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About twenty years ago Areskog developed original technique to solve
the problem for oblique rotation to a specified simple structure. The basic
concept is that the simple structure solution itself is determined only by
the zero coefficients of the reference-structure matrix and not by the coeffi-
cients of nonzero magnitude. Following this, he' take into account the prior
information about the desired simple structure to impose zeros on some of
the factor loadings. This way an n x r target matrix H is build with the
zero elements specified and the others unspecified. This specific Procrustean
rotation involvs r eigenproblems.

When prior information for the desired solution is not available, ad-
ditional efforts are required to construct a target. in the present work
new strategy is proposed for this purpose, applying the technique of vec-
tor majorization. The constructed target matrix H has the same form as in
Joreskog's work, but with all elements specified ( both zeros and nonzeros ).
That simply means we transform Joreskog's specific Procrustean problem
into normal Procrustean one which enable us to apply any of well known
procedures for Procrustean rotation, avoiding the eigenproblems. Moreover
slightly different problem is solved, when the number of zeros in the tar-
get are known only. All computational examples are based on Holzinger &
Harman 24 psychological tests.

Key words: Target matrix construction, vector majorization, Pro-
crustean rotation.
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The purpose of the work is to demonstrate the application of the vector
majorization technique for the simple structure solution study.

We shall start with a brief introduction in vector majorization theory.
Vector majorization is defined in a number of different ways in Marshall
& Olkin ( 1979 ), but the most intuitive one is the following: The vector
X is majorized from the vector Y when the components of Y are more
distinguishable, more non uniform than the components of X, in which
case we write X -< Y. For example:

1 1 1 1 1
- (1,0,0).

For clarity we introduce a strong mathematical:
Definition 1. ( Marshall & Olkin, 1979 ) Let X , Y be n dimentional

vectors. The vector Y is said to majorize another vector X and it is denoted
by X - Y if the inequalities

E X[i] 5- E Y[i]

hold for each k = 1,2, ...,n 1 , where X[i] > X[2] , > X[7,,1 denote
the components of X in decreasing order and the equality

E x[i] = E Y[i]

holds.
Let us consider the problem for rotation to already specified simple struc-

ture. Let A represent the initial n x r orthogonal factor matrix. Let H denote
the hypothetical 72 x r pattern matrix of some target simple sructure of the
form:

x

0

0

0"
0

0 x 0

0 x x

H= 0

0 0

0 x
0 0

0 0

0 0
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with the zero elements specified and the others ( represented by "x" ) un-
specified. Joreskog ( 1965 ), see also Mulaik ( 1972 ), developed an original
technique, involving r eigenproblems, to obtain an r x r transformation ma-
trix T with diag(TTT) Ir = Or , such that AT fits the zero elements of II
in the least squares sense.

It is easy to consruct a target II when 1. prior information about the
desired factor solution is available. But often we do not have such informa-
tion. Usually to obtain the target we do, first, PROMAX transformation of
the initial orthogonal factor matrix A in order to localize the zeros in the
simple solution. Denoting PROMAX target by A' = , we define the
target II = {hii} as follows:

{
0 ,aiii E (ctio@i)

hii = "x" ,otherwise '

where the intervals (ai,i3j),j = 1,2, ... , r are determined more or less in
some subjective, intuitive manner. After that the application of JOreskog's
method is straightforward. Quite often, in practice, the researchers put
unities instead of "x" in the target H. So they do not make use Joreskog's
zero fitting method, but simply the standard Procrustean rotations.

An application of the above consideration is given in Mulaik ( 1972 ) ,

where is obtained factor solution for Holzinger & Harman 24 psychological
tests using J8reskog's zero fitting method. As a starting point is taken
VARIMAX rotated solution ( Mulaik, 1972, p. 264 ) . Because the desired
simple structure is unknown, in Mulaik ( 1972 ) is proposed the follow-
ing procedure, in order to obtain target matrix for Joreskog's zero - fitting
method. First PROMAX transform of the initial VARIMAX matrix is per-
formed. For convenience, both of them are displied in Table 1.

