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ABSTRACT

Not very long ago, computer programming was touted as the solution to the problem
solving crisis in American education, a discipline through which students would
automnatically acquire logical thinking and problem solving skills. More recently,
however, such notions have gone the way of similar ideas concerning Latin and
geometry. Research has indicated that problem solving abilities are not automatically
acquired through computer programming, and programming is accordingly being de-
emphasized in computer education. Some researchers, however, maintain that computer
programming might well support the teaching and learning of problem solving, but that
to do so, problem solving must be explicitly taught. The research reported in this paper
was designed to investigate such hypothesis. Three studies are described which
collectively show that five particular problem solving strategies can be developed in
students explicitly taught those strategies and given practice applying them to solve Logo
programming problems. The research further demonstrates the superiority of such
intervention over Logo programming practice along, explicit strategy training with
concrete manipulatives practice, and instruction in content areas traditionally prescribed
for the teaching and learning of problem solving. The results indicate that problem
solving strategies will not be developed through Logo programming alone, rather must
be explicitly taught and practiced. Knowledge-based instruction linking declarative to
procedural knowledge of problem solving strategies is recommended as a means to this
end. The results also suggest, however, that computing environments may be uniquely
conducive to the development of problem solving skills, in that they support quasi-
‘ concrete, malleable representations of abstract concepts that can help learners bridge the
gap between concrete and formal understanding.
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BACKGROUND

In 1980, Seymour Papert published Mindstorms, a book which excited many educators
with jts notion that computer programming was fertile ground for the development of problem
solving abilities. In Mindstorms, Papert (1980) made two claims. First, he argued that the
computer was a revolutionary educational tool because it supported *transitional objects to think
with,” quasi-concrete representations of abstract ideas that could help learners bridge the gap
between concrete and formal thought. Second, he argued that the transition from concrete to
formal thinking would take place automatically, “painlessly, and without organized instruction”
when learners were given computing envirotments rich in such transitional objects to explore,
environments such as Papert’s own programming language, Logo.

Papert’s claims have engendered much debate both within and outside of the Logd
community. The research reported in this paper wus designed to investigate each of these claims in
relation to the teaching and learning of particular problem solving strategies. We believe the
importance of separating the claims is born out by our results which indicate that the first claim -
that computing environmenis can uniquely support the developme, ¢ of problem sotving skills — is
true, whereas the second claim -- that this development will happen automatically -- is not. These
results make sense of the seemingly contradictory reports found in the literature concerning Logo
programming and the teaching and learning of problem solving; that investigations which looked
for the automatic development of problem solving skills resuiting from Logo programming
experience found no such occurrence (Papert, Watt, diSessa & Weir, 1979; Pea & Kuriand, 1984;
Leron, 1985), but that those which investigated mindful interventions combining explicit
instruction with Logo programming practice reported positive results (Carver & Klahr, 1986;
Thompeon & Wang, 1988; Black, Swan & Schwartz, 1988; de Corte, Verschaffel & Schrooten,
1989; Lehrer, Sanciilio & Randle, 1989 ).

Inﬁﬁspapcr,wcwﬂcmnhw&wﬂ:eacﬁmlfumdaﬁomfmmﬁndhgsmgcam
of the two claims. We will then discuss the particular problem solving strategies we investigated
and the problem aalving intervention we designed to teach them. Finally, we will report on three
smdiaweccndndedmtatPapafs(l%O)daim,andmmncmdmbmdmthdr
findings.

“Transitional Objects to Think With.”

A quarter of a century ago, Marshall McLuhan (1964) advanced the notion that
communications media are extensions of the human sensory apparatus which alter the ways in
which we use our senses, and so, the manner in which we perceive ourselves and our
environment. Language, for example, alters the way we perceive the world by namirg and
defining objects in it, thus allowing us to distinguish between them in ways that would not be
possible without language. McLuhan argued that the formal nature of a pa-dcular medium of
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communication was therefore more influential in shaping our thought than the content of the
message it transmitted.

Whether or not one accepts McLuhan’s hypothesis en toto, it seems clear that each medium
-~ - -.of communication entails unique formal attributes that matter, or that can be made to matter, in
- learning.  Salomon (1981), for example, has shown how differing fitmic presentations can
“activate,” "short-circuit,” or “model” particular cognitive processes. In this vein, the computing
medium has been singled out in recent years as particularty supportive of the development of
problem solving abilities (Feurzig, Horowitz & Nickerson, 1981; Harvey, 1982; Mayer, Dyck &
Vilberg, 1986; Linn, 1988; Soloway, 1986). The Logo programming language, in particular, has
been described as an environment designed to “help children to develop problem sclving skills, to
think more clearly, to develop an awareness of themselves as thinkers and learners” (Watt, 1983,
p. 48).

Indeed, Seymour Papert (1980), Logo’s creator, maintains that computers are truly
revolutionary educational tools because they support “transitional objects to think with.* His idea
wcmswbeﬁmtabsuaaideascanbemptmenwdmmi;)uhmgnddynanﬁmﬂywswdm
computing environments, thereby relieving burdens to working memory and providing students
with quasi-concrete models of cognitive processes that can be easily internalized. Subgoals
formation, for exampile, is a problem solving strategy that is given quasi-concrete representation in
Logopmgmnmﬁgmﬂmtlogomogmmsmwmpmedofmmﬂwbpimdmuwdmfwmm
dcﬂncﬂlemeanstosaﬁsfyingparﬁaﬂm'pmuofahrgerpmgmmmingpmblcm. Each
subprocedure, moreovcr,canbevmuen,tested,andreﬁncdbyﬂne}fbefomﬂxcpmnm
assembled to create the larger program. ngmnnninginﬂﬁsmmn:r,ttmbcargwd,pmﬁdua
modcldﬁna&&mmdwbgmbfmmaﬂonwﬁehmbeeﬂymmmm
generatized.  Papert writes (1980, p. 23), “1 began to see how children who had learned to
mmeompu&mwddmemywnaemmxmrmodehm&ﬁnkabanﬂﬂnhngandmm
about learming . . .” :

Papert moreover contends (1980, p. 9), “. .. that the computer presence will enst. us to
wmodifyﬂwlearﬂngmvhmmanwmideﬂndmﬂmwlchifnaanﬂwkmwiodge
mpumﬂywmmhmmmmmmdmmdmwmumm
mmmmmmmpmm,m,mmmmmm*
lhfunmatdy,rmdmmmﬁgaﬁngﬂmeﬁeddmmpmMgoedﬂdrm’s
Froblem solving skills found no such link between programming practice and the automatic
dcvdqmmtdnobkmwlvmgabiﬁﬂq@mWauaaLIWQ;Emhh,Abbw,Sahu,md
Soloway, 1984; Pea & Kurland, 1984; Leron, 1985; Patterson & Smith, 1986: Shaw, 1986;
Mandinach & Linn, 1987). Their findings have led many educators to discount all notions of the
mﬂqmaﬂmbﬂityofpmgmmﬁngmvhmenqumedevebpmentotﬂﬁnhngandpmbkm

solving skills, and programmine is beine accordingly de-emphasized in educational
computing
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programs. In the opinion of certain authors, however, thi3 is a case of throwing out the baby with
the bath water. Programming environments, they argue, most probably are uniquely suited to the
development of certain higher-order cognitive processes, but such processes are not developed
automatically, rather must be mindfulty taught and practiced (Pea & Kurland, 1984; Leron, 1985;
Salomon & Perkins, 1987). S ' ‘

Indeed, investigations including this sort of mindful intervention have demonstrated that
Logo programming can support the development of. rule-learning (Gorman & Bourne, 1983;
Degelman, Free, Scarlato, Blackburn & Golden, 1983), reflectivity (Clements & Gullo, 1984;
Miller & Emihovich, 1986), divergent thinking (Clements & Gullo, 1984; Swan & Black, 1989),
problem representation (de Corte et al, 1989), analogical reasoning (Clements, 1987; Swan &
Black, 1989), debugging skills (Carver, 1987; Swan & Black, 1989; de Corte et al, 1989),
subgoals formation (Swan & Black, 1989; de Corte et al, 1989), and forward chaining strategies
(Swan & Black, 1989); as well as the capacity to apply learned concepts to novel tasks (Lehrer &
Randle, 1987; Thompson & Wang, 1988; Lehrer et al, 1989). Moreover, they have shown that
probiem solving instruction with Logo programming practice better supports such development
than conventional instruction and practice. These findings suggest that computing environments in
general and the Logo programming envimnmentmparﬁcularcanbeunique}ysuppou-ﬁveofﬁ:c
tcadﬂngandleamingofmblcmsotvingskiﬂsasdahned, but only when those skills are
specifically identified and mindfully taught and practiced.

