DOCUMENT RESUME

ED 349 964 IR 015 703
AUTHOR Katz, Sandra; Lesgold, Alan
_TITLE _ . ___ _Use of Fuzzy Modeling Techniques in a Coached .
: fractice Environment for Elecironics. N
Troubleshooting.
PUB DATE May 92
NOTE 27p.; Paper presented at the Annual Conference of the

National Council on Educational Measurement (San
Francisco, CA, April 1992).

PUB TYPE Reports - Research/Technical (143) --
Speeches/Conference Papers (150)

EDRS PRICE MFG1/PC02 Plus Postage.

DESCRIPTORS Artificiai Intelligence; *Computer Assisted
Instruciion; Computer Simulation; Electronics;
Knowledge Level; *Models; Problem Solving; *Programed
Tutoring; Technical Education; *Troubleshooting

IDENTIFIERS Coached Practice; *Fuzzy Set Theory; *Intelligent
Tutoring Systems

ABSTRACT

Student modeling--the task of building dynamic models
of student ability-—is fraught with uncertainty, caused by such
factors as multiple sources of student errors, careless errors and
lucky guesses, learning and forgetting. Within the context of the
Sherlock intelligent tutoring systems project, we have been
experimenting with various ways of making the task of modeling
student knowledge more tractable. The philosophical basis underlying
each approach is that student models do not need to be precise and
accurate to be useful. We describe these approaches, focusing on the
one we have developed furthest thus far. The approach, which is based
on fuzzy set theory, aims at building imprecise, or "fuzzy"
diagnostic student models (e.g., Hawkes et al., 1990). We have built
upon this approach by developing techniques for representing and
updating discrete student knowledge variables in our avionics
troubleshooting tutor, Sherlock II. We describe these techniques and,
more broadly, the student modeling component in this tutor. We frame
our discussion of the "fuzzy" student modeling approach we are
developing with a description of its more crude predecessor, and of
our plans for future work on imprecise student modeling using
Bayesian inferencing techniques. (Contains 52 references.)
(Author/BBM)

So 9c e dedede de 3¢ ¢ e s S e Yook sle s e o e o e o v e v ve ook e vt vt e vt e e dede v dealesleate e v de dedle dededle v de dede de e e de e dede e dle e dedle deoke e

seproaucLions supplied by EDRS are the best That can be made *

from the original document. ¥
Slede et e s v goat vl s v v ere e g e e oo v v v v st vl e e v 2% v 3 v 2k gk sk de vt evle de devle sk Fededle s e s de sk dede el dede dede e de de e de dede

¥




U.S. DEPARTMENT OF EDUCATION
. Otice of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

C This document has been reproduced as
recewed [rom the person of orgamzation
onginating

C Minor changes have been made 10 /mprove
reproduction quahty

o Points of view of opiions stated inthis docu
menl dO nol necessaniy represent oflic.al

OERI position of pohCy

-

il

1

&

Use of Fuzzy Modeling Techniques in a Coached Practice Environment
for Eiectronics Troubleshooting

Sandra Katz and Alan Lesgold
Learning Research and Development Center
University of Pittsburgh
katz@unix.cis.pitt.edu

Draft of May 28, 1992

Paper presented at the National Council on Educational Measurement's Annual Conference
San Francisco, California

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Sandra Katz

)
N
I
2
Q
\Y,

2
BEST cnpv AVA'[AB[E 70 THE EDUCATIONAL RESOURCES

1i{IEORMATION CENTER (ERIC).”




Use'of Fuzz\} M'odelin'g Téchniques in a Coached Practice Environment
for Electronics Troubleshooting

Abstract

Student modeling—the task of building dynamic models cf student ability—is fraught with uncerainty,
caused by such factors as multiple sources of student errors, careless errors and lucky guesses, learning
and forgetting. Within the context of the Sherlock intelligent tutoring systems project, we have been
experimenting with various ways of making the task of modeling student knowledge more tractable. The
philosophical basis underlying each approach is that student models do not need to be precise and
accurate to be useful. We describe these approaches, fccusing on the one we have developed furthest
thus far. The approach, which is based on fuzzy set theory, aims at building imprecise, or "fuzzy”
diagnostic student models (e.g., Hawkes et al., 1990). We have built upon this approach by developing
technigues for representing and updating discrete stucent knowledge variabies in our avionics
troubleshooting tutor, Sherlock il. We describe these techniques and, more broadly, the student modeling
component in this tutor. We frame our discussion of the "fuzzy" student modeling approach we are
developing with a description of its more crude predecessor, and ¢ our plans for future work on imprecise
student modeling using Bayesian inferencing techniques.

Introduction

The Sherlock tutors—Shertock | (Lajoie and Lesgold, 1990; Lesgold et al., 1990) and
Sherlock Il (Katz et al., in press; Lesgo'd et al., in press)—exemplify a form of job-situated
training that we call a coached practice environment. A coached practice environment provides
students with opportunities to practice problem-solving activities in a realistic setting, with
computer-supplied support {coaching) available when needed. The automated coach also gives
the student feedback on his or her strengths and weaknesses, and assigns new problems driven
by this assessment. The subject domain of the Sherlock tutors is fault diagnosis in the Manual
Avionics Test Station, a complex electronic testing system that is used to check modules of F-15
aircraft.

In order to make decisions about the amount of help a student needs at different stages
of instruction, what the content of that help should be, which tasks a student is ready to handle,
etc., a tutor—human or machine—needs to construct a mental representation of the student's
competency in the domain being taught. However, deriving these models is difficult, because a
student's actions are the sole “window" a tutor has for observing a student's ability, and the
process of interpreting these actions is fraught with uncertainty. Ambiguity is one source of
uncertainty; there is often more than one possible explanation for students’ errors and
inappropriate actions. Multiplicity is another; an error or inappropriate problem-solving action can
often be traced to several misconceptions and skill deficiencies. Factor in idiosyncratic errors
such as computational or mechanical slip-ups (e.g., typos), lucky guesses, the fact that students
often forget prior knowledge, etc. and it is no wonder that Self (1990) has pronounced the task,
"the intractable problem of student modeling."

Several approaches to making student modeling more tractable have been developed in




recent years. These approaches vary across a spectrum of precision in the models produced.’
At one extreme lie model-tracing methods (e.g., Anderson, Boyle, & Reiser, 1985) and buggy
“diagnostic approaches (e.g. VanLehn, 1988), which are often combined. With model-tracing
technology, the knowledge that the student is expected to acquire is represented within the tutor
as a set of executable production rules. Common buggy productions also may be included in the
model. Student performance is matched to expected performance based on the expert model.
By restricting the student to a particular problem space, it is technically possible for the system
to understand exactly what the student is doing using these modei-tracing techniques. However,
model-tracing methods tend to eliminate trial-and-error search and exploration, thereby reducing
opportunities for metacognitive skill development, and for system modeling of metacognitive skill
(Derry & Hawkes, 1992).

Examples of less precision-oriented modeling approaches include bounded student models
(Elsom-Cooke, 1989) and granularity-based recognition of students’ problem-solving plans and
strategies (e.g., Greer et al., 1989; McCalla, Greer, et al., 1992). These approaches are
grounded in the belief that student models do not need to be precise and accurate to be useful.
Similarly, in developing the Sherlock tutors, we have been experimenting with various ways of
building imprecise, dynamic models of student ability on discrete knowledge components. This
paper focuses on the main approach we have implemented to date. The approach is grounded
in fuzzy set theory (Zadeh, 1965), which attempis to capture the notion that items can have
varying degrees of membership in a set, as opposed to the standard view that an item either
belongs or does not belong in a set. For example, a student might have partial membership
within the set of people who are expertin a particular skill, as reflected in teacher comments such
as, "Joe is fairly good at two-column subtraction.” We frame our discussion of the “fuzzy" student
modeling approach we are developing with a description of its more crude predecessor, and of
our plans for future work on imprecise student modeling using Bayesian inferencing techniques.

