———,

DOCUMENT RESUME

ED 350 999 IR 015 814

AUTHOR Pyzdrowski, Anthony S.; DeNardo, Anette M.

TITLE Creating a Computer Simulator Package for a
Hypothetical Computer Architecture.

PUB DATE Mar 92

NOTE 7p.; Paper presented at the Annual Conference of the

Eastern Educational Research Association (15th,
Hilton Head, SC, March 5, 1992).

PUB TYPE Reports - Descriptive (141) -- Speeches/Conference
Papere (150)

EDRS PRICE MFO1/PCO1 Plus Postage.

DESCRIPTORS Authoring Aids (Programing); *Computer Assisted
Instruction; *Computer Science Education; *Computer
Simulation; Computer System Design; Higher Education;
Hypermedia; Instructional Effectiveness;
Microcomputers; Programing; Student Attitudes

IDENTIFIERS *Computer Architecture

ABSTRACT

This paper describes three computer-based simulators
developed to support an undergraduate computer architecture course.
Using a hypermedia authoring package, a simulator was created for
each of the three course content areas: (1) introduction of the
hypothetical computer structure--contains a tutorial, a quiz, and a
simple program that presents background information and introduces
the architecture of the hypothetical machine and the first 11
fundamental machine instructions; (2) presentation of the
microsequence operations——includes a quiz section which tests student
understanding of concepts; and (3) actual programming of the
hypothetical computer-—allows students to write and execute programs
using a graphical presentation of the program. Results from research
on the class indicated that students’ responses were favorable to the
incorporation of the simulators in the class; students showed lower
levels of frustration and a higher level of understanding of abstract
materials; students shifted from lecture and classroom questioning on
specific items as a means of obtaining information to the
consultation of the appropriate simulator to obtain the answer; and
the class showed significant improvements. Two figures illustrate
sample screens from Simulators One and Two. (ALF)

sedesedededtdest e dode e dede st de s deSedede e de e e dedede vt de dedk Sedede e et de de S e B S de sk de S Sk Sk e e e Fe e S e K de e ek e sk e dk

¥ Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
Fdeddedokded kg sk ook ek ko ko ok ek e sk e e ek ek et ek dede e ek ok sk e ek ok e ek

- U.%. DEPANTMENT OF EDUCATION
Oftice of Egucational Research and improvement
ATIONAL RESQURCES INFORMATION
EDUCATIO CENTER (ERICH
- ent has been reproduced as
' ::C‘se"deodc‘::‘;f: the person of O!Qinda'lon
oniginating i3
hn ~ Mingt changes have been magde 10 iMPIove
. i reprogucthion quabty _
Creating a Computer Simulator Package for a B emsststeo o

ment do not necessanly represent olhciat

Hypothetical Computer Architecture OE R positon or polcy

- -
- @

Anthony S. Pyzdrov/ski Anette M. DeNardo
Department of Mathematics and Department of Curriculum and
Computer Science Instruction
California University of Pennsylvania West Virginia University
California, PA 15419 Morgantown, WV 26505

ABSTRACT

This paper describer :hree computer-based simulators developed to support an
undergraduate computer wrchitecture course. Two simulators were written using a
hypermedia authoring package. The first contains a tutorial, quiz, and simple program
simulator. The second demonstrates data flow for each microsequence of the instruction
set at the machine level. Both simulators present the material in a graphical
environment.

The third simulator was written in C and allows the students to write programs
for the hypothetical computer. The students are able to print a core dump of the fetch
and execution cycles for each instruction of the program. In this way they can closely
examine the contents of all CPU components during program execution.

ED350999

INTRODUCTION

Computer-based simulators are programs that model realistic situations because
they” require active participation by the users in initiating and performing inquiries,
decisions, and actions. In addition to providing an opportunity to acquire skills, attain
new concepts, and engage in problem solving, simulations can provide students with
immediate feedback and rapid repeatability without concern for the time and expense
involved in using real materials (Gorrell, Cuevas, & Downing, 1988; Lunetta & Hofstein,
1981; McGuire, 1976; Spain, 1984; Strickland & Poe, 1989). Most educational settings
require simple forms of simulators. Details are changed or omitted to provide thought
or engage the student in participation (Strickland & Poe). Therefore, most simulators
possess three attributes: (a) they represent a real situation, (b) they provide the user with
certain controls over the situation, and (c) they omit irrelevant or unimportant variables
(Gagné, 1962).