Insert Table 1 about here.

As a second step all elements in already obtained PROMAX target which
are less than .060 are replaced by .000 . The elements which are equal or
greater than .060 remain undetermined and are denote by "x" in so called
JOreskog's type target. This target, the obtaned oblique solution and the
correlations among corresponding primary factors are taken from Mulaik
( 1972, p. 318 ) and they are given for convenience in Table 2 and Table 3
respectively.
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Insert Table 2 and Table 3 about here.

Let us now return to vector majorization. Let X and C = . . .(c, c, . . , c)
be n dimensional vectors and define the vector:

(X C)° = (rnax(X1 c,0),max(X2 c,0), ,max(X, c,0))

Hereafter we shall use for any vector X the notation

(ELI x1' Eti'-i EL xii
Proposition 1. ( Marshall & Olkin, 1979 ) If X = (X1,X2,... , Xn)

and Xi > 0, i = 1,2, ... ,n , the relation

p(X) - p((X C)°)

holds for any c < max(Xi, X2, . . . , Xn) .

Now we already have a theoretical basis for constructing the target ma-
trix. Let a; be j-th column vector of some n x r matrix A. In order to
majorized it, making its components more " non uniform ", let us form:

X-1 .3C2
P(Y)

(2 2 ,2 )T
, . . . u,ni

and apply Proposition 1 to it. Then we have

2( a2 T
n3

(
max (at q, 0) max(4i c?, 0) T

Eii max(a? i c.1, 0) ' ' a_i max(qi q, 0)

for any c? < max(at , at, . . . , qii) .

When the matrix A is the initial n x r orthogonal factor matrix, the
components of the former vector are known as relative contribution of the
j-th factor. This terminology will be kept further for any A . If we compose
the sequence of absolute values of the components of a7; in increasing order
la[iiil < lamil < ... < la[nlil and let us choose the number of the components
to retain nonzero, say ki. Then for any ca E [la[7,_ mil, la[n_ki+iii I) the latter
vector majorizes the former of its relative contributions in " -< " sense and
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has exactly kj nonzero components, called new relative contributions. The
corresponding vector, containing the new contributions of the j-th factor has
the form:

(max(aL 0), , max (a2nj 0))T ,

with also just kj nonzero elements. Then we form a new target matrix with
the following elements:

sign(aij )imax(qi c.1, 0) .

It is possible to prove that the best choice for cj from the vector ma-
jorization point cf view is Ia. (n_uji .

Performing this procedure to the PROMAX target from Table 1 with
k1 = 8, k2 = 6, k3 = 11 and k4 = 9 new target will be obtained. It is given
in Table 4 and has zeros in the same places as in so called Joreskog's type
target, but with all elements specified. Then we are able to apply any of well
known procedures for Procrustean rotation ( both orthogonal and oblique ).
The corresponding oblique solution is in the same Table. In Table 5 the
correlation among primary factors are given.

Insert Table 4 and Table 5 about here.

These two solutions are quite close. This conclusion follows from the
corresponding correlations among primary factors also. The obtained new
factors are a bit more oblique that Mulaik's ones. The difference between
the solutions in least - square sence is .06204.

More intriguing is to perform previous procedure to VARIMAX solution
from Table 1 with the same k1, k2, k3 and k4 . Actually this problem
is different from Mulaik's one, because the zero positions are not fixed a
priori. So they are not suposed to be the same, but as we shall see the result
is quite similar to Mulaik's one, being more orthogonal. The least square
difference between these two solutions is .06356. The corresponding new
target, oblique solution and correlations among factors are given in Table 6
and Table 7 respectively.

Insert Table 6 and Table 7 about here.

It has been demonstrated a new point of view for studying the simple
structure concept. It was considered already solved numerical example and
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it was shown that new solution is adequate and close to the original one.
Although JOreskog's method gives an optimal solution in the least square
sense, the presented approach has own merits making possible to search for
both oblique and orthogonal solution and being simpler computationally.

