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ABSTRACT
This paper focuses on three aspects related to the
conceptualization and application of canonical correlation
analysis as a dominant statistical model:
1) partial canonical correlation analysis and its application
in statistical testing;
2) the relation between canonical correlation analysis and
discriminant analysis;
3) the relation between canonical correlation analysis and chi-
square contingency table analysis.
The paper shows that canonical correlation analysis can be
conceptualized as the statistical model which brings together
many other statistical techniques in a unified manner, and the
power of this overarching model is significantly increased by
applying the concept of partial correlation to the canonical
case. Two data sets are used tc illustrate the points covered in
the paper, and the computer program results are presented to

augment the discussion.



The utilization of multivariate statistical analysis has
been widely recognized as to be important in social and
behavioral science research. The importance stems from the
consideration that we intend to honor the complex social reality

C}n which we operate and which we eventually want to generalize
to, and wve intend to av.id inflating experiment-wise error rate
in our statistical analysis (Fish, 1988; Johnson & Wichern, 1988;
SAS/STAT User's Guide, Version 6, Vol. 4, 1989; Stevens, 1936).
Among the multivariate statistical techniques, canonical
correlatign analysis has occupied an important strategic
position. It has often been conceptualized as a unified approach
to almost all parametric statistical testing procedures,
univariate and multivariate alike (Baggaley, 1981; Dunteman,
1984; Fornell, 1978; Knapp, 1978; Kshirsagar, 1972; SAS/STAT
User's Guide, Version 6, Vol. 4, 1989; Thompson, 1984, 1988,
1991a). It has even been considered to subsume such non-
parametric procedure as contingency table analysis (Knapp, 1978;
Kshirsagar, 1972).

_Many authors have shown, either theoretically or
empirically, the equivalence between canonical correlation
analysis and many other statistical testing procedures ranging
from simple correlation, t-test, to MANOVA, discriminant
analysis, and even chi-square contingency table analysis (Knapp,
1971; Kshirsagar, 1972; Tatsuoka, 1989; Thompson, 1988, 1991a).
The implicetions of this intimate relationship between canonical

correlation analysis aad most of the other statistical testing



procedures are both practically and theoretically meaningful and
far-reaching.

Practically, this relationship reveals the fact that
researchexr's choice of any particular statistical technique in a
research situation contributes nothing to the validity of any
causal inferences one may choose to make. This point is relevant
since, despite repeated warnings of some methodologists (Cook &
Campbell, 1971; Thompson, 1981, 1985, 1991b), some
unsophisticated researchers still harbor the misconception that
OVA methods (ANOVA, ANCOVA, MANOVA, MANCOVA) are more closely
related to experimental design, thus permitting valid causal
inferences; correlation and regression approaches, on the other
hand, are correlational in nature, thus not permitting causal
inferences. After all, isn't it true that all of our.statistics
text books emphasize the fact that correlation does not mean
causation? Isn't it also true that Fisher developed and
subsequently used OVA methods extensively in his research and
made valid causal inferences?

. The misconception of relating OVA methods with causal
inferences is readily expelled once researchers realize that both
OVA methods and regression approaches are the sanme statistically,
and both of them can be considered special cases of canonical
correlation analysis. Because of this fact, it is no exaggeration
to state that all parametric testing procedures are correlatiocnal
(Thompson, 1991a, 1991b), and this statement may even extend to

non-parametric testing procedure such as chi-square contingency
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table (Dunteman, 1984; Knapp, 1971; Kshirsagar, 1972). Viewed
from this perspective, no methods permit valid causal inferences
without appropriate research design. In reality, what permits
valid causal inferences is NOT the statistical techniques we
happen to use, but the research design and data collection
process. Though Fisher used ANOVA extensively in his research in
agriculture, it is his randomization scheme which made the causal
inferences in his research valid, not the ANOVA technique he
developed and used (Lentner & Bishop, 1986).

Theoretically, the intimate linkage between canonical
correlation analysis and other statistical testing procedures
shows that, often, the relationship between two groups of
variables must be exploited to yield fruitful results in our
statistical analysis. As Kshirsagar (1972) explained, "most of
the practical problems arising in statistics can be translated,
in some form or the other, as the problem of measurement of
assoclation between two vector variates X and Y" (p. 281). Since
canonical correlation analysis summarizes the relationships
between two groups of variables, it therefore brings together OVA
methods (both univariate and multivariate), correlation and
reg:ession analysis, discriminant analysis, and even chi-square
contingency table analysis in a unified manner. The realization
of this theoretical unification of statistical techhiques under
the overarching canonical correlation model elevates our
understanding of statistical techniques to a more strategqic

level, just as the realization that the univariate general linear



4
model subsumes both univariate OVA methods (ANOVA and ANCOVA) and
regression analysis greatly enhances our understanding of the

nature of those statistical techniques (Cohen, 1968).
A BRIEF DESCRIPTION OF CANONMICAL CORRELATION AMNALYSIS

Hotelling (1935) was the first to tackle the problem of
identifying and measuring relations between two sets of
variables, and he invented and utilized canonical correlation
analysis to investigate the relationship between one set of
reading variables and the other set of arithmetic variables in a
psychology study. Later, this statistical technique was applied
to many other research areas.

Canonical correlation analysis can be understood as the
bivariate correlation of two synthetic variables which are the
linear combinations of the two sets of original variables
(Johnson & Wicher:i, 1988; Thompson, 1984, 199l1a). The two sets of
original variables are linearly combined to produce pairs of
synthetic variables which have maximal correlation, with the
restriction that each member of each subsequent set of such
synthetic variables is orthogonal to all members of all other
sets. The maximum number of such pairs of synthetic variables
which can be produced equals the mumber of variables in the
smaller set of the two. In this sense, the synthetic variables in
canonical correlation analysis, which are the linear combinations

of the original variables, are similar to the synthetic variables
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5

produced in some other multivariate analysis techniques such as
principal component analysis, discriminant analysis, etc. The
difference, however, is that, in different statistical analysis,
the original variables are linearly combined to satisfy different
criteria. For example, in rrincipal component analysis; original
variables are linearly comi:ined to produce synthetic variables
which have maximum variance. In discriminant analysis, the
original variables are linearly combined to produce synthetic
variables which maximizes the ratio of between~group variance to
within-group variance, so that different groups can be maximally
differentiated on the synthetic variables.