“Knowlcdge-Based Instroction. *

Such findings are really nothing new; they mirror Thorndike'’s (1907) results concerning
Latin and logical thinking. ﬂmdikemch&dedﬂmtﬂwknowbdgeofhiglwronler&kiﬂssu&as
Iogicalﬂﬁnhngmprobkmuﬂvhgmuhmlybcm&udmdmdeﬁedmoquanmm
ﬁleextcntmvdﬂchﬂmtknowledgewasexpﬂdﬂymught Toexpﬁdﬁywadl}ﬂgherordcx'aki]h,
oneneedstospedfyﬂxeknowbdgeﬂmpromreqmre; one needs to premise the design of
mmmknowledgeoumas,mﬂwrﬂmnonbchavbmlwwcm. .

We belicve the distinction is a real one. Problansolvinginsu'ucﬁm,forexamplc,has
traditionally sought behavioral cutcomes. Ithasfoaxedonﬂmema'eesedabﬂﬂytosdwpmﬂaﬂar
kindsofxxobkmandhmmrﬂnglymnﬂatedmptwﬂwadvmsﬁmpmbhm This
doesn't work. Wlﬂkﬁwmsdcnminlhmndike’smuﬁesnﬂghthavebeoomebeuu'atsolving
pmﬂcﬂmlxﬁnprobkms,ﬁwydidnﬂacqﬁregmaﬂmdloglmlﬂﬂnhngaﬁﬂa@wuldbe
applied to problems in differing domains. Sh:ﬂlar}y,smdentsmﬂwem'tyLogomldia(Papma
al, 1979; Pea & Kurland, 1984; Leron, 1985) mighlhavehcomcbcttcratsrﬂvtugpmﬂaﬂarLogo
mmMngmbkm,bmmmsﬁmMMgmnﬁzedmdmmfmedmodmdomaim.

It is our contention that they are not successfi-  ecause complex cognitive behaviors like
problem solving involve more than their manifest benaviors and must be addressed at a deeper
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level, at the level of the knowledge structures which support such behaviors. This knowledge has
two components -- & declarative component, the knowledge of what those specific steps entail, and
a procedural component, the knowledge of how to perform them. What is missing from
behaviorally-based problem solving instruction is a declarative focus, an explicit description of the
steps involved in particular problem solving strategies. Indeed, Anderson (1983) argues that all
knowledge beginsas declarative knowledge and is gradually proceduralized through practice.

We believe that what is atissue here is the abstraction and generalization of knowledge; that
an explicit declarative focus is necessary for building knowledge structures that are generalizable.
We believe that it is not enough to merely give students procedural experience solving particular
problems, bucrather that such experience must be linked with the declarative knowledge of specific
problem solving strategies, before those strategies can be generalized and applied in differing
contexts. Just as the naming and defining of objects through language leads to the abstraction of
their qualities so that they can be manipulated as objects of thought, so the naming and defining of
specific problem solving processes decontextualizes them so that they can be generalized and
applied in other doraains. This is what we did in designing the Logo-based problem solving
intervention we used in our studies. We began with a focus on the declarative knowledge
underiying six specific problem solving strategies.

Probicem Solving Strategics.

A number of distinct problem solving strategies can be distinguished within behaviors
considered general problem solving (Wicklegren, 1974; Newell & Simon, 1972). Certain of these
seem more applicable to programming problems in general, children’s programming in particular
(Clements & Gullo, 1984; Lawler, 1985; Clement, Kurland, Mawby & Pea, 1986). We
performed task analyses based on Polya’s (1973) decomposition of the problem solving process of
mmmm-m.mm.mmummmmgo
programming. These were subgoals formation, forward chaining, backward chaining, systematic
trial and error, alternative representation, and analogy. A description of each follows.

Subgoals formation,

, Subgmhfamaﬂmrdmbbwaldngaﬁngbdifﬂmhpmbkmmmtwoormmdmpkr
problems. Subgoals formation might thus be seen as the mapping of a problem space. Even when
mobﬁwdymbkmbgmkqanbefmnﬂ,brmhngaprobbmhnommtpmumam
its solution less formidable, more manageable, and less suscepiibie to errors. Subgoals formation
can be described by the following four steps:

1. Problem definition. Specify the problem.

2. Subdivision. Examine the problem specification to sec where it can be broken into

mallyllfx;x self-contained problems. Specify these and their connrections to the larger
pro .




3. Evaluation. Test the subproblems generated for grain size and further decomposition. If
the subproblems are mansgeable or cannot be further decomposed, solve them. Recombine
these partial solutions into the total solution using the connections specified in siep 2.

4. Recursion. Otherwise, repeat the second and third steps for each of the subproblems

generated. Conﬁnucﬂlcprowssunﬁlnomommmlkzrpmblemscanbcgcnmtedforany

—ofthesubproblems. -~~~ - = - - ' S
While subgoals fcrmation might seem an obvious strategy to edults, it is not at all obvious
to many children (Carver & Klahr, 1986), therefore it is a good candidate far explicit instruction.
Moreover, of all the problem solving strategies, it can most clearly be implemented and concretized
in Logo programming. In Logo, small subprocedures are easily written and placed in the
workspace. Becausemmec&nbecauedfromanywhereinaprogmm, a program can simply be a
list of such subprocedures, a very concrete representation of the subgoals that make up a

programming solution.

F { chaini
Foxwa:ddminingisaspedesofmeans-mdsanalysh(Ncwei&Shnm, 1972) which
involves working from what is given in a problem towards the problem goal in step-by-step,
transformational increments that bring one progressively closer to that gcal. The forward chaining
prooesscanbedemposedintoﬁxcfoﬂowingsteps:

1. Problem definition. Specify the problem goal. Specify what i3 given. Specify the
constraints, if any.

2. Transformation. erdomainopcmtomtomanipulatethegivemtobrhxgﬂwmclo&erto
the goal state,

3. Evaluation, Comparetlwdeairedgoamegivem,andﬂxelramfo;rmaﬁon. Test to see
Mzeﬁzerﬂleu‘amformaﬂonhmﬂydoaertoﬂlegoalﬂmdwgivcm. If it is not, redo step
2.

4. Recursion. Makcmctmnsformmonancwgiven. Repeat steps 2 and 3 using the new
given. Cmﬂnuetnﬂthmma-mﬂlﬁwgoalmismachedmdthepmbleminolved '

modelofﬂ:cfmddmhxhgpmwu. Animpormmmoffmddmining,hawcver,tnvolvu
mmmmwmmmmmwmmmm
one nearer problem solution. Forwardchainingﬂmsmqmresmesortofmcntalmodelofﬂle
problem space, and is not, thcrefore,typicanyanovicctednﬁque(Gmcno&Shnon, 1984).

Backwardchaining, :
Backwmdchahﬂng,houvvcr,mtypkanyamvioepmbhnadvmgmgy(&oem&
Simon, 1984). Backwmddminingfoamonﬂlegoalstmemduwsmdedmeaprewcﬁngstate
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from which that goal could be derived, then a state from which that state could be derived, and so
on, working backward to what is given in a problem. The backward chaining process consists of
the following four steps:

1. Problem definition. Specify the goal state. Specify what is given in the problem. _
- =~ ~2. Decomposition. S ily a state that could be transformed into the goal state in a single
' step.

