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Preface

TERC is a nonprofit education research and
development organization founded in 1965 and
committed to improving science and mathematics
learning and teaching. Our work includes research
from both cognitive and sociocultural perspectives,
creation of curriculum, technology innovation, and
teacher development. Through our research we strive
to increase knowledge of how students and teachers
construct their understanding of science and
mathematics.

Much of the thinking and questioning that informs
TERC research is eventually integrated in the curricula
and technologies we create and in the development
work we engage in collaboratively with teachers.
Traditionally, 17-3RC staff present their research at
conferences and report their studies in journals. By
launching the TERC Working Papers series, we hope to
expand our reach to the community of researchers and
educators engaged in similar endeavors.

The TERC Working Papers series consists of completed
research, both published and unpublished, and work-
in-progress in the learning and teaching of science and
mathematics. We are introducing the series with four
papers and will add papers at regular intervals,
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Introduction and Methodology

The relationship between a function and its derivative is a central theme of calculus. As
such, it is closely connected to some concepts that are normally.induded in formal calcu-

lus courses, such as limits, continuity, and convergence. Although mathematically com-
plex, the function/derivative relationship is embedded in many contexts of daily life,
which allows us to construct intuitions from an early age. These intuitions allow students
who have never taken calculus to think about, predict, anddiscuss situations involving
functions and their derivatives.

Many studies have described students' abilities and conceptual difficulties in dealing with
such problems (Clement, 1985; McDermott, Rosenquist, & van Zee, 1987; Monk, 1990).

Particularly relevant for this paper is the so-called "height/slope misconception" in which
the student seemingly confuses the slope of a line with its height in a Cartesian graph.
Figure 1.1 shows a typical problem.

Position

Figure 1.1

t=2
Time

B

A

Question: Which car is going faster at t=2?

Student's answer: A

The correct answer to the problem is B, since the slopes of the lines represent the
velocities. Some authors (Clement, 1985; janvier, 1978; McDermott et al., 1987) distin-
guish two possible sources for this mistake: a representational one (e.g., "higher" in a
Cariesian graph means "more," or the slope of a line is not meaningful to the student) and
a conceptual one (position and velocity are not adequately distinguished). Another
relevant distinction, elaborated by Monk (1990), is between point and across-time analy-

ses of a function. The problem above can be seen as an across-time problem, in the sense
that it might require the student to visualize the variation of position over time for each

car when t is dose to 2. Monk hypothesizes that students might instead be biased toward
a point analysis, according to which the answer ought to be a comparison of point-values
on the two curves corresponding to t=2.
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This paper is part of a study of students' abilities and difficulties in articulating the rela-
tionship between ftinction and derivative. However, the problems we worked with were
posed in a different context from those described in the literature. We provided students
with one of three contexts in which they could construct functions experimentally:
motion, fluids, and numerical integration.

In each of the three environments students had a set of tools that enabled them to gener-
ate functions and thereby explore their conjectures about the shape of a function. For
both motion and air flow, stu&lits could produce curves on a computer screen by ma-
nipulating a physical object monitored by a sensor. For motion, students worked with a
small car and a motion detector to generate curves of position and velocity versus time.
For air flow, students controlled a bellows to generate changes in air flow and in the
volume of air accumulated in a bag.

For numerical integration, we developed a software environment in which a function is
generated by accumulating the numerical values of another function. The functions can
be displayed in either tables or graphs. The following shows a simple case, in which B is
a constant function and A (which is accumulating the values of B) is a linear one. In Fig-
ure 1.2, the independent variable, called X, simply counts the number of accumulations.

Figure 1.2

X A B

0 8 3 (Initial values)

X A B

0 8 3

1 11 3

2 14 3

We presented parallel problems in each environment. The example in Figure 13 was one
of the problems presented in the context of motion.
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Velocity

Figure 1.3

Time

Question: If this is a graph of the velocity of a car versus time, what would be the
corresponding graph of position versus time?

The same problem, in the context of air flow, was worded as:

Question: If this is a graph of the flow rate of air versus time, what would be the
corresponding graph of volume of air versus time?

Finally, in the context of numerical integration

Question: If this is a graph of B versus X, what would be the corresponding graph of
A versus X?

All the students in our study were high school students who had not taken calculus
courses. We carried out the teaching interviews with individual students, videotaping
the session with two cameras, one for the computer screen and another for the overall
action. The results analyzed here are based on interviews with six students, two using
each environment.

The sequence included 15 different problems, presented in two teaching interviews of 75
minutes each. Usually the interviewer posed a problem, the student formulated a certain
prediction by drawing it on a pad, the corresponding functions were generated experi-
mentally by the student (frequently necessitating several trials), and the results were
discussed. While we began by following the interview format, the session often took
unexpected turns as the interviewer tried to follow the student's thinking.

The current analysis of the teaching interviews focuses on what we call learning episodes;
that is, episodes during which the student changed her view or adopted a different way
of thinking. Our analysis strives to investigate the critical elements in that transition and
why it took place (Nemirovsky & Rubin, 1991; Rubin & Nemirovsky, 1991).

Three broad assumptions are important for our analysis:

1. Every normal human being, from early stages in life, has some intuitive
knowledge about the relationship between function and derivative. Whether this

Students' Tendency to Assume Resemblances 3
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is manifested as knowledge about position and velocity, level and flow, or number

and number-change, we construct complex bodies of knowledge that enable us to
make sense of situations involving change (Piaget, 1970;Piaget, Grize, Szeminska,

& Vmh, 1977).

2. The relationship between function and derivative is one of those notions that
always remains open to further elaboration, with new and unresolved issues
involving the fundamental nature of space, time, andnumber.

These two asst Ttions help us dismiss simplistic explanations for students'
performance, such as "the student does not distinguishposition and velocity" or
"the student has finally grasped the concept of position and velocity." In fact, we
believe that all humans have some notion of the relationship between position and
velocity (or other function-derivative pairs), but that none has a complete

understanding.

