variable undergoes a change of

units. Let us abandon the assumption that the data have been

standardized. It is still true that the L-scaling matrix is

obtained when each diagonal element of X'X is multiplied by

(1-1/K) and each off-diagonal element is multiplied by -1/K. The

resulting matrix is then inverted; and the L-scaling weigats are

just the row sums of the inverse matrix, normalized to add to

11
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one.

Now suppose that the first variable in X is rescaled. Each

observati.ln on the first variable is multiplied by some positive

constant, z. This means that the first row of the L-scaling

matrix is multiplied by z; next, its first column is multiplied

by z. No other element of the matrix is changed. The end result

is that the first row of the inverse matrix is multiplied by 1/z;

next, its first column is multiplied by 1/z.

How do these operations affect the L-scaling index, y ? Since

it is obtained by multiplying the inverse matrix into the unit

vector, the index y is unchanged so long as the first element of

the unit vector is replaced by z.

More generally, the unit vector is to be replaced by (71,

z2,..., zK) when each of the K variables is rescaled. (Under this

renormalization, the L-scaling weights no longer add to one.)

The situation for L-scaling and the best weight function may

be summarized this way: indices computed before and after a

change of units are identical if one adopts the renormalization

outlined above. Of course, it would usually be pointless to

change units and then undo the job by renormalizing. Rather, this

discussion is intended to show that, in L-scaling, nothing

essential is involved in the choice of units. The same cannot be

said with respect to principal components.

6. A simulation and some conclusions.

As an hypothetical example, 100 observations on three

variables were drawn from a pseudorandom-number generator (Ref.

9, seed = 8445). That is, T = 100 and K = 3. Specifically, the

data matrix was computed as:

t



and

X(t,l) = G(t,l)

X(t,2) = G(t,1) + G(t,2)

X(t,3) = 4G(t,l) + G(t,3)/G(t,4) (16)

where t = 1, , 100. The G's are independent standard normal

variables. The first and second X variables are therefore

normally distributed. However, the observations on the third X

variable are expected to contain outliers since the ratio

G(t,3)/G(t,4) is a Cauchy random number with an indefinitely

large variance.

Based on the standardized values of the three X variables,

Table 3 displays the empirical correlation matrix for the sample

of 100 observations together with the weights for the three

methods of Table 1 and for the robust version of L-scaling in

equation (15). The four sets of weights differ notably from one

another, and it follows that the indices would also differ.

Under the robust version, the third X variable has a large weight

because its outliers are ignored.

In principle, a researcher should choose a scaling method by

proposing a model that explains how the discrepancies arise.

However, this inferential approach is difficult in cases where

the X data do not satisfy such requirements as multivariate

normality and the statistical independence of the observations.

In view of these obstacles, a researcher may choose instead to

apply a kind of sensitivity analysis by comparing the outcomes of

several scaling methods, including L-scaling which has been

introduced in this paper.
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Table 1. Comparison of 3 scaling techniques

L -scaling

First principal
component

Best weight function

Minimand
First-order
condition

/E(Xtkwk-Irt/K)2 (I R/K)w = e
= w'(I - R/K)w

2E(Xtk-Ytwk)2
= -w'Rw

Et(1702
= Et(E0tkwk)2
= w'Rw

Note g is the largest eigenvalue of R.

(gI - R)w = 0

Rw = e

Table 2. A patterned correlation matrix

1.00
0.70 1.00
0.60 0.40 1.00
0.40 0.60 0.70 1.00

Table 3. Weights for a correlation matrix

Correlation matrix

1.000
0.726 1.000
0.184 0.134 1.000

Weights L-scaling
W1
W2
W3

First
principal
component

Best weight
function

Normalization

w'e = 1

w'w = 1

w'e = 1

Robust
L-scaling

0.368 0.419 0.230 0.234
0.363 0.413 0.313 0.231
0.269 0.168 0.457 0.535

Note: the weights for the first principal component
are renormalized from w'w=1 to w'e = 1 to facilitate
comparison with the other three sets.
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Table 4. Initial Simplex Tableau

The tableau may be characterized as follows:

o Number of variables (all non-negative) = TK + 1.

o Number of explicit constraints = K.

o Right-hand side of each constraint is 5 0.

o Maximize variable number TK + 1.

o Upper bound of 2 on each variable except number TK + 1.

o For constraint 1:

Variable Left-hand side

number coefficient

1 (K-1)X11

2 -X
11

K -X
11

K+1 (K-1)X21

K+2 -X
21

..

2K -X
21

..

TK+1 1
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Table 4 (concluded)

o For constraint 2:

Variable Left-hand side

number coefficient

1 -X
12

2 (K-1"12

K -X
12

K+1 -X
22

K+2 (K1"22
2K -X

22

TK+1 1

o For remaining K-2 constraints, pattern of coefficients

analogous to constraints 1 and 2.
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