Building Imprecise Student Models

Where We Started: Competence/Performance Modeling in Sherlock }

Sherlock | was an initial "proof of concept” of the coached practice environment design
idea.? As such, it contained a partial device simulation that was rather limited, and a crude
though surprisingly effective student modeling scheme. For each problem, Sherlock I contained
an and/or goal-structure tree. The top-level goal, solving the problem, might be satisfied, in whole
orin part, through several different approaches. In general, any given goal in the tree could be
satisfied by one of possibly several approaches (the "or" aspect of the tree), each of which might
contain several subgoals (the "and" aspect of the tree),

A student's performance could then be characterized in terms of how good his rnoves
were at each subgoal node of the goal structure that his performance "touched.” We used only

'See the Introduction to Lajoie and Derry (in press) for a more in-depth discussion of this
issue.

*The Air Force evaluation of Sherlock | found that subjects who spent twenty to twenty-five
hours working with the system were as proficient in troubleshooting electronic faults in the test
station as technicians who had been on the job four years (Nichols et al., in press). More
detailed discussions of Sherlock | can be found in (Lajoie & Lesgold, 1989; Lesgold & Lajoie,
1990; Lesgold et al., in press).




three performance ratings: Good, Ok, and Bad, reflecting expert, acceptable non-expert, and

.~ _ - wrong moves respectively. We hand coded, for each node of the goal tree for each separate
problem, a list of knowledge components we thought were needed to attain the given goal. For
each student, we maintained a student competence model which was simply a rating of
competence for each knowledge compunent on our list. Following Anderson’s (1983) ACT model,
we used four rating categories for knowledge components: Unlearned, Perhaps, Probably, and
Strong. This is similar to the overlay modeling approach, except that it allows for a range of
qualitative ratings, rather than a simple boolean distinction—i.e., the student has/has not mastered
a knowledge component.

When the student began a problem, a predicted performance model would be generated
by estimating how well the student might do on each subgoal of the goal tree. The estimate for
a given node was essentially an average of the ratings of the student on the knowledge

- components listed for that node. After the student completed the problem, the actual performance
was compared node by node with the expected performance, and the ratings for knowledge
components associated with a node were adjusted to reflect the student’s actual performance.
Upgrading towards Strong was done conservatively, only in light of repeated evidence, so that
Sherlock would not overestimate the student's performance on future problems.

The main use of the student model in Sherlock 1 was to tailor advice when the student
asked for help. Apparently, Sherlock’s ability to predict how much help a student needed right
away worked quite well despite the crudeness of the underlying scheme. It was unusual for
students to ask for more than one or two hints at a given subgoal node (Lajoie & Lesgoid, 1989).
However, the main limitations of the approach were: (1) from a knowledge engineering standpoint,
the burden of building a separate goal tree for each problem, and associating knowledge
components with each subgoal node, and (2) the vagueness of the competency estimates
Unlearned, Perhaps, etc.), which are inadequate to give a student feedback on his or her
performance, or to serve other system functions that depend on at least some leve! of cognitive
diagnosis.

"Fuzzy" Student Modeling in Sherlock Il

Several improvements were embodied in Sherlock Il (Lesgold et al., in press), one of
which was deeper intelligence, mainly in the device (manual test station) modeling capability and
the expert modeling capability. Both forms of deep intelligence paved the way for richer, more
intelligent student modeling in Sharlock 1. In this section, we briefly describe Sherlock I, and
the main approach to imprecise modeling we have implemented within it thus far.

Overview of the tutor. Sherlock Il is a realistic computer simulation of the F-15
maintenance job environment. Trainees acquire and practice skills in a context similar to the real
setting in which they will be used. The tutor, Sherlock, presents trainees with a series of
exercises of increasing difficulty. There are two main episodes in each exercise: problem-solving
and review. During problem-solving, the student runs a set of checkout procedures on an aircraft
module suspected of malfunction (known as the "unit under test,” or UUT), which is automatically
attached to the test station. Using interactive video with a mouse pointer interface, the student
can set switches and adjust knobs and dials on test station drawers, take measurements, and
view readings. If he gets an unexpected reading on one of the measurement devices (handheld
meter, digital multimeter, or oscilloscope), he should see if the aircraft module is the “culprit” by
replacing it with a shop standard. If after doing this the student still gets an unexpected reading,
he should troubleshoot the test station. He can test components by “attaching” probes to
measurement points in a video display, replace a suspect component with a shop standard and

3

Q 5




rerun the failed checkout test, etc. Perhaps most importantly, the student can ask for advice at
any point while troubleshooting. Sherlock provides advice at both the circuit path and individual
- component levels of investigation. These and other options are available through a menu-driven
interface, as shown in Figure 1.

in designing Sherlock Il, we embraced Vygotsky's (1978) notion of cognitive tools:
“objects provided by the learning environment that permit students to incorporate new Auxiliary
methods or symbols into their problem-solving activity that otherwise would be unavailable" (Derry
& Hawkes, 1992; Lajoie & Derry, in press). The major cognitive tool provided by Sherlock Il is
an intelligent graphics interface that helps students construct a mental model of the circuitry
involved in carrying out a failed checkout test, and keep track of the status of troubleshooting
goals. A sample abstract schematic diagram is shown in Figure 2. Although not visible here,
these diagrams are color-coded to indicate which parts of the circuitry have been found from
previous tests to be good (green); which areas are bad (red); and which are not suspect (yellow)
or of unknown status (black). The drawings are interactive: mousing on any component box
produces an explanation of what is known about the status of that component given the actions
(such as measurements and swaps) carried out so far. An intelligent schematic producer
configures these drawings to match the coach’s current explanatory goal, the current problem
solving context, and information about the trainee. For example, more space and more expanded
circuit detail are provided in the part of the circuit on which an expert might now be focusing or
the part the coach wishes to emphasize. Component labeling and color coding are filtered to
assure that diagrams don't unintentionally give away too much information.?

Each problem-solving session is followed by a review phase, which we call reflective
follow-up (RFU)  Psychological experimentation (Owen & Sweller, 1985; Sweller, 1988; Sweller
& Cooper, 1985) and theoretical models of case-based learning (e.g., Mitchell, Keller, & Kedar-
Cabelli, 1986) indicate why a review phase is important for acquiring cognitive skills. Students
often suffer from “cognitive overload" during problem-soiving sessions. Consequently, it is best
to parcel out some of the instruction to a post-problem reflective phase. The following options
are available during reflective follow-up : (a) Show Sherlock's comments on my solution, (b)
Replay my solution, (c) Replay Sherlock’s solution, (d) Compare my solution to Sherlock’s, (e)
Summarize my progress through the Sherlock program, (f) Explain what the test station was
supposed to be doing at the point of failure in the problem just finished, and (g) Let me help
determine the next problem Sherlock assigns. Menu labels are actually more terse than
described here, as shown in Figure 3.

It is beyond the scope of this paper to describe each menu option, but we will give the
reader a sense of what the main review activity we want students to engage in is like: namely,
a coached replay of the student's problem-solving session. While stepping through his solution
within the Replay my solution option, the student receives a summary of each action and
feedback pointing out its good and bad aspects. A Sherlock Il comment is illustrated in
Figure 4. The student can ask to see what Sherlock would have done instead, and receive
other kinds of coaching, including the chance to re-examine the dynamically labeled and color-

A component is only labeled if the student has already tested it, if it has been referred to in
a help message, or if the student has identified the component when prompted. This restriction
ensures that students have to use schematics to trace through the active path.