3. Students' performance in solving problems involving the function/derivative
relationship is strongly affected by contextual parameters. The same problem,

from the point of view of its mathematical structure, mayelicit very different

responses if it is posed as a position/velocity problem or as a volume/flow rate
problem. Different representational systems make some aspects of the situation

more salient than others, and access to particular measurement devices has a

strong influence on students' thinking (Monk, 1990). This is an important aspect
of our study, and we plan to develop a detailed analysis accounting for some of
these contextual factors. As an example, we have noted that students tend to think
of "position of the car" as "distance travelled," not as a "relative position." This
perception makes it difficult for them to accept functions involving decreasing
positions or negative velocities. On the other hand, there is no equivalent intuition
to "distance travelled" in the context of air flow, so negative air flow is a more

acceptable concept to students.

In the next section we examine a particular tendency that appeared repeatedly in all three

contexts: students' tendency to assume resemblances between the behavior or appear-

ance of a function and its derivative. We describe how this tendency wasmanifested by

students solving different problems. Many learning episodes show how the student

overcomes some of the assumed resemblances by constructing an alternative frame for

understanding the relationship between a function and its derivative. To illustrate this,

we provide a case analysis of a learning episode with one student working with air flow.

4
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Assumptions of Resemblance and the Variational

Approaches

From a perceptual point of view, the graph of a function maybe characterized by several
attributes, such as being increasing or decreasing, having straight or curved contour 3, and
crossing or not crossing the horizontal axis. Assumptions ofresemblance are prern'.ses that

the graphs of two different functions will be perceived as having common attributes.
Such a pair of graphs does not need to share all perceptual attributes,only those on which
the characterization of resemblance is based at the moment. For example, an assumption
of resemblance with respect to straight and curved contours leaves open the possibility
that they do not match on the attribute of increasing/decreasing. Assuming that two
graphs are both increasing does not determine whether each is a straight line or a curve.

An assumption of resemblance reflects an informal taxonomy of graphs based on the
attributes that participate in the resemblance. Thus, these spontaneous and implicit
taxonomies can indicate what graphical attributes the student considers relevant at the
moment. For example, a student making the prediction described in Figure 1.4 might be
expressing his conviction that the position curve has to be increasing,regardless of its
shape. The fact that he draws a straight line may not show his belief that it has to be a
straight line: it happens that a straight line is for him the simplest way to indicate "going

up."

Assumptions of resemblance are implicit, but often easily elicited. Asking a student
about the assumption is often enough to bring out his belief, and sometimes even enough
to make him question it. For example, a student who consistently assumes that straight
lines on velocity graphs generate straight lines on position graphs may find the following
question disturbing: Are you saying that the position graph has to be a straight line
because the velocity graph is a straight line? Sometimes explicitly stating or questioning
an assumption leads a student to wonder if there is a real basis for it.

Students Tendency to Assume Resemblances 5



Types of Resemblances

Assumptions of resemblance show up in a variety of ways. The following examples of
students using incorrect resemblances to solve problems occurred when students were
predicting the graph of a function from that of its derivative (Figure 1.5 to Figure 1.11).

1. Simple replication (the predicted graph is identical to the original graph) (Figure 1.5)

Figure 1.5

Flow Rate Volume Volume

Time

Original source graph

Time Time

Student's prediction Possible correct graph

2. Same direction of change (e.g., increasing derivatives correspond to increasing func-
tions, and decreasing derivatives correspond to decreasing functions) (Figure 1.6)

Figure 1.6

K
X X X

Original source graph Student's prediction Possible correct graph
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3. Same shape (e.g., straight lines correspond to straight lines) (Figure 1.7)

Velocity

Figure 1.7

Position Position

Time

Original source graph

Time Time

Studer, I's prediction Possible correct graph

4. Same sign (graphs above the x-axis generate graphs above the x-axis and vice versa)
(Figure 1.8)

(Note that in our experimental set up, positions are always positive.)

5. Same geometrical transformation (Figures 1.9,1.10, and 1.11)

Students using resemblance also have a method for inferring from two velocity
graphs and one position graph what the second position graph should be. In these
cases a change in the graph of the velocity is thought of as producing a similar change
in the graph of position. In the following examples the thin line on both graphs had
already been verified by the student and she was predicting the shape of position
graph corresponding to the velocity function marked with a thick line.

Students' Tendency to Assume Resemblances 7
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Figure 1.9: Translation

Velocity Position Position

Time Time

Original source graph Student's prediction

Time

Possible correct graph

Velocity

Figure 1.11: Reflection

Position

Time

Position

Time

Original source graph Student's prediction Possible correct graph

Position

Also Student's prediction

Time

8
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(One might argue that the student's first solution in Figure 1.11 is correct because she
assumed that the initial positions of the two cars were the same. However, our ex-
perimental apparatus does not allow for negative positions since the position of the

sensor is 0, and it measures in only one direction. It was also dear from the accompa-
nying conversation that the student based her prediction onpreserving symmetry, an
assumption that led her to consider the second solution, even though it involved

negative times.)

In all these cases the change in the velocity graph is seen by the student as a geometric
transformation: parallel translation (Figure 1.9), rotation (Figure 1.10), or reflection

(Figure 1.11), and the prediction for the corresponding position graph is accomplished

by applying the same geometric transformation to the first position graph.

Cues for Resemblances

Resemblances give students tools for making sense of a complex situation. Students
probably do not adopt resemblances because they havesolid reasons to believe the tools

are appropriate, but rather because the tools enable them to organize and solve a bewil-

dering domain of problems. The choice to useresemblance is not made blindly. We
believe this choice emerges from an interplay between expectations and cues. Students'
expectations that the graphs of position and velocity (e.g., volume and flow rate) for the
motion of the same object (the level of the same container) will show similarities derive
from the perceived dose connection between these quantities. They both describe the
behavior of the same object over the same time period, so students have a general,
probably tacit, expectation that the graphs will be strongly related. These expectation,-

are validated, challenged, or even raised by the students' recognition of cues. Particular
cues prompt the student to use specific resemblances. We have identified several typesof

cues, deriving from the situation or the student's background knowledge, that activate
certain resemblances and support their use as appropriate orplausible. We distinguish
three types of cues: syntactic, semantic, and linguistic.

Syntactic cues

Syntactic cues are distinguished by the fact that they are based on graphical features,
unrelated to the student's knowledge of motion or air flow. These cues are compelling to
students not so much because they shed light on resemblances but because they support a
strong feeling of making sense of the problem. Their simplicity and replicability have an
inexorable attraction. For example, assuming that geometric transformations are pre-
served through the function-derivative translation (Figures 1.9,1.10, and 1.11) seems to
make solving such problems relatively simple: find another, simpler situation where the
position graph is known, determine the geometric transformation, and apply it to the
original pcsition graph. This procedure is so simple and "reliable" that it does not seem
strange that students who recognize its potential power will strive to maintain it, even
after some contradictions arise in particular cases.

