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ABSTRACT

This paper focuses on three aspects related to the

conceptualization and application of canonical correlation

analysis as a dominant statistical model:

1) partial canonical correlation analysis and its application

in statistical testing;

2) the relation between canonical correlation analysis and

discriminant analysis;

3) the relation between canonical correlation analysis and chi-

square contingency table analysis.

The paper shows that canonical correlation analysis can be

conceptualized as the statistical model which brings together

many other statistical techniques in a unified manner, and the

power of this overarching model is significantly increased by

applying the concept of partial correlation to the canonical

case. Two data sets are used tc illustrate the points covered in

the paper, and the computer program results are presented to

augment the discussion.
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The utilization of multivariate statistical analysis has

been widely recognized as to be important in social and

behavioral science research. The importance stems from the

consideration that we intend to honor the complex social reality

)in Which we operate and which we eventually want to generalize

to, and we intend to ar.lid inflating experiment-wise error rate

in our statistical analysis (Fish, 1988; Johnson & Wichern, 1988;

SAS/STAT User's Guide, Version 6, Vol. 4, 1989; Stevens, 1936).

Amomg the multivariate statistical techniques, canonical

correlation analysis has occupied an important strategic

position. It has often been conceptualized as a unified approach

to almost all parametric statistical testing procedures,

univariate and multivariate alike (Baggaley, 1981; Dunteman,

1984; Fornell, 1978; Knapp, 1978; Kshirsagar, 1972; SAS/STAT

User's Guide, Version 6, Vol. 4, 1989; Thompson, 1984, 1988,

1991a). It has even been considered to subsume such non-

parametric procedure as contingency table analysis (Knapp, 1978;

Kshirsagar, 1972).

.Many authors have shown, either theoretically or

empirically, the equivalence between canonical correlation

analysis and many other statistical testing procedures ranging

from simple correlation, t-test, to MANOVA, discriminant

analysis, and even chi-square contingency table analysis (Knapp,

1971; Kshirsagar, 1972; Tatsuoka, 1989; Thompson, 1988, 1991a).

The implications of this intimate relationship between canonical

correlation analysis aad most of the other statistical testing

4
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procedures are both practically and theoretically meaningful and

far-readhing.

Practically, this relationehip reveals the fact that

researcher's choice of any particular statistical technique in a

research situation contributes nothing to the validity of any

causal inferences one may choose to make. This point is relevant

since, despite repeated warnings of same methodologists (Cook &

Campbell, 1971; Thompson, 1981, 1985, 1991b), some

unsophisticated researchers still harbor the misconception that

OVA methods (ANOVA, ANCOVA, MANOVA, MANCOVA) are more closely

related to experimental design, thus permitting valid causal

inferences; correlation and regression approaches, on the other

hand, are correlational in nature, thus not permitting causal

inferences. After all, isn't it true that all of our.statistics

text books emphasize the fact that correlation does not mean

causation? Isn't it also true that Fisher developed and

subsequently used OVA methods extensively in his research and

made valid causal inferences?

The misconception of relating OVA methods with causal

inferences is readily expelled once researchers realize that both

OVA methods and regression approaches are the same statistically,

and both of them can be considered special cases of canonical

correlation analysis. Because of this fact, it is no exaggeration

to state that all parametric testing procedures are correlational

(Thompson, 1991a, 1991b), and this statement may even extend to

non-parametric testing procedure such as chi-square contingency
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table (Dunteman, 1984; Knapp, 1971; Kshirsagar, 1972). Viewed

from this perspective, no methods permit valid causal inferences

without appropriate research design. In reality, what permits

valid cauSal inferences is NOT the statistical' techniques we

happen to use, but the research design and data collection

process. Though Fisher used ANOVA extensively in his research in

agriculture, it is his randomization scheme which made the causal

inferences in his research valid, not the ANOVA technique he

developed and used (Lentner fi Bishop, 1986).

Theoretically, the intimate linkage between canonical

correlation analysis and other statistical testing procedures

Shows that, often, the relationship between two groups of

variables must be exploited to yield fruitful results in our

statistical analysis. As Kshirsageir (1972) explained, "most of

the practical problems arising in statistics can be translated,

in some form or the other, as the problem of measurement of

association between two vector vatiates 2 and V' (p. 281). Since

canonical correlation analysis summarizes the relationships

between two groups of variables, it therefore brings together OVA

methods (both univariate and multivariate), correlation and

regiession analysis, discriminant analysis, and even chi-square

contingency tatae analysis in a unified manner. The realization

of this theoretical unification of statistical techhiques under

the overarching canonieal correlation model elevates our

understanding of statistical techniques to a more strategic

level, just as the realization that the univariate general linear

f;
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model subsumes both univariate OVA methods (ANOVA and ANCOVA) and

regression analysis greatly enhances our understanding of the

nature of those statistical techniques (Cohen, 1968).

A BRINY DESCRIPTION OP CANONICAL CORRELATION ANALYSIS

Hotelling (1935) was the first to tackle the problem of

identifying and measuring relations between two sets of

variables, and he invented and utilized canonical correlation

analysis to investigate the relationship between one set of

reading variables and the other set of arithmetic variables in a

psychology study. Later, this statistical technique was applied

to many other research areas.