As can be expected in any multivariate statistical methods,
in canonical correlation analysis, eigenstructures of some
matrices are involved in deriving the linear coefficients needed
to produce the synthetic variables and in deriving the canonical
correlation coefficients for different canonical functions. lLet
us assume that we have two sets of variables as follows and X is

the smaller set of the two:

1 - 4

Xy £

X, Y2
X= "1, Y

X ¥3)

e |



when combined, the two sets of variables have the following

partitioned variance-covariance matrix!:

. X
o o

yx ¥y,
The derivation of the linear coefficients faélcomhining

original variables into canonical variates is based on the

following two matrices:
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The two matrices, A and B, have the same eigenvalues A,, but
with different eigenvectors a and b, associated with the
eigenvalues A,. The elements of the eigenvectors a, and b, it
turns out, are the linear coefficients for the original two sets
of variables X and Y respectively. In this way, we obtain a pair
of synthetic variables (canonical variates):

U, =afx=alx1+azx2+ et AX,
Vi=b{¥=by, + by, + ...+ by,
and the correlation between U and V, is maximized, subject to the

restriction that each subsequent canonical function is orthogonal

to all previous canonical functions. As a matter of fact, the

! Throughout this paper, variance~covariance matrices are used
instead of correlation matrices in all mathematical derivations,
mainly for the reason that correlation matrix is a special case of
variance-covariance matrix, i.e., correlation matrix is just the
variance-covariance matrix for standardized variables. Because of
this, the variance-covariance matrix is considered to have wider
applicability.
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correlation between U, and V; (Ry,) is the square root of the
associated eigenvalue A, i.e., R, = A\. The maximum nunber of
canoniéal variate pairs (canonical functions), as stated
previously, equals the number of original variables in the

smaller set X.

The reasons for utilizing the eigenstructures of matrices A
and B to derive eigenvalues A\, (\, = R, and eigenvectors a, and
b, for linear coefficients are mathematical, since the
eigenstructures of A and P mathematically guarantees the
following:

1) correlation between U, and V, is maximized to be A\%;

2) correlation between U, and U;, or U, and V;,, or V; and V,,
or V; and U; is zero (for any i not equal j), that is,
canonical variates across pairs, either within one set
or across sets, have zero correlation.

3) Var(U,) = vVar(V;) = 1 (for any 1), i.e., canonical
variates are standardized to have unit variance.

Since canonical variates are just linear combinations of
original variables, the properties of linear combination of
random variables apply. Specifically, for our interest, the
linear combinations

Uy =8f X=ax, +ax, +...+a,x,
V,=biY=Dby, +by, + ...+ by,

have variances: p '
Var(u;) = Var(a;X) = a;Z_.a,

var(v,) = Var(bif) = biE b,

it!



So the variances of the synthetic canonical variates are easily
calculated by using the linear coefficient vectors and variance-
covariance matrix of the original variables. Since canonical
variates are standardized to have unit variance, we must have:

var(U,) = a;B 8, = 1
VaI‘Vi) = b;x,’b‘ =1

Several authors have amply demonstrated, either
theoretically or empirically, the equivalence of canonical
correlation analysis with almost all other parametric statistical
testing procedures (Baggaley, 1981; Dunteman, 1984; Knapp, 1978;
Kshirsagar, 1972; Tatsuoka, 1989; Thompson, 1988, 1991a;
Zinkgraf, 1983). So it is not the purpose of this paper to
provide comprehensive coverage on this interesting topic, and
readers are referred to the sources above for more detailed and
comprehensive account on this topic. Instead, three aspects of
canonical correlation analysis, when conceptualized as an
overarching model for statistical analysis, will be discussed in
some detail in the following sections. The three aspects are:

1) partial canonical correlation analysis and its application
in statistical testing;

2) canonical correlation approach to discriminant analysis; and

3) canonical correlation approach to contingency table

analysis.
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X. PARTIAL CANONICAL CORRELATION ANALYSIS AND ITS APPLICATION
IN STATISTICAL TESTING

Description of Partial Canonical Correlation Analysis

Partial canonical correlation is the natural generalization
of partial correlation from the univariate to the multivariate
situation. In univariate situation, the need for partial
correlation arises when we have, e.g., three variables x, y and
g2, and they are intercorrelated with each other. If we are
interested in rémoving the effect of z on both x and y, then
deternining the relationship between x and y, what we have is the
partial correlation between x and y after removing z’s influence
on both. Mathematically, the situation described above is the
simplest partial correlation we can encounter, and the partial
correlation between x and y after partialing out z’s influence
can be expressed mathematically as follows (Glass & Hopkins,
1984; Neter, Wasserman & Kutner, 1989):

r&, - InI”

r =
Ja-Hha-

XY.%

. Simple partial correlation (as opposed to partial canonical
correlation to be discussed later) has some practical
implications which are not often realized by some researchers.
Glass and Hopkins (1984) offer a good example. 5uppose we are
exanining the relationship between reading performance and visual
perceptual ability of children within certain range of age, we
may have high positive relationship which indicates that those
with high visual perceptual ability also tend to have high

-



10
reading performance, and vice varsa. But this may be due to the
fact that both kinds of ability are developmental, thus both are
positively related to age. once we hold age constant, the
observed high positive relationship between reading performance
and visual perceptual ability may drastically decrease or even
disappear. If this scenario is true, the partial correlation
between reading performance and visual perceptual ability after
partialing out the effect of age on both will give us the
indication of the true relationship between the two kinds of
ability, while regular bivariate Pearson corralation may be
erroneously misleading (Glass & Hopkins, 1984). The derivation of
simple partial correlation coefficient as well as the testing for
its statistical significance is readily available through major
statistical software packages such as SAS and SPSS.