3 Evaluau’on.Testﬁzespedﬁcdu'ansformaﬁontobemn'eitcaninfactbeh'ansformedinto
the goal state, If it cannot, redo step 2. Examinethespec‘:ﬁedtransformaﬁontomakem
itisdo&ertowimtisgiventlmnisﬁlegoal. If it isn't, redo step 2.

4. Recursion. Oﬂlemdse,makeﬂxespedﬂedstateanewgoalstateandrepwstem2and3
using this new goal state. Conﬂnueint}ﬁsmmmerunﬁladeerpamfromgivemtogoal
can be discerned. Use it to sotve the problem.

Backwarddmmhgisaparﬁaﬂmiyuscﬁﬂwchmqucﬂxenapmblcmhmaunmuely
speciﬁedgoal,and/orisasimaﬂoninw}ﬂdxﬂwinputsandouq)umofﬁxeumfmmaﬂcnscanbe
umiquely specified (Wicklegren, 1974). Such is often the case in programming problems. Indeed,
pmgrmnminghasbeenidenﬁﬁedasatcleologicaldﬂmm(ﬂohcr, 1984). Moreover, in as much as
ﬁhtypimnyanowmtechdque,backwmdchahﬁngnﬂg}nbemmavaﬂablemdﬁkhcn.
chever,backwmdchahﬂnghasnormlmalogmlogopmgmnmmxasonemmotbm]d
prograins backwards,

Systematic trial and error,

' Sysmmaﬁcuialandmmvolvuﬂwmnﬁvemﬁngotposs{blcsoluﬂomma
wsmaﬂc,gmdedfashbmmmemobkmmmmmmd/mmﬁncmmtmmﬁngﬁmmm.
Itdiﬂmﬁomfmwmﬂdmhhgmﬂmﬂmwamgaﬂwmfmmzmbkmmdmdmﬂnuugh
ﬂleeliminaﬁonofpoadbﬂiﬁa)aswcllmposiﬁvcinfcmnee,andinﬁmtifspowulicainthe
Wmammmmmmmauwam. The steps
mvolvedmﬂxclystcmaucuialandmrprmindudc:

1. Problem definition. Specify the probiem goal.
2. Approxitmate solution. Q'eancandimﬂemcntaplanmmmzprobkm.

4. Recursion. UsedmedmipdonofgoaVaotuﬂondiacrcpandeammiacﬂ)eplan,and
reapply steps 2 and 3. Conﬁnueinthismannutmtﬂﬂmhutanﬁatedsoluﬂmmatdmthe
tesired goal

Piaget (Ginsberg & Opper, l979)beﬂwedﬂ1atﬂ1eappﬁmionofsya’wmaﬁcum and error
su‘ancgiawasanimponamdmrminantofformalmcmﬂonﬂabi&ty. Systematic trial and error,
then, 18 an obvious candidate for testing Papert's (1980) notion that programming environments
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support the concretizing of the formal. Certain types of graphics programming, moreover, are
paradigmatic of systematic trial and error strategies. Debugging also makes use of, and provides
symbolic representations for, such techniques (Carver, 1987).

Alternativeepresentation,

Alternative representation involves conceptualizing a problem from differing perspectives.
Polya (1973) writes that often the way a problem is stated is really all that makes it difficult, that
simple restatement will make ifs solution obvious. Alternative representation is thus the antidote to
functional fixedness (Dunker, 1945). Alternative representation can be decomposed into the
following four-step description:
1. Problem definition. Specify the problem.
2. Alternativerepresentation. Generate analternative problem specification

3. Evaluation. Test to see whether the new problem specification suggests problem
solution. If it does, solve the problem. '

4. Recursion. Otherwise, repeat steps 2 and 3 by generating and evaluating other problem
specifications until a problem solution is found.

Programming is conducive to the development of alternative representations both because
there are never single correct solutions to programming problems, and because differing
mpmenmﬂmscanqtﬂmceﬂybcmsmnﬂatcdandmngmaﬂcaﬂytmwdmpmgrmang
environments. Indeed, Clements and Gullo’s (1984) study of the effects of Logo programming on
young children’s cognition found significant increases in their ability to produce alternative
representations. Statz’s (1973) finding of significant increases on permutation tasks may also
support this view. However, their is no clear analog in Logo programming for alternative
representationstrategics.

Aualogy,
Analogymvolvuﬂwdimwryofaparﬁaﬂmnhﬁmﬂybetwwntwﬁﬁngsoﬂxm

morcorlesstmﬁkc,and'amxppmgofknowiedgefromoncdomain(ﬂxebase)ontoanodm(ﬂxe
mgﬂ)predicatedmasysamotmhﬁomﬂmthoﬁamnmgﬂwobjmdboﬁldmms.'
(Gentner, lQ&?)Anhnpmﬁmfwwrmﬁﬂspmcw,espedanymproblmwlvmgcmm,is
goal-re.atedneas,howonedomainishkeano&mwithreomcttoaspedﬁedgoal(Holyoak&Koh,
1987). Theuxofanalogymmblemwhmgmnbedewmpmedtnmﬂwfolbwmgstcps:

1. Problem definition. Specify the desired goal. Specify the base and the target systems.

2. Mapping. Perform a mapping between the base and target systems.

3. Evaluation. Test the soundness of the match in terms of both structural similarity and

pragmatics (goal related conditions). If the analogy generated meets the goal conditions,

: andmesu'ucun-alsinﬂ]m'itybetwecnmebascandmetargctholds, the mapping is sound.
Usethebasedomainsolutkntogenerateasoluﬂonmﬂzetm-gadomam.
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4. Recursion. Otherwise, return to step 1 and specify a new base domain. Apply steps 2
and 3 toit. Continue in this manner until an adequate representation is discovered.

Programming environments inherently support the cevelopment of aunalogy in that one is

- always mapping between computer code (a formal representation) and program output (a concrete
representation), and recursion, an important Logo programming technique, is a form of analogical
reasoning. Recursion, however, is confusing to most adulis. None-the-less, Doug Clements
(1987) found significantly better analogical reasoning among students with prior Logo experience.
Analogy, morcover, is the basis for all transfer, thus a critical element in the research we designed.

****% INSERT FIGURE | ABOUT HERE ***#»

These gix problem solving strategies -- subgoals formation, forward chaining, backward
chaining systematic trial and error, alternative representation, and analogy can be more or less
concretely represented, then, within a Logo programming context. We accordingly designed our
instruction and our testing procedures around them. The instruction was split into units, one for
each strategy. Eachunitbeganwiﬁxexpﬂdtmsmxcﬂononapa_rﬂmlangy (declarative
knowledge) in which wall posters which enumerated the steps involved in each strategy (FIGURE
1) were presented and discussed. This was followel by mediated practice (Peuerstein, 1980;
Delclos, Littlefield & Bransford, 1985; Corno, 1986) solving problems designed to be particularly
amenable to solutions employing that strategy (procedural knowledge). An example of a problem
set is given in FIGURE 2. We likewise created six separate tests, each designed to measure
students’ facility in applying specific strategies to non-computing problems. (See APPENDIX.)
Our goal was for students to transfer the strategies learned in the intervention to the paper and
pencil tasks of the problem solving tests.

*#*+ INSERT FIGURE 2 ABOUT HERE #****

STUDY ONE

Study One was a pilot study concerned with testing the efficacy of the intervention we
designed for supporting the development of six particular problem solving skills. Within that
context, two factors we believed might effect such development were also manipulated and
. examined. The first of these was the specific Logo practice environments utilized. In particular,
we thought that students might be more likely to develop problem solving strategies practiced
within both the graphics and the list-processing programming environments, but we also thought it
was possible that one or the other of these environments alone would be more supportive of the
development of particular strategies. The second factor we thought might influence the
effectiveness of the instruction was the grade levels of the subjects involved. Specifically, we
thought there might be developmental differences in students’ propensity to develop particular
problem soiving strategies. Study One thus examined three interreiated questions:
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1. Can the Logo programuming environment support the development of subgoals
formation, forward chaining, backward chaining, systematic trial and error, alternstive
representation, and/or analogy strategies when those strategies are explicitly taught and
2. Do differing practice environments within Logo programming differentially effect the
likelihood thatsuch strategies will be developed within that instructional coniex(?