Canonical correlation analysis can be understood as the

bivariate correlation of two synthetic variables which are the

linear combinations of the two sets of original variables

(Johnson & Wichern, 1988; Thompson, 1984, 1991a). The two sets of

original variables are linearly combined to produce pairs of

synthetic variables which have maximal correlation, with the

restriction that each member of each subsequent set of such

synthetic variables is orthogonal to all members of all other

sets. The maximum number of such pairs of synthetic variables

which can be produced equals the number of variables in the

smaller set of the two. In this sense, the synthetic variables in

canonical correlation analysis, which are the linear combinations

of the original variables, are similar to the synthetic variables

7
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produced in some other multivariate analysis techniques such as

principal component analysis, discriminant analysis, etc. The

difference, however, is that, in different statistical analysis,

the original variables are linearly combined to satisfy different

criteria. For example, in rrincipal component analysis, original

variables are linearly comLined to produce synthetic variables

which have loaximum variance. In discriminant analysis, the

original variables are linearly combined to produce synthetic

variables which maximizes the ratio of between-group variance to

within-group variance, so that different groups can be maximally

differentiated on the synthetic variables.

As can be expected in any multivariate statistical methods,

in canonical correlation analysis, eigenstructures of some

matrices are involved in deriving the linear coefficients needed

to produce the synthetic variables and in deriving the canonical

correlation coefficients for different canonical functions. Let

us assume that we have two sets of variables as follows and X is

the smaller set of the two:

y2

yj
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When combined, the two sets of variables have the following

partitioned variance-covariance matrix':

..raw
Zyx By),

The derivation of the linear coefficients for combining

original variables into canonical variktes is based on the

following two matrices:
A = rxlc Eatv E
B = Eyy-1 Err Exr-1 Em,

The two matrices, A and Bp have the same eigenvalues Xi, but

with different eigenvectors ai and bi associated with the

eigenvalues X. The elements of the eigenvectors ai and Al it

turns out, are the linear coefficients for the original two sets

of variables X and I respectively. In this way, we obtain a pair

of synthetic variables (canonical variates):

Z" a1x1 + a2x2 + .+ ax
14 7 = bori + bor2 +

and the correlation between ttl and Vi is maximized, subject to the

restriction that each subsequent canonical function is orthogonal

to all previous canonical functions. As a matter of fact, the

'Throughout this paper, variance-covariance matrices are used
instead of Correlation matrices in all mathematical derivations,
mainly for the reason that correlation matrix is a special case of
variance-covariance matrix, i.e., correlation matrix is just the
variance-covariance matrix for standardized variables. Because of
this, the variance-covariance matrix is considered to have wider
applicability.
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correlation between th and VI OW is the square root of the

associated eigenvalue X" i.e., leisvi = A. The maximum number of

canonical variate pairs (canonical functions), as stated

previously, equals the number of original variables in the

smaller set X.

The reasons for utilizing the eigenstructures of matrices A

and 2 to derive eigenvalues = lepo and eigenvectors ai and

th for linear coefficients are mathematical, since the

eigenstructures of A and B mathematically guarantees the

following:

1) correlation between U1 and Vi is maximized to be )414;

2) correlation between A and 17. or q and Vj, or Nri and

or Nri and 1) is zero (for any i not equal j), that is,

canonical variates across pairs, either within one set

or across sets, have zero correlation.

3) Var(111) = Var(VJ = 1 (for any I), i.e., canonical

variates are standardized to have unit variance.

Since canonical variates are just linear combinations of

original variables, the properties of linear combination of

random variables apply. Specifically, for our interest, the

linear combinations
171 = si X = a1x1 + a2x3 + ...+ ajxj

./21 Y=by1 b2y2 + + biyi

have variances:
Var (111) Var (RIX = &Altai
Var (Vi) = Var = biZIA
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So the variances of the synthetic canonical variates are easily

calculated by using the linear coefficient vectors and variance-

covariance matrix of the original variables. Since canonical

variates are standardized to have unit variance, we must have:

Var(U1) aiZamal Ds 1

Var(ili) = blEyrbi = 1

Several authors have amply demonstrated, either

theoretically or empirically, the equivalence of canonical

correlation analysis with almost all other parametric statistical

testing procedures (Baggaley, 1981; Dunteman, 1984; Knapp, 1978;

Kshirsagar, 1972; Tatsuoka, 1989; Thompson, 1988, 1991a;

Zinkgraf, 1983). So it is not the purpose of this paper to

provide comprehensive coverage on this interesting topic, and

readers are referred to the sources above for more detailed and

comprehensive account on this topic. Instead, three aspects of

canonical correlation analysis, when conceptualized as an

overarching model for statistical analysis, will be discussed in

some detail in the following sections. The three aspects are:

1) partial canonical correlation analysis and its application

in statistical testing;

2) canonical correlation approach to discriminant analysis; and

3) canonical correlation approach to contingency table

analysis.

11
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I. PARTIAL CANONICAL CORRELATION ANALYSIS AND ITO APPLICATION
IN STATISTICAL TESTING

Description of Partial Canonical Correlation Analysis

Partial canonical correlation is the natural generalization

of partial correlation from the univariate to the multivariate

situation. In univariate situation, the need for partial

correlation arises when we have, e.g., three variables x, y and

z and they are intercorrelated with each other. If we are

interested in removing the effect of z on both x and y, then

determining the relationship between x and yr what we have is the

partial correlation between x and y after removing Vs influence

on both. Mathematically, the situation described above is the

simplest partial correlation we can encounter, and the partial

correlation between x and y after partialing out z's influence

can be expressed mathematically as follows (Glass & Hopkins,

1984; Neter, Wasserman & Kutner, 1989):

rxr rxtzrzr =

(1

.Simple partial correlation (as opposed to partial canonical

correlation to be discussed later) has some practical

implications which are not often realized by some researchers.