The concept of simple partial correlation can be extended to
canonical correlation analysis. The mathematical foundation for
this extension is offered in Anderson (1984), Cooley and Lohnes
(1971), Johnson and Wwichern (1988) and Timm (1975). An excellent
substantive research example employing partial canonical
correlation analysis is offered by Cooley and Lohnes (1971). They
investigated, among other things, the canonical correlational
relationship between two sets of variables measuring Grade 12
abilities and Grade 9 interests after partialing out the effect
of another set of variables which measures Grade 9 abilities.
Interested readers are referred to Ccooley and Lohens (1971) for

the detailed description of the research example and some

| S
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11
practical interpretation of the partial canonical correlation

analysis.

The situation demanding partial canonical correlation

analysis arises when we have three vectors of random variables

- p 9

X, ¥ zJ
X ) £ 5
X = ’ Y=\1"1, g={"
| X 1] Y] | 2]

and these three vectors of random variables are intercorrelated
with each other. As in the case of simple partial correlation, we
may be interested in investigating the relationship between
vector X and vector Y after partialing out the effect of vector 2
on both X and ¥ vectors. Conceptually, this is a problem of
partial correlation, but multivariate vectors are involved
instead of simple univariate variables as in the case of simple
partial correlation.

The crucial point in performing partial canonical
correlation analysis is to find out from what variance-covariance
matrices partial canonical correlation coefficients, as well as
linear coefficients for combining original wvariables into
canonical variates, can be derived. It turns out that the
variance-cov.i iance matrices of conditional distribution of X and
Y, éiven g, i.e., thé resitualized variance-~covariance matrices
of X and Y after partialing out the ¢ fect of “actor 2 from both

X and ¥, provide us with the solutiony. More specifically,
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suppose that, when combined, the three vectors of variables, X, Y

and ¥ have the following partitioned variance-covariance matrix :

The conditiosnal variance~covariance matrix of X and ¥, given §,
that is, the residualized variance~covariance matrix of X and Y
after partialing out the effect of 8, is given as (Anderson,
1984; Johnson & Wichern, 1988; Timm, 1975):

=, I
zxr.z » p A

| “yx.x YY.%

Xy.x

5 TS 0 3 D T i >
_E,,*E,,}J;},En 2”:2”2; 2y,

similar to regular canonical correlation analysis, the
eigenvalues A; from the foliowing two matrices, Ay,.e and By,
will be the squared partial canonical correlation coefficients
for ith canonical functions, and the eigenvectors a; and b;
associated with the eigenvalue 1i; will be the linear coefficient
vectors (function coefficients) which combine the original

variables inteo synthetic canonical variates.

Apc.re = E;-Szxy.xz;;-zzyx.t
-1 -
Bouee = y“)’)’otzyx.zzx;-xnxy.g
Again, as in regular canonical correlation analysis, the two
matrices, A,gt and By, have the same eigenvalues but with

different eigenvectors. More detailed mathematical explanation of
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conditional distribution of vectors of random variables and the
derivation of partial canonical correlation functions can be
found in Anderson (1984), Johnson and Wichern (1988) and Timm
(1975) .

As with regular canonical correlation functions, partial
canonical correlation functions can be tested for statistical
significance, and the testing procedure is similar to testing
reqular canonical correlation functions for both overall test and
sequential test. Timm (1975) offers the necessary details for
testing partial canonical correlation functions for their
statistical significance.

Application of Partial Canonical Correlation in sStatistical
Testing

Partial canonical correlation analysis is not only
applicable in substantive research, as Cooley and Lohnes'
excellent research example has shown (Cooley & Lohnes, 1971), it
can also be used as a convenient testing procedure when canonical
correlation analysis is employed as the overarching model which
subsumes other parametric testing procedures.

It is well documented that by adopting some artificial
coding scheme such as "dummy" coding or contrast coding to
represent group membership, all OVA methods (ANOVA, MANOVA,
ANCOVA, MANCOVA) can be translated into canonical correlation
analysis problem (Knapp, 1978; Kshirsagar, 1972; Thompson, 1988,
1991a). Although adopting the canonical correlation analysis

approach to OVA methods is straightforward for an omnibus test,

b
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conventionally, subsequent testing for individual factors and
factor interactions is procedurally tedious. This is so mainly
because the Wilk's A from the reduced model (correlating
dependent variables with independent jummy variables after
dropping those associated with the factor or interaction of
factors to be tested) CANNOT be used directly for the purpose of
testing; instééd. the ratio of full model A to reduced model A
will be calculated, and this ratio becomes the Wilk's A for the
factor or interaction of factors to be tested. Rao's F
approximation is then applied to the ratio and reqular testing
for statistical significance can be carried out for the effect of
a particular factor or interaction of factors. More detailed
description of this transformation procedure is provided in
Thompson (1988, 1991a) and Zinkgraf (1983).

The problem of testing for factor or interaction effects
when using a canonical correlation approach to OVA methods can S;
translated into partial cancnical correlation analysis problem.
Since partial canonical correlation functions can be directly
tested for statistical significance, the approach provides us a
convenient means for testing factor or interaction effect. It can
be recalled that in regular OVA methods, to test for factor or
interaction effect is to test for statistical significance of the
marginal contribution of the factor or interaction accounting for
the variance (covariance matrix, in multivariate case) of the
dependent variable(s), given that all other factor(s) are already

in the model. This is equivalent, if we use canonical correlation

L7
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approach to OVA methods, to testing for partial canonical
correlation functions between dependent variables and those dummy
variable(s) representing the factor of interest, after the
effects of all other inderendent variables representing other
factors or interactions have been partialed out from the model.
Using partial canonical correlation analysis, the effect of any
factor or interaction can be tested directly by partialing out
the effects of other independent variables, thus the
conventionally required transformation of Wilk' As, as
illustrated in Thompson (1988, 1991a) and described in Zinkgraf
(1983), for testing factor or interaction effect can be avoided.

Table 1 presents a small data set which will be used to
illustrate some points explained in this paper. The data set has
two Y variables, three X variables, two classification variables
A and B. The two classification variables are also represented by
contrast coding Al (for the two levels of A factor) and Bl and B2
(for the three levels of B factor). The interaction between the
two classification variables are represented by AB1 and AB2,
which are the multiplication of Al by Bl and Al by B2,
respectively. For detailed explanation of using coding scheme to
represent classification variables, readers are referred te Cchen
(1968), Kerlinger and Pedhazur (1973), Ott (1988), and Neter,

Wwasserman and Kutner (1989).