3. Do developmental differences differentially effect the the developmeni of such strategies
will be developed within thatinstructional context?

Subjecta.
Subjects were 133 fourth through eighth grade students in a private elementary school.
All subjects had atleast 30 hours previous Logo programming experience.

Methodology.

All subjects were given paper-and-pencil exerdses testing their ability to apply six
problem solving strategies -- subgoals formation, forward chaining, backward chaining,
systemitic trial and error, alternative representation, and analogy -- and randomly assigned by
grade to one of three treatment groups receiving respectively graphics, list processing, or
graphics and list processing practice problems. All subjects received training in each strategy,
then were asked to solve four practice problems particularly amenable to solutions involving

. thatstrategy. On completion of all six strategy units, subjects were post-tested using different

but analogous exercises. Mean pre-test scores were compared between groups using one-way
enalysis of variance and found to be statistically equivalent (F2, 130 = 1.50, p > .10), hence,

treatment groups were assumed to be generally equal in problem solving ability before
treatment. Raw scores on all tests except thoee for alternative representation were converted to
percent correct scores and compared using & four-way anaiysis of variance. Independent
variables were test, strategy, class (grade level), and group. The dependent variables were
scores on the strategies tests. Because they had n» maximum possible correct, alternative
representations measures were evaluated separately using a three-way analysis of variance,

Results.
Sigdﬂm:diﬁmmfmmdbaweenmbjecm’manpm-mdpmt-mtmfm
aﬂmobkmsdvhgstategiauocptbuckwmﬂdmﬁngfmwbjcwmaﬂmunmtm.
Thmmmmmmﬂweﬁecﬁvenmofmehmmonwdedgnedfmwmﬁngﬂm
development of subgoals formation, forward chaining, systematic trial and error,
alternative representation, and analogy strategies. The intervention was not shown to be
eﬂwﬁvcfm&e%hingandlearﬁngofb&ckwmﬁchahﬁngmm,wmdiﬁedng
practice environments found to differentially effect strategy development. The results aisc
revealed developmental differences in students’ facilities for both using and developing
particular problem solving strategies, Not surprisingly, older students were better than
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younger ones at applying all strategies. They were also more likely to benefit from instruction
and practice in alternative representation and analogy strategies, while younger students
benefited more than older ones from instruction and practice in subgoals formation strategies.

TABLE 1
Study One; ANOVA Table for Subgoals Formation,
Forward Chaining, Backward Chaining, Systemaiic Trial & Error, and

Analogy

S8 DF MS ¥ FROB
MEAN 4952023.5 1 4952023.5 3784.56 ¢ .0000
CLASS 67283.5 4 16820.9 12.86 0.0000
GROUP 4388.2 2 21911 1.68 0.1914
CG 18297.7 8 2281.2 1.75 0.0544
ERROR 154400.6 118 1308.2
TEST 40134.8 1 40134.8 170.86 0.0000
TC 947.3 4 236.8 1.01 0.4061
TG 490.9 2 245.5 1.04 0.3549
TG 1286.8 8 160.8 0.68 0.7042
ERROR 27717.9 118 2349
STRATEGY 229966.2 4 57491.6 171.72 0.0000
SC 414200 16 2588.7 1.73 0.0000
SG 2205.1 8 275.6 0.82 0.5823
SCG 15784.3 32 492.1 1.47 0.0495
FRROR 158028.5 472 334.8
TS 14457.3 4 3614.3 14.79 0.0000
T8C 10124.9 16 632.8 2.59 0.0007
TSG 2064.6 8 258.1 1.06 0.3928
TSCGQ 7842.1 32 245.1 1.01 0.4654
ERROR 115325.9 472 2443

TABLE 1 shows the results of the four-way analysis of variance comparing students’
strategy measure scores in Study One. Signiﬂmntmaincﬁ'ectnfordass(h,“g = 1286, p <

.01), test (F] 118 = 170.86, p < .01), and strategy (F4,472 = 1.71.72, p < .01) were found. No
significant main group cffoct was discovered (F3, 118 = 1.68, p > .10). TABLE 2 shows the
results of the three-way analysis of variance comparing students’ alternative representation
scores.. Again significant main effects weie found for class (F4,118 = 6.02, p < .01) and test
(F1,118 = 1.37, p <.01), but no main group effect was found (F2,118 = 1.05, p > .10).

The main class effect indicates developmental differences in students’ problem solving
abilities. Students’ mean scores for all problem solving strategies rose with increasing grade
levels, indicating that older students were more adept at utilizing the strategies than younger ones.
This effect, although expected, supports views linking problem solving with formal operational
skills. The main test effect indicates significant pre- to post-test differences across strategies for all
grade lovels and treatment groups. Such increases argue for the success of the instruction tested.
The main strategy effect indicates significant differences between mean scores on the various
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stralegy measures. Becguse these measures were not designed to be equivilant, however, the
effect is not meaningful. The lack of a group effect indicates no significant differences between
treatment groups, thus that differing practice environments within Logo had no effect on the
efficacy of the instruction we designed.

’ TABLE 2 - o
Study Onc ANOVA Table for Alternative Representation
SS DF MS F PROB
MEAN 3389956.9 1 3389956.9 2248.39 0.0000
CLASS 36310.0 4 9077.5 6.02 0.0002
GROUP 3170.5 2 21589.2 1.05 0.3518
CG 19551.9 8 24440 1.62 0.1259
ERROR 177911.7 118 1507.7
TEST 115234.5 1 115234.5 137.78 0.0000
TC 14196.0 4 35490 4.24 0.0030
T8 1599.8 2 799.9 0.96 0.3873
TCG 7734.4 8 966.8 1.16 0.3316
ERROR 98694.5 118 836.4

The four-way analysis of variance also examined eleven interaction effects. Significant
strategy by class (Fj6 472 = 7.73, p < .01), test by strategy (F14,472 = 14.79, p < .01), and test
by strategy by ciass (F¢ 472 = 2.59, p < .01) effects were discovered. The test by strategy effect
indicates differences in pre- to post-test changes between the five problem solving strategies tested.
An examination of the simple test effect at each level of strategy reveals significant test effects for
all of these except backward chaining, indicating that students developed subgoals formation,
forward chaining, systematic trial and error, and analogy strategies as a result of the intervention
(FIGURE 3). A similar result was found for measures of alternative representation. Such results
argue strongly for the success of the intervention, and support the finding of & main test effect.

**+2++ INSERT FIGURE 3 ABOUT HERE *****

Likewise, a closer examination of the strategy by class interaction supports the finding of a
main effect for class. Simple class effects were found at all strategy levels except backward
chaining, indicating developmentai differences in stixients’ problems solving abilities, with older
students generally scoring higher than younger ones on the various strategy measures (FIGURE
4). In addition, a finer grained analysis of the test by strategy by class interaction indicates
developmental differences in students’ propensity to develop particular strategies. Progressively
weaker test effects were found at increasingly higher grade levels for subgoals formation
measures, and progressively stronger test effects were found at increasingly higher grade levels for
measures of analogy. A seperate analysis also revealed progressively stronger test effects at
increasingly higher grade levels for alternative representation measures. Such results hint at
developmental differences in students’ readiness to develop certain problem solving strategies, in
particular, that younger studentswere more ready to develop subgoals formation strategies, and that
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older students were more ready to develup alternative representation and analogy strategies.

«#+*% INSERT FIGURE 4 ABOUT HERE *****

Discussion

The results of Study One strongly suggest that the instruction we designed supports the

development of five particular problem soiving strategies -- subgoals formation, forward chaining,
systematic trial and error, alternative representation, and analogy -- but not the development of
backward chaining strategies, among the population tested. While the positive increases observed
on these strategy measures might also have resulted from practice and/or maturation, the size of the
increases and the lack of sirvilar increases on backward chaining measures argue that such was not
the case. The results also suggest that differing practice environments within Logo programming
have little effect on the success of such iutruction. Finally, the results point to developmental
differences in students’ facility with and propensity to develop particular problem solving skills.
Specifically, we found that older students were more likely to develop alternative representation
and analogy strategies, whereas younger students were more.likcly to develop subgoals formation
strategies.