Glass and Hopkins (1984) offer a good example. Suppose we are

examinin4 the relationship between reading performance and visual

perceptual ability of children within certain range of age, we

may have high positive relationship which indicates that those

with high visual perceptual ability also tend to have high
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reading performance, and vice versa. But this may be due to the

fact that both kinds of ability are developmental, thus both are

positively related to age. Once we hold age constant, the

observed high positive relationship between reading performance

and visual perceptual ability may drastically decrease or even

disappear. If this scenario is true, the partial correlation

between reading performance and visual perceptual ability after

partialing out the effect of age on both will give us the

indication of the true relationship between the two kinds of

ability, while regular bivariate Pearson correlation may be

erroneously misleading (Glass & Hopkins, 1984). The derivation of

simple partial correlation coefficient as well as the testing for

its statistical significance is readily available through major

statistical software packages such as SAS and MS.

The concept of simple partial correlation can be extended to

canonical correlation analysis. The mathematical foundation for

this extension is offered in Anderson (1984)/ Cooley and Lohnes

(1971), Johnson and Wichern (1988) and Timm (1975). An excellent

substantive research example employing partial canonical

correlation analysis is offered by Cooley and Lohnes (1971). They

investigated, &mow other things, the canonical correlational

relationship between two sets of variables measuring Grade 12

abilities and Grade 9 interests after partialing out the effect

of another set of variables which measures Grade 9 abilities.

Interested readers are referred to Cooley and Lohens (1971) for

the detailed description of the research example and some

esi



practical interpretation of the partial canonical correlation

analysis.

The situation demanding partial canonical correlation

analysis arises when we have three vectors of random variables

y2

Yj

11

and these three vectors of random variables are intercorrelated

with each other. As in the case of simple partial correlation, we

nay be interested in investigating the relationship between

vector X and vector Y after partialing out the effect of vector

on both X and Y vectors. Conceptually, this is a problem of

partial correlation, but multivariate vectors are involved

instead of simple univariate variables as in the case of simple

partial correlation.

The crucial point in performing partial canonical

correlation analysis is to find out from what variance-covariance

matrices partial canonical correlation coefficients, as well as

linear coefficients for combining original variables into

canonical variates, can be derived. It turns out that the

varlance-covivience matrices of conditional distribution of X and

Y, given 2, i.e., the resilualized variance-covariance matrices

of X and Y after partialing out the e.*.fect of '.ector 2 from both

X and Y, provide us with the solutiopp. More specifically,



12

suppose that, when combined, the three vectors of variables, X, Y

and S have the following partitioned variance-covariance matrix :

ZJczZJYRX
Z = Ey, Eyy

DA Zzy Es

The conditi=a1 variance-covariance matrix of X and Y, gilien 2,

that is, the residualized variance-covariance matrix of X and Y

after partialing out the effect of 15, is given as (Anderson,

1984; Johnson & Wichern, 1988; Timm, 1975):

z xx ;7. .11
xr. z r

myy.st,rxz

=

Zy1-Z71rIZsx

jor XSZ ;ftrE zyl

Ery-Zyx2;11237

Similar to regular canonical correlation analysis, the

eigenvalues Ai from the following two matrices, Nart and BPart I

will be the squared partial canonical correlation coefficients

for ith canonical functions, and the eigenvectors ai and

associated with the eigenvalue Ai will be the linear coefficient

vectors (function coefficients) which combine the original

variables into synthetic canonical variates.

APAre = 1=-1- 21)0,.ir2;71. Jr271. 1
v.

Sparc = 2Y7-i rZyx. e4xx. rr"xy. r

Again, as in regular canonical correlation analysis, the two

matrices, Apart and Bpart, have the same eigenvalues but with

different eigenvectors. More detailed mathematical explanation of
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conditional distribution of vectors of random variables and the

derivation of partial canonical correlation functions can be

found in Anderson (1984)0 Johnson and Wichern (1988) and Timm

(1975).

As with regular canonical correlation functions, partial

canonical correlation functions can be tested for statistical

significance, and the testing procedure is similar to testing

regular canonical correlation functions for both overall test and

sequential test. Timm (1975) offers the necessary details for

testing partial canonical correlation functions for their

statistical significance.

Application of Partial Canonical Correlation in Statistical
Testing

Partial canonical correlation analysis is not only

applicable in substantive research, as Cooley and Lohnes,

excellent research example has shown (Cooley & Lohnes, 1971), it

can also be used as a convenient testing procedure when canonical

correlation analysis is employed as the overarching model which

subsumes other parametric testing procedures.

It is well documented that by adopting some artificial

coding scheme such as "dummy" coding or contrast coding to

represent group membership, all OVA methods (ANOVA, NANOVA,

ANCOVA, MANCOVA) can be translated into canonical correlation

analysis problem (Knapp, 1978; Kshirsagar, 1972; Thompson, 1988,

1991a). Although adopting the canonical correlation analysis

approach to OVA methods is straightforward for an omnibus test,

Lb
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conventionally, subsequent testing for individual factors and

factor interactions is procedurally tedious. This is so mainly

because the Wilk's A from the reduced model (correlating

dependent variables with independent tummy variables after

dropping those associated with the factor or interaction of

Victors to be tested) CANNOT be used directly for the purpose of

testing; instmead, the ratio of full model A to reduced model A

will be calculated, and this ratio becomes the Wilk's A for the

factor or interaction of factors to be tested. Rao's F

approximation is then applied to the ratio and regular testing

for statistical significance can be carried out for the effect of

a particular factor or interaction of factors. More detailed

description of this transformation procedure is provided in

Thompson (1988, 1991a) and Zinkgraf (1983).

The problem of testing for factor or interaction effects
-

when using a canonical correlation approach to OVA methods can be

translated into partial canonical correlation analysis problem.