Students' Tendency to Assume Resemblances 9
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Semantic cues

Semantic cues elicit students' ideas that the function and its derivative behave similarly
on the basis of real-world knowledge. Since their reactions areovergeneralization.s of
experiences in which a function and its derivative actually do vary in the same way, we
call this strategy "isomorphic variation." It has appeared quite frequently in our inter-
views. The student is aware that the function and the derivative are different entities, but
assumes that they change in a similar way. Isomorphic variation (the assumptionthat a
function and its derivative vary together) may be rooted in some powerful intuitions
derived from common experiences in daily life. For example, the common experience
that going faster implies traveling further sometimes results in the overgeneralization that
velocity and position always move in the same direction, either both increasing or both
decreasing.

We have repeatedly observed how students who are able to predict position from
velocity in the problem described in Figure 1.12 have difficulty with the problem
described in Figure 1.13 because the derivative is decreasing while the function is
increasing. In the second example, students' assumption that functions and derivatives
increase and decrease together leads them down the wrong path.

10 'TERC Working Papers
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In using isomorphic variation the student significantly constrains the range of possible

graphs, but still leaves room for many possibilities. For example, given a graph for a

function of velocity, as described in Figure 1.14, any of the (incorrect) predictions for the

graph of position shown in Figure 1.15 could be generated using isomorphic variation

(i.e., more is more and less is less).

Velocity

Figure 1.14

Time

Each of these position graphs increases as the velocity graph increases and decreases as it

decreases, but other graphical elements such as initial value, amount of increase, and

amount of decrease may not match.

Linguistic cues

Linguistic cues are ambiguities of language the support resemblances between a func-

tion and its derivative or a function and its indefinite integral. We will analyze two

examples: the uses of more/less and up/down.

There is a common tendency to think that more velocity (flow rate) means more distance

(volume) and that less of the first means less of the latter, as if they always change in the

same direction. In part this may have to do with an ambiguous use of the words "more"

Students Tendency to Assume Resemblances
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and "less." We often say, "the more flow rate, the more volume" and we may similarly
say that "the less flow rate, the less volume," meaning that less volume would result from
a smaller flow rate than would accumulate with a greater flow rate. However, the same
sentence can also be interpreted (incorrectly in this case) as meaning that a decreasing
flow rate implies a decreasing volume.

The ambiguity is caused by the fact that we can use the comparative words "more" and
"less" in comparing two parallel events or two successive values of a single event. For
example, let us imagine two cars, A and B. It is true that less velocity for B than for A
implies less distance travelled for B than for A (all other things being equal). But ifwe
consider a single car A, it is not true that less velocity now than earlier implies that we
have travelled less distance now than earlier.

However, a student may not be aware of this distinction when he says, "the faster the car,
the more distance," and he may thus confuse change over time with the comparison of
two parallel events. This confusion may lead to an incorrect assumption that decreasing
velocity implies decreasing distance. Students who are aware of the difference sometimes
use the expressions "more and more" or less and less" to render those two meanings less
ambiguous, since they make more explicit the reference to the process of a single event
over time with the repeated adjective.

Another example of language ambiguities that may function to support theuse of resem-
blances is the words "up" and "down." On the one hand, "up" and "down" are used in
phrases to indicate increase and decrease respectively, such as in "speeding up" or "slow-
ing down." On the other hand, "up" and "down" denote opposite spatial directions that
can be used in describing curves on a graph or directions in the air flow apparatus. This
ambiguity may underlie the assumption of certain resemblances. For example, a student
who is sketching a curve of position versus time for a car that goes at a constant speed
and, at time to begins decreasing its speed may produce the description "at time tc the
car begins to slow down," eliciting the intuition that, after tc, the curve should go down
(see Figure 1.16) , as would be the case in a graph of velocity versus time.

Position

Figure 1.16
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Using resemblance leads to a particular approach to solvingproblems of translation
between a function and its derivative. It enables the student to make sense of the situ-
ation and to formulate a prediction for the solution. As we have shown in the examples,
using resemblance often leads to mistaken predictions, but it is still a compelling and
functional technique for many students.

Students often cling to this approach in the face of contradictoryevidence because they
lack a coherent alternative approach to figuring out a functionfrom its derivative or vice

versa. Through the learning episodes students often begin to make use of alternative
approaches that focus on how one function (the derivative) describes the local variation in
the other. Because they incorporate variation, we call such approaches variational
approaches to understanding the relationship between a functionand its derivative.

Variational Appproaches

We will distinguish several related variational approaches by the mathematical notions
the student uses in describing the local variation of a function. One of these is an
approach based on the student's perception of the "steepness" of a graph. Steepness is a
graphical-perceptual feature. Looking at steepness lets students make qualitative com-
parisons among points on the same curve. For example, variational reasoning based on
steepness would produce the prediction, for Figure 1.17, that the velocity at t=a must be
greater than the velocity at t=b because the curve is steeper at a than at b.

Students' Tendency to Assume Resemblances 13
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A different mathematical entity that can support a variational approadi is the slope of a
curve. The slope of a curve is the rate of change in y with respect to the change in x.
Because a change in the length of the units of either variable in a graph affects the graphi-
cal steepness, a given slope may show up graphically as a curve that is more or less steep.
Similarly, a certain steepness on a graph may correspond to infinitely many slopes.
Figure 1.18 is an example of two lines with the same slope but different steepness (0 # 0').

Students use a third variational approach when they are trying to predict a graph of a
function from one of its derivative. This approach is based on what we call "local qualita-
tive accumulation." A student using this approach recognizes that a positive velocity
determines comparatively how much local distance a car gains over a short correspond-
ing time. In the graph in Figure 1.19, a student would be able to say that the two points
on the bottom left are further apart than those on the right

14

Velocity

Position

Figure 1.19

Time
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There are other examples of variational approaches (such as the one based on the area
under a curve), and each one of them involves specific ways of framing the translation
between function and derivative or back. A variational approach involves two key pieces
of knowledge that are not part of a resemblance approach:

1. How to construct a global shape out of many instances of local variation. A resem-
blance arlroach regards the entire graph as one entity, in the sense that what
really couzits are the global attributes of its shape (e.g., increasing,curved). A
student without enough experience with the mathematical entities that enable one
to describe the local variation of a function, such as slope or area under the curve,
will be particularly prone to use resemblances.

