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A bstract

Hierarchical Bayes procedures were compared for estimating item and ability parameters

in item response theory. Simulated data sets from the two-parameter logistic model were

analyzed using three different hierarchical Bayes procedures: the joint Bayesian with known

hyperparameters (JB1), the joint Bayesian with informative hyperpriors (JB2), and the

marginal Bayesian with known hyperparameters (MB). MB yielded consistently smaller root

mean square differences than either JB1 or 3B2 for item and ability estimates. The maximum

a posteriori estimation used along with MB yielded larger biases then the joint Bayes modal

estimation in 1131 and JB2. As the sample size and test length increased, the three Bayes

procedures yielded essentially the same result.

Key words: Bayes C3timation, hierarchical prior, item response theory, joint Bayesian

estimation, marginal Bayesian estimation.
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Introduction

A common situation in item response theory (IRT) is that in which both item and ability (i.e.,

structural and incidental) parameters have to be estimated simultaneously. When this is the

case, Bayesian estimation may be preferable to maximum likelihood estimation. Bayesian

methods yield item discrimination parameter estimates which never become infinite; lower

asymptote estimates of item characteristic curves which do not have implausible values;

and ability estimates which are automatically restricted to a reasonable range (Lord,

1986). Although Bayes procedures have been available for some time, the properties of

these techniques have not been studied as thoroughly as those of maximum likelihood

methods. The purpose of this study, therefore, was to compare different Hayes procedures

for estimation of item and ability parameters in IRT.

Bayesian approaches in IRT can be distinguished on the basis of whether estimation

of item parameters is done with or without rnarginalization over ability parameters. If

marginalization is used, the solution is marginal Bayesian estimation; if marginalization is

not used, the zolution is joint Bayesian estimation.

Swarninathan and Gifford (1982, 1985, 1986) developed the joint Bayesian procedures

for the one-, two-, and three-parameter item characteristic curve models. Their methods

implement the hierarchical Bayes procedures for the specification of prior beliefs following

the approach taken by Lindley (1971) and Lindley and Smith (1972). Evidence presented by

Swaminathan and Gifford indicated that joint Bayesian parameter estimates were superior

to those obtained via joint maximum likelihood estimation in that they remained in the

parameter space, had smaller mean square differences from the underlying values, and were

less biased (Gifford & Swaminathan, 1990).

Mislevy (1986) employed the hierarchical Bayesian estimation model of Lindley and Smith

(1972) to extend the marginal maximum likelihood approach to a marginal Bayesian solution.
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This permitted prior distributions to be posited for item parameters. Supplementary

Bayesian procedures can also be used to obtain ability estimates once the marginal Bayesian

estimates are obtained for item parameters. Mislevy and Bock (1989) implemented this

Bayesian approach in the BILOG computer program. Tsutakawa and Lin (1986) also

proposed a marginal Bayesian estimation to compute the posterior mode using the EM

algorithm

Evidence has been subsequently presented which points to the likelihood that marginal

modes may provide better approximations than joint modes to posterior means when

nuisance (i.e., ability) parameters are present (Mislevy, 1986; O'Hagan, 1976; Tsutakawa

& Lin, 1986). As yet, however, no empirical analyses have been reported which test this

point.

Bayesian approaches are characterized by incorporation of prior information or beliefs

into the estimation of parameters in order to improve the accuracy of those estimates.

Specification of priors in Bayesian analysis is a subjective matter. A number of different

forms of priors have been studied (e.g., Leonard & Novick, 1985; Lord, 1980;, Mislevy,

1986; Mislevy & Bock, 1989; Swaminathan & Gifford, 1986; Tsutakawa & Lin, 1986). The

terminology describing the structure of priors can sometimes be quite confusing. In a classical

Bayesian approach, a single prior can be selected for the ordinary parameters. It is possible

to recognize some uncertainty in priors. When priors are expressed in terms of family or class

of prior, we call the parameters in the class of priors as hyperparameters. Hyperparameters

describe the distributional characteristics of the prior information. It is sometimes also

convenient to specify prior information on the hyperparameters as well. This second prior is

called a hyperprior and contains parameters which are referred to as hyperhyperparameters

(Good, 1980, 1983; Lindley, 1971, Lindley & Smith, 1972).