References

Joreskog, K. G. ( 1965 ) On rotation to a specified simple structure. Res.
Bul. 65 - 13. Princeton, N. J.: Educ. Test. Serv.

Marshall, A. W., and Olkin, I. ( 1979 ) Inequalities: Theory of Majorization
and Its Applications. Academic Press.

Mulaik, S. A. ( 1972 ) The Foundations of Factor Analysis. New York:
McGraw - Hill .

7

8



Table 1.

VARIMAX solution PROMAX target
# I II III IV I II III IV

1 .140 .190 .670 .170 .001 .005 .708 .003
2 .100 .070 .430 .100 .002 .000 .778 .002
3 .150 .020 .540 .080 .005 .000 .826 .000
4 .200 .090 .540 .070 .013 .000 .716 .000
5 .750 .210 .220 .130 .701 .004 .005 .001
6 .750 .100 .230 .210 .706 .000 .006 .004
7 .820 .160 .210 .080 .807 .001 .003 .000
8 .540 .260 .380 .120 .317 .017 .078 .001
9 .800 .010 .220 .250 .726 .000 .004 .007

10 .150 .700 -.060 .240 .001 .730 .000 .010
11 .170 .600 .080 .360 .003 .470 .000 .061
12 .020 .690 .230 .110 .000 .773 .009 .000
13 .180 .590 .410 .060 .003 .397 .098 .000
14 .220 .160 .040 .500 .022 .006 .000 .589
15 .120 .070 .190 .500 .002 .000 .005 .749
16 .080 .100 .410 .430 .000 .001 .072 .250
17 .140 .180 .060 .640 .002 .005 .000 .775
18 .000 .260 .320 .540 .000 .021 .049 .399
19 .130 .150 .240 .390 .005 .008 .053 .373
20 .350 .110 .470 .250 .086 .001 .279 .022
21. .150 .380 .420 .260 .003 .124 .184 .027
22 .360 .040 .410 .360 .091 .000 .154 .091
23 .350 .210 .570 .220 .051 .007 .362 .008
24 .340 .440 .220 .340 .060 .167 .010 .060
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Table 2.

Joreskog - type target Mulaik's solution
# 1 II III Pi i II HI IV

1 .000 .1.)0 x .000 -.077 .060 .734 .018
2 .000 .000 x .000 -.026 -.022 .474 .013
3 .000 .000 x .000 .017 -.099 .606 -.029
4 .000 .000 x .000 .069 -.018 .591 -.073
5 x .000 .000 .000 .805 .107 .021 -.093
6 x .000 .000 .000 .804 -.045 .019 .041
7 x .000 .000 .000 .913 .056 .007 -.157
8 x .000 x .000 .496 .164 .276 -.103
9 x .000 .000 .000 .875 -.166 -.012 .109

10 .000 x .000 .000 .041 .765 -.227 .090
11 .000 x .000 x .018 .590 -.086 .216
12 .000 x .000 .000 -.171 .753 .204 -.099
13 .000 x x .000 .003 .602 .405 -.202
14 .000 .000 .000 x .133 .033 -.159 .551
15 .000 .000 .000 x -.004 -.080 -.002 .581
16 .000 .000 x x -.118 -.066 .361 .442
17 .000 .000 .000 x -.003 .026 -.153 .741.

18 .000 .000 .000 y -.240 .118 .230 .573
19 .000 .000 .000 x -.009 .026 .144 .395
20 x .000 x .000 .234 -.044 .412 .135
21 .000 x x .000 -.044 .302 .383 .123
22 x .000 x x .252 -.146 .309 .307
23 .000 .000 x .000 .197 .067 .538 .050
24 x x .000 x .219 .367 .058 .204

Table 3.