Since partial canonical correlation functions can be directly

testpd for statistical significance, the approach provides us a

convenient means for testing factor or interaction effect. It can

be recalled that in regular OVA methods, to test for factor or

interaction effect is to test for statistical significance of the

marginal contribution of the factor or interaction accounting for

the variance (covariance matrix, in multivariate case) of the

dependent variable(s), given that all other factor(s) are already

in the model. This is equivalent, if we use canonical correlation

17
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approach to OVA methods, to testing for partial canonical

correlation functions between dependent variables and those dummy

variable(s) representing the factor of interest, after the

effects of all other inderandent variables representing other

factors or interactions have been partialed out from the model.

Using partial canonical correlation analysis, the effect of any

factor or interaction can be tested directly by partialing out

the effects of other independent variables, thus the

conventionally required transformation of Wilk° Az, as

illustrated in Thompson (1988, 1991a) and described in Zinkgraf

(1983), for testing factor or interaction effect can be avoided.

Table 1 presents a small data set which will be used to

illustrate some points explained in this paper. The data set has

two Y variables, three X variables, two classification variables

A and B. The two classification variables are also represented by

contrast coding Al (for the two levels of A factor) and 81 and 82

(for the three levels of B factor). The interaction between the

two classification variables are represented by AB1 and A521

whic4 are the multiplication of Al by 81 and Al by 82,

respectively. For detailed explanation of using coding scheme to

represent classification variables, readers are referred to Cohen

(1968), Kerlinger and Pedhazur (1973), Ott (1988), and Neter,

Wasserman and Kutner (1989).

Insert Table 1 Abort _Here

8
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Among the major statisticsl software packages, currently SAS

is the only one which performs partial canonical correlation

analysis as a standard option under canonical correlation

analysis procedure PROC CANCORR. Cooley and Lohnes (1971) offers

a computer program for performing partial canonical correlation

analysis also. Appendix A presents a SAS program which performs

the various kinds of statistical analysis to be illustrated in

the paper.

The equivalence of MANOVA with partial canonical correlation

analysis is demonstrated in Table 2. In canonical correlation

approach to MANOVA, tests for individual factors and their

interaction are accomplished by sequentially performing three

partial canonical correlation analyses between dependent

variables and those dummy variables representing the factor to be

tested, while partialing out the effecta of all other dummy

variables not being tested. This partialing, in fact, is testing

the significance of additional contribation of a particular

factor, given that the effects of the otter factor d the

interaction have already been taken into censideration.

Conceptually, this is similar to the full model vs reduced model

approach illustrated in Thompson (1988, 1991a) ahd explained in

Zingkraf (1983), but by invoking the concept: of part!ai canonical

correlation, the test for individual factors and interactions in

MANOVA is translated into direct test of partial canonic!Al

functions. In this way, t-ansformations of wijk's t1k rrom the

19
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full and reduced models, and the subsequent calculation of Rao's

F approximation, is avoided here.

;nrer,t Table, 4 About Here

The partial canonical correlation analysis described above

can be applied to any OVA methods for testing individual factors,

factor interaction, as well as covariate(s). For each factor (or

interaction, or covariate), a separate partial canonical

correlation analysis is performed between dependent variable(s)

and those independent variables (dummy for classification

variables, continuous for covariate) representing the factor (or

interaction, or covariate) to be tested, while partialing out the

effects of all other independent variables for other factors and

interactions. (Interested readers are encouraged to use one

dependent variable in order to see the equivalence in the case of

ANOVA.)

Not only can partial canonical correlation analysis be

applied to statistical testing in OVA methods, it can also be

conveniently used to solve some problems in multiple regression

analysis. In multiple regression analysis, very often, we try to

find the best set of predictors for our dependent variable. In

trying to do so, we sometimes encounter the situation in which we

have to determine what the effect will be if several independent

variables are added to the model simultaneously. In other words,

we have to assess the marginal contribution of two or more

2 u
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independent variables as a group to the variance of the dependent

variables given that some other independent variables are already

in the model. Conventionally, testing the additional effect of

two or more variables as a group in regression analysis is nat

direct, to say the least; and it is cumbersome in some sense.

Even major statistical packages such as SAS or SPSS do not

provide readily available results. Competing models (with and

without the added group of independent variables) have to be run,

and either suns of squares or coefficients of determination

(multiple R2s) from the two competing models must be used for

testing the significance of the marginal contribution of the

added group of variables in the regression model. The formulas

for using sums of squares and coefficients of determination from

the two competiug models (full and reduced) are as follows (Glass

& Hopkins, 1984; Neter, Wasserman & Kutner, 1989):

Fv1,

Pit!, v2

- 14) (dfR dfF)
cif

(SSER SSE') Rdfs - dfp)
SSZVdfp

In these equations, SSE represents Sum of Squares due to error

from respective models, and vl = df - dfF, v2 = dfp.

The problem of testing for significance of the marginal

contribution of a new group of independent variables in

regression model is easily solved by adopting the partial

canonical correlation analysis approach. Since we want to assess

the !marginal contribution of a group of new variables, given that
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other independent variables are already in the regression model,

we simply perform a partial canonical correlation analysis'

between the dependent variable and the group of new independent

variables, while partialing out the effects of other independent

variables already in the model. Testing the significance of the

partial canonical function is equivalent to testing the

significance of the marginal contribution of the added group of

variables in the multiple regression model.

Table 3 presents the results of two competing regression

models, Full (2) vs. Reduced (1) models, to test the significance

of the marginal contribution of X2 and X3, given that X1 is

already in the model. Results from partial canonical correlation

approach are presented for comparison.

(1)

(2) Y1 = PO 4. 14; 132x2 P 3x-3

The F test for the significance of the marginal contribution of

X2 and X3 as a group is illustrated using both formulas presented

earlier. Thus it is seen that the significance testing for

partial canonical correlation function is exactly the same as the

significance testing results from using either of the two

formulas.