To completely exploit the potential of the Bayesian estimation requires understanding

of its mathematical underpinnings, particularly the role of prior distributions in estimating
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parameters. In the present study, we compared the effectiveness of three hierarchical Bayes

procedures for obtaining item and ability estimates: the joint Bayesian estimation with

known hyperparameters (JB1), the joint Bayesian estimation with informative hyperpriors

(JB2), and the marginal Bayesian estimation with known hyperparameters (MB).

In the following sections, we present a discussion of joint and marginal Bayesian

estimation in IRT. Included is a presentation of prior and posterior distributions focusing

specifically on one- and two-stage hierarchical priors. Finally, we present a discussion of the

two joint Bayesian methods considering the specific priors dealt with in this paper.

Background

The Model

Item characteristic curve models are expressed as mathematical equations of the probabilit

of a correct response to a test item as a function of the ability of the person responding.

Consider binary responses to a set of n test items by a set of N examinees. A response of

an examinee i to an item j is represented in these models by a. random variable Uo, where

i = 1, N and j = 1, . , n. The probability of a correct response to item j is represented

by

P(1111 = li9.141) = P2(91), (1)

and the probability of an incorrect response is given by

P(Uji = = (23(9i), (2)

depending on a real-valued ability parameter 9 and a real- or vector-valued item parameter

ti
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The item characteristic curve of the three-parameter modell is given by

= ci + (1 c3)[1 + exp {a2(ei bi)r , (3)

where ai is the item discrimination parameter, bi is the item difficulty parameter, ci is the

lower asymptote of the item characteristic curve for the item j , and 9 is the ability parameter

of the person i.

Likelihood Function

Under typical testing conditions, a sample of N examinees are drawn at random from a

population of examinees possessing the underlying ability. No assumption is necessary as

to the distribution of the examinees over the ability continuum (Lord & Novick, 1968). For

each examinee there is a vector of dichotomously scored item responses of length n denoted

by U, = (Ual Um)'. One such vector exists for each of the N examinees. The rezulting

N x n matrix of item responses is denoted by U.

Under the local independence assumption, the probability of U, given ability 8, and item

parameters is
Il

13(U %191, ) = fl p.,(91)usiQ3(91)1u",
j.,

where 4 = (4i,... , y. If "9 is the vector of the .V examinee trait scores, = (91,

the joint probability of U given by 9 and can be written as

N n

(4)

7 9N)I7

p(ve, ) = 11 pA)u,/(2,(0.)iu.i. (5)
s=i 3.1

When we make inferences about both ability and item parameters from the observed

data u of the -V x n matrix of item responses, the probability of u given by 9 and kis

Nn
14114) 4.) = P.7(9,)u" y(9 1)l -% = 1(2,

:=1

(6)

'Because of inclusiveness, that is, the one- and two-parameter item characteristic curve
models are regarded as the special cases of the three-parameter model, all expressions are
developed below only for Birnbaum's three-parameter model (Birnbaum, 1968).
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The likelihood, 141,0, is a function of the parameters of the n item characteristic curves and

the N abilities.

Parameter Estimation in IRT

The four main approaches currently used in IRT for parameter estimation are (a) joint

maximum likelihord estimation, (b) joint Bayesian estimation, (c) marginal maximum

likelihood estimatiun, and (d) marginal Bayesian estimation. The following discussion

presents a description of the Bayesian procedures as the extensions of the maximum likelihood

methods where the priors are posited for the item and ability parameters.

The joint maximum likelihood estimation (Birnbaum, 1968; Lord, 1980; Wingersky,

Barton, & Lord, 1982) simultaneously maximizes the likelihood function 1(e) in Equation

6.

The joint Bar'esian estimation (Swaminathan & Gifford, 1982, 1985, 1986) simultaneously

maximizes the posterior distribution

1r(2, u) (7)

where cc denotes proportionality and 7(3, e) is the joint prior density of the parameters 9 and

e. Equivalently, the posterior distribution of parameters given the matrix of observations u

is written as

9; ar(11.11)1-(4_1u) 4
,

u) (8)

where m(u) is the marginal probability density function of u defined as

m( u ) = fe 1(//, 1)./r(i, )dd (9)

where 0 and .1-1 are the parameter spaces for ability and item parameters, respectively. The

posterior density function is a revised expression of the belief one has about the parameters

once the data have been collected. It contains all the information necessary for making

probability statements regarding the parameters of interest.
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The marginal maximum likelihood estimation of item parameters (Bock & Aitkin, 1981;

Bock & Lieberrnan, 1970; Harwell, Baker, & Zwarts, 1988) maximizes the ma-ginal likelihood

function

m() =11 I 1(9i.0.7r(C)ai, (10)
s=t 9

where w(91) denotes a prior distribution of ability and

1(94 = (901-6" = kuileitO
j=1

Supplementary maximum likelihood estimation and Bayesian estimation procedures can be

used to obtain ability parameter estimates.