‘Johanna Moore is currently developing tools to generate more intelligent explanations during
reflective follow-up, drawing from ideas in her dissertation (Moore, 1989).

4




s dul? J1
_Fim;%au: uusld Hald
Ef Skl T Step: 1 Focus on Component

- 49 SIE? - P
:.’.\41'.!.0 AL 0

eshoot ing Opticns

“Troubl

a3 th Stop Testing Component
Reseat Companent

RemoveReplace Component
Change Display
Rerun T0 Test

Got Advice on Circuit

Xt

e s \:\:_-/f—* 0’ SCOFE

'

coded schematic diagrams visible during problem-solving. (See Figure 2.)

Motivation for experimenting with “fuzzy" modeling technigues. "Fuzzy" (imprecise)
student modeling was originally proposed by Hawkes, Derry and their colleagues (e.g., Hawkes
et al,, 1990; Derry & Hawkes, 1992). Hawkes et al. (1990) present the following rationale for
applying fuzzy set theory to student modeling:

(Partial mernbership within a set] is an important concept to the field of ITSs [intelligent tutor systems] because

there are different aspects of vagueness inherent in real world data. There is the inherent vagueness of

Classification terms referring to a continuous scale, the uncertainty of linguistic terms such as "l almost agree,"

or the vagueness of terms or concepts due to statistical variability in communication (Zemankova & Kandsl.

1984). Fuzzy set theory is an attempt to provide a systematic and sound basis for the modeling of [those] types

of imprecision which are mainly due to a lack of well-defined boundaries for elements belonging to the set of

objects. The use of fuzzy terms (eg., “rather high," "possibly," “not likely,” etc.] allows for imprecision and
vagueness in the values stored in the database. This provides a flexible and realistic representation that easily
captures the way in which the human tutor might evaluate a student.. Also, many tutoring decisions are not

clearcut ones and the capability to deal with such imprecision is a definite enhancement to ITS's. (pp. 416-17)

We have built upon Hawkes'’ and Derry’s work by developing techniques for representing
and updating discrete "fuzzy" student knowledge variables. The basic scheme can be described
as follows. In Sherlock I, each knowledge variable is associated with a fuzzy probability
distribution that is upgraded or downgraded at different rates depending upon the type and
strength of the evidence that appears in a student problem-solving trace. For example, the
variable ability to interpret test results receives a strong upgrade each time a student tests the
input signals to a circuit card when a previous test shows that the card's output signals are faulty,
but receives a weaker upgrade if the student performs the input verification after receiving system

ERIC

e —




Figure 2: Abstract Representation of the Active Circuit Path

..........................

H

the weasurement
'

E257 1ast wtew: 1

vora D ‘.I;'-nv.(-{;r,\.-_-zn KA

TR = AIATALZ = -
pfggfgy he Sianal Troubleshooting Options
ox 3 v a3

I

vy, .

[PRRPRPS ERRTRR PR PR B R o
i

p—
Yext Fackegs ALY ALAIA2 L]

[P PP PP R RN ,.,.,.l

FSTTETT

TTIIT

l
l
L

PSRN TSR DI it

TIATTEE

TTTTRTY

A COR AR AN S OR SR AR BV O SR OR S

advice to do so. Knowledge variables are linked together in a lattice where higher-order
variables, which we call "global variables" (e.g., ability to use test equipment) represent
aggregations of more primitive knowledge components, which we cali "local variables" (e.g., skill
in using each type of test equipment—i.e., ability to use the handheld meter, ability to use the
digital multimeter, ability to use the oscilloscope). The updating techniques we have developed
propagate changes in local variables "upwards" through layers of associated global variables.
A major technical aim of our work has been to simplify the knowledge and software
engineering requirements involved in building a student modeling component that can produce
fuzzy (imprecise) probabilistic student records which are adequate to guide system functions such
as coaching, feedback, and problem selection. There is a tradition of formal probabilistic
approaches to reasoning under uncertainty in the field of Al, most notably Bayesian inferencing
networks® and an outgrowth of fuzzy set theory known as possibility theory (e.g., Zadeh, 1965,
1975, 1978, 1986; Dubois & Prade, 1979, 1987). However, some approaches to possibility theory
have been criticized for overwhelming computational complexity, while simpler ones compromise
expressibility (Schwartz, 1989). And Bayesian reasoning, although computationally manageable
(e.g., Pearl, 1988), has often been criticized for high knowledge engineering demands (e.g.,

5For a thorough technical discussion of Bayesian belief networks see Pearl (1988). A more
accessible introduction can be found in Charniak (1991) or Morawski (1988).

6




Figure 3: Reflective Foliow-up Options

[ €ronny Fall . D AN S N B T
unntogLT.v.f R?fiﬂﬁ QP}[UHﬂV
TGO, Test Ste
Punndnx Nesdo

Show Sherilock’ s comments on my aolution
Aeplay my solution
Replay Shorlock’s solution
Conmpare my solution with Sherlock’s
Summnarize progresas
Iest § How 1.0. Step #1 works
Select next problem
Exit revieuw

-

1

R et R U TIR S3 000 N O

AL 8Ntz g N R a0t RPN 02222200388

2033328220 e TYRINRYSRSRRYTY LY

Villano, 1992).° That is, knowledge engineers (often domain experts) face the difficult and
unnatural task of specifying prior probabilities for variables and conditional probabilities for link
matrices.

In contrast, our modeling scheme allows system developers to state in broad, categorical
terms how indicative a particular action is of a particular knowledge attribute (e.g., strong,
medium, weak). In addition, as the following pages will demonstrate, the techniques we use to
update primitive knowledge variables and draw inferences from these primitives about higher-
order knowledge variables are far simpler computationally than those used in either Bayesian or
fuzzy reasoning systems. A long-term goal of our research is to determine just how much
simplicity and imprecision a student modeling engine can get away with and still be useful.

The Student Modeling Knowledge Base: A Network of "Fuzzy Variables." While the
student is working on a problem, the system records a trace of his actions, including the
components he tested; the actual measurements made; replacements ("swaps") of components
with shop standards; requests for help, etc. This student trace is the crucial input to the student
modeling component, which interprets the trace in order to update the tutor's assessment of the
student's knov'ledge state on particular modeling variables.

®There is also a long-standing debate about the relative adequacy of fuzzy and Bayesian
approaches for representing and reasoning about vague concepts. Itis beyond the scope of this
paper to discuss this issue, but we refer the interested reader to Cheeseman (1986); Cohen
(1985); Schwartz (1989); and Zadeh (1986).




oot (n

You made a dangerous test: gouw
ohmad betwsen pointa with a :
voltage differsnce. B8 s
‘mevk Sigaal
Coat: ' points. ‘a2 o

"

)

‘A teckmician should never perform an :

‘ohae tost or usy 1l wirw betozon !

[tast pnints what bave power =upply : ;
voltage on tham. Damage to tle itast : === ok v

:I

]

1

)

)

1

equipment or fltarm to the technician
feontld rexuit.

.

for e nt s e PO P I R S R RPN R R R R SRR RO PR

TTITTITT S

E :

seaassfisseaaanansaen 2 25 RN RS AR R AL NS S0 Rt YRR ARRERYRR YIRS

k-

Figure 5 contains a list of the main types of variables tracked by Sherlock II's student
modeling component.” Where do these modeling variables come from? We relied upon two
main sources of information about which aspects of students’ understanding and performance
should be modeled by the system: cognitive task analysis, and expert judgments. Local variables,
and the rules for updating them, were derived mainly from observable properties of
troubleshooting performance, as revealed during cognitive analysis of the job of troubleshooting
the F-15 manual test station (Lesgold et al., 1990; Lesgold & Lajoie, 1390). To a lesser degree,
local variables also reflect domain experts' judgments about what properties of local performance
are important to measure. Global variables, on the other hand, are anchored primarily in expert
evaluations of trainee performance. Policy-capturing techniques helped us to identify the
evaluation criteria experts use to rate student performance traces (Nichols et al., in press).?
Indirectly, global variables are alsc anchored in observations of human performance, since they
represent cumulations of local variables. These relationships between modeling variables and

"The most indented items under each category are local variables; the rest are global.