A variety of educational settings use computer-based simulations. The study of
computer architecture is one such area. Because students cannot study the internal
architectute of a computer system, computer programs to simulate the architecture are
frequently used. Unfortunately, research on the effectiveness of computer simulations
in this area is almost nonexistent.

T:is software development was motivated by the need for supportive computer
learning aids to supplement a university-level computer architecture course. The content
of the cumputer architecture course is not typical of the courses encountered by
computer science students. This situation makes for difficulty in learning. Reigeluth
and Schvartz (1989) contend that "computer-based simulations can provide efficient,

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Anette 1. DeNardo

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

N
>
b
N

BEST COPY AVAILAP:®

effective, and highly motivational instruction that can readily serve the need for
individualization.”" Reigeluth and Schwartz (1989) also state that simulations "enhance
the transfer of learning by teaching complex tasks in an environment that approximates
the real world setting in certain ways.” Boblick (1972) and Cavin and Lagowski (1978)
found that students who used simulators for physical experiments performed as well as
or better than students who actually performed the experiments.

Therefore, three simulators were written to support a college-level course in
computer architecture. This paper presents an overview of the simulators.

OBJECTIVE

The objective of the project is to provide support computer packages for a
computer architecture course. The material covered in the computer architecture course
is diverse and requires a variety of specialized support simulators. The first content area
involves the introduction of the hypothetical computer structure. This section presents
the general components of the internal structure and the operation of the computer on
a macro level. A firm understanding of the concepts and components is required prior
to the introduction and use of the machine level instruction set. Not only is the
presentation of the instruction set important but also the presentation of program
examples helps the student understand the operation of the computer. The presentation
of program executions should emphasize the data transfers which occur within the
computer. Understanding the transfer of data helps the student make the transition of
a macro level understanding of the structure to the required micro level understanding
of the structure. The next content area pertains to the presentation of the microsequence
operations that each machine instruction process in order to have the computer perform
the instruction. The microsequences control the transfer of data within the computer
structure. The last content area is the actual programming of the hypothetical computer
structure. A means for the student to write programs using the machines instruction set
and execute the programs on the computer, if it existed. The execution of the programs

should provide the student with the contents of each component of the computer after
each instruction is executed.

TECHNIQUE

A simulator was created for each of the three course areas. The three computer
simulators of the hypothetical computer architecture are presented differently. Based on
the content of the package and its desired outcome, each package is presented in a way
that makes it appealing to the student.

The first simulator contains three parts all written using ToolBook by Asymetrix.
The first section presents background information, introduces the architecture of the
hypothetical machine, and presents the first 11 fundamental machine instructions. This
is the first encounter the student has with the computer packages. Presenting the
introduction in a colorful and graphical self-paced tutorial with numerous "hotwords"
for additional explanation maintains the interest of the students without inhibiting them
from exploring the material to their satisfaction.

J

The second section of the simulator includes a quiz section which tests student
understanding of those concepts discussed in the tutorial. Students are encouraged to
achieve at least an 80 percent proficiency on each of the three parts of the quiz before
proceeding on to the simulator. The three quiz sections are graphically colorful with
audio support. The quiz sections create an adventure environment that rewards the
student for a successful competency achievement.

Part three of the first simulator demonstrates the operation of the hypothetical
computer through a graphical presentation of program execution. A graphical
presentation of the physical components—registers and memory--of the hypothetical
computer appear on the display (see Figure 1). Several example programs are available
for execution by the student. These example programs enable the student to observe the
changes in the computer during program execution. When executing the instructions
of a program, the simulator changes the contents of the displayed components. Also
included with the components is an outline of the execution cycle with the current step
highlighted. By selecting a designated button, the student initiates the execution of each
instruction. This student-invoked stepping of the program allows a self-paced
examination of the events related to each instruction. Once the students have an
understanding of the instructions and their operations, they can enter their own
programs. The student writes these programs in binary or octal machine code. This
feature allows the students to extend their understanding of the computer’s instruction

ADDRESSES MEMORY

Program Counter - PC

instruction Register - IR

Accumulator - ACC

Pt VSN o0 Lt
fratialy ~c #7
'h-‘u ot

......... Poortodbo e e boan
hpodbate 41
Coabeatate VA

0 cnde Crpeor vl
I wernte trperand
Lintl Qpoode o0 HE T

Figure 1 Sample Screen from Simulator One
set and refine their program writing skills for the new machine language. The student

can review the operations of the computer until a thorough understanding is obtained.