Insert Table 1 Abownt Here

»8
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Among the major statistical software packages, currently SAS
is the oaly one which performs partial canonical correlation
analysis as a standard option under canonical correlation
analysis procedure PROC CANCORR. Cooley and Lohnes (1971) offers
a computer program for performing partial canonical correlation
analysis also. Appendix A presents a SAS program which performs
the various kinds of statistical analysis to be illustrated in
the paper.

The equivalence of MANOVA with partial canonical correlation
analysis is demonstrated in Table 2. In canonical correiation
approach to MANOVA, tests for individual factors and their
interaction are accomplished by sequentially performing three
partial canonical correlation analyses between dependernt
variables and those dummy variables representing the factor to be
tested, while partialing out the effectéfof all other dummy
variables not being tested. This partialing, in fact, is testing
the significance of additional contribation of a particular
factor, given that the effects of the other factor zu4d the
interaction have already been taken into ccnsideration.
Conceptually, this is similar to the full model vs. reduced model
approach illustrated in Thompson (1988, 199:a) &ad explained in
Zingkraf (1983), but by invoking the concegv of partial canonical
correlation, the test for individual factors and interactions in
MANOVA is translated into direct test of partial canonical

functions. In this way, t-ansformations of Witk's As rrom the

19
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full and reduced models, and the subsequent calculation of Rao's

F approximation, is avoided here.

The partial canonical correlation analysis described above
can be applied to any OVA methods for testing individual factors,
factor interaction, as well as covariate(s). For each factor (or
interaction, or covariate), a separate partial cancnical
correlation analysis is performed between dependent variable(s)
and those independent variables (Qummy for classification
variables, continuous for covariate) representing the factor (or
interaction, or covariate) to be tested, while partialing out the
effects of all other independent variables for other factors and
interactions. (Interested readers are encouraged to use one
dependent variable in order to see the equivalence in the case of
ANOVA.)

Not only can partial canonical correlation analysis be
applied to statistical testing in OVA methods, it can also be
conveniently used to solve some problems in multiple regression
analysis. In multiple regression analysis, very often, we try to
find the best set of predictors for our dependent variable. In
trying to do so, we sometimes encounter the situation in which we
have to determine what the effect will be if several independent
variables are added to the model simultaneously. In other words,

we have to assess the marginal contribution of two or more

20
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independent variables as a group to the variance of the dependent
variable, given that some other independent variables are already
in thé model. Conventionally, testing the additional effect of
two or more variables as a group in regression analysis is not
direct, to say the least; and it is cumbersome in some sense.
Even major statistical packages such as SAS or SPSS do not
provide readily available results. Competing models (with and
without the added group of independent variables) have to be run,
and either sums of squares oxr coefficients of determination
(multiple R’s) from the two competing models must be used for
testing the significance of the marginal contribution of the
added group of variables in the regression model. The formulas
for using sums of squares and coefficients of determination from
the two competing models (full and reduced) are as follows (Glass

& Hopkins, 1984; Neter, Wasserman & Kutner, 1989):

(R7 - R3)/(dfy ~ ufp)

F
vi,v2 (1 _ R:-)/dff

F _ (SSEy - SSEp) /(dfy - dfy)
vi.v2 SSE/df,

In tﬁese equations, SSE represents Sum of Squares due to error
from respective models, and vl = df; ~ df,, v2 = df,.

The problem of testing for significance of the marginal
contribution of a new group of independent variables in
regression model is easily solved by adopting the partial
canonical correlation analysis approach. Since we want to assess

the marginal contribution of a group of new variables, given that

Sk
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other independent variables are already in the regression model,
ve simply perform a partial canonical correlation analysis
between the dependent variable and the group of new independent
variables, while partialing out the effects of other independent
variables already in the model. Testing the significance of the
partial canonical function is egquivalent to testing the
significance of the marginal contribution of the added group of 4K
variables in the multiple regression model.

Table 3 presents the results of two competing regression
models, Full (2) vs. Reduced (1) models, to test the significance
of the marginal contribution of X2 and X3, given that X1 is
already in the model. Results from partial canonical correlation
approach are presented for comparison.

(1) Y, =P, + BiX; v €

(2) Y, = B + BiX, +BX; +BXy + €
The F test for the significance of the marginal contribution of
X2 and X3 as a group is illustrated using both formulas presented
earlier. Thus it is seen that the significance testing for
partial canonical correlation function is exactly the same as the
significance testing results from using either of the two

formulas.

IX. CANONICAL CORRELATION APPROACH TO DISCRININANT ANALYSIS

The relationship between canonical correlation analysis and

discriminant analysis has been demonstrated by several authors

oo
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(Dunteman, 1984; Kshirsagar, 1972; Tatsuoka, 1989; Thompson,
1984, 1991a). The basic procedure is, instead of doing
discriminant analysis, dummy coding is constructed to represent
group membership, and canonical correlation analysis is performed
between the random predictor variables and the dummy coding
variables for group membership. The results from both approaches
are the same, with the exception that the function coefficients
from the two approaches are not the same in terms of numeric
value, instead, they are the same in terms of ratio. This can be
seen if we rescale the two vectors of coefficients from the two
approaches so that the largest element in each set equals one, as
Tatsuoka (1989) demonstrated. Table 4 presents the results from
the two approaches, discriminant analysis and canonical
correlation apprcach to discriminant analysis. In discriminant
analysis, the classification variable is A, and two X variables
(X1 and X2) are predictor variables. In the canonical correlation
approach, canonical correlation analysis is performed between two
X variables (X1 and X2) and Al, which is the dummy coding to
represent the two levels in A.

since the function coefficients from the two approaches are
not the same numerically, naturally, the question arises as to
whether the synthetic variables constructed from the two
different sets of coefficients can equally differentiate the
groups. After all, to construct synthetic variables which
maximally discriminate the groups is the major purpose of
discriminant analysis (Huberty & Wisenbaker, 1991; Johnson &

r2
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Wichern, 1988;). The answer to the above question is a definite
yes. Mathematically, the two sets of coefficients from the two
approaéhes are the same in the sense that when used to combine
original variables into synthetic variables (discriminant
functions), the groups are equally differentiated to the maximum
degree 10 matter which set we happen to use. The reasons for
regarding these two as equivalent can be furnished from several
angles.