*The set of evaluation criteria identified by using policy-capturing techniques keeps the amount
of sensible cumulations of local variables (i.e., global variables) to a tractable size.

8

10




Figure 5: Types of Modeling Varlables In
Sherlock |1

‘their sources are summarized in
Figure 6.° T
Currently, all student modeling
variables are represented as fuzzy
variables. A fuzzy variable can be thought
of as a distribution over the set of possible
levels of competence (i.e., knowledge
states) a trainee might have in a particular

Global testing abiiity varlables

Circult varlables

Clreult strategy varlables by path lypo
Clreult tactical varlables by path type
Componont varlables: strateglc
Component vatiables: tactical
QOvorall score on testing componont

(strategle plus tactical abllity)
Tost aquipmont usago sKills

o @ 060 0 0 O

skill, or understanding of a particuiar ’ Smar;?/?r.:ilk::)?llf:ll"cflntorprm tost rosults
domain concept. Sherlock Il tracks five »  clrcultlovel allllly to intorprot test
such knowledge states for each modeling e ontiovel abllly o Intarpr
variable: no knowledge, limited tost results

knowledge, unautomated knowledge, o abllly to read schemalics

partially automated knowledge, and fully °  Doman “"‘°W'°dg° g

developed knowledge. The distribution of - ﬁnmu:rlé:\m "

a fuzzy variable can be denoted by the o Disposilions

] swapping vs lesling

testing for the appropriate slgnal type
thrashing

history-taking

overall systemalicity and completeness
attantlon 1o safely preconditions
radundant testing

attontlon to probabliity of ‘allure
Independenco and solf-confldenco
accepling help

vector F, with the #h probability interval
being denoted by F.

For most knowledge variables, we
assume that each of the five states has
equal probability (20%), and we initialize
the distributions accordingly, as illustrated
in Figure 7."° However, since we have
some prior knowledge about student ability
on certain variables, we can bias these
distributions. For example, since we know
that most of our students have had little
experience using an oscilloscope, we can
initialize the associated distribution as (20
60 20 0 0). This would indicate that we
are 60% certain that the skill indexed by
this particular variable is limited in any given student, but it might be non-existent, and it might
even have reached the level of being established but not automated. The updating procedures
described below control revisions of these initial hypotheses about student ability.

Variable Updating: Local Variables. Everything that a teacher—human or machine-—can
infer about a student’s knowledge and misconceptions is ccnveyed through the student's actions,
be they speech acts or non-linguistic actions. Indeed, no user modeling system can peer directly
into an agent's mind; language and action are the sole media through which modeling information
passes, and there will invariably be gaps and distortions in the image conveyed. This is, in
essence, why the user modeling task is so hard. In a system like Sherlock Il, which does not

Solid lines represent primary sources of information about variables; dotted lines represent
secondary sources.

'"®More rigorous analysis of student data is needed to more accurately initialize our modeling
variables.

* BESTCOPY AVAILABLE




Figure 6. Multi-Level Assessment Scheme.

Computable from
Local Variables Anchored to

( '/’ Expert Judgements

Global Variables <.

" Derived via
Cognitive Analvses

Derived via
Expert Judgements

Computable via \"/4
Observable-Driven

Rules

have natural-language processing capabilities,’* student actions serve as the sole "window" or
"keyhole" (Cohen, Perrault & Alien, 1982) through which diagnostic information about the student
is conveyed. Sherlock Ii's modeling window is the student trace.

Of course, only a subset of student actions observable by a computerized tutor are

"'As noted in footnote 5, Johanna Moore is currently extending the dialogue capabilities within
Sherlock II's reflective follow-up phase. One goal of her work is to enable trainees to ask follow-
up questions about the comments that the sysiem generates while replaying the student's (or an
expert's) solution. Eventually, similar dialogue capabiliiies will be incorporated within Sherlock
II's problem-solving phase. Kass (1990) has commented upon the importance of flexible
interaction between the system and the user for building a user model.

10

12




significant, from a diagnostic standpoint. In our tutoring system, we refer io these 'diagnostically

significant’ aspects of student behavior as performance conditions. Performance_conditions .

comprise the "lefthand side" of rules for updating local variables, in conventional terms: the events
that trigger the system to update the current distribution for a local fuzzy variable. In fact, we
view local variables as abstractions over performance conditions, just as global variables are
meaningful abstractions over local variables.

The performance conditions that update the fuzzy variable representing a student's ability
to use a handheld meter are shown in Figure 7. Adjacent to each condition is a symbol indicating
how rapidly the variable should be updated when the rule fires. We use an arbitrary convention
in this example, where +++ means to upgrade the variable relatively quickly, ++ means a
moderate upgrade, + means a slower upgrade, --- means a rapid downgrade, etc. Below, we
formalize the procedure that carries out modifications of fuzzy distributions at these varying rates.

There are two main observations to be made about performance conditions. First,
although the updating rules shown in this example are derived from simple observations (e.g.,
what test type the student set the meter to, voltage or ohms), not all local variables need to be
fixed by simple events. Rather, some may have their values inferred by relatively complex
qualitative patterns over multiple observable events. For instance, the local variable for the
student's strategy in testing a particular functional area of the test station (e.g., the signal path
between the UUT and the digital multimeter) may operate on implications of actions, such as an
index of the extent to which a series of measurements on components within this functional area
helped to identify the location of the fault." :

Perhaps a more important observation to be made about performance conditions is that
they are redundant across variables. This is not surprising, since in reality there could be more
than one valid explanation for a student action. An action can be part of different plans and/or
motivated by different aspects of conceptual understanding.

To take an examgle with reference to the handheld meter (Figure 7), an incorrect setting
on this measurement device—e.g., ohms instead of voltage—could mean that :ne student does
not realize that setting the meter before testing is necessary, or does not know how to do this,
from a purely mechanical standpoint. This aspect of domain knowledge is tracked by the variable
tactical test equipment skill. What is more likely, though, is that the student does not know that
the correct setting for the test he is conducting is VDC (direct current voltage), because he does
not realize that current was in the active circuit path for the diagnostic procedure that the test
station was carrying out when failure occurred. In other words, the student probably has an
inadequate mental model of the failed checkout test.'

'2See Lesgold et al. (in press) for additional examples of performance conditions used to
update local variables.