STUDY TWO

Study Two was concerned with validating the results of Study One with reference to
meaningful controls; in particular, with assessing the importance of Logo programming within the
instruction we designed, and with differentiating between that intervention and discovery learning
approaches. Study Two investigated the differing efficacies of explicit problem solving instruction
with Logo programming practice vs. discovery learning in a Logo programming environme.t, and
the Logo programming environment vs. a concrete manipulatives practice enviroument for
supporting the development of the five problem solving strategies on ‘which students showed
improvement in Study One — subgoals formation, forward chaining, systematic trial and error,
alternative representation, and analogy. Two research questions were addressed:

1. Is explicit problem solving instruction with Logo programming practice superior to
discovery learning in a Logo programming environment for supporting the development of
five particular problem soiving strategies -- subgoals formation, forward chaining,
symaﬂch'hlandm,ah:maﬁvenpruenmﬂon,andmbgy?

2. kﬂ:cLogopmgrmningcknnainpmﬁaﬂaﬂywppmﬁwofﬁchhingandlwﬂnsd
- problemsolving?

Subjects.
Subjects were 100 fourth through sixth grade students at the same private elementary
school where Study One was compieted. All had at least 30 hours previous Logo programming
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older students were more ready to develop alternative representation and analogy strategies.

«s+** INSERT FIGURE 4 ABOUT HERE **##»

Discussion

~ The results of Study One strongly suggest that the instruction we designed supporis the

development of five particular problem solving strategies -- subgoals formation, forward chaining,
systematic trial and error, alternative representation, and analogy -- but not the development of
backward chaining strategies, among the population tested. While the positive increases observed
on these strategy measures might also have resulted from practice and/or maturation, the size of the
increases and the lack of similar increases on backward chaining measures argue that such was not
the case. The results also suggest that differing practice environments within Logo progranmming
have little effect on the success of such intruction. Finally, the results point to developmental
differences in students’ facility with and propensity to develop particular problem solving skills.
_ Specifically, we found that older students were more likely to develop alternative representation
and analogy strategies, whereas younger students were more likely to develop subgoals formation-
strategies.

STUDY TWO

Study Two was concerned with validating the results of Study One with reference to
meaningful controls; in particular, with assessing the importance of Logo programming within ti.e
instruction we designed, and with differentiating between that intervention and discovery learning
approaches. Study Two investigated the differing efficacies of explicit problem solving instruction
with Logo programming practice vs. discovery learning in a Logo programming environment, and
the Logo programming environment vs. a concrete manipulatives practice environment for
supporting the development of the five problem solving strategizs on which students showed
improvement in Study One — subgoals formation, forward chaining, systematic trial and error,
alternative representation, and analogy. Two research questions were addressed:

1. Is explicit problem solving instruction with Logo programming practice superior to
discovery learning in a Logo programming environment for supporting the of

five particular problem solving strategies -- subgoals formation, forward chaining,
systematictrial and error, alternative representation, and analogy?

2.kﬁnlogopmgrammmgdm;minpmﬁaﬂm1ympporﬁwofﬂwm&dngmdbmxﬁngoi
problem solving?

Subjects.
Subjects were 100 fourth through sixth grade students at the same private elementary
school whete Study One was completed. All had at least 30 hours previous Logo programming

15 BEST COPY AVAilﬂBlE




IMethodology.

All subjects were tested on their ability to apply the five problem solving strategies on
which subjects improved in the first study -- subgoals formation, forward chaining, systematic trial
and error, alternative representation, and analogy. They were then randomly assigned by grade to

one of three treatment groups receiving respectively explicit problem solving instruction with Logo

graphics practice, explicit problem solving instruction with cut-paper manipulatives practice, or
Logo graphics programming problems without strategy training. On completion of all treatments,
subjects were post-tested using different but analogous tests. Mean pre-test scores on measures of
subgoals formation, forward chaining, systematic trial and error, and analogy were compared
between groups using one-way analysis of variance and found to be statigtically equivalent F2, 97
= 0.33, p > .10), hence, treatment groups were assumed to be generally equal in these problem
solving abilities before treatment. Subjects’ scores on the alternative representation pre-test,
however, were not statistically equivalent (F3 97 = 4.99, p < .01). Students receiving problem
solving instruction and Logo programming practice scored lower on the pré-twt than students
receiving Logo programming practice alone who scored lower than students receiving problem
solving instruction and cut-paper manipulatives practice.

On completion of all treatments, subjects were post-tested using different but analogous
tests. Raw scores on all tests except those for alternative representation were converted to percent
correct scores and compared using a three-way analysis of variance. The independent variables
were test, strategy, and group. The dependent variables were scores on the strategies tests.
Because they had no maximum possible correct, alternative representations measures were
evaluated seperately using a two-way analysis of variance.

Results.

Significant differences in pre- to post-test increases were found between treatment groups
mcﬁmﬁngﬂmzwbjemmcxpﬁdtpmbkmsdvmngﬂMgopmgrmmmg
practice, and that group alone, improved in subgoals formation, forward chaining, systematic trial
and error, and analogy sirategies. Increased ability in applying alternative representation strategies
was also indicated for this group but not conclusively demonstrated. The results thus argue for the
superiority of explicitinstruction and Logo programming practice over both similar instruction with
cut-paper manipulatives practice and discovery learniag in a similar practice environment for the
teechmgandleamhgofpmblcmnotving

TABLE 3 shows the results of the three-way analysis of variance comparing students’
strategy measure scores in Stody Two. Significant main effects were found for all independent
variables (group, F2 g7 = 12.81, p < .01; test, Fy,97 = 594, p < .05; strategy, F3 29] ™
207.11, p < .01), indicating significant differences along all three dimensions. Of these, only the
group effect is particularly meaningful. The strategy effect is not meaningful because the differing
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strategy measures were not designed to be equivilant. The test effect indicates significant pre- to
post-test changes, but these could have resulted from practice or maturity and not from the various
interventions.

TABLE 3

Study Two; ANOVA Table for Subgoals Formation, - : B
Forward Chaining, Backward Chaining, Systematic Trial & Error, and

Analogy

SS DB S P PROB
MEAN 2074999.0 1 20743990 . 1568.08 0.0000
GROUP 33907.5 2 16953.7 12.81 0.0000
ERROR 128357.9 97 1323.3
TEST 1576.6 1 1576.6 5.94 0.0166
TG 6871.7 2 3437.3 12.96 0.0000
ERROR 25735.0 97 265.2
STRATEGY 283190.9 3 94397.0 207.11 0.0000
5G 13478.6 6 2246.4 493 0.0001
ERROR ' 132630.9 91 455.8
TS 2274.2 3 758.1 .64 0.0132
TSG 743.4 6 123.9 0.60 0.7338
ERRCR 60540.8 291 208.0

The group effect, however, clearly indicates differences between groups resulting from the
various interventions. Because the groups were statistically equivalent before receiving treatment,
but significantly different overall, the group effect indicates differences in problem solving strategy
skills resulting from differences in the interventions. This result is corroborated by the finding of a
test by group interaction (F3 g7 = 12.96, p < .01), indicating differences in pre- to post-test
changes resulting from the differing treatments. This interaction was examined in greater detail by
assessing the simple test effect at each level of group. A strong test effect was found for the group
recieving problem solving instruction and Logo programming practice, and for that group alone.
Students in receiving problem solving instruction and Logo programming practice improved an
average of 11.1 percentage points on the four strategy measures, while the scores of students
receiving similar instruction but cut-paper manipulatives practice remained essentially the same,
and the scores of students receiving Logo programming practice atone actually dectined slightly,
atthough not significantly. FIGURE 5 illustrates these results. The findings demonstrate that the
intervention we designed, and that intervention alone, resulted in significant increases in students’
problem solving abilities in four areas -- subgoals formation, forward chaining, systematic trial and
error, and analogy. They argue for the superiorit/ of explicit problem solving instruction and
Logo programming practice over both similar instruction with manipulsttves practice and Logo
programmingalone.

s*++* [NSERT FIGURE 5 ABOUT HERE #****
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The results of the analysis of variance for alternative representation measures (TABLE 4)
is problematic. Significant main effects were found for group (F2,97 = 4.13, p < .05) and test (

F2 97 = 10.55, p < .01). Because de groups were not equivalent to begin with, the group effect
is not meaningful. Indeed, an examination of group means shows that all groups improved on

- alternative representation measures, thus, the test effect is not meaningful either. Whatwould be

meaningful would be a solid test by group interaction. Unfortunately, the analysis of variance
reveals only weak significance for the interaction (F2,97 = 2.57, .05 < p < .10).