Bayesian priors on item parameters may also be used in the marginal maximum likelihood

estimation to obtain the marginal Bayesian estimation of item parameters (Harwell & Baker,

1991; Mislevy, 1986). The marginal Bayesian estimation maximizes the marginal posterior

distribution

(12)

where rn(4) is the marginal likelihood function and 1() is the prior distribution of item

parameters.

Prior and Posterior Distributions
Prior Distribution

A flexible family of prior distributions is available by transforming item parameters to

new parameters which may be taken to possess a multivariate normal prior distribution.

To this end Leonard and Novick (1985) and Mislevy (1986) recommend the following

transformations:

and

-ri = lnic2/(1

6
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Since 62 is a difficulty parameter, we also use the following expression:

13 = bi. (15)

In order to define the posterior distribution precisely, we first specify the prior belief

about the parameters. We assume 9 and priors which are independently distributed with

probability density functions 7r(g) and ir(i), respectively.

Since we use the three-parameter model,

= (at alit M. anli3n,"10` (16)

We assume the vector of item parameters possesses a multivariate normal distribution

conditional on the respective mean vector and covariance matrix Er This prior

specification is more general than previous suggestions in the literature. The prior

distribution of item parameters is

(f = (270-3n" 1E41-1/2 exp 24)/E41(1 ad}

where the hyperparameter = E )

If we assume the vectors of the parameters a = (at, . an)'I 3 = (01, ...7i3nY7

(17)

and

mf = 01) . ,"In)' to be independent, we can take the vectors a 0, and v to possess

independent multivariate normal distributions, conditional on their respective mean vectors

421., a., and a , and covariance matrices E Zei, and Z.., (Leonard dr Novick, 1985). The

prior distribution of item parameters in this case is

= 7(2.174)7(e3120)74/12,), (18)

where 2a = (49,E,4), =

r(212.) = (27r)-n/241-112exp 1(ta aan-4: E.)} , (19)
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and 7(1124) and 7r() are defined similarly.

If we further assume exchangeability for all three parameters, we may take =

_ _ 2
2 Inv and E In where Aci,ns I acg2 and

Ci.f2 are scalars, 1 is an n x 1 vector of ones, and 1 is an identity matrix of order n (Leonard

ic Novick, 1985). The prior distribution of item parameters, assuming exchangeability, is

7r(171) = 70a31/40, cr!).7(fr3,1/1074)711711Y-f,4712), (20)
.7=1

where
1

71(a)1P0,47!) = (2701)-'/2exP
2rig,

(a; Pa )2 ,{ (21)

and r(311/.10,41) and -,Thitt.r, cr.2) are defined similarly. This form of the prior distribution of

item parameters is used in the present study for the joint Bayesian estimation as well as for

the marginal Bayesian estimation procedures. A hierarchical Bayes approach is developed

below in which another stage priors are assigned to the prior parameters, it., 120, A.,,, cd, 0.2
_ 0 I

and a;,.

Hierarchical A pproach

We can specify prior distributions for the parameter vectors 9 and in two stages. This

type of prior distribution is a hierarchical prior (Berger, 1985; Good, 1983) also called a

multistage prior (Lindley, 1971; Lindley & Smith, 1972). The idea is that one may have

structural and subjective prior information at the same time and that it is often convenient

to model this in stages.

The structural knowledge that the 9, are independent and identically distributed leads

to the first stage prior description

1,(2) = 11 ,o(es). (22)

The subscript 1 on 71 is to indicate that this is the first stage. The hierarchical approach

then places a second stage subjective prior on 10. If we use r to denote a class of priors, the



hierarchical approach is most commonly used when the first stage, r , consists of priors of a

certain functional form. Thus, if

To = {iri(0Ir) : 2.1 is of a given functional form and z. E T}, (23)

then the second stage would consist of putting a prior distribution, 1r2(z), on the
hyperparameter T. Such a second stage prior is sometimes called a hyperprior (Berger,

1985; Good, 1983).