"*This situation provides a good example of how violations of expected behavior can serve
as indicators of gaps in students’ knowledge. Kass (1990) stipulated a generai rule for acquiring
information about an agent called the Sufficiency Rule. The rule is based upon Cirice’s principles
of ccoperative interaction. It essentially states that a cooperative agent does everything
necessary (and nothing more) to enable the system to achieve its goal. In a tutorial situation, it
is usually the agent, not the system, who has the goal of solving the problem, but the Sufficiency
Rule still applies to a large extent. That is, we can expect that the student will do what is required
to solve the problem (e.g., find the fault in a test station's active circuitry), barring some
satisficing. If he does not, it is probably because of a lack of understanding, or lack of capacity

"

13




Figure 7: A Sample Fuzzy Variable

ABILITY TQ USE THE HANDHELD METER

description: measure of knowledge about when to use the handheld meter;
tactical ability is assumed

initial distribution: (20 20 20 20 20)

upgrading rules:
1) uses handheld meter appropriately to measure resistance, i.e.,
when there is no power, without help from Sherlock (+++)
2) uses handheld meter appropriately to measure DC voltage, i.e., DC
power is on, without help from Sherfock (+++)
3) uses handheld meter appropriately to measure AC voltage, i.e., AC
power is on (+++)

downgrading rules:
1) uses handheld meter to measure resistance when power is on
(e.g., shorting in the data area) (---)
2) uses handheld meter to measure voltage when there is none (---)
3) uses handheld meter to measure DC voltage when it's AC (--)
4) uses handheld meter to measure AC voltage when it's DC (--)

In our system, we handle the ambiguity in interpreting student actions by allowing the
same performance condition to update several variables. Regarding our example, the act of
performing the wrong type of test will update tactical test equipment skill, ability to use ti.e
handheld meter, testing for the appropriate signal type, etc. However, we vary the rate at whicn
updating occurs for a given condition across variables. Two factors govern the update rate that
our knowledge engineers assign to a performance condition for a particular variable: (1) the
condition’s strength as an indicatcr of competency in that variable, and (2) the frequency with
which the action associated with the condition might occur during any given problem-solving
session. If the same upgrading speed were used for all events, some variables would reach
expert level way ahead of others. For example, there are many more opportunities to set the
handheld meter, to place probes on pins, and to carry out other test-taking actions on a
component than there are to respond to an indicator light which fails to come on.

Identifying updating rates that take both factors (indicative strength of a behavior, and its
frequency of occurrence) into account is indeed a tricky matter at times. There are two clear-cut
cases: weak indicators that occur frequently should update a variable slowly; strong indicators that
occur infrequently should update a variable quickly. We generally handle the other cases, in
which the indicative strength of a condition and its frequency of occurrence are at odds, by

due to insufficiently automated knowledge.

12

14




assigning a moderate updating rate. As with all parameters in our modeling system, these rates
need to be adjusted empirically.

The updating rate is expressed in the "righthand" side of an updating rule—the "action"

part,' in conventional terms. More formally, we specify the updating rate for a fuzzy variable, F,
by two pieces of information: a range vector, V, and a change percentage, c. The change
percentage controls the rate of updating. The downgrading procedure for a fuzzy variable, F,
can be expressed as follows, where V represents the range vector'* and ¢ the change
percentage:

F=(hLhALE)

V= (v vy vy v 0),

¢ = constant,

fi=fi- fve + fiviat, where v, =0, i=1,.4,

fs=fs-fsvsc
An example is shown in Figure 8. The basic idea behind downgrading is to "shift" the
current distribution to the left, by successively adding some amount of probability interval
Fi.sto F. The leftmost interval in the change vector is set to 0, to prevent "spillover." As
the example shows, downgrading proceeds conservatively, since a single instance of an
error is insufficient for drawing conclusions about student ability. However, as Figure 8
shows, multiple behavioral events are significant, and effect dramatic changes in the
distribution.

Upgrading occurs in a similar manner except that the shift is to the right, by
successively adding some amount of £ to F,,. The rightmost interval in the change
vector is set to 0, again to prevent spillover:

fl =f1 'flvlci

fi=fi-fve + fuvac, where vs = 0, i = 2,...,5
Given the same initial values for F, V, and ¢ shown in Figure 8, a single upgrade would
change Fto (18 20 20 21.4 20.6). After ten rule firings, the distribution would be (6.3
13.9 18.2 32.9 28.7).

Variable Updating: Global Variables. Reasoning under uncertainty can be viewed
as a two-sided operation. One involves pooiing evidence to arrive at hypotheses; the
other involves propagating the uncertainty in one or more hypothesis through an
inferencing process aimed at arriving at some conclusion (Cohen, 1985). In the
preceding section, we described how our system pools behavioral evidence (performance
conditions) to formulate hypotheses about student competence on "primitive" (local) skills.
In this section, we describe how Sherlock combines these hypotheses to reason about
more complex, "global" skills.

In Sherlock Ii, updating rules for global variables are expressed as weighted linear

“In our system, we vary the range according to the students current level of
expertise—novice, journeyman, or near-expert. The percentage for each interval in the range
decreases as skill increases. For example, the range for a journeyman might be (0, 20, 30, 30,
30), for a near-expert (0, 15, 25, 25, 25). This scheme enables s to control updating so that the
system does not deem the stident an "expert” too readily.

13

15




equations. Just as the change rates in updating rules for local variables reflect a
- performance condition’s strength as an indicator for that variable, so do the weights in
aggregation equations reflect the relative strength of each local knowledge variable in
determining the student'’s ability on the associated global knowledge variable. Below are

some sample weighted equations for updating global variables.
Circuit testing ability = .85 circuit testing strategy + .15 circuit testing tactical ability

Test equipment usage = .60 ability to use the oscilloscope + 20 ability to use the
ability to use the handheld meter

Domain understanding = .75 system understanding + .25 understanding of the checkout procedures
Figure 8: Example of Variable Downgrading

The result of applying these
equations is a composite
distribution, expressing the
system’s degree of belief that
the student is competent in the
skill represented by the global
variable. The procedure for
updating a global variable G,
using local variables F, and their
associated weights, w;, can be
expressed as shown below.
G = wF, + Wy + .+ Why,

Fy = (fnflzfnfufls)
Fy=(fn fzzfzsfufzs)

Fy = (fy fa s fa fus)
We use the following formula to

calculate G = (g, @» 9> 9 9s):
g = wify + Wiy + o+ W,

gs = Wfis + Wifas + o+ Wiis
An example for test equipment
usage, where the number of
associated local variables, K,
equals 3 is shown in Figure 9.

Putting it _All_Together:
Updating an Individual Student
Model. The "intelligence" in
object-oriented systems like
Sherlock Il is encapsulated in
computational "objects."  An
object is an independent piece
of computer program that stores
its own local data and can thus

respon.d to various requests that other parts of the system might make of it. In Sherlock
Il, the information needed to model the student gets recorded by objects at two levels:

Initial settings:

F = (20 20 20 20 20),
V = (0 30 100 100 100),
c=10

After one downgrade:

fi=fi-fve + fuviaC, where v, =0, i=1..4
fs=fs-fvse

fi = fi - fivic + fovae
=20-20x0x.1+20x3x.1=20-0+.6=206

fr=fi- favat + fivae
=20-20x30x.1+20x1x.1=20-6=2=214

fi=fi-fivse + fave
=20-20x1x.1+20x1x.1=20-20+20=20

fo=fo-fave + fvse
=20-20x1x.1+20x1x.1=20-20+20=2

fs=fs - fovse
=20-20x1x.1=20-2=18

F =(20.6 21.4 20 20 18)

After 10 downgrades:

F =(28.7 32.9 18.2 139 6.3)

14

16

digitcl multimeter + 20




Figure 9: Example of Globa! Variable Updating

the active circuit

“path, and: G - test equipment usage - - .. . .
individual o
component F, - ability to use the oscilloscope F, = (0 40 30 30 0)
obiects within this F, - ability to use the digital multimeter F, = (0 20 60 20 0)
pa{i The circuit F, - ability to use the handheld meter F,= (0 030 50 20)

path object

G = .6F1 + 2F,+ 2F
records global e

information such G = (8 8, & 84 85)

as the order of g =6x0+2x0+2x0=0
components g =6x40+2x20+.2x0=28
tested, and the g =.6x30+2x60+.2x30=26

g =6x30+.2x20+.2x50=32

order in which 2= 6x0+2x0+2x20=4

circuit testing
goals (e.g., G = (0 28 36 32 4)
verification  that
the signal path
between the UUT and the digital multimeter is functioning ok) were achieved. Component
objects record more local infermation about what happened while the student was testing
a particular component—in particular, the order in which tests were made and component
testing goals (e.g., verification that the inputs to the component are ok) were achieved;
which particular pins were measured and how the probes were placed; what test
equipment was used, and how it was set up; what types and levels of coaching were
requested, etc. The modeling information gathered by these circuit and component
objects is stored in the object that we call the 'student trace.””® Consequently, the
student competency model can be stored in a separate data structure (object) than the
knowledge required for device and expert simulation, so it can be used across problems,
rather than hand-coded for eacts problem as it was in Sherlock 1.