2. How to focus on the relationship between the functionand its derivative, rather
than on each one of them separately. A resemblance approach makes it difficult
for the student to think simultaneously about the function and its derivative; the
student tends to focus on one or the other, except for the projectionof the resem-
blances themselves. Even if the problem is focused on the relationshipbetween
the two functions, the student will not be able to think productively about the
relationship. Often this gives the impression that the ,..cadent does not even distin-
guish between position and velocity, or between volume and flow rate, because
she tends to center, indiscriminately from a naive observer's pointof view, on only
one of them at a time. In fact, she is able to describe each individually; but she
does not have access to conceptual tools to focus on the relationship between
them.

The construction of a variational approach is a complex process, involving the coordina-
tion of many different pieces of knowledge. It takes place over a long period of time and
includes both leaps forward and steps backwards. Often a student seems to have con-
structed elements of a variational approach but in solving a more complex problem
regresses to using non-variational techniques, such as those based on resemblance.

Students move toward a variational approach in many different ways. Often a student
will revise an earlier prediction that had been based on resemblance and dearly articulate
why the resemblance is.not appropriate. However, this same resemblance strategy may
reappear later. It is clear that students' learning, at least in our teaching interviews, is not
a progressive sequence of "getting" (or "not getting") one idea after another. Some
students begin the second session repeating exactly the same predictions that theyhad
made and revised during the first. However, because their former experience is within
reach, students usually reconsider quickly and reconstruct ideas that were initially diffi-

cult for them to develop.

We do not consider the use of resemblances a matter of "confusion" in the sense that
students cannot discriminate between volume and flow rate. There are several reasons
why using resemblances seems like a promising approach for many students, such as the
following:

Students Tendency to Assume Resemblances 21 15



1. Often it works! That is, in many cases a function actually does resemble its deriva-
tive (e.g., uniform velocity motion produces velocity and position curves that are
both straight lines; positive accelerated motion may produce velocity and position
curves that are increasing); the student may overgeneralize from these cases.

2. In using graphical resemblances the student gets a feeling of mathematical power
by making sense of the problem through constraining possibilities and recogniz-
ing patterns.

3. Ambiguities of language may elicit and support notions of resemblance.

4. The student may not have access to a variational approach as an alternative way
to think about ale problems. When the learning situation or the student's previ-
ous knowledge do not help to induce such knowledge, the student resorts to more
graphical-oriented thinking, assuming partial resemblances between a function
and its derivative.

Case Study: From Resemblances to the Beginning of a Variational
Approach

To investigate these analyses further we chose a 17-minute learning episode of a student
working with an airflow device, during which he began to acquire a variational
approach. The basic structure of the apparatus used during the interviews for
experiments with air flow is described in Figure 1.20.

Bellows (can
be pulled up
or pushed
down by
hand, also can
fall under its
own weight)

Figure 1.20

Sensor Valve

To the computer

Bag that
accumulates
air, variable
height

The flow of air can be controlled in two ways: either by pushing and pulling the bellows
with the valve open or by closing and opening the valve while the bellows is released and
moving down under its own weight. The valve is a more accurate way of controlling the
flow but the limitation is that it only controls air coming into the bag, not air leaving the
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bag. This is because the top of the bellows is heavy, and unless it is held up by the
student, it drops, pushing air into the bag, as regulated by the valve.

We have divided the episode into six segments. The student, whom we call Dan, was an
11th grader, considered a good math student, had taken algebra, and was currently
taking physics, but had not taken calculus. Through the episode we focus on how Dan
manifested his use of resemblance between the functions of flow rate and volume, and
how he began to move toward a variational approach. We view the learning episode as a
joint interviewer-student construction of knowledge and mutual understanding. We
trace how both the student's and interviewer's notions of the problem differed at several
points, eliciting the need for them to negotiate its definition.

This episode took place during the second session, in which Dan we rked with flow rate.
We had worked before with problems of constant as well as linearly increasing flow rate.

Segment I

Description

The learning episode begins when the interviewer asks about the case shown in Figure
2.1 below:

Flow
Rate

Figure 2.1

Time

Dan sketches his prediction for volume (Figure 2.2).

Volume

Figure 2.2

Time

Students' Tendency to Assume Resemblances 17
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He draws a volume line with a different slope but starting at the same point on the y-axis,
which he indicates by labeling the point as "8" on the volume graph, then going back to
the flow rate graph and indicating its intersection with the y axis as "8" as well.

The interviewer suggests that Dan try to produce the graph of flow rate experimentally.
Dan tries to decide whether it is possible to perform the experiment with the valve in-
stead of with the bellows. With this apparatus, only problems of inflow (positive flow
rate) can be controlled with the valve because the weight of the bellows will push air into
the bag. But in drawing his volume prediction, Dan has indicated that he thinks that this
is a problem of outflow:

Dan: First we have to get the flow rate like that [pointing to the flow rate graph],
that means I should just pull this [the bellows] up the whole time. [so that air
goes out of the bag and volume diminishes] Is there a way to do it [with the
valve]? ... Can't be ... you know, there's no way to do that.

Actually, Figure 2.1 shows an inflow (positive flow rate), but Dan's prediction in Figure
2.2 portrays an outflow (volume decreasing). The interviewer, trying to bring these two
conceptions of the problem together, calls Dan's attention to the fact that the flow rate is
positive, but Dan does not note the discrepancy:

Interviewer: Now, the flow rate is positive.

Dan: It starts at positive, and then it goes down to zero. [pointing to the height of
the bag which shows volume]

Interviewer: The flow rate?

Dan: Yes.

As he starts to measure flow rate, Dan sets the bag half full of air, with an initial volume
of 12.5 liters. When the measurements for flow rate begin to appear on the screen, he
notices that they start from zero:

Dan: Oh. It had, it has to start at 12.5, it can't start at zero.

Interviewer: But this is flow rate.

Dan: All righty. I get confused ... Oh. This can't work, then.