First of all, geometrically, the two sets of coefficients
from the two approaches are two vectors in multi-dimensional
space. We are only concerned with the direction of the vectors,
not the magnitude of them, since these vectors are arbitrarily
scaled. As long as the elements in the vectors are proportional,
they are in the same direction, and they can always be rescaled
to be equal in numeric value by multiplication with a constant.
As Kshirsagar observed (1972), unlike multiple regression where
the coefficients are unique, in discriminant analysis (in
canonical correlation analysis, too, for this matter), the
coefficients are not unique in numeric value; they are only
unique in their ratio. So theoretically, for one discriminant
function, there are an infinite number of coefficient sets which
can do an equally good job in differentiating the groups. The
same is true with canonical correlation analysis: canonical
correlation coefficient will not be affected by multiplying the

coefficient vectors with any constant.

24
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In discriminant analysis, the condition for maximal
differentiation of the groups on the synthetic variables is that
the ratio of between~group variance to pooled within-group
variance on the synthetic variable (discriminant function) is
maximized (Johnson & Wichern, 1988; Kshirsagar, 1972), subject to
the restriction that each discriminant function is orthogonal to
previous ones. Let U, be the ith discriminant function, and & the
ith function coefficient vector, and we have the linear

combination of the original variables:

Uy=8iX=aX +aX+...*+ak,
Let B, be the between-group variance-covariance matrix, and By
be the pooled within-group variance-covariance matrix of the
original X variables (X1 and X2) respectively. The between-~group
variance and the pooled within-group variance on éhe synthetic
variable, using the properties of linear combination of random

variables, are

var (U,) , = aiB,a,
var “ﬁ)mme”§a§«mn3£

and the ratio

var (U;), _  aiB,a,
Var (Uy) por.w  @18,0010a8s

is maximized in discriminant analysis.
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In our example of discriminant analysis, we have the
following variance-covariance matrices for the original two X

variables, X1 and X2:

_[12.0868 11.2674] _[s.1326 2.4129}
11.2674 10.5035)° pooled " |5 4129 4.9962

and the first discriminant function (since we have only two
groups, this is the only discriminant function we can obtain) has
the coefficient vector (raw coefficients):

- 0.2771
0.2392

Thus, we have the ratio of between-group variance to pooled

within-group variance on the discriminant function as:

var (U)), _ _ asB,ay
var (U) soot.v 858 p0azeaftp

{}2.0958 11.2674 0.2771]
11.2674 10.5035§0.2392

* ] '2
©.2771 0‘2392{5 1326 2 4129Eo 771}

[0.2771 0.2392

2.4129 4.996240.2392

= 2:222 = 3.023

If we substitute the coefficient vector from canonical
correlation approach for that from the discriminant analysis, the
ratio of the between-group variance to the pooled within-group
variance on the synthetic variable will be exactly the same as in
discriminant analysis. This is easily verified by using the

coefficient vector from our canonical correlation approach:

.
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12.0868 11.2674]0.1741
alB,a; [0.1741 0'1503{11.2574 10.5035io.1503l

I =
.1326 2. 0.17
BFpoored®c 15 1741 0.1503{5 2 ‘129E : ‘1]

2.4129 4.9962j0.1503
._1.'..'..?2.9.—3.—1- = 3,023

0.3547

The equivalence of the two ratios proves the fact that the
synthetic varizble constructed from either of the coefficient
vectors from the two approaches discriminate the groups equally
well, thus they are considered equivalent, despite the
superficial numeric difference.

The reason for the numeric difference of the coefficient
vectors from the two approaches is arbitrary scaling.
Conventionally, canonical correlation functions are scaled to
have unit variance, while discriminant functicns are scaled so
that the POOLED within-group variance equals one. This means that
for separate groups, the discriminant functions may not have unit
variance; neither may the discriminant functions have unit
variance when groups are combined. But when the variances for
separate groups are pooled, the pooled variance of the

discriminant function satisfies the condition:

var (Ui) pooled = 1

Since

Var“%)mmhd==aé%nﬂaﬁ%

we must have

&0
-\3
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808 ootealtp = 1
and the previous calculation on the between-group vs. pooled
within-group ratioc has already verified this.

Since the coefficient vectors from the two approaches are
arbitrarily scaled to satisfy different criteria, naturally they
become different in numeric value, though they are still equal in
terms of differentiating groups. Teo convert the coefficient
vector from canonical correlation approach so that it equals that
of discriminant analysis in numeric value is a problem of
rescaling. Without this rescaling, the synthetic variable
constructed using the coefficients from canonical correlation
approach will not have the property of unit pooled within-group

o>’ ance, as our results shows:

Vaf(qﬁpaumr”'lé%unaﬂh
5.1326 2.412910.1741

= 001 L]
[0.1741 © 1503{ 0. 1503

2.4129 4.9962 }“ 0.3947

To rescale the coefficient vector from canonical correlation
approach so that it satisfies the conventional condition of
discriminant analysis, we only need to standardize the
coefficient vector in a way similar to any other standardization
process, i.e., to divide each element in the coefficient vector
by some sort of standard deviation. We recall that if we use &,
the coefficient vector from canonical correlation approach, to
construct synthetic variable as discriminant function, the
corresponding discriminant function has the pooled within-group

variance ag'Spoo1ed8cs and which does not equal 1, as demonstrated

25
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previously. The square root of 8;'8.,,0q8c 15 the pooled within-
group standard deviation on such a discriminant function, and it
is this standard deviation that we can use to standardize the
coefficient vector from canonical correlation approach. More
specifically, if a, is the coefficient vector from discriminant
analysis, and &; is its counterpart from canonical correlation
approach, Bg,;1e4 15 the pooled within-group covariance matrix of
the original predictor variables, the two coefficient vectors are

related as follows:

a,
J‘£5$uu¢sﬁc

&y =

Earlier, we have calculated the a;'B,,,1eda8¢c t© be 0.3947. Using

the coefficient vectors from the two approaches, we easily verify

a, 1 {0.1741]

Jﬂéﬂ a, V0.394710.1503
_ 1 0.1741] ) 0.2771] s
0.6282/0.1503 0.2392 ®

The conversion of standardized coefficients from the two
approaches is the same, and orly pooled covariance matrix
(8poo1ea) from standardized predictor variablss needs to be used.
The rescaling is conceptually straightforward, but
procedurally tedious, since the pooled covariance matrix of the
original variables has to be found, and matrix calculations are
involved. At this point, it should be emphasized that this
rescaling is NOT a mathematical necessity, but rather, it is done

simply to satisfy certain arbitrary conventional condition.