;nsert Table 3 About nitre

II. CANONICAL CORRELATION APPROACR TO DISCRIMINANT ANALYSIS

The relationship between canonical correlation analysis and

discriminant analysis has been demonstrated by several authors

2 :2
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(Dunteman, 1984; Kshirsagar, 1972; Tatsuoka, 1989; Thompson,

1984, 1991a). The basic procedure is, instead of doing

discriminant analysis, dummy coding is constructed to represent

group membership, and canonical correlation analysis is performed

between the random rtedictor variables and the dummy coding

variables for qtoup membership. The results from both approaches

are the same/ with the exception that the function coefficients

from the two approaches are not the same in terms of numeric

value, instead, they are the same in terms of ratio. This can be

seen if we rescale the two vectors of coefficients from the two

approaches so that the largest element in each set equals one, as

Tatsuoka (1989) demonstrated. Table 4 presents the results from

the two approaches, discriminant analysis and canonical

correlation approach to discriminant analysis. In discriminant

analysis, the classification variable is A, and two X variables

(X1 and X2) are predictor variables. /n the canonical correlation

approach, canonical correlation analysis is performed between two

X variables (X1 and X2) and Al, which is the dummy coding to

represent the two levels in A.

Since the function coefficients from the two approaches are

not the same numerically, naturally, the question arises as to

whether the synthetic variables constructed from the two

different sets of coefficients can equally differentiate the

groups. After all, to construct synthetic variables which

maximally discriminate the groups is the major purpose of

discriminant analysis (Huberty & Wisenbaker, 1991; Johnson &
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Wichern, 1988;). The answer to the above question is a definite

yes. Mathematically, the two sets of coefficients from the two

approaches are the same in the sense that when used to combine

original variables into synthetic variables (discriminant

functions), the groups are equally differentiated to the maximum

degree MD natter which set we happen to use. The reasons for

regarding these two as equivalent can be furnished from several

angles.

First of all, geometrically, the two sets of coefficients

from the two approaches are two vectors in multi-dimensional

space. We are only concerned with the direction of the vectors,

not the magnitude of them, since these vectors are arbitrarily

scaled. As long as the elements in the vectors are proportional,

they are in the.same direction, and they can always be rescaled

to be equal in numeric value by multiplication with a constant.

As Kshirsagar observed (1972), unlike multiple regression where

the coefficients are unique, in discriminant analysis (in

canonical correlation analysis, too, for this matter), the

coefficients are not unique in numeric value; they are only

unique in their ratio. So theoretically, for one discriminant

function, there are an infinite number of coefficient sets which

can do an equally good job in differentiating the groups. The

same is true with canonical correlation analysis: canonical

correlation coefficient will not be affected by multiplying the

coefficient vectors with any constant.

I) 4
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In discriminant analysis, the condition for maximal

differentiation of the groups on the synthetic variables is that

the ratio of between-group variance to pooled within-group

variance on the synthetic variable (discriminant function) is

maximized (Johnson & Wichern, 1988; Xshirsagare 1972), subject to

the restriction that each discriminant function is orthogonal to

previous ones. Let tri be the ith discriminant function, and ai the

ith function coefficient vector, and we have the linear

combination of the original variables:

alra a1Xs. arc+ +an;

Let Robe the between-group variance-covariance matrix, and Ordm

be the pooled within-group variance-covariance matrix of the

original X variables (X1 and X2) respectively. The between-group

variance and the pooled within-group variance on the synthetic

variable, using the properties of linear combination of random

variables, are

and the ratio

Var ((J1)0
Var (U1)1.00.1.w al alspoaatedal

Var U1) 0 aiBoai
Var (U1) 11001,W alifipoolidti

is maximized in discriminant analysis.
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In our example of discriminant analysis, we have the

following variance-covariance matrices for the original two X

variables, X1 and X2:

[12.0868 11.2674 [5.1326 2.41291
8.= iinmdad

11.2674 10.50351' 2.4129 4.9962

and the first discriminant function (since we have only two

groups, this is the only discriminant function we can obtain) has

the coefficient vector (raw coefficients):

AD = 0.1392

[0.27711

Thus, we have the ratio of between-group variance to pooled

within-group variance on the discriminant function as:

Var (Ul)B 4413.ap
Var (111) w aLepootedap

[0.2771 0.2392
11.267410.27711

11.2674 10.5035 0.2392

[0.2771 0.2392
i5.1326 2.412910.2771]

2.4129 4.9962 0.2392
3.023 =3.023

1

If we substitute the coefficient vector from canonical

correlation approach for that from the discriminant analysis, the

ratio of the between-group variance to the pooled within-group

variance on the synthetic variable will be exactly the same as in

discriminant analysis. This is easily verified by using the

coefficient vector from our canonical correlation approach:



[0.1741 0.1503
1112.0860

4011.1aa 11.2674

ailligpms4m4c
5.1326

0.1503 1[2.4129

= 3.023

[0.1741

1.1931
0.3947

11.2674 I 0.17411

10.5035 0.1503

4.996210.1503]

2.4129 0.1741
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The equivalence of the two ratios proves the fact that the

synthetic varicble constructed from either of the coefficient

vectors from the two approaches discriminate the groups equally

well, thus they are considered equivalent, despite the

superficial numeric difference.

The reason for the numeric difference of the coefficient

vectors from the two approaches is arbitrary scaling.