Analysis

Dan constructs his prediction by assuming several resemblances between the given curve
of flow rate and his predicted graph of volume: same initial point, both straight lines,
decreasing, and positive. The slope, however, is different. Dan does not assume that both
graphs have to "diminish" (as he says) in the same way.

After he generates his prediction of the volume graph, Dan's behavior suggests a particu-
lar appropriation of the problem: He focuses on his predicted graph of volume, as if the
graph of flow rate is irrelevant, and strives to create, with the apparatus, his predicted
graph. That is, what was originally posed as a prediction from a certain function of flow
rate versus time to a function of volume versus time, is transformed by Dan to the task of
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producing his predicted function of volume versus timewithout questioning whether
his translation was correct. Other pieces of evidence for this interpretationof the problem
are Dan's judgment that this is a problem of outflow, or decreasing volume; his expecta-
tion that the initial value on his generated graph must correspond to the initial volume he
set in the program; and his gesturing at the top of the bag (which is a measure of volume)
when describing the graph of flow rate he is generating.

We think that this tendency to focus exclusively on either the function or the derivative,
except at the time during which the graph characteristics are transferred, is typical of a
resemblance approach. Dan knows that volume and flow rate are different measures (his
prediction for volume does not have the same slope as the posed flow rate), but he has
difficulty focusing his thinking on the relationship between them. Rather, he focuses on
one of them (volume), perceiving the other as a piece of the background, and, as a conse-
quence, transforming his conception of the problem. He perceives the mismatch between
his focusing on volume and the measurements of flow rate as a state of confusion("I get

confused").

Segment 2

Description

Dan looks at C...c ,:unction of flow rate shown in Figure 2.1. Considering it along with his
prediction of volume (Figure 2.2), he recognizes that Figure 2.1 is inconsistent with his
prediction of volume. He then goes on to construct a graph of flow rate that would be
consistent with his prediction (see Figure 3.1).

Interviewer: It [the flow rate] cannot be like that [Figure 2.1]?

Dan: No, 'cause then [with Figure 2.1] you can't get the volume to go, diminish,
like this [Figure 22]. This [Figure 2.1] can't be like that. This would be
different Yeah, it has to be, I think it has to be like this [preparing the axis for
a new graph]. Let me think. It has to be like this [Figure 3.1]. To start here,
flow rate. Flow rate. This [flow rate] has, it has to start here at zero and to
get the, to get that [Figure 22] it has to start here [at zero] and I believe has
to just diminish:
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The interviewer returns to the problem of generating the graph in Figure 2.1 (ignoring,for

the moment, Dan's volume graph):

Interviewer: Well, just to get this [Figure 2.1].

Dan: Oh, to get that?

Interviewer: Yes.

Dam You can't get that

interview..-r: You cannot?

Oan: Can never get that to show up.

Interviewer: Mm hm.

Dan: Doesn't, the flow rate always starts at zero. It never starts at eight.

Interviewer: Okay.

Dan: Unless there's some way to do it that I don't know about.

Dan is now considering another reason for the impossibility of the graph of flow rate
(Figure 2.1): the flow rate must start at zero. In order to make the problem acceptable for
Dan, the interviewer produces a "new version" for function of flow rate versus time
(Figure 3.2):

Interviewer: Let me, let me add here a new version. It's zero and it goes up, and then it's
decreasing:

Dan: I can do that, yes.

Analysis

In this segment Dan's perception of the problem to be solved changes radically two
different times. First he changes his idea about which graph is given and which is pre-
dicted, predicting a function of flow rate versus time from his constructed function of
volume versus time (Figure 2.2). He condudes that the graph in Figure 2.1 is impossible,
because it is incompatible with a decreasing volume and generates a new flow rate graph
(Figure 3.1) that he believes is consistent with his graph of volume. In constructing the
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new graph from his volume graph (Figure 2.2), he assumes fewer resemblances than
when he generated the volume graph. Let us compare both constructions:

Figure 2.1 > Figure 2.2

Both: straight lines, decreasing, positive, same initial value

Differ in slope

Figure 2.2 > Figure 3.1

Both: straight lines, decreasing

Differ in slope, sign, initial value

Two resemblancessign and initial valuewere assumed in the first but not in the
second prediction. These two new dissimilarities reflect two pieces of knowledge that
Dan uses: a decreasing volume must correspond to a negative flow rate (dissimilarity in
sign), and the flow rate must start at zero, but the volume does not (dissimilarity in initial
value). Both pieces of knowledge were elicited by his interaction with the apparatus. We
see this as an example of how assumptions of resemblance are adjusted by the student
according to his knowledge of the situation. In the absence of a reason to the contrary, the
resemblances are simply assumed, but as new pieces of knowledge come into play, some
resemblances are rejected so that the new pieces of knowledge can be expressed in the
graphs.

A second change in Dan's perception of the problem takes place when the interviewer
asks about the production of the original graph of flow rate (Figure 2.1). Dan argues that
the graph is impossible because flow rate must start at zero. This is not true because it is
possible to start the measurements at any time (i.e., when the flow rate is not zero). How-
ever, students often expect that a graph must represent the "whole story,'which begins
when air is first physically moved. In this case, the interviewer redefines the problem
without challenging this consideration, by posing a new version (Figure 3.2). Here we see
yet another step in the joint construction by interviewer and student of the definition of
the "problem" to be solved.

Segment 3

Description

The interviewer asks Dan to formulate a new prediction of volume versus time given the
new graph of flow rate versus time (Figure 3.2). (See Figure 4.1.)

Dan: [as he is drawing Figure 4.1]. Well I, if it's like that [Figure 32], it had to, let
me think. The flow rate would go up, so that means the volume would also
go up, and then it, it would drop. Let me think. I'm trying to think if this
[the decreasing part of Figure 4.1] would go very much below, if this would
go below zero or not. Let me see. If the flow rate went up, volume increases,
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then it starts to decrease. Well, the only thing I'm trying to think of is if this
[the decreasing part of Figure 4.1], as soon as I stop the increase will it
automatically just drop right down until it would be below here (pointing to
the steeper decrease) and then it contiF or whether it justsee, see the ...
go like this (pointing to the no-so-steep (Laease) . . . I'm not sure which one .
.. I'm not sure if it will drop right away and then come down or would just
gradually.