A few variables are updated dynamically, while the student is solving a problem.
However, most variables are updated between problem completion and reflective follow-
up, since updating takes time and would slow down the system considerably if it were all
done dynamically. Dynamically updated variables primarily correspond to safety hazards,
such as attempting to conduct an ohms test when current is on. Dynamic updating is
triggered by rule "firings," as soon as these dangerous events occur. The appropriate
variables are updated the rate specified by their updating rules—in particular, the
“righthand" side which encodes the updating rate.

'Sactually, the student trace consists of a cluster of obje ts, each one holding a different type
of information—e.g., one records the student's measurements, one holds the sequence of
achieved goals and the tests used to achieve these goals, another stores information about test
device settings, etc. This division of labor makes urdating the model more efficient, since
individual updating routines need only access those objects that contain the information that they

need. However, for conceptual simplicity and ease of exposition, it is best to think in terms of one
student trace object.

15

17




Post-solution updating proceeds as follows. First, Sherlock imports the student's

-record, thereby gaining access to the student's score on all local variables up to the- - - - -

current exercise. If the student is new to the system, Sherlock initializes variables to &
pre-specified level, as indicated by the "initial distribution" slot in Figure 7. Using its
updating routines, Sherlock examines the student's solution trace, searching for
performance conditions that trigger rule firings. Each performance condition is recorded
in a structure called the conditions table. Sherlock simply notes how many times each
performance ccnditior has beuwn identified in the student trace. Each local variable
associated with that indicator will then be updated the recorded number of times. After
each local variable has been updated, Sherlock uses its weighed linear equations to
propagate these values "upwards" through the student modeling lattice, thereby updating
global variables.

Current Status and Future Directions

An Interlude: "Cost Scoring" in a Later Version of Sherlock !l

A prototype version of Sherlock il underwent initial field trials in August of 1991.
The system contained an uncalibrated student modeling component, implemented using
the approach described in this article. These initial system trials underscored the need
to fine-tune the student modeling knowledge base in light of student data. We found, for
example, that student records were being updated too slowly to be useful for problem
selection. In general, students were much better than the modeler made them out to be.
This was one of a cluster of reasons why some students were given too many easy
problems and became frustrated with the tutor.'® Our plans for calibrating the student
modeling lattice and updating rules are discussed in (Katz & Lesgold, 1991; Katz et al.,
in press).

We expect such fine-tuning to take considerable effort, and more student data than
was made available during the preliminary field trials. Since we were in need of a more
empirically valid student modeling/assessment component in order to demonstrate and
field test the tutor in the summer of 1992, we implemented an interim scheme based on
the results of an empirically validated study of expert scoring criteria (Pokorny & Gott, in
press). This study revealed the competency indicators (behaviors) that experts watch for,
the high-level ("global") skills they associate with these behaviors—in particular,
understanding of the testing system (test station), test-taking ability, and strategy—and
the relative import experts attach to a particular behavior as evidence of a particular skill.
The resulting variable lattice is quite shallow, revealing only coarse-grained associations
between student behaviors and a small set of global variables.

The modeling approach we applied to this shallow network is based on a more

"*Other factors contributing to sluggish curriculum planning included a problem set that was
too large, and a non-robust file backup procedure which caused some student trace files to be

deleted. The latter led the tutor to consider students who had already worked on the tutor
beginners!

16

18




traditional, point-scoring scheme, in which students are "charged" a certain number of
points for inappropriate as well as some appropriate troubleshooting actions (e.g.,
- -extending a circuit card for testing; replacing a malfunctioning component). - Their total
charge is then compared with that incurred by the expert model run on the same problem.
The ratio of expent-to-student "costs" constitutes the student’s score for a particular
problem, and then this score is used to update a recency-weighted average of the
student's performance on particular problem types (e.g., problems in which a switch is
malfunctioning; problems that require use of the oscilloscope). This information is then
used to guide selection of the next problem. If the ratio is over a certain threshold, the
student will be advanced a certain number of problems, which are ordered by increasing
difficulty; if not, he will be moved down or kept within the same range.” In addition, a
shallow clustering of inappropriate actions under global variable labels (i.e., system
understanding, test-taking ability, and strategy) is presented to the student for feedback
purposes.  The strengths of this approach are (1) the simplicity of its way of dealing
with uncertainty, (2) the transparency of the scoring facets for feedback, and (3) the
opportunity the approach affords to let student self-assessments contribute to student
modeling. Uncertainty is handled by always interpreting student performance in relation
to expert performance, instead of in absolute terms. Transparency of feedback is
achieved by focusing on actual behaviors (e.g., "You set up the handheld meter for ohms,
when a voltage setting was necessary.") rather than on abstract curriculum goals (e.g.,
ability to use the handheld meter). The basic scheme we have designed for enabling

student self-assessments to contribute to student modeling can be sketched as follows:
~— Show the student his location in the problem difficulty continua.
~ Let him move the current placement indicator up or down.
— Give him a problem at the level requested.
— Decide where he should have been placed based on his performance (either further “up" or further
"down").
— If he did well, take his word that he is better than the system "thinks," and move his placement
indicator up by some amount (between the current placement and student placement).
— If not, don't overcorrect the placement indicator, since the student was clearly in aver his head.
— Propagate the "corrected" placement level backward through the aggregation network.

In effect, this scheme revives the central idea behind the student modeling approach
taken in Sherlock |: to update the student's competency model in response to
discrepancies between expected performance and actual performance. The idea of back-
propagating scores through the variable network stems from connectionist modeling, but
we expect that it can be done using Bayesian inferencing techniques, which we discuss
belew.

This summer’s field trials will enable us to assess the effectiveness of this rather
standard assessment approach. The approach itself will also serve as a useful basis for
future comparisons of a calibrated version of the more experimental, "fuzzy" approach to
student modeling and assessment with the Bayesian approach we are starting to develop.

'"See Katz et al. (1 992) for a more detailed discussion of this approach to problem selection.

17

19




Future Directions: Application of Bayesian Inferencing Techniques to Student Modeling

" In the near future, we will build a Bayesian inferencing network from a calibrated
version of the student modeling network described in this paper. A long-term goal is to
compare the effectiveness of using standard Bayesian updating algorithms for student
modeling with those we have developed for the “fuzzy" and "cost scoring" approaches.

There are several motivations for experimenting with a Bayesian student modeling
approach. The variable lattice we have developed is already quite close to a Bayesian
belief net. lts nodes represent discrete knowledge variables, encoded as distributions
over meaningful knowledge states (unautomated, partially automated, etc.). However, the
current network structure will have to be checked to ensure that it adheres to the
constraint of conditional independence, which prevents updating inertia by ensuring that
all of the nodes that a given node depends upon are linked directly to it (Pearl, 1988).
We might find that Bayesian inferencing techniques do a better job than ours at updating
the student's knowledge state on variables within the revised network.