<8
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ITI. CANONICAL CORRELATION APPROACE TO CONTINGENCY TABLE AKALYSIS

Several authors have discussed the relationship between
canonical correlation analysis with the contingency table
analysis (Dunteman, 1984; Knapp, 1978; Kshirsagar, 1972). in some
sense, this is an extreme case of stretching the application of .
canonical correlation analysis (Knapp, 1978), since, for this
application, all the variables in canonical correlation analysis
are "dummy" variables representing group membership, and none of
them is a true random variable.

In contingency table analysis, we have R levels (R rows) on
one classification variable, and C levels (¢ columns) on the
other classification variable. According the subject's level on
the two nominal variables, the subject is entered into the
appropriate cells in the contingency table. As a result, we have
a contingency table with R rows and C columns. The observed
frequency and expected frequency for each cell are used for
calculation of g2 statistic which is subsequently used for
testing the hypothesis of independence of row and column
classification probabilities.

The procedure for adopting canonical correlation approach to
contingency table analysis is similar to other situations. For R
rows and ¢ columns, we use r-1 and c-1 dummy coded variables to
represent the levels on the two classification variables So for
each subject, r-1 plus c~1 dummy variables will be used to
represent its position in the contingency table. Finally, a

canonical correlation analysis is to be performed between r-1 and

i
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c-1 dummy variables, and testing for the canonicil correlation
functions from this approach is equivalent to that based on the
classical chi-square test for independence.

Table 5 presents part of a data set with two nominal
variables, A and B, with three levels for each. For canonical
correlation approach, we need two dummy variables (A1, A2) to
represent Variable A and another two dummy variables (Bl, B2) for
variable B. All these are included in Table S.

Table 6 presents the results of both classical chi-square
test and canonical correlation approach to contingency table
analysis. From the canonical correlation approach, the
probability from Wilk’s A deviates a little from the probability
from chi-square test (0.001 vs. 0.0009), but the probability
derived from Pillai’s Trace does equal that from chi-square test.
The reason for the small discrepancy is related to sample size,
since x* statistic is related to F statistic as follows (Knapp,

1978):
Xir-1) (e-1y = (X-1)(C-1) Fpogy (019, =

If sample size increases, the probabilities from the two
approaches will converge. When sample size is large enough, x?
statistic can be directly calculated from F in canonical approach
by multiplying the canonical F by (r-1)(c-1). For our example,
the sample size is not large enough, end the results from the two

approaches have not quite converged:

31
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(r-1) (c=1)F = 4 X 4.7476 = 18.9904 > x2 = 18.194
Another more interesting fact about these two approaches is the
relationship between 32 statistic and Pillai's trace from
canonical correlation analysis. As Kshirsagar proved
mathematically (Kshirsagar, 1972, p. 383), the two are related as

(N: total sample size):

a
Pillails Trace V = %

This relationship is easily verified using our example results:
N(Pillai's trace) = 200 X 0.09097222 = 18.19444 = x2
Because of this relationship, classical x? test is considered to
be the same as the test based on Pillai's trace (Kshirsagar,

1972), even if when sample size is only moderate.

This application of canonical correlation analysis indeed
stretches it to its limits, since almost no assumption exists for
the nominal data in the contingency table, not to mentiocn
multivariate normality. viewed in this perspective, the little
discrepancy between the two approaches when the sample size is
not adequately large should be quite tolerable.

CONCLUSION

Canonical correlation analysis is a powerful overarching
statistical model ch brings together many statistical
techniques in a unified manner. Understanding the relationship
between canonical correlation analysis and other statistical

techniques is important for any of us who are ambitious enough as
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to try to be seasoned researchers, since this will certainly
enhance our grasp of statistical methods, thus elevating us to a
higher and more strategic position in the hierarchy of
statistical techniques. Under the framework of canonical
correlation analysis, extending the concept of partial
correlation to canonical case has some interesting positive
implications. This extension makes canonical correlation analysis
more applicable as a statistical testing tool, thus increasing
its power as a dominant statistical model. Furthermore, the
application of canonical correlation analysis as a general data
analytic system will most likely be facilitated in research
practice by this extension.



31
REFERENCES
Anderson, T.W. (1984). An introduction to multivariate

statistical analvsis (2nd ed.). New York: Wiley.
Baggaley, A.R. (1981). Multivariate analysis: An introduction for

consumers of behavioral research. Evaluation Review, 5(1),
123-131.
Cohen, J. (1968). Multiple regression as a general data-analytic

system. Psychological Bulletin, 70, 426-443,
Cook, T.D., & Campbell, D.T. (1971).

Cooley, W.W., & Lohnes, P.R.
New York: Wiley.

Dunteman, G.H. (1984).

Beverly Hills, CA: Sage Publications, Inc.
Fish, L.J. (1988). Why multivariate methods are usually vital.

21, 130-137.

Fornell, C. (1978). Three approaches to canonical analysis.

Glass, G.V., & Hopkins, K.D. (1984). Statistical methods in

education and psychology. Englewood Cliffs, NJ: Prentice
Hall. |
Hotelling, H. (1935). The most predictable criterion. Jourpal of

Educational Psychology, 26, 139-142.
Huberty, <.J. & Wisenbaker, J.M. (in press). Discriminant

analysis: Potential improvements in typical practice. In B.

34



_»J
R -

32
(Vol.

Thompson (Ed.),
2, pp- 169-209). Greenwich: JAI Press Inc.

Johnson, R.A. & Wichern, D.W. (1988). Applied multivariate
(2nd Ed.). Englewood Cliffs, NJ:

Prentice Hall.