Volume

Figure 4.1

Time

Dan prepares himself to measure. He rehearses his actions several times with the appara-
tus before he actually measures. He looks at the graph of flow rate shown in Figure 32
but interprets it as how the height of the bag (a measure of volume) should change.
Therefore, what he actually rehearses is how to produce a function of volume like the flow
rate curve in Figure 32 (or, equivalently, like the volume curve in Figure 4.1). The
interviewer intervenes, reminding Dan that flow rate should be positive:

Dan: Yeah, so I'll have to, I'll have to go like this [adding air to the bag] and then
bring it back down [taking air out of the bag].

Interviewer: Uh huh.

Dan: I'm thinking, I'm pretty sure that's what I have to do.

Interviewer: But the flow rate wouldn't be never, shouldn't be negative, there [pointing to
Figure 32] always positive.

Dan: Always positive? You're asking me?

Interviewer: Well, it is positive in the sense that it is always

Dan: [looking at Figure 32] Above zero.

Interviewer: Above zero, right.

Dan: Uh, I think you're right, I think it might have to always be above zero. I'm
not sure though. If we go like this (moving the bellows so air comes outof
the bag), no, it would go below zero, 'cause I pull the air in [at the beginning]
and then I'd be doing the reverse. So it should go below zero [when I do the
experiment]. Oh, I'll try it.
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Analysis

In this segment Dan repeats the process described in Segment 1, first constructing a
prediction of volume versus time by assuming resemblances, then focusing on the pre-
dicted function of volume. We believe that in assuming resemblances Dan uses mainly
semantic and linguistic dues. His use of semantic cuesnamely, the intuition that iso-
morphic variation holds for volume and flow rateis manifested by his reliance on the
apparatus to interpret the graph He uses the apparatus to rehearse and to decide what
should happen. His language also strongly suggests that linguistic cues are playing a
part in his reliance on resemblance. He says: "The flow rate would go up, so that means
the volume would also go up, and then it . . . would drop," and "If the flow rate went up,
volume increases, then it starts to decrease." In both expressions his reference to the
quantity that is decreasing is ambiguous. "It would drop" and "it starts to decrease" each
contain an "it" that can ambiguously refer to either flow rate or volume.

Dan is in conflict. He is now juxtaposing two attributes that are incompatible. On the
one hand he expects the air to come out of the bag (since, in the graph, the volume
decreases after the initial rise). On the other hand he knows that the positive sign of flow
rate implies that air goes into the bag (and that the volume has to increase). Despite his
awareness of the contradiction, he is not sure which way of understanding the situation is
appropriate, so he decides to experiment. This reflects his reconstruction of the problem:
Dan will try to produce the volume graph (Figure 4.1), and is curious to see what will

happen with the function of flow rate.

Segment 4

Description

Dan produces four measurements with the apparatus, but he is unable to produce the
graph he wants. After the fourth trial he says, "Can't get it through" While performing
the experiment he looks at the top of the bag. In his attempts the flow rate goes up
initially and then drops below the X axis as he makes the bag go up (by pushing the
bellows down) and then down (by pulling the bellows up). Once the graph is below the
X axis Dan tries to produce a decreasing line. The graph in Figure 5.1 is the result of his
fourth attempt.

Dan complains that the graph drops abruptly after the initial rise instead of going "nice
and slowly." He expects it to drop slowly because he is slowly and carefully changing
the direction of the bellows.

The interviewer tries again to re-orient Dan toward the problem of getting the graph in
Figure 32 by reminding him that flow rate is never negative in that graph

Interviewer: How could you do something that here [after the initial rise in Figure 5.1]
goes down slowly without becoming negative?

Dan: Without becoming negative?
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Interviewer: Right. Just that goes down slowly.

Dan: Um, let me think. If I bring it [the bag] I have to bring it down to zero maybe,
go up, and then go down, down, down like that maybeno, but, as soon as I
pull down [the top of the bag] it [the flow rate] goes down to zero, so it has
to, I can't, I don't think we can get that [Figure 32] then.

Dan concludes that the graph of flow rate (in Figure32) cannot be produced.

Flow
Rate

Figure 5.1

Analysis

During the measurements Dan tries to get the volume to go up and then down as in
Figure 4.1. He cannot make sense of the abrupt drop shown on the computer screen. He
expects the computer graph to reflect the motion of the top of the bag, and, indeed, the

bag does not drop abruptly.

The interviewer's question about going down "without becoming negative" prompts
Dan to use another piece of knowledge: air coming out of the bag corresponds to nega-
tive flow rate. Dan juxtaposes the two features: decreasing volume (his assumption from
a graph of decreasing flow rate) and positive flow rate shown in Figure 32, and states
correctly that they are incompatible (i.e., a positive flow rate always implies an increasing
volume). He is now convinced of the impossibility and feels there is noneed to try a new
experiment. Dan is not aware at this point that he has changed the terms of the problem
by focusing on his predicted volume graph. This segment shows two characteristics
typical of a resemblance approach:

1. extracting graphical features from one function and projecting them onto the other
in an attempt to come up with a matched set of graphs; and

2. focusing exclusively on the function or the derivative alone; whichever is chosen

as a focus is taken as the "given," regardless of how the problem was initially
stated.
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Segment 5

Description

After Dan states his belief that it is not possible to get a decreasing flow rate without
becoming negative, while implicitly he assumes that the volume has to decrease, the
situation appears to be a dead end. The interviewer says:

Interviewer: Um, let me try.

Dan: You want to try?

The interviewer generates a graph of flow rate decreasing but remaining positive by
starting with the valve open and gradually closing it. The top of the bag always moves
up.

Dan: Playing tricks on me again. I know what I told you, maybe there should have
been a way to do that that I didn't know. [laughs]

Interviewer: Let's do it without the valve.

Dan: I want to see dud

Now the interviewer generates another graph by pushing down the bellows at a decreas-
ing rate, the equivalent of his previous action with the valve. Dan looks carefully at the
three elements: the interviewer's hand pushing down the bellows, the computer screen,
and the bag accumulating the air.

Dan: Well, it's; st the amount of increase is less and less. I see . .. Yeah, I see. So
what do I do, just pull it [the top of the bag] down, let some air go up and
then we just let it go up slowly, is that what you did? Yeah.... That's, that's
different, I didn't think of that.

Interviewer: Does it make sense?

Dan: Yeah, now it does ... It's tricky, though, tricky to figure that out.