Correlations among
primary factors

# I II III IV
I 1.000 .429 .563 .535

II .429 1.000 .425 .554
III .563 .425 1.000 .548
IV .535 .554 .548 1.000
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Table 4.

target Solution
I II III IV I II III IV

1 .000 .000 .706 .000 -.090 .042 .766 -.014
2 .000 .000 .776 .000 -.037 -.036 .502 -.008
3 .000 .000 .824 .000 .002 -.122 .651 -.056
4 .000 .000 .714 .000 .058 -.038 .626 -.098
5 .699 .000 .000 .000 .811 .103 -.001 -.077
6 .704 .000 .000 .000 .804 -.055 .010 .059
7 .805 .000 .000 .000 .917 .047 -.009 -.140
8 .313 .000 .057 .000 .497 .157 .266 -.104
9 .124 .000 .000 .000 .872 -.180 -.012 .131

10 .000 .730 .000 .000 .068 .806 -.335 .107
11 .000 .470 .000 .055 .037 .622 -.171 .258
12 .000 .773 .000 .000 -.153 .780 .131 -.109
13 .000 .396 .082 .000 .013 .614 .362 -.220
14 .000 .000 .000 .588 .135 .045 -.194 .570
15 .000 .000 .000 .749 -.008 -.077 -.014 .590
16 .000 .000 .049 .249 -.129 -.073 .373 .431
17 .000 .000 .000 .775 -.002 .040 -.192 .761
18 .000 .000 .000 .398 -.244 .126 .210 .568
19 .000 .000 .000 .372 -.013 .028 .134 .395
20 .069 .000 .274 .000 .225 -.059 .430 .125
21 .000 .122 .176 .000 -.043 .306 .364 .110
22 .075 .000 .145 .087 .241 -.161 .327 .304
23 .000 .000 .358 .000 .189 .052 .553 .032
24 .032 .166 .000 .054 .229 .381 .006 .212

Table 5.

Correlations among
primary factors

# I II III IV
I 1.000 .459 .596 .538

II .452 1.000 .538 .578
III .596 .538 1.000 .610
IV .538 .578 .610 1.000
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Table 6.

Target Solution
# 1 II ITT IV 1 II III IV

1 .000 .000 .589 .000 -.055 .066 .714 .034
2 .000 .000 .287 .000 -.015 -.014 .462 .017
3 .000 .000 .435 .000 .028 -.086 .590 -.028
4 .000 .000 .435 .000 .080 -.011 .576 .060
5 .669 .000 .000 .000 .776 .105 .052 -.054
6 .669 .000 .000 .000 .771 -.034 .056 .058
7 .746 .000 .000 .000 .877 .055 .040 -.118
8 .420 .000 .205 .000 .486 .159 .287 -.063
9 .724 .006 .000 .000 .835 -.145 .032 .114

10 .000 .650 .000 .000 .0f.,: .721 -.211 .161

11 .000 .541 .000 .249 .029 .564 -.067 .294
12 .000 .639 .000 .000 -.143 .707 .190 -.021
13 .000 .530 .256 .000 .026 .565 .388 -.126
14 .000 .000 .000 .427 .125 .050 -.120 .532
15 .000 .000 .000 .427 -.005 -.055 .028 .548
16 .000 .000 .256 .342 -.106 -.043 .370 .419
17 .000 .000 .000 .585 -.006 .048 -.110 .710
18 .000 .000 .000 .473 -.222 .132 .244 .557
19 .000 .000 .000 .291 -.005 .040 .161 .383
20 .083 .000 .344 .000 .233 -.029 .4 19 .139
21 .000 .277 .272 ;000 -.027 .293 .380 .153
22 .118 .000 .256 .249 .245 -.121 .328 .292
23 .083 .000 .472 .000 .203 .073 .537 .069
24 .000 .355 .000 .219 .220 .355 .079 .240

Table 7.

Correlations among
primary factors

# I 11 III IV
1 1.000 .351 .498 .480

II .351 1.000 .361 .431
III .498 .361 1.000 .482
IV .480 .431 .482 1.000
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