One possible reason for this is that unlike our updating scheme, where reasoning
takes place in only one direction, Bayesian belief nets are quite capable of bi-directional
reasoning. This has been demonstrated extensively in otrer domains, especially
medicine. Thatis, in addition to formulating diagnostic hypotheses, a Bayesian reasoning
system such as MUNIN (Andreassen et al., 1987) can make predictions about the
occurrence of symptoms as these hypotheses are strengthened or weakened, which can
then be used to guide the selection of further tests. Similarly, a bi-directional, Bayesian
student modeling scheme might enablc the system to reason about student ability on
knowledge variables for which little or no evidence has been gathered, as well as predict
student performance on particular types of problems.  Another motivation for
experimenting with Bayesian student modeling is that belief networks are already a
standard Al technique. As such, they are understood and taught, which increases the
likelihood that Bayesian student modeling components will be implemented in other tutors.
This would in turn lead to the development of a well-codified, standard technology for
Bayesian student modeling. Several researchers have already begun to experiment with
this approach (e.g., Villano, 1992). We hope to be able to say more about our plans for
carrying out Bayesian student modeling during the workshop.

Our future comparisons of the three modeling approaches described
above—imprecise (fuzzy) modeling, the point-scoring scheme, and Bayesian
modeling—will focus on several issues, mainly:

(1) the types of tutoring system functions each approach is best-suited for

(2) the amount of knowledge engineering effort required to implement an initial

version of a given approach

(3) the amount of knowledge engineering effort required to calibrate the modeling

component

(4) the difficulty of programming the updating procedures
It may well be, for example, that Bayesian student modeling is superior to our current
fuzzy modeling scheme for problem selection, because of the greater mathematical rigour
of Bayesian belief nets, and their bi-directional reasoning capability. However, this

18

20




increased functionality might have to be bought at greater costs in terms of knowledge
engineering and programming effort. : ,

The difference in engineering effort might not be as great as we originally
expected, however. In the first place, our fuzzy modeling component turned out to
require more effort to prototype than we anticipated, and we expect the work required to
calibrate the many pe.ameter settings (e.g., updating rates, and the weights in
aggregation equations) to be substantial. If calibration remains difficult, then the marginal
cost of implementing a Bayesian scheme could be low. Recent work in test theory
provides some rigorous computational methods for deriving probability estimates (e.g.,
Mislevy, in press; Bock & Aitkin, 1981; Lewis, 1985; Tsutakaw & Johnson, 1990) for
Bayesian belief nets. However, calibrating these estimates might prove to be unwieldy,
due to feedback loops. That is, it could be nearly impossible to assign blame correctly
when estimated student knowledge states in the network fail to match human expernt
ratings. For example, if variable B, which depends upon variable A, appears to be
inaccurate, is it because A’s prior probabilities are wrong, or is it because B at some point
made an incorrect prediction about A, which then "backfired" (propagated upwards) to 57
Our future experiments with both modeling approaches will enable us to address these
knowledge engineering complexity issues.

Summary and Coriclusions

We have described our experiments with various approaches to imprecise student
modeling. Our central aim so far has been to further the development of an approach to
imprecise modeling of student ability based upon fuzzy set theory (e.g., Derry & Hawkes,
1992: Hawkes et al., 1990). Technicai concerns included minimizing the knowledge
engineering effort required to initially develop and fine-tune the student modeling
knowledge base, while also lessening computational (programming) complexity. Our main
contribution to date has been in specifying and implementing relatively simple procedures
that can dynamically update fuzzy (imprecise) probability distributions which represent
student competence on discrete knowledge components. The adequacy of these
procedures will be determined when the student modeling knowledge base and updating
routines in Sherlock Il have been calibrated, and the tutoring system is evaluated.

Several researchers who have been experimenting with imprecise modeling
approaches are finding that the incomplete and inaccurate models produced are
nonetheless useful for carrying out the system’'s knowledge assessment and didactic
functions (e.g., Chin, 1989; Derry & Hawkes, 1992; Greer & McCalla, 1989; McCalla &
Greer, 1992). In our own work on the forerunner of Shertock il (Sherlock 1), we found
that a very crude categorization of student ability into discrete knowledge levels (i.e.,
unlearned, perhaps, probably, and strong) worked quite well in guiding system decisions
about the level of detail to provide in hints (Lesgold et al., in press). This is not
surprising, since there is an increasing body of evidence that human tutoring decisions
seldom involve precise diagnosis (e.g., McArthur, Stasz, & Zmuidzinas, 1990; Putnam,
1987)—that is, a detailed model of the misconceptions or "bugs" that motivate student

19

21




errors—although research has not yet directly addressed the issue of exactly wiiat kinds
of student models expert human tutors in action do construct. We share with Derry and
Hawkes (1992) the belief that in low-risk decision-making situations such as tutoring, -
where new information is constantly being made available for modifying diagnostic
hypotheses, imprecise student modeling is adequate. Future evaluations of our system
and others incorporating imprecise modeling approaches will help to determine how
effective these approaches actually are.

An evaluation of a particular approach should include comparisons with other
student modeling approaches. Such comparisons should focus on the knowledge
engineering effort needed to develop an initial version of the student modeling component
within a given approach, and then tc fine-tune it the difficulty of implementing the
approach; and, perhaps most importantly, how useful the approach is for different system
functions (i.e., coaching, versus curriculum planning, versus assessment, etc.). Other
researchers (e.g., Cahour & Paris, 1991; Kay, 1991) have stressed the importance of
designing user modeling components by taking into account situational factors such as
what the model will be used for, what the available human resources are, and what the
developmental stage of the system (i.e., prototype, or near-release) is. We believe that
empirically validated comparisons of various approaches to student modeling—addressing
functionality and engineering complexity issues such as those listed above—will better
equip tutoring system designers to take these situational factors into account, and thereby
make more informed decisions about which modeling approach (or combination of
approaches) to take in their tutor.

The work on Sherlock IT described in this article is funded by the Air Force, The funding agency and the
collaborators acknowledged “elow do not necessarily endorse the views expressed.

Acknowledgements

Sherlock II has been a collaborative effort by a team that has included (either currently or in the
recent past) Marilyn Bunzo, Richard Eastman, Gary Eggan, Maria Gordin, Linda Greenberg,
Edward Hughes, Sandra Katz, Susanne Lajoie, Alan Lesgold, Thomas McGinnis, Rudianto
Prabowo, Govinda Rao, and Rose Rosenfeld. As with its predecessor, Sherlock I, Dr. Sherrie
Gott and her colleagues at Air Force Human Resources, A-mstrong Laboratories, are active
contributors to the effort. We would especially like to thank Linda Greenberg for help with
preparing the manuscript and Sharon Derry for many informative discussions about the work on
fuzzy diagnosis and assessment that she has been doing with Lois Hawkes and her colleagues
at Florida State University.

20




References

Anderson, I.R. (1983). The architecture of cognition. Cambridge, MA: Harvard Universitv Press. - - -

Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985). Intelligent tutoring systems. Science,
228, pp. 456-468.

Andreassen, S., Woldbye, M., Falck, & Andersen, S.K. (1987). MUNIN: a causal prob 1ilistic
network for interpretation of electromyographic findings. Proceedings of . " I0th
International Joint Conference on Artificial Intelligence.

Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
an application of an EM-algorithm. Psychometrika, 46, 443-459.

Cahour, B., & Paris, C. (1991). Role and use of user models. In J. Kay and A. Quilici (Eds.),
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
Workshop W.4: Agent Modelling for Intelligent Interaction, 73-80.

Charniak, E. (1991). Bayesian networks without tears. Al Magazine. 12 (4), 50-63.

Cheeseman, P. (1986). Probabilistic versus fuzzy reasoning. In L.N. Kanal & J.F. Lemmer
(Eds.), Uncertainty in artificial intelligence (pp. 85-102). North-Holland: Ensevier
Science Publishers.

Chin, D.N. (1989). KNOME: modeling what the user knows in UC. In A. Kobsa & W.

Wabhlster (Eds.), User models in dialog systems (pp. 74-107). New York: Springer-
Verlag.

Cohen, P.R. (1985). Heuristic reasoning about uncertainty (pp. 14-48). Boston: Pitman
Advanced Pub. Program.