Dan: I didn't think that maybe if we just did this [push down the bellows] and then
let the flow rate just go nice and slow, that it would decrease from what it
was before. I should have thought of that, but I didn't.

After the interviewer generates the function of flow rate Dan attempts to do it too. He
finds that it is not a trivial effort to generate a smooth curve. The main problem is that to
generate the graph in Figure 3.2, one must move smoothly between the increasing and
decreasing segments of the curve. Dan, however, changes the rate of change abruptly
and generates a sharp peak instead of a rounded curve. He tries four times before, finally,
he gets an acceptable graph (like Figure 6.1) by using the valve to control the air flow. His
difficulty generating the point on the graph that reflects a change in the rate of change
foreshadows problems that arise in the next segment.
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Flow
Rate

Figure 6.1

Analysis

At the end of Segment 4, Dan expressed his conviction that the graphs in Figure 3.2 and
4.1 are incompatible. Since he was focusing on his prediction (Figure 4.1), he conduded

that the graph in Figure 3.2 was impossible. The interviewer's showing Dan how to
generate that graph in Segment 5 is a landmark for Dan's view of the situation. On the

one hand it elicits a cognitive conflict a belief that something is impossible is challenged

by the the factual evidence that it is possible, requiring Dan to revise his way of thinking.

But more important, watching the apparatus provides Dan with clues about how his
understanding of the situation might be improved, such as:

The top of the bag continued "moving up" as the graph "moved down."

Air was flowing into the bag both before and after the peak of the graph.

Both aspects challenge Dan's assumptions of isomorphic variation and suggest that the
difference between the graph before and after the peak of Figure3.2 is a difference be-

tween modes of inflow, rather than between inflow and outflow. In sum, Dan's insight is
not just a product of cognitive conflict; it is also the outcome of the presence and role of
the apparatus. Dan benefits both from being able to experiment with a tool that mediates

his thinking about the situation and from watching the interviewer use it to generate

graphs.

In describing how the graph of flow rate (Figure 3.2) isgenerated, Dan changes his lan-
guage. Examples of this change in his descriptive language are shown below.

From Segment 3:

1. "If the flow rate went up, volume increases, then it starts to decrease."

2. "The flow rate would go up, so that means the volume would also go up."
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From Segment 5:

3. "The amount of increase [of volume] is less and less."

4. "It [ the flow rate] would decrease from what it was before."

Expressions (1) and (2) reveal the assumption of isomorphic variation and suggest that
volume and flow rate are conceptualized as two parallel variations rather than one re-
flecting the way the other one changes over time. Figures 62 and 6.3 may help to clarify
this point.

In Figure 6.2 volume is thought of as varying according to the variation of flow rate (more
flow rate means more volume and less flow rate means less volume). Both vary in the
same way; more of one implies more of the other, and less implies less. In Figure 63,
however, flow rate describes the local variation of volume as time passes. A key step in
constructing the framework depicted in Figure 63 is focusing on how volume changes
locally over time and recognizing flow rate as the descriptor for this local change. While
expressions (1) and (2) are consistent with the approach shown in Figure 6.2, expressions
(3) and (4) are suggestive of the latter: "the amount of increase (of volume) is less and
less" (recognition of the local variation depicted by the arrows on the right of Figure 6.3)
and "it (the flow rate) would decrease from what it was before" (recognition of the local
variation depicted by the shrinking circles on the left of Figure 6.3).
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This conceptual shift is the beginning of Dan's construction of a variational approach. We
believe that the role of the apparatus in this process is to support the joint interviewer-
student construction of narratives, understood as descriptions of sequences of events that

seem more or less consistent with the observational facts and their own expectations. To
say "the amount of increase (of volume) is less and less" is a way to tell the story of the
apparatus' behavior without assuming isomorphic variation: volume "increases" and at
the same time flow rate is "less and less."

Segment 6

Description

Flow
Rate

Figure 7.1

Time

Interviewer: Now [given the graph in Figure 7.1] we will look at volume, what do you

expect to see?

Dan: [while drawing the graph in Figure 72] Always increasing,but at the, at the
beginning it will increase. At the beginning ... I believe that, the volume
will go up, and then, and then it will just sort of like go up slower and slower
and slower. I'm pretty sure that's what it will do.

Volume

Figure 7.2

Time
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Dan divides his prediction into two parts: the first (when flow rate increases) and the
second (when flow rate decreases). For the first he anticipates a sudden increase of vol-
ume, whereas for the latter he anticipates a slow increase. For the portionof decreasing
flow rate he no longer holds the assumption of resemblance that volume will increase.
On the other hand, his intuition is that the initial rise of flow rate will correspond to a
similar sudden rise of volume.

The interviewer asks whether the second part of Dan's prediction for the volume graph,
corresponding to the decreasing flow rate, is a straight line. In order to understand Dan's
answer let us identify two salient times in his prediction: ti and t2, shown in Figure 7.3.

Figure 7.3

Volume

Time

Dan: It will, this [after tj will not be as, will not, its incline will not be as much as
[between t1 and t2]. It will reach, it will reach this point [t2] here and then it
will start to even off sort of. It might not, it might be a straight line, but I, I
don't think it will. I think it will be just wavy, you know ... It will always
increase, but it won't increase as, as the amount of time did here [between t1
and t2] ... Say we did, say right here [between ti and t2] it was, I don't know,
say it went up ... 2 liters. Right here [after tj, fora same interval as between
whatever this is [the time interval between ti and t2] it won't be 4 liters, it will
be 2 and a little bit, and then it will be a little bit more, a little bit more. It
won't, it won't be as much. The am Ant of air going in will not be as much
as it did in this piece [between ti and tj. And very much less the following
seconds after.

Finally Dan asks the computer to display the curve of volume versus time and gets a
curve similar to the one shown in Figure 7.4.

Dan expresses disappointment at the fact that the curve does not show what for him is
the most important aspect a fast increase followed by a slow increase.

Dan: Nah. I don't know, it didn't really do that. Didn't have that amount of
volume.
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Volume

Figure 7,4

Time

Dan decides to look at the number values of flow rate and volume. Inexamining them he
comes to the conclusion that the initial increase of volume did not appear because "the
flow rate was not so great."