Conventionally, canonical correlation functions are scaled to

have unit variance, while discriminant functions are scaled so

that the POOLED within-group variance equals one. This means that

for separate groups, the discriminant functions may not have unit

variance; neither may the discriminant functions have unit

variance when groups are combined. But when the variances for

separate groups are pooled, the pooled variance of the

discriminant function satisfies the condition:

Since

we must have

Var (U) pooled = 1

Var Uld led alPepooledaD

C 7
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aifigsamaimeta = 1

and the previous calculation on the between-group vs. pooled

within-group ratio has already verified this.

Since the coefficient vectors from the two approaches are

arbitrarily scaled to satisfy different criteria, naturally they

become different in numeric value, though they are still equal in

terms of differentiating groups. To convert the coefficient

vector from canonical correlation approach so that it equals that

of discriminant analysis in numeric value is a problem of

rescaling. Without this rescaling, the synthetic variable

constructed using the coefficients from canonical correlation

approach will not have the property of unit pooled within-group

..,-.77!ance as our results shows:

var. (UI) pooled = 414gpoolodae

=[0.1741 0.1503
i5.1326 2.412910.17411

= 0.3947
2.4129 4.9962 0.1503

To rescale the coefficient vector from canonical correlation

approach so that it satisfies the conventional condition of

discioiminant analysis, we only need to standardize the

coefficient vector in a way similar to any other standardization

process, i.e., to divide each element in the coefficient vector

by some sort of standard deviation. We recall that if we use ac,

the coefficient vector from canonical correlation approach, to

construct synthetic variable as discriminant function, the

corresponding discriminant function has the pooled within-group

variance aciS ledac,
and which does not equal 1, as demonstrated

Th
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previously. The square root of .01 led% is the pooled within-

group standard deviation on such a discriminant function, and it

is this standard deviation that we can use to standardize the

coefficient vector from canonical Correlation approach. More

specifically, if ao is the coefficient vector from discriminant

analysis, and se is its counterpart from canonical correlation

approach, B led is the pooled within-group covariance matrix of

the original predictor variables, the two coefficient vectors are

related as follows:

ay=
I I
V ac gpaged ac

acr

Earlier, we have calculated the *01 ledac to be 0.3947. Uting

the coefficient vectors from the two approaches, we easily verify

ac 1 [0.1741]

ac, t4/0 .3947 0 -1503

[0.17411 .[0.2771

0.62820.1503 0.23921 ap

The conversion of standardized coefficients from the two

appripaches is the same, and orly pooled covariance matrix

(3 led) from standardized predictor variabiGs needs to be used.

The rescaling is conceptually straightforward, but

procedurally tedious, since the pooled covariance matrix of the

original variables has to be found, and matrix calculations are

involved. At this point, it should be emphasized that this

rescaling is NOT a mathematical necessity, but rather, it is done

simply to satisfy certain arbitrary conventional condition.
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III. CANONICAL COMNBLATION AMMO' TO CONTINGENCY TABUS ANALYOU

Several authors have discussed the relationship between

canonical correlation analysis with the contingency table

analysis (Dunteman, 1984; Knapp, 1978; Kshirsagar, 1972). In some

sense, this is an extreme case of stretching the application of,

canonical correlation analysis (Knapp, 1978), since, for this

application, all the variables in canonical correlation analysis

are "dummy" variables representing group memberdhip, and none of

them is a true random variable.

In contingency table analysis, we have R levels (R rows) on

one classification variable, and C levels (c columns) on the

other classification variable. According the subject's level on

the two nominal variables, the subject is entered into the

appropriate cells in the contingency table. As a result, we havy

a contingency table with R rows and C columns. The observed

frequency and expected frequency for each cell are used for

calculation of e statistic which is subsequently used for

testing the hypothesis of independence of row and column

classification probabilities.

The procedure for adopting canonical correlation approach to

contingency table analysis is similar to other situations. For R

rows and C columns, we use r-1 and c-1 dummy coded variables to

represent the levels on the two classification variables So for

each subject, r-1 plus c-1 dummy variables will be used to

represent its position in the contingency table. Finally, a

canonical correlation analysis is to be performed between r-1 and



28

c-1 dummy variables, and testing for the canonicL1 correlation

functions from this approach is equivalent to that based on the

classical chi-square test for independence.

Table 5 presents part of a data set with two nominal

variables, A and BI with three levels for each. For canonical

correlation approach, we need two dummy variables (All A2) to

represent Variable A and another two dummy v=riables (31, 32) for

Variable B. All these are included in Table 5.

Insert Table 5 About Beret

Table 6 presents the results of both classical chi-square

test and canonical correlation approach to contingency table

analysis. From the canonical correlation approach, the

probability from Wilkis A deviates a little from the probability

from chi-square test (0.001 vu. 0.0009), but the probability

derived from Pillaits Trace does equal that from chi-square test.

The reason for the small discrepancy is related to sample size,

since x2 statistic is related to F statistic as follows (Knapp,

1978):
X2cr-i) (c-i) = (ci) Ftx-1)

If sample size increases, the probabilities from the two

approaches will converge. When sample size is large enough, x2

statistic can be directly calculated from F in canonical approach

by multiplying the canonical F by (r-1)(c-1). For our example,

the sample size is not large enough, end the results from the two

approaches have not quite converged:
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(r-1)(c-1)111 = 4 x 4.7476 = 18.9904 > Z2 = 18.194

Another more interesting fact about these two approaches is the

relationship between Z2 statistic and Pillai's trace from

canonical correlation analysis. As Kishirsagar proved

mathematically (Itahirsagar, 1972, p. 383), the two are related as

(N: total sample size):

Pi nails Trace V

This relationship is easily verified using our example results:

N(Pillai's trace) = 200 x 0.09097222 = 18.19444 = Z2

Because of this relationship, classical Z2 test is considered to

be the same as the test based on Pillai's trace (Kshirsagar,

1972), even if when sample size is only moderate.