TABLE 4
Study Two; ANOV A Table for Alternative Representation

Ss DF MS B FROB
MEAN 19113259.6 1 19113259.6 563.35 0.0000
GROUP 28058.5 2 14029.3 413 0.0000
ERROR 329431.8 97 3396.2
TEST 24819.1 1 24819.1 10.55 0.0016
TG 6631.9 2 3315.9 .57 0.0821
ERROR 125363.8 97 129224

The simple test effect was none-the-less assessed at each level of group to examine the test
by group interaction in greater detail. A strong test effect was found for the group receiving

problem solving instruction and Logo programming practice (F1,97 = 18.91, p < .01), whereas

only a weak test effect was found for the group receiving problem solving instruction and
cut-papermanipulativespractice (F} g7 = 3.61, .05 < p < .10), and no test effect at all was found

for the group receiving Logo programming practice alone (F1,97 = 1.81, p> .10). FIGURE 5
iltustrates the differences in pre- to post-test changes between groups. Itcan be seen that the group
receiving problem solving instruction and Logo programming practice improved more than twice
as much as cither the group receiving instruction with cut-paper manipulatives practice or the group
receiving Logo programming practice alone. Because students in the explicit instruction - Logo
programming group had lower scores on alternative representation measires to begin with,
however, the greater gains they made might be attributed to differential ability levels rather than the
intervention. Thus, the most we can conclude is that it is possible that students in the Logo
graphics group showed greater increases on measures of alternative representation as a result of the
~ intervention we designed.

Discussion

The results of Study Two argue strongly for the supericrity of explicit problem solving
instruction and Logo programming practice over both similar instruction with manipulatives
practice and discovery learning in Logo programming environments for the development of four
problem solving strategies -- subgoals formation, forward chaining, systematic trial and error, and
analogy. Indications are that such pedagogy may be most effective for the teaching and learning of
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alternative representation strategies as well. In terms of the research questions, then, we can
conclude that explicit problem solving instruction with Logo programming practice is more
supportive than Logo discovery learning environments of the development of those strategies, and
that the Logo programming environment itself is more supportive of such development than
concrete manipulatives. The findings thus support Papert’s (1980) contention that abstract ideas

 can be concretely represented on computers in ways that help students bridge the gap between
concrete and formal thought, but argue against his claim that such transition will take place
automatically when students work within Logo programmuiing environments.

STUDY THREE

Because Studies One and Two utilized the same teachers and similar student populations,
we had some question about the general application of the instruction we designed. Study Three
was thus concerned with validating the results of the first two studies with a different teacher and a
differing student population. Because the controls used in this study involved regular classes in -
formal mathematics and programming, it also investigated the differing efficacies of that instruction
vs. regular instruction in domains typically prescribed for the teaching and learning of problem
solving. Study Three, then, explored the following questions:

1. Does explicit instruction and mediated Logo programming practice support the teaching

and learning of five particular problem solving strategies -- subgoals formation, forward

d}oolmmgst;)dmswwandm’ alternative representation, and analogy -- among high
ts?

2. Is explicit problem solving instruction with Logo programming practice superior to
reguiar instruction in mathematics and programming for supporting the development of
such strategies?

Subjects. _

Subjects were 40 eleventh and twelfth grade students at an American school in Switzerland
enrolled in one of three clasees -- 2 Logo class, an Advanced Piacement (AP) Pascal class, or a
Pre-Calculus class. No subjects had any previous Logo programming experience.

Methodology.
All subjects were given paper-and-pencil tests of their ability to apply the five problem
solving strategies on which subjects improved in the first study. Subjects in the Logo class

received explicit probiem solving instruction and Logo programming practice in each strategy.
Subjects in the AP Pascal and Pre-Calculus classes received regular content area instroction. Mean

pre-test scores were compared between groups using one-way analysis of variance and found not
to be statistically equivalent (F2 37 = 12.76, p < .01), hence groups could not be assumed

generally equal in problem solving ability before treetment. An examination of group means
revealed that the Logo group scored significantly lower than students in both the AP Pascal and
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Pre-Calculus groups on pre-test measures. On completion of all treatments, subjects were
post-tested using different but analogous tests. Raw scores on all tests except those for alternative
representation were converted to percent correct scores and compared using a three-way analysis of
variance. Independent variables were test, strategy, and group. The dependent variables were

- -scores on the strategies tests.  Because they had no maximum possible correct, alternative -

representations measures were evaluated seperately using a two-way analysis of variance.

Results.

Significant differences in pre- to post-test increases were found between groups. Further
analysis of this finding revealed that subjects in the Logo class showed significantly improved
subgoals formation, forward chaining, and systematic trial and error strategies. Increased ability in
applying alternative representation strategics was also indicated but not conclusively demonstrated
for this group. The results argue for the superiority of explicit strategy training and Logo
programming practice over regular instruction in subjects traditionally prescribed for the teaching
and learning of problem solving and demonstrate the efficacy of the instruction we developed with
avery Mcﬁtshﬁ&tmpuhﬂm . .

TABLE 5

Study Threec; ANOVA Table for Subgoals Formation,
Forward Chaining, Backward Chkining, Systematic Trial & Error, and Analogy

Ss DF MS F PROB
MEAN 1220349.2 1 1220349.2 1014.79 0.0000
GROUY 1509.4 2 754.7 0.63 0.5395
ERROR 44494.6 37 1202.6
TEST 1540.2 i 1540.2 10.07 0.0030
TG 3536.4 2 1763.2 11.56 0.0001
ERROR 5657.4 7 152.9
STRATEGY 29113.7 3 9204.6 . 29.56 0.0000
sa 3144.3 6 13574 4.13 0.0009
ERROR 364444 111 3283
TS 1483.3 3 454.4 .54 001
TSG 1083.8 6 180.5 1.29 0.2663
ERROR 15493.5 111 19.6

TABLE 5 shows the results of the three-way analysis of variance for subgoals formation,
forwmﬂchainhg,syﬂunaﬂcuialandm,mdangbgymsmdym. Significant main effects
were found for test (F3 37 = 10.07, p < .01) and strategy (F3 111 = 29.56, p < .01), but not for
group (F,37 = 0.63, p > .10). Significant test by group (Fy 37 = 11.56, p < .01), test by
strategy (F3,11] = 3.54, p < .05), and strategy by group (Fg 111 = 4.13, p < .01) interactions
were also found. The results of the analysis of variance of scores on alternative representation
measures is shown in TABLE 6. It reveals significant main effects for group (F] 37 = 7.69, p <
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01) and test (F] 37 = 5.86, p < .05), but no test by group interaction (F 37 = 1.65, p <.10).