The structural assumption of independence of the 9, together with the assumption that

they have a common normal distribution (i.e., we assume that the information on these

parameters is exchangeable), leads to

1
N

re = irajZ) : iri(01r) = ii 70(0,), 70 being .V(A9,4), oo < Ae < co and al o , (24)
4.1

where

11(27rai)-1/2exp ----(0, pc9)2 . (25)2aj

Similarly, assumptions that item parameters are independent and identically distributed

and that the information on each of the item parameters is exchangeable lead to r., I's, and

l', with the hyperparameter 77. Then the first stage prior distribution of item parameters

assuming independence and exchangeability is

ifi(07) = fl (a, arDzi0311#0, 4)n-1(1'31g, cr.y2). (26)
1.1

The complete prior for the hierarchiml model, assuming independence between ability

and item parameters, is

(9-) z) L 2) = 71411J7r2 (r_)/ri (112)7r2 (2) (27)

where iri(01z) is the first stage density of 0 conditional on r which takes the second stage

density 72(r) and ari(112) is the first stage density of / conditional on which takes the

second stage density 72(2).

1 2
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Second Stage Prior

Noninformative priors are often used at the second stage because of the difficulty in specifying

second stage priors (Berger, 1985). Sometimes, it is simply assumed that hyperparameters

are known. For example, in the joint Bayesian estimation procedures, identifying restrictions

can be incorporated directly into the prior (Swarninathan az Gifford, 1986) because the three-

parameter model does not need to be identified. Therefore, we set /10 = 0 and 0-1 = 1, so

that
( 1 .t,/

r(9ni) = (21')_" exP e!) (28)

In the above specification, setting /he = 0 and (.71 = 1 contains the explicit assumption that

the hyperparameter is known.

In the present study, we use the identical form of prior for each of the item parameters.

Detailed examples, therefore, are given below only for the transformed item discrimination

parameter. Hyperpriors for pc, and cr2 can be specified by assuming that pc, and 4, are

independent, pc, has a noninformative uniform distribution, and a! has an inverse gamma

distribution with parameters vc, and , Ig(u., ).). That is,

, 1 1

7207 ) = 1.2(i1a)r2(a;,va,A,) = exp-a r(iltz)AiCil(a2)'+' Acia,22 '
(29)

where v,, > 0 and AG, > 0. Since E(a;21 = vA, we consider ---.1,-c as a prior variance

estimate and 21, as a prior sample size ror the variance of item discrimination (Leonard,

1972; Novick, 1969). The prior for a can be expressed as

riCat )72(2J = 11 ro(aj)7r2(17)
1=1

(30)

1
a j=1 i tva.)k:(cr,23'1+1 exp

1 1
(31)

1 n
= (27ra!)- 2 exp -- E(ce, 1.6)2 ",

2a2

The above expression depends on the nuisance parameters, pc, and ot. Thee can be

10
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integrated out to yield

/ +
-(n+2101-1)/2

/ow /woo 71021241)V2ta)dAridOt oc 2 t(ai ai)2 (32).
Aci j=1

-011-21.0-1)/2

(a - cir . (33)/

Therefore,

7r(ailicil Ace) oc
2

+
a

--411
"a,

Similar prior specifications yield

r(f311/0) Afi) cc

and

where ,S

2 "
7c; /9)2

2 n
A.,) cc + E(^6 '7)2

1 nEj=i Ai and i = I En '1';n /=1

1

-(n+laap-1)/1

-(11+214,-1)/2

(34)

(35)

In the context of the hierarchical approach (Goel, 1983; Goel & DeGroot, 1981), we can

illustrate the above specification of priors of item parameters as

where 7r3(2) is viewed as

77) = TIVIOr2(2), (36)

7r20) 72.1(& 1)17/(2))7r2,2(17(2)). (37)

It can be seen that ri (20),77(2)). We integrate out the nuisance parameter IP) explicitly

assuming 2(2) is known:

d2(1) = 71-1(112)7r2(2)dn(1) = ir(k12(2)).L(i) Hit)
(38)

From the assumption of independence of the respective vectors of item parameters,

71-tie) = 12(92.))7(112{62))7(2142)).

For the transformed item discrimination parameter, for example,

= (41.): yr) =

11

14

(39)

(40)



We can integrate out 211.) from the prior distribution to yield

fito371(itaiL)7r2(71)(171(') = 7(21r)(2)) = 7(ctiva, AG).