This application of canonical correlation analysis indeed

stretches it to its limits, since almost no assumption exists for

the nominal data in the contingency table, not to mention

nultivariate normality. Viewed in this perspective, the little

discrepancy between the two approaches when the sample size is

not adequately large should be quite tolerable.

CONCLUSION

Canonical correlation analysis is a powerful overarching

statistical model wlikth brings together many statistical

techniques in a unified manner. Understamding the relationship

between canonical correlation analysis and other statistical

techniques is important for any of us who are ambitious enough as
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to try to be seasoned researchers; since this will certainly

enhance our grasp of statistical methods, thus elevating us to a

higher and more strategic position in the hierarchy of

statistical techniques. Under the framework of canonical

correlation analysis, extending the concept of partial

correlation to canonical case has some interesting positive

tmplications. This extension makes canonical correlation analysis

more applicable as a statistical testing tool, thus increasing

its power as a dominant statistical model. Furthermore, the

application of canonical correlation analysis as a general data

analytic system will most likely be facilitated in research

practice by this extension.
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Append lix A

SAO Program Is Program for Table 1 Data

DATA Di; INFILE AAA;
INPUT ID T1 12 X1 X2 X3 A B Al 81 82 AB1 AB2;
TITLE1 IMANOVA & CANONICAL CORRELATION APPROACH TO MANOVAI;

PROC GLN;
IMANOVA TO TEST FACTOR A, 8 & AttB INTERACTION';

CLASS A B;
MODEL Yl 12=A B A*B/NOUNI;
MANOVA Himi ALL /SUMMARY;

PROC CANCORR SHORT ;
TITLE2 'PARTIAL CANCORR APPROACH TO TEST A*8 INTERACTION1;

VAR Y1 12;
WITH Al Bl 82 AB1 A82;
PARTIAL Al 81 B2;

PROC CANCORR SHORT;
TITLE2 'PARTIAL CANCORR APPROACH TO TEST FACTOR A EFFECT';

VAR YI 12;
WITH Al 81 82 A81 A82;
PARTIAL 81 82 AB1 A32;

PROC CANCORR SHORT;
TITLE2 'PARTIAL CANCORR APPROACH TO TEST FACTOR B EFFECT1;

VAR Yl 12;
WITH Al 81 82 AB1 A82;
PARTIAL Al AB1 AB2;

RUN;
**
It*

TITLE1 'PARTIAL CANCORR TO SOLVE MULTIPLE REGRESSION PROBLEW;
PROC REG;

TITLE2 'MULTIPLE REGRESSION, REDUCED MODELf;
MODEL Y1=X1;

PROC REG;
TITLE2 'MULTIPLE REGRESSION, FULL MODEL';

.MODEL Y1=X1 X2 X3;
PROC CANCORR SHORT;

TITLE2 'PARTIAL CANCORR TO TEST SIGNIFICANCE OF X2 & X3';
VAR Yl;
WITH X1 X2 X3;
PARTIAL Xl;

RUN;

*;

TITLEI 'CANCORR APPROACH TO DISCRIMINANT ANALYSIS1;
PROC CANDISC Bcav PCOV PCORR;

TITLE2 'CANDISC PROCEDURE FOR STANDARDIZED VARIABLES*;
CLASS A;
VAR ZX1 =2;

PROC CANDISC Bcav PCOV PCORR;
TITLE2 'CANDISC PROCEDURE FOR ORIGINAL VARIABLES';

3S
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CLASS A;
VAR X1 X2;

PROC CANCORR ALL;
TITLE2 'CUM= APPROACH TO DISCRIMINANT ANALYSIS1;

VAR X1 X2:
WITH Al;

SAS Program II: Program for Table 3 Data

DATA D2; INFILE BP3;
INPUT A B Al A2 81 82;

TITLE1 1CANCORR APPROACH TO OONT/NGENCY TABLE1;
PROC FREQ;
TITLE2 'CHI-SQUARE TEST OF CONTINGENCY TABLE ANALYSIS';

TABLE A*B/CHISQ EXPECTED NOPERCENT NOROW NOCOL;
PROC CANCORR SHORT;
Trrum 'CANCORR APPROACH TO CONTINGENCY TABLE ANALYSIS';
VAR Al A2;
WITH 81 82;
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Table Is Data $et 1
ID Y1 ir2 X1 X2 X3 A B Al Bl B2 AB1 AB2

1 93 96 9 12 20 1 1 1 1 -I. 1 -1
2 88 91 7 10 15 1 2 1 0 2 0 2
3 95 100 8 12 26 1 3 1. -3. -1 -1 -3.
4 95 97 10 14 21 1 1 1 1 -1 1 -1
5 95 99 9 12 25 1 2 1 0 2 0 2
6 99 111 10 IS 33. 3. 3 3. -1 -3. -3. -1
7 99 105 8 10 34 1 1 1 3. -1 3. -2.
8 81. 93 7 9 16 1 2 1 0 2 0 2
9 95 104 5 14 30 3. 3 1 -1. -1 -1 -1
10 88 95 10 12 1.5 1 1 1 3. -1 1 -1
11 99 115 5 11 42 1 2 1 0 2 0 2
12 87 92 9 9 16 1 3 1 -1 -1 -1 -1
13 101 103 13 14 29 2 1 -1 3. -1 -1 1.