Kerlinger, F.N. & Pedhazur, E.J. (1973). Multiple regression in
ch. New York: Holt, Rinehart and Winston.

Kshirsagar, A.M. (1972). Multivariate analysis. New York: Marcel
Dekker, Inc.

Knapp, T.R. (1978). Canonical correlation analysis: A general
parametric significance testing system. Psychological
Bulletin, 85, 410-416.

Lentner, M., & Bishop, T. (1986).

analysis. Blacksburg, VA: Valley Book Company.
Neter, J., Wasserman, W. & Kutner, M.H. (1989). Applied linear

(2nd Ed.). Boston, MA: Irwin Inc.

ott, L. (1988).

analysis (3rd Ed.). Boston, MA: PWS-KENT Publishing Company.
SAS Institute, Inc. (1989). SA!

ed, Vel., 1. Cary, NC: SAS Institute Inc.

Stevens. J. (1984). Applied

social sciences. Hillsdale, NJ: Lawrence Erlbaum Associates,
Publishers.

Tatsuoka, M.M. (1989).

30



33
Thompson, B. (1981, November).

presented at the annual meeting of the Mid-south Educational
Research Association, Lexington. (Order document #03980 from
National Auxiliary Publication Service, P.0. Box 3513, Grand
central Station, NY, NY 10017)

Thompson, B. (1984).
interpretation. Sage University Paper series on Quantitative

Application in Social Sciences, series no. 07-047. Beverly
Hills and London: Sage Pubns.
Thompson, B. (1985). Alternate methods for analyzing data from

experiments. Joux

Thompson, B. (1988).
explanati

presented at the annual meeting of the American Educational
Research Association, New Orleans. (ERIC Document
Reproduction Service No. ED 295 957)

Thompson, B. (1991a). A primer on the logic and use of canonical

Thompson, B. (1991b). Review of D&

designs by G. Keppel & S. Zedeck. Educational and
L, 51, 500-510.

Timm, N.H. (1975). Multivariate analysis with application in
qy. Monterey, CA: Broocks/Cole.

36

.
o



34

Zinkgraf, S.A. (1983). Performing factorial multivariate analysis

of variance using canonical correlation analysis.

37




35

Appendix A
SA8 Program I: Program for Table 1 Data

DATA D1; INFILE AAA;
INPUT ID Y1 Y2 X1 X2 X3 A B Al Bl B2 AB1 AB2;
TITLEL 'MANOVA & CANONICAL CORRELATION APPROACH TO MANOVA';
PROC GIN;
TITLE2 'MANOVA TO TEST FACTOR A, B & A*B INTERACTION';
CLASS A B;
MODEL Y1 ¥Y2=A B A#B/NOUNI;
MANOVA H=_ALL /SUMMARY;
PROC CANCORR SHORT;
TITLE2 'PARTIAL CANCORR APPROACH TO TEST A*B INTERACTION'®;
VAR Y1 Y2;
WITH Al B1 B2 AB1 AB2;
PARTIAL Al Bl B2;
PROC CANCORR SHORT;
TITLE2 'PARTIAL CANCORR APPROACH TO TEST FACTOR A EFFECT';
VAR Y1 Y2;
WITE Al Bl B2 AB1 AB2;
PARTIAL  B1 B2 AB1 AB2;
PROC CANCORR SHORT;
TITLE2 'PARTIAL CANCORR APPROACH TO TEST FACTOR B EFFECT';

VAR Y1 Y2;
WITH Al Bl B2 ABl AB2;
PARTIAL Al AB1 AB2;

RUN;
*;
*;
TITLE1l 'PARTIAL CANCORR TO SOLVE MULTIPLE REGRESSION PROBLENM';
PROC REG;
TITLE2 'MULTIPLE REGRESSION, REDUCED MODEL®;
MODEL Y1=X1;
PROC REG;
TITLE2 'MULTIPLE REGRESSION, FULL MODEL';
_MODEL Y1=X1 X2 X3;
PROC CANCORR SHORT;
TITLE2 'PARTIAL CANCORR TO TEST SIGNIFICANCE OF X2 & X3';

VAR Y1;
WITH X1 X2 X3;
PARTIAL X1;
RUN;
&e
[
*;

TITLE1 *CANCORR APPROACH TO DISCRIMINANT ANALYSIS';
PROC CANDISC BCOV PCOV PCORR;
TITLE2 ‘CANDISC PROCEDURE FOR STANDARDIZED VARIABLES®;
CLASS A;
VAR ZX1 £X2;
PROC CANDISC BCOV PCOV PCORR;
TITLE2 'CANDISC PROCEDURE FOR ORIGINAL VARIABLES';

38
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CLASS A;
VAR X1 X2;
PROC CANCORR ALL;
TITLE2 *‘CANCORR APPROACH TO DISCRIMINANT ANALYSIS®;
VAR X1 X2:
WITH A1l;

8AS Program IX: Program for Table 5 Data

DATA D2; INFILE BP3;
INPUT A B Al A2 Bl B2;
TITLE1L 'CANCORR APPROACH TO CONTINGENCY TABLE';
PROC FREQ;
TITLE2 'CHI-SQUARE TEST OF CONTINGENCY TABLE ANALYSIS';
TABLE A+B/CHISQ EXPECTED NOPERCENT NOROW NOCOL;
PROC CANCORR SHORT;
TITLE2 ‘CANCORR APPROACH TO CONTINGENCY TABLE ANALYSIS';
VAR A1l A2;
WITH Bl B2;