TABLE 6
Study Three; ANOV A Table for Alternative Representation

: 'SS DF MS = F  PROB
MEAN 700315.1 1 700315.1 300.29 0.0000
GROUP 35877.8 2 17938.9 1.69 0.0016
ERROR 86290.1 37 2332.2
TEST 4310.8 1 24819.1 5.86 0.0205
TG 2431.2 2 1215.6 1.65 0.2055
ERROR 27228.5 37 735.9

The main test and strategy effects are not particularly meaningful as previously explained.
Indeed, the group effect found for alternative representation measures is not meaningful either
because the groups were not equivalent to begin with. The lack of a group effect in the three-way
analysis -of variance, however, is meaningful because it reveals that groups which were not
statistically equivalent before treatment became equivalent after treatment. Because students in the
Logo group scored lower on pre-test measures than students in the other two groups, the lack of a
group effect indicates an improvement in their scores resulting from the intervention. Ttds result is
corroborated by the finding of a test by group interaction which indicates differences in pre- to
post-test changes resulting from differing treatinents. This interaction was examined in greater

_detail by assessing the simple tests effect at each level of group. A strong test effect was found for

the Logo group (F1,37 ~ 46.99, p < .01), but no test effect was found for the other two groups,

indicating that the Logo group, and the Logo group alone, improved across all four strategy
measures tested.

s**+* INSERT FIGURE 6 ABOUT HERE *****

FIGURE 6 illustrates these differences. Notice that students in the Logo group appear to
have significantly increased on all measures except analogy. Indeed,looklnﬁatﬂmshnpktast
effect 2t each level of group and strategy, we discovered a strong test effect for students in the
Logo group on subgoals formation, forward chaining, and systematic trial and error measures (p <
.01), but no test effect at all for analogy measures (p > .10). A possible explanation for i lack of
improvement on tests of analogy (especially considering that okder students in the first study
improved the most on these measures) is that the anaiogy test itself was too easy for the high
school students tested in Study Three. Indeed, students in this study scored so high on the
analogy pre-test that there was little room for tmprovement on the post-test. |

A significant simple test effect was also found for students in the Pre-Calculus group on the
systematic trial and error measure (p < .05), indicating that students in this group developed
mwmaﬁc&hlmdmmgummeoxhntbutdpﬁﬁmtdtﬁmmdﬂfmmd
between this group and the Logo group on the systematic trial and error measure. No simple test
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effects were found on any other strategy measures for members of the Pre-Calculus group, or on
any sirategy measures for members of the AP Pascal group. We can conclude, then, that the
intervention we designed was effective in increasing participating students’ .abgoals formation,
forward chaining, and systematic trial and error problem solving skills, and that it was more

_ effective in this respect than regular instruction in subject areas traditionally prescribed for the

teaching and learning of problem solving. An examination of the simple test effect at each level of

teaching and learning of subgoals formation, forward chaining, and systematic trial and error

strategies among high school students, andargueforitsmpcriorftyovcrmglmrinstmcdonm
subjects typically prescribed for sudltcadﬁngandleaxmng. Indications are that explicit instruction
and Logo programming practice is also effective for the development of alternative representation
strategies among such population. The results thus strongly support Thorndike's (1907)

research (Carver, 1987; Lehrer & Randle, 1987; Thompeon & Wang, 1988; de Corte et al, 1989;
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~_ component steps and explicitly taught. Students were thus provided with declarative knowledgeof

Lehrer et al, 1989; Swan & Black, 1989). We believe the reason why such instruction is
necessary is that students need generalizable declarative knowledge of particular problem solving
strategies in order to decontextualize such knowledge from programming and apply it in other
domains. In the instruction we designed, problem solving strategies were broken into their

the problem solving strategies to be learned.

Declarative knowledge of particular problem solving strategies, however, is not in itself
enough to ensure their development, as shown by Study Two. Procedural knowledge is also
necessary. Itis our belief that Seymour Papert (1980) is right; that computing environments, Logo
programming environments in particular, are uniquely conducive to the development of such skills
because they support quasi~concrete representations of these abstract strategies that students can
inspect, manipulate, and test through practice. In this vein, it is instructive that backward chaining,
alternative representation, and analogy strategies, for which their are no direct Logo
representations, were the least likely to be developed by the students in our studies, while subgoals
formation, forward chaining and systematic trial and error strategies, which are the most concretely
represenied in the language, were the most likely to be developed. In particular, no instructional
effects at all were found for backward chaining strategies, most likely because it is not possible to
develop programs backwards, hence, students had no procedural analog to link to the declarative
knowledge with which they were provided. Likewise, the cut-paper manipulatives in Study Two
probably did not provide students in that condition with anything like the quasi-concrete strategy
models available in Logo programming.

The development of problem solving and critical thinking skills is a crucial problem for
education today. The research presented in this paper offers an instructional intervention for
developing particular problem solving abilities. More importantly, it suggests that the Logo
programming environment in particular, computing enviroements in general, can perform a
mediating role in the development of probiem solving abilities by supporting quasi-concrete,
dynamic representations of abstract ideas which can help students bridge the gap between concrete
and formal thought when students are supplied with a declarative understanding of particular
probiem solving skills through explicit knowledge-based instruction. If computing environments
can indeed be designed to support such transitional objects for thinking, they might play an
important role in the teaching and learning of problem solving. In today’s educational climate, the
notion certainlty deservesfurtherinvestigation.




REFERENCES

Anderson, J. R. (1983) The Architecture of Cognition. Cambridge, MA: Harvard
University Press.

 Black, J. B., Swan, K. & Schwartz, D. (1988) Developing thinking skills with computers.
Teachers Colle :

ge Record, 89 (3)
Bolter, J. D. (1984) Turing’s Man. Chapel Hill, NC: University of North Carolina Press.

Carver, S. M. (1987) Transfer of Logo debugging skill: analysis, instruction, and
assesament. Computer Systems Group Bulletin, 14 (1), 4-6.

Carver, S. M. & Klahr, D. (1986) Assessing children’s Logo debugging skills with a
formal mode]. mmmmmmmz (4, 487-525.

Clement, C. A., Kuiland, D. M., anby.R.&Pea R. D. (1986)Analogleal

and oomputer programming.
423-454.

ClemcanH(l987)longmxhnalsmdyofmc oflogoprogrmnnnngon
cognitive abilities and achievement. Journal of Educati 1§ Research, 3
73-94,

Clements, D. H. & Gullo, D. F. (1984) Effecis of computer progranmiing on young
children’s cognition. Journal of Educational Psychology. 76, 1051-1058.

Como L (1986) 'Ih: metacogﬁtive control oomponcnts of sclf-regulated learning.

_m | : with Siz T Lzuven.Bcl,gium.iject
Compmcrsand'lhtnking Ccnterforlnsu'uc&onalPsydlology, Katholieke Universiteit

Delcios, V. R, Littlefield, J. & Bransford, J. D. (1985) Teaching thinking through Lo
mennportanoeotnrmod,Rmmr_Rmdcﬂ.l(Ii(), 13-156 8

De,gelman.D Free, J. U,, Scaﬂato M., Blackburn, J. M. &Golden.T (1986).Ismmaln(
E : g Reaes (@), 199-205.

Duncker, K. (1945) On problem solving. Psychological Monograph, 58, (6).
Ehrlich, K. Abbott, V., Salter, W. & Soloway, E. (1984) Issues and problems in

studying
transfereﬂecuofpmgrannnmg. Paper presented at the annual meeting of the American
Educational Research Assosiation. New Orlearns, April, 1984.

Feuerstein, R. (1980) InstrumentaBarichment. Baltimore, MD: Universityy Park Press.

Feurzig, W., Horowitz, A. & Nickerson, R. S. (1981) Mi ;
(chortNo 4798). Cambridge, MA: Boit, Baranck & Newmann.

Gentner, D. (1987) M
ComputerSdence

Ginsburg, H. & Opper, S. (1980)
Cliffs, NJ: Prentice-Hall.

24 CYSTCOPY AVALABLE




Gorman, H., Jr. & Bourne, L. E. (1983) Learning to think by learning Logo: rule learning

u}) Sthlggl] grade computer programmers, Bulletin_of the Psychonomic Society, 21,
165-1

Greeno, J. G. and Simon, H. A. (1984) Problem Solving and Reasoning (Techuical Report
No. UPI'IT/LRDCIONR/APS—M) Washington, DC: Learning Research and
_Development Center, Office of Naval Research. o o

Harvey, B. (1982) Why Logo? Byte, 7 (8), 92-95.