Cohen, P.R., Perrault, C.R., & Allen, J.F. (1982). Beyond question answering. In W.G. Lehnert

& M. Ringle (Eds.). Strategies for natural language processing (pp. 245-74). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Derry, S.J., & Hawkes, L.W. (1992). Toward fuzzy diagnostic assessment of metacognitive
knowledged and growth. Paper presented at the annual meeting of the American

Educational Research Association, San Francisco.

DuBois, D., & Prade, H. (1979). Fuzzy sets and systems: theory and applications. New York:
Academic Press.

DuBois, D. & Prade, H. (1987). Necessity measures and the resolution principle. [EEE
Transactions on Systems, Man and Cybernetics, 17, 474-78.

21

23




Elsom-Cook, M. (1989). Guided discovery tutoring. Preprint for Nato Workshop on Guided
Discovery Tutoring, Italy.

Greer, JE., & McCalla, G.I. (1989). A computational framework for granularity and its
application to educational diagnosis. Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (Vol. I, pp. 477-82).

Greer, J.E., McCalla, G.1,, & Mark, M.A. (1989). Incorporating granularity-based recognition
into SCENT. Proceedings of the Fourth International Conference on Artificial
Intelligence and Education (pp. 107-15), Amsterdam.

Hawkes, L.W., Derry, S.J., & Rundensteiner, E.A. (1990). Individualized tutoring using an
intelligent fuzzy temporal relational database. International Journal of Man-Machine
Studies, 33, 409-429,

Kass, R. (1990). Building a user model implicitly from a cooperative advisory dialog.
Proceedings of the Second International Workshop on User Modeling, Honolulu, Hawaii.

Katz, S., Lesgold, A., Eggan, G., & Gordin, M. (in press). Modeling the student in Sherlock
II. To appear in the Journal of Artificial Intelligence in Education (special issue on
student modeling, edited by G.I. McCalla and J. Greer).

Katz, S., & Lesgold, A. (1991). Modeling the student in Sherlock IL In J. Kay & A. Quilici
(Eds.), Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
Workshop W 4: Agent Modelling for Intelligent Interaction (pp. 73-80), Sydney, Australia.

Kay, J. (1991). Generalised user modelling shells—a taxonomy. In J. Kay and A. Quilici
(Eds.), Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
Workshop WA4: Agent Modelling for Intelligent Interaction (pp. 169-85).

Lajoie, S.P., & Derry, S.J. (in press). Introduction. In S.P. Lajoie & S. Derry (Eds.), Computers
as cognitive tools. NJ: Lawrence Erlbaum Associates.

Lajoie, S.P. & Lesgold, A. (1990). Apprenticeship training in the workplace: computer-coached
practice environments as a new form of apprenticeship. Machine-Mediated Learning, 3,
7-28.

Lesgold, A.M. & Lajoie, S.P. (1990). Complex problem solving in electronics. In R. Sternberg
& P.A. Frensch (Eds.), Complex problem solving: principles and mechanisms. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Lesgold, A.M., Lujoie, S.P., Logan, D., & Eggan, G. (1990). Applying cognitive task analysis

and research methods to assessment. In N. Frederiksen, R. Glaser, A.M. Lesgold, & M.
Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 325-50).

22

24




Hillsdale, NJ: Lawrence Erlbaum Associates.

Lusgold, A.M., Eggan, G., Katz, S., & Rao, G. (in press). Possibilities for assessment using
computer-based apprenticeship environments. To appear in W, Regian & V. Shute (Eds.),
Cognitive approaches to automated instruction. Hillsdale, NJ:; Erlbaum,

Lewis, C. (1985). Estimating individual abilities with imperfectly known itern response
function. Paper presented at the Annual Meeting of the Psychometric Society, Nashville
TN,

McArthur, D, Stasz, C., & Zmuidzinas, M. (1990). Tutoring techniques in algebra, Cogniticn
and Instruction, 7(3), 197-244.

McCalla, G., & Greer, J.E. (1992). Enhancing the robustness of model-based recognition,
Paper presented at the Third International Workshop on User Modeling, Dagstuhl Castle,
Germany.

McCalla, G.1,, Greer, J.E., Barrie, B., & Pospisil, P. (1992). Granularity hierarchies. To appcar
in International Journal of Computers and Mathematics with Applications (Special Issue
on Semantic Networks).

Mitchell, T.M.,, Keller, R.M., & Kedar-Cabelli, S.T. (1986). Explanation-based generalization:
a unifying view. Machine Learning, 1, 47-80.

Mislevy, R.J. (in press). Randomization-based inference about latent variables from complex
samples. Psychometrika.

Moore, J.D. (1989). A reactive approach to explanation in expert and advice-giving systems.
PhD thesis, University of California, Los Angeles.

Morawski, P. (1989). Understanding Bayesian belief networks. A/ Expert, May, 44-48,

Nichols, P., Pokorny, R., Jones, G., Gott, S.P., & Alley, W.E. (in press). Evaluation of an
avionics troubleshooting tutoring system. Special Report. Brooks Air Force Base, TX;
Air Force Human Resources Laboratory.

Owen, E., & Sweller, J. (1985). What do students learn while solving mathematics problems?
Journal of Educational Psychology, 77(3), 272-2%4.

Pearl, J. (1988). Evidential reasoning under uncertainty. In H. E. Shrobe and the American
Association for Artificial Intelligence (Eds.), Exploring artificial intelligence: survey tatks
Sfrom the National Conferences on Artificial Intelligence (pp. 381418). San Mateo:
Morgan Kaufmann Publishers, Inc.

28’




Pokorny, B., & Gott, S.P. (in press). The evaluation of a real-world instructional system: using
technical experts as raters. Technical Report. Brooks Air Force Base: Air Force Human
- Resources. R . - -

Putnam, R.T. (1987). Structuring and adjusting content for students: a study of live and
simulated tutoring of addition. American Educational Research Journal, 24(1), 13-48.

Schwartz, D. (1989). Outline of a naive semantics for reasoning with qualitative linguistic
information. Proceedings of [JCAI-89, 20-25.

Self, J.A. (1990). Bypassing the intractable problem of student modeling. In C. Frasson and G.
Gauthier (Eds.), Intelligent tutoring systems: at the crossroad of artificial intelligence and
education (pp. 107-123). Norwood, NJ: Ablex Publishing Corporation.

Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive
Science, 12, 257-85.

Sweller, J. & Cooper, G.A. (1985). The nse of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction, 2(1), 59-89.

Tsutakawa, R.K., & Johnson, J. (1990). The effect of uncertainty of item parameter estimation
on ability estimates. Psychometrika, 55, 371-G0.

VanLehn, K. (1988). Toward a theory of impasse-driven learning. In H. Mandi & A. Lesgoid
(Eds.), Learning issues for intelligent tutoring systems (pp. 19-42). New York: Springer-

Verlag.

Villano, M. (1992). Probabalistic student models: Bayesian belief networks and know'edge
space theory. Paper presented at the Second International Conference on Inteiligent
Tutoring Systems, Montreal.

Vygotsky, L.S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate
reasoning, Part I: Information Science, 8, 199-249; Part 11: Information Science, 8, 301-

357; Part 11I: Information Science, 9, 43-80.

Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Svstems,
vol. 1, No. 1, 3-28.

Zadeh, L.A. (1986). Outline of a theory of usuality based on fuzzy logic. In A. Jones. A.
Kaufmann, & H-J. Zimmerman (Eds.), Fuzzy sets: theory and applications, Dordrecht:

24

26




Reidel, 79-97.

Zemankova-Leech, M. & Kandel, A. (1984). Fuzzy Relational Data Bases—a Key to Expert
Systems, Koeln: Verlag TNV Rheinland.

5%