14 102 107 10 15 32 2 2 -1 0 2 0 -2
15 110 122 18 20 51 2 3 -1 -1 -1 1 1
16 102 108 10 17 31 2 1. -1 2. -1 -1 1
17 106 120 14 18 39 2 2 -1 0 2 0 -2
18 103 109 12 17 32 2 3 -1 -3. -1 1 1
19 103 112 16 17 34 2 1 -1 1 -1 -3. 1
20 103 110 11 14 35 2 2 -3. 0 2 0 -2
21 105 114 12 15 37 2 3 -1, -3. -3. 1 3.

22 107 121 16 19 39 2 3. -1 1 -1 -1 1
23 106 118 14 16 39 2 2 -1 0 2 0 -2
24 106 120 10 16 49 2 3 -1 -1 -1 1 1

Data adapted from A.A. Johnoon & D.M. Wichern. (1988). Avigied Mu1tivariate
§tatiatisa1 Analveist (2nd Zd.), Exercise 9.16, g. 435.



Table 2: Results of MRXOTh6 Partial Canonical Correlation
Approach to MAMOVA

1.MAM0VA Results

Manova Test for Factor A Effect

Statistic Value

38

Num DF Dan DF PrF

Wilke' Lambda 0.31290643 18.6647 2 17 0.0001

Manova Test for Factor 8 Effect

Statistic Value F Num DF Den DF Pr>F

Wilks, Lambda 0.80570847 0.9696 4 34 0.4369

Manova Test for A*15 Interaction Effect

Statistic Value F Num DF Den DF Pr>F

Milks' Larbda 0.91174914 0.4019 4 34 0.8059

2. Partial Canonical Correlation Results

Partial Canonical Correlation to Test Factor A Effect

Statistic Value Num DF Den DF Pr>F

Milks' Lambda 0.31290643 18.6647 2 17 0.0001

Partial Canonical Correlation to Test Factor II Effect

Statistic Value F Num DF Den DF Pr>F

Wilks' Lambda 0.80570847 0.9696 4 34 0.4369

Partial Canonical Correlation to Test A*8 Interaction Effect

Statistic Value F Num DF Den DF Pr>F"

Wi3ks' Lambda 0.91174914 0.4019 4 34 0.8059
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Results of Using Partial Canonical Correlation to Solve
MUltipls Regrassion Nerdblem

1. Multiple Regression Results

Model: Reduced Model
Predicted: Yl; Predictor: X1

Analysis of Variance

Source

Model
Rrror
Total

DF SS PIS

1 581.59436
22 663.73898
23 1245.33333

F Value ProbF

581.59436 19.277 0.0002
30.16995

R-square 0.4670

Model: Full Model
Predicted: 11; Predictor: Xl, X2, X3

Analysis of Variance

Source DF SS

Model
Error
Total

MS

3 1131.47524 377.15841
20 113.85809 5.69290
23 1245.33333

RaSqUire 0.11086

F Value ProbF

66.251 0.0001

(4-14)/(d4-d4.) (.9086-.467)/2=48.30F2,20 =
(1 Riar) /df, (1-.9086)/20

(SSER-SSEF.)/ (cifit-d4) =_(663.74-113.86) /2 .29 (jp< . 0001)F2,20= SSE,/d4. 113.86/20

(p < .0001)

2. Partial Canonical Correlation Analysis Results

Testing Marginal Contribution of X2 and X3

Multivariate Statistics and Exact F Statistics

Statistic

Wilks' Lambda

Value Num DF Den DF PrF

0.17154047 48.2953 2 20 0.0001

1 2



40

Table 4: Results from Canonical Analysis and Discriminant
Analysis

1. Canonical Correlation Results

Canonical R = 0.766969

Statistic Value

Canonical R2 = 0.622503

Num DF Den DF Pr F

Milks' Lambda 0.37749702 17.3146 2

Raw Canonical Coefficients, Function I:
( i======4: Setting the larger element to one)

X1 0.1740767179 ======2* 1
X2 0.1503001476 ======4 0.863413

21 0.0001

2. Discriminant Analysis Results

Canonical R = 0.766969 Canonical R2 = 0.622503

Statistic Value

Wilks' Lambda 0.37749702 17.3146

Num DF Den DF Pr > F

2

Raw Coefficients for Function I:
(======4: Setting the larger element to one)

X1 0.2770966961 =======* 1
X2 0.2392489651 =======4 0.663413

21 0.0001

Pooled Within-Group Covariance

X1 5.132575758
X2 2.412878788

Matrix (Ppooled) DF=22

2.412878788
4.996212121

Between-Group Covariance Matrix (B0) DF 1

X1 12.08680556 11.26736111
X2 11.26736111 10.50347222

13
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Table 6: Results from Canonical Correlation Approach to Chi-
Square Test

1. Chi-Square Test

Table of A by B

42

A B
Frequency'
(Expected)1 11 21 31 Total

+- +- +
1 i

1
30 1 15 : 15 1 60

t (24)1 (27)1 (9)11

+ + -+ +
2 1 40 1 50 1 10 1 100

i

1 (40)1 (45)1 (15)1
1

4--- + + +
3 1 10 1 25 1 5 1 40

1 (16)1 (18)1 (6)1
I

+ + 4' +
Total 80 90 3e 200

Statistics lor Table of A by B

Statistic DP Value Prob

Chi-Square 4 18.194 0.001
Likelihood Ratio Chi-Square 4 18.708 0.001

Sample Size N = 200

2. Canonical Correlation Approach to Contingency Table Analysis

Canonical Correlation Analysis
Multivariate Statistics and F Approximations

Statistic Value F Num Dr Den DP Pr>F6

Milks' Lambda 0.90972222 4.7476 4 392 0.0009
Pillai's Trace 0.09097222 4.6939 4 394 0.0010

x2 = N(Fillaits Trace) = 200 x 0.09097222 18.194