Dan: [Initially I expected that] it would go up more, but it didn't. Maybe because
that other line was not the amount of ... flow rate was not so great that it, it
would make this [a bump] and then make it, make it go like that. Like make
it go up and then even off like I thought it would. So, probably had, not
having the great amount of flow rate at the beginning, it just sort of went up,
and up, and up, but it,. it, I think it, basically it did what I thought it was
going to do. That it just sort of evened off here.

Dan solves the discrepancy between his prediction for the initial increase of flow rate and
the observed measurements by using the ambiguity inherent in any experimental pro-
cess. In a sense, he says, "What I expected is there, but you can't really see it."

Analysis

In this segment Dan begins to articulate an interval-based analysis for the variation of
volume. In justifying his prediction for the volume graph that corresponds to the flow
rate graph, he uses the increase in volume in the interval between ti and t2 as a standard
and compares it to the increase in volume in a similar interval after t2. He goes on to
describe how the volume continues to change as more time intervals pass: "It (the vol-
ume) will be two and a little bit, and then it will be a little bit more, a little bit more,"
implying that each time the little bit more" will be smaller and smaller. This interval-
based analysis of a change over time is a central phase in the construction of a variational
approach.

While Dan expresses clear and precise verbal descriptions for the change of volume as a
decreasing increase (e.g., "sort of like go up slower and slower and slower"), the mapping
between this notion and graphical shapes is unstable for him. He has an intuition that the
graph should not be a straight line, but he has difficulty figuring out what else it could be
(e.g,, "it might be a straight line, but I, I don't think it will. I think it will be just wavy, you
know"). Thus, while he is articulating a verbal description of a decreasing increase, he
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has not yet attached a corresponding knowledge of graphs to his descriptions. Dan
draws straight lines in his graphical predictions not because he knows that they should be
straight lines, but because straight lines are sufficient for showing what,for him, are the
most relevant features of the graph, namely, whether the function increases or decreases
and how quickly, relatively, different functions or pieces of a function change.

Dan spends some time trying to explain how the volume graph behavesdifferently
before and after the "peak" of flow rate. Before Segment 4 Dan explained this difference
by assuming a resemblance: more flow rate means more volume (before the peak) and
less flow rate means less volume (after the peak). In other words, before the peak he saw
the situation as one of inflow, and after the peak it became for him a situation of outflow.
In the current segment Dan no longer assumes this resemblance. He recognizes that there
is inflow during the entire graph, but he must still account for the difference in the graph
before and after the peak. Dan comes up with a new solution: before the peak the vol-
ume increases very fast, and after the peak it increases slowly. In constructing this solu-
tion, Dan assumes a different resemblance that focuses on "abruptness": An abrupt
increase in flow rate means.an abrupt increase in volume (before the peak) and a slow
decrease of flow rate means a slow increase in volume (after the peak). This new resem-
blance links the speed at which volume changes with the speed at which flow rate
changes. Thus, it is a different resemblance, since it deals with rate of change, rather than
just increase and decrease.

A graph like Figure 7.5, which echoes a peak in the volume graph, ;eons plausible; we
have, in fact, seen similar predictions made by several people who know a fair amount
about calculus. Why is it false? Consider this graph (Figure 7.5), an idealized version of
the one in Figure 3.2.

Assume that intervals a, b, and c are equal. The average flow rate during the interval a is
less than the average flow rate during either of the intervals b or c. Therefore, the amount
of increase of volume during interval a is less than the increase of volume during either b
or c. The graph in Figure 7.6 could be a curve of volume versus time corresponding to
the one in Figure 7.5.
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The peak of Figure 7.5 corresponds to an inflection point in Figure 7.6. The curve Dan
produced with the apparatus did not show the pattern of Figure 7.6 because the increase
of volume corresponding to interval a was too small to be noticeable as an inflection paint
in the experimental curve. (In fact, Dan used a similar argument about an insufficient
increase in volume to explain why his experimental curve did not show his anticipated
sudden initial rise of volume!)

In describing the curve he expects to see, Dan is able to use a variational approach for the
slow decrease of flow rate, but for the sudden increase of flow rate he assumes a resem-
blance between the speed at which flow rate and volume change. One element that may
have played a role in his dinging to resemblance is that a sudden increase is more likely
to be perceived as a change between two dose times, rather than as a sequence of
changes. In this sense it is harder to develop an interval-based analysis for a sudden
change. In other words, an interval-based analysis requires a concept of air flow chang-
ing over time, rather than "jumping" suddenly from one value to the next. The unit that
Dan uses to split the time into intervals is the entire duration of the sharp increase of flow
rate, eliminating the possibility of looking at the sharp increase as a sequence of intervals.

Conclusion

This paper has analyzed how high school students tend to solve problems of prediction
between a function and its derivative by assuming partial resemblances between them.
We observed this tendency in different physical contexts, such as in motion (translation
between position and velocity), in fluids (translation between flow rate and volume), and
in number-change (translation between a list of numbers and the list of its accumulated
values or its differences). These assumptions of resemblance lead to a particular
approach to problems of prediction between a function and its derivative, characterized
by forcing a match of global features of the two graphs (e.g., increasing/decreasing, sign)
and by focusing on one of them (function or derivative) rather than on their relationship.

The use of resemblances is not the result of the student's inability to distinguish between
the function and derivative. Several perceptual and cognitive aspects of situations of
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change support the plausibility of such resemblances. We described three such aspects:
semantic cues, syntactic cues, and linguistic cues. We compared resemblance approaches
with variational approaches, which are based on the analysis of the local variation of a
function and understanding how it is described by its derivative. A variational approach
focuses on the relationship between a function and its derivative rather than on the global
properties of each graph We distinguished several variational approaches according to
the mathematical entity that is used to describe this relationship (e.g., steepness, slope,
local accumulation).

The construction of a variational approach is a complex process that we attempted to
illustrate through the analysis of a 17-minute learning episode. This episode was built
around a co-construction, by student and interviewer, of some insights that support a
variational approach, such as an interval-based analysis for the variation of a function and
the development of a connected story that recognizes that change over time in volume is
described by its derivative, flow rate. But this development is not a monolithic insight.
Even at the end of the learning episode, the student used a new resemblance to account
for some troublesome aspects of his experience. The case study also supports the impor-
tance of our technique of using physical contexts to provide students with tools to explore
mathematical ideas from a variety of directions, and gives us insight into how these tools
help frame the interviewer/student discourse through which learning occurs.
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