* BEST COPY AVAILABLE

The second hypermedia simulator presents definitions of old and new
components and the complete graphical rendering of the computer. This graphical
representation of the structure contains buttons. When the mouse is pointed to these
buttons and clicked, further explanations for each component are provided. These
components include the ALU (arithmetic logic unit) and flags, accumulator, index
registers, control unit, IR (instruction register), PC (program counter), memory, memory
address register, memory buffer register, and all busses that interconnect the
components.

Following the graphical presentation of the computer, the simulator displays a
menu of 26 instructions. From this menu the student can select a speed of presentation
and an instruction of interest. Once a student selects an instruction, the simulator
re-displays the structure with the microsequences of that instruction. The student selects
one microsequence at a time. Uponr selection of a microsequence, the simulator, using
colors, traces the flow of data throughout the structure (see Figure 2). These colored
paths flow throughout the structure at a rate that proportionally reflects the real
operation time. The colored trace remains on the display for student scrutiny. The
structure is cleared of the coloring upon selection of the next microsequence. All
microsequences are repeatable. When the entire sequence necessary for the

implementation of the selected instruction is complete, the simulator returns to the
menu.

COLLECTOR BUS

W, :-*

SRS

)

Y
,.ﬁ%@% ,
) 23

STEPG. MBR <-- M{MAR)
STEP?. ACC < - MBR
STEPS: GO BACK 70 MENU

ADDRESS
BUS

Figure 2 Sample Screen from Simulator Two

BEST COPY AVAILABLE

[

Near the end of the semester, the students use a simulator containing the entire
instruction set of the hypothetical computer. This simulator accepts programs written
by the students and demonstrates the execution sequence for the program.

The final simulator is written in C. This simulator implements all instructions of
the hypothetical computer. Unlike the previous simulators, this package does not
provide the student with any educational instruction. Its sole purpose is to allow the
student to write programs for this hypothetical computer and observe their execution.
The student enters a program from either the keyboard or a file. Entering a program
from a file, the student can write larger and more involved programs while allowing for
changes. The output of the simulator can be sent to the display or another output
device. Alternate output devices allow for a permanent copy of the program sequerce
so that the student can better study and understand the program execution. The output
contains the contents of all registers for each instruction executed untii the program
terminates. Additionally, the contents of memory can be output, or core dumped, for
examination. There is no error detection or help within this simulator; its task is to test
the effectiveness of the students’ programming abilities of the new machine presented
in the previous two learning simulators.

CONCLUSIONS

Student responses were favorable toward the incorporation of the simulators in
the class. After the introduction of the packages in the class, students showed lower
levels of frustration pertaining to the abstract material and a higher level of
understanding and comprehension of the material. Students shifted from lecture and
classroom questioning on specific items as a means of obtaining information to the
consultation of the appropriate simulator to obtain the answer. Results from research

on the class showed significant student improvements (DeNardo & Pyzdrowski, in
press).

REFERENCES

Boblick, J. M. (1972). Discovering the conservation of momentum through the use of

a computer simulation of a one-dimensional elastic collision. Science Education,
56(3), 337-344.

Cavin, C. S,, & Lagowski, J. J. (1978). Effects of computer simulated or laboratory
experiments and student aptitude on achievement and time in college general

chemistry laboratory course. Journal of Research in Science Teaching, 15(6),
455-463.

Gagné, R. M. (1962). Simulators. In R. Glaser (Ed.), Training research and education
(pp. 223-246). Pittsburgh: University of Pittsburgh Press.

Gorrell,], Cuevas, A., & Downing, H. (1988). Computer simulations of classroom
behavior problems. Computers and Education, 12(2), 283-287.

L

Lunetta, V. N., & Hofstein, A. (1981). Simulations in science education. Science
Education, 65(3), 243-252.

McGuire, C. (1976). Simulation technique in the teaching and testing of problem-
solving skills. Journal of Research in Science Teaching, 13(2), 89-100.

Reigeluth, C. M., & Schwartz, E. (1989). An instructional theory for the design of
computer-based simulations. Journal of Computer-Based Instruction, 16(1), 1-10.

Spain, J. D. (1984). Computer center: It’s time to take inventory. The American Biology
Teacher, 46(6), 347-349.

Strickiand, R. M., & Poe, S. E. (1989). Developing a CAI graphics simulation model:
Guidelines. Technological Horizons in Education Journal, 16(7), 88-92.