Holyoak, K. J. & Koh, K. (1987) Surface and structural similarity in analogical transfer,
Mgmgn@msggmngn,_u, 332-340.

Lawier, R. W. (1985) ngp&iﬂmmw_md_cpmmmmm
Leamning ina Computer Culture. New York: Halsted Press

Lehrer, R. and Randle, L. (1987) Problem solving, metacognition and composition: the
cﬁ'eds of interactive softwarc for first-grade children. Journal of Edvcational Computing
Research, 3 (4), 409-428.

Lehrer, R., Sancilio, L. and Randle, L. (1989) Learning pre-proof geometry with Logo.
anmmgndlxmma) 159-184.

Leron, U. (1985) Logo today: vision and reality. The Computing Teacher, 12 (6), 26-32.

Mandinach, E. B. & Linn, M. C. (1987) Cogpitive consequences of programming:
achievements of experienced and talented programmers. Journal of Educational
Compting Rescarch, 3 (1), 53-72.

Mayer, R. E., Dyck, J. L. & Vilberg, W. (1986) Learning to program and leamning to think:
whafsﬂwamwﬁm?ﬂmmﬁmﬁmm_ﬂnmaﬁm 605-610.

McLuhan, M. (1964) UnderstandingMedia. NY: New American Library.

Miller, G. E. & Emihovich, C. (1986) ’Ihceﬁ'ectsofmediatcdpmgmmningimtmcﬁonon
Wdﬂdrcnssclf—momtormg At esearch, 2 (3),

Newell, A. & Simon, H. A. (1972)HnmalLPmbkm_SQMn&Englewooddiﬁ’s NJ:
Prentice-Hall.

Papert, S. (1980) Mindstorms. New York: Basic Books.

~ Papert, S., Watt, D., diSessa, A. & Weir, S. (1979) Final Report of the Brookline Logo

Project(Logo Memo 53). Cambridge, MA: MIT Artificial Intelligence Laboratory.

Pea, R. D. & Kurland, D. M. (1984) On the cognitive effects of learning computer
programming. New Ideas in Psychology. 2 (2), 137-167.

Polya, G. (1973) How To Sofve It. Princeton, NJ: Princeton University Press.

Sajomon, G. (1981)
Jossey-Bass.

Salomon, G. & Perkins, D. N (198‘7)T‘ransferofoog1ﬁuvcaldﬂsﬁmn

When and how? Journa  (2), 149-170.
ShawDG(l986)Eﬁ'cctxoflcammgm program a computer in BASIC or Logo on
proulem solving abilities. AEDS Journal, 19 (2/3) 176-189.
25




Soloway, E. (1986) Why Kids Should I.earn To Program. New Haven, CT: Cognition and
Programming Project, Department of Computer Science, Yale Umvcmty

Statz, J. (1973) Probl 1vi . Final Report of the Syracuse Logo Project.
Syracuse, NY: Syracuse Urniversity.

Swan, K. & Black, J. B. (1989) Logo Programming and the Teaching and Leaming of -
‘Problem_Solving (CCTE Report 89- I). New York: Teachers College, Columbia -
University.

Thompson, A. D. & Wang, H. M. C. (1988) Effects of a Logo microworid on student
ability to transfer a concept. Journal of Educational Computing Research, 4 (3), 335-347.

Thorndike, E. L. (1907) Elements of Psychology. New York: Teachers Coliege Press.
Watt, D. (1982) Logo in the schools. Byte, 7 (8), 116-134.
Wicklegren, W. A. (1974) How to Solve Problems. San Francisco: W. H. Freeman.

-

26




SUBGOALS FORMATION

(1> What is the problem?

(2.)What little problems are a part of the problem?
Make a tree.

() Can you solve them?
If yes, solve them and use yo ur tree to reassemble

the parts.

@If no, go back to ¢ and red o @ and @ Yor
each of your smaller problems .

D

FIGURE 1
Wall Chart for Subgoals Formation
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analogy

1. Horizontal symmetry

Put together at least 3 shapes to create a

design in the upper right quadrant of the
screen, then draw the mirror image of
your design in the lower right quadrant.

Aoz

2. Vertical symmetry

Put together at least 3 shapes to create a 4 /L-
design in the upper right qu. drant of the .
screen, then draw the mirror image of \{

your design in the lower left quadrant.

3. Diagonal symmetry
Put together at least 3 shapes to create a ‘ﬂ

design in the upper right quadrant of the
screen, then draw the mirror image of
your design in the lower right quadrant.

4, Mirrors

Put together at least 3 shapes to create a
design in the upper right quadrant of the
screen, then draw the mirror images of

your design in the other three quadrants.

FIGURE 2
Problem Set for Analogy
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APPENDIX

Problem Solving Strategy Measures
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3. The Sport Shop sold sneakers for ome week at $30 a pair
and-made $1800.00. The next week they reduced the price to
$20.00 a pair and sold twice as many. How much money did
they make altogether?

4. Jean and Marie split a milk shake that cost $1.00.
Marie didn't have quite enough money to pay for her half.
She still owes Jean $.10. How much money did Jean put in
for the milk shake?

Subgoals formation.

OQur measure of students' ability to decompose complex problems
into smaller subgoals units consisted of five mathematical word
problems that required decomposition for correct solution.

S dents were asked not only to solve the problems but to show
how they broke them into parts. They were given credit for
correctly identified subgoals as well as for the correct answer,
with a possible total of five points per question.
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GRAY THINGS THAT ARE NEITHER TRIANGLES
NOR CIRCLES ) -

-

EVERYTHING THAT ISN'T BLACK

D

CROSSES OR STRIPED TRIANGLES

le:

EVERYTHING THAT IS BEITHER A CIR
OR BLACK OR STRIPED CLE

et

THINGS THAT ARE GRAY BUT NOT CROSSES

%
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Forward Chaining.

The test designed to measure subjects' forward chaining skills
was a paper-and-pencil version of the computer game, Rocky's
Books (The Learning Company, 1982). 1In Rocky's Boots, symbolic
"AND", "OR", and "NOT" gates are combined to produce machines
that respond to targeted attributes and sets of attributes
(e.g., gray triangles, corxsses OT striped circles, everything
that is not black, etc.). Combinations of gates must be built

“up in & forward chaining manner to achieve correct solutions.

Our paper-and-pencil version had subjects draw the required
connections. There was a total of fifteen questions which were
given one point each for correct solution.
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Backward chaining.

The test designed to measure subjects' backward chaining skills was a
paper—-and-pencil adaptation of the computer game, The Factory (Sunburst,
1984). In The Factory, players are shown a finished product and asked

to combine various machines to produce a similar product. Thus, players
must work backwards from the product to deduce a correct sequence of
machines that will produce it. Our paper—and-pencil version had subjects
list the required machine sequences. The test consisted of fifteen
questions which were given one point each for correct solution.

o
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HUMBER CODE; AN ADDITION PROBLEM:
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Systematic trial and error.

Cryptography involved systematically trying and testing different symbol
combinations to attain coherent decoding systems. We chose two decoding
exercises to test subjects' abilities to systematically utilize trial
and error strategies. The first of these was a shifted alphabetical
code. The second involved variations on a number code problem devised
by Newell and Simon (1971). Students were given ten points for

. correctly decoded problem. For partial solutions on the shifted
alphabet problem, one half point was given for each correctly identified
letter. On the number code problem, a full point was given for each
correctly identified letter.

C
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Aruitoxt provided by Eic:

ERIC

Use the squares to create as many interesting and unusual@
drawings as you can.

Alternative representation

The measure of subjects' ability to create alternative representation
used was derived from the Torrance Test of Creative Thinking (Torrance,
1972). Students were given sets of geometric fitures (squares or
circles) and asked to use these to produce as many interesting and
unusual drawings as they could. The resultant drawings were scored

for quantitiy, diversity, originality, and elaboration.
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| . XYZ : ZXX = ABC:
4. ZAX : XYZ :: XY7Z
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Analogi

Subjects' skill at analogical reasoning was measured with completion
exercises consisting of ten verbal and tenm visual analogies. Students
were given one point for each correct answer.