36



!hbla 18 nnta ﬂct 1

1 93 96 9 12 20 1l 1 1 b § e § 1 -1
2 88 91 7 10 15 1 2 1 4 2 o 2
3 95 100 8 12 26 1 3 b § -1 -1 -1 -1
4 95 97 10 14 21 1 1 1 1 -1 1 -1
5 95 99 9 12 25 1 2 1 o 2 4 2
6 99 111 10 18 31 1 3 1 -1 -1 -1 -1
7 99 105 8 pL 34 1 1 1 1 -1 1 -1
8 81 93 7 9 16 1 2 1 0 2 o 2
9 95 104 5 14 30 : § 3 1 -1 -1 -1 -1
10 88 95 10 12 15 1 1 1l 1 -1 b § -1
11 99 115 5 11 42 1 2 1 o 2 0 2
12 87 92 9 9 16 1l 3 1 -1 -1 -1 -1
13 101 103 13 14 29 2 1 -1 1l -1 -1 1
14 102 107 10 15 32 2 2 -1 0 2 0 -2
15 110 122 18 20 51 2 3 -1 -1 -1 1 1
16 102 108 10 17 31 2 1 -1 1 -1 -1 1
17 106 120 14 18 39 2 2 -1 0 2 0 -2
18 103 109 12 17 32 2 3 -1 -1 -1 1 1
19 103 112 16 17 34 2 1 -1 1 -1 -1 1
20 103 110 i1 i4 35 2 2 -1 0 2 0 -2
21 105 114 12 15 37 2 3 -1 -1 -1 1 1
22 107 121 16 19 39 2 1 -1 1l -1 -1 1
23 106 118 14 16 39 2 2 -1 0 2 0 -2
24 106 120 10 16 49 2 3 -1 ~1 -1 1 1l

Data adnpted from R.A. Johnson & D.W. Wichern. (1988). Applied Multivariate
'~ by 8F S A Sr SR A AR L Y &8 AN (2ﬂd m " kﬁl‘ciﬂﬂ 9 16' pc ‘359
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Table 2¢ Results of MANOVA & Partial Canonical Correlation

Manova Test for Factor A Effect
Statistic value F Num DF Dan DPF Pr>F
wWilks' Lambda 0.312906423 18.6647 2 17 0.0001

Manova Test for PFactor B Effect
Statistic value F Num DF Den DF PIr>F
Wilks' Lambda 0.80570847 0.9696 4 34 0.4369

G W AT SR S S -

Manova Test for A*B Interaction Effect

Statistic Value F Num DF Den DF Pr>F
wilks' Lambda 0.91174914 0.4019 4 34 0.8059

2. Partial Canonical Correlation Results

Partial Canonical Correlation to Test Factor A Effect
Statistic value F Num DF Den DF Pr>F

Wilks' Lambda 0.31290643 18.6647 2 17 0.0003

A P S . e P aus L S — e - = - - -

Partial canonical Correlation to Test Factor B Effect
Statistic Value F Num DF Den DF Pr>F

Wilks' Lambda 0.80570847 0.9696 4 34 0.4369

- - - -

Partial Canonical Correlation to Test A®B Interaction Effect
Statistic Value F Num DF Den DF PI>F

Wilks' Lambda 0.91174914 0.4019 4 34 0.8059

11
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Table 3: Results of Using Partial Canonical Correlation to Solve

Model: Reduced Model
Predicted: ¥1; Predictor: X1
Analysis of variance

Source DF SS MS F Vvalue Prob>F
Nodel 1 581.59436 581.59436 19.277 0.0002
Error 22 663.73898 30.16995
Total 23 1245.33333

R-sguare 0.4670

Model: Full Model
Predicted: Y1; Predictor: Xi, X2, X3
Analysis of variance

Source DF SS MS F value Prob>F
Model. 3 1131.47524 377.15841 66.251 0.0001
Error 20 113.85809 5.69290
Total 23  1245.33333
R-square 0.9086
R2-R32) /{df,~df -
(1 - R?) /df, (1-.9086) /20
(SSER-SSEp) /(df-df,)  (663.74-113.86)/2 _
F2.20 SSE./df, 113.86/20 =48.29 (p<.0001)

Testing Marginal Contribution of X2 and X3

Multivariate Statistics and Exact F statistics
Statistic Value F Num DF Den DF Pr>F
Wilks* Lambda 0.17154047 48.2953 2 20 0.0001
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Table 4: Results from Canonical Analysis and niscriuiﬁant
Analysis

1. Canonical Correlation Results

Canonical R = 0.788989 canonical R® = 0.622503
Statistic Value F Num DF Den DF Pr > F
Wilks' Lambda 0.37749702 17.3148 2 21 0.0001

Raw Canonical Coefficients, Function I:
( ====c=5: Setting the larger element to one)

X1 0.1740767179 s=scessd )
X2 0.1503001476 ==s===c 0.863413

2. Discriminant Analysis Results

Canonical R = 0.788989 canonical R? = 0.622503
Statistic value F Num DF Den DF Pr > F
Wilks' Lambda 0.37749702 17.3148 2 21 0.0001

Raw Coefficients for Function I:
(s=====3: Setting the larger element to one)

X1 0.2770966981 ======3 1
X2 0.2392489651 c======% 0,863413

Pooled Within-Group Covariance Matrix (Boo,14) DF=22

X1 5.132575758 2.412878788
X2 2.412878788 4.996212121
Between-Group Covariance Matrix (Bg) DF = 1
X1 12.08680556 11.26736111
X2 11.26736111 10.50347222
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Table 5:;Data for Canonical Correlation Approach to Chi-Square
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Data Analysis (3rd Ed.), Table 6.6, p.250.

Data adapted from Ott,
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Table 6: Results from Canoniocal Correlstion Approach to Chi-
Square Teat

Table of A by B

A B
Frequency
(Expected) 1} 2} 3{ Total
1 30 15 ! 15 ! 60
Poeal @i o
2 40 50 ! 10 ! 100
(40) (45) | (15) ;
+ + + -t
3 10 ! 25 ! 5 | 40
I (16) (18)]  (6)}
Total 80 90 3¢ 200
Statistics “or Table of A by B
Statistic DF Value Prob
Chi-Square 4 18.194 0.001
Likelihood Ratio Chi-Square 4 18.708 0.001

Sample Size N = 200

2. Canonical Correlation Approach to Contingency Table Analysis

Canonical Correlation Analysis
Multivariate Statistics and F Approximations

statistic Value F Num DF Den DF PI>F
wilks' Lambda 0.90972222 4.747¢6 4 392 0.0009
Pillait's Trace 0.09097222 4.6939 4 394 0.0010

ey - T — T S GED S S G G G S G — S - ane - - R S G A S0 D S SR N G G G GED A G SR G G st G G G S

x2 = N(Pillai's Trace) = 200 X 0.09097222 = 18.194
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