Posterior Distribution

(41)

Bayesian analysis is performed by combining the prior information and the sample

information into what is called the posterior distribution; all decisions or inferences are

made about the parameter of interest from the posterior distribution. The joint posterior

density of 0 andl, given observations u, T, and , is

71-(k,41u,z.,17) oc 1(1§.)7rCelz)ir(1177). (42)

When ignorance (i.e., noninformative) priors are assigned to the hyperparameters, T and

77, the posterior evaluation will be based largely on the data. Th4s will provide Stein-type

shrinkage estimates for the item and ability parameters, smoothing each of these toward

respective average values (Leonard lz Novick. 1985). When the hyperparameters are assumed

to be known, the simultaneous maximization of the joint posterior results in JB1.

In JB2, the following joint posterior distribution will be simultaneously maximized to

find the joint modal estimates:

u,T,17(2)) oc 07(0717(072)). (43)

In the marginal Bayesian estimation context (Harwell Sc Baker, 1991; Mislevy, 1986),

assuming the hyperparameters are known, the examinee parameters Q. are integrated over

their distribution to obtain the marginal posterior distribution

r(fu,L2) DC (44)

Marginal Bayesian modal estimates of item parameters can be found by maximizing the

marginal posterior distribution.

12
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When the two-stage hierarchical priors are employed in the marginal Bayesian estimation

of item parameters, assuming the ability hyperparameter r is known, the marginal posterior

distribution can be defined as

7r(cu LP)) tx m(tiz)ir(112.(2)). (45)

In the marginal Bayesian estimation procedurPA, ability parameters are estimated after

obtaining the item parameter estimates assuming these are true values. Two Bayes methods

are available; Bayes modal estimation and Bayes expected a posteriori (EAP) estimation

(Bock & Mislevy, 1982).

Since detailed mathematical derivation can be found for the marginal Bayesian estimation

procedures (Harwell & Baker 1991; Mislevy, 1986), in tLe next section we presents only the

two joint Bayesian estimation procedures.

Joint Bayesian Estimation
3B2 Estimation

In order to estimate the item and ability parameters, the log posterior distribution

In r(g,lju, r 77(2)) is to be maximized by taking partial derivatives with respect to the

parameters and setting them equal to zeros. A procedure such as the Newton-Raphson

method is then used to obtain the joint modal estimators.

Since the parameters for all n items and the abilities for all N examinees are unknown,

we first to take derivatives of the logarithm of the posterior distribution with respect to these

parameters. These are then set equal to zero and the 3n + N simultaneous equations solved

to obtain the Hayes modal estimates of the unknown parameters. Assuming item and ability

parameters are independent, we can obtain joint Bayes modal estimates via Birnbaum's

(1968) method.

1316



In Birnbaum's method the item parameter estimation part and the ability parameter

estimation part are repeated iteratively until a stable set of item and ability estimates is

obtained. In the item parameter estimation part, the Newton-Raphson (Kennedy Se Gentle,

1980) equation is
.(a)

fif8-1)}-1 (46)

where s indexes the iteration, 1, is the gradient vector, H3 is the Hessian matrix of the log

posterior distribution, F = ln 210 ju, r, n(2)). The Newton-Raphson equation of the ability

parameter estimation part, for examinee i, is

ka) (02F
ae!

-1 (OF
au)

(3_1) i (s_1)
(47)

We take a partial derivative of the log posterior distribution with respect to each item

parameter, for example a3, and set to zero. The resulting equation becomes

a
ln ro -

a
t- lnIT(07(2)) = 0. (48)

Similarly, when we take a partial derivative of the log of the posterior distribution with

regard to an examinee's ability parameter, 0, and set to zero, the resulting equation is

a a
37, ln 1(6! e) lnir(91r) = O. (49)

In the subsequent sections, we derive the individual elements which are needed in the

Newton-Raphson method for the joint Bayesian-2 estimation procedure.

Likelihood

Taking logarithms, the log likelihood function is

Nn
ln = [u, ln {P,(00} + (1 u,j) in {Qi(01)}}. (50)



First, we need partial derivatives of P MO with respect to each item parameter. The partial

derivatives of 13:(91) with respect to ct. Ai, and are

a
Pi Coi) = exP(ai){1 W(71)}(9i PAP;(9)Q;(9i), (51)uni

a
= exp(c11){1 W(.0112;(90Q;(80,

and

(52)

a = hill g(-vi)}Q;(9i), (53)

where P;(0i) = 11 -I- expi exp(ai)(9 ,t3i)1]-' and Q;(11,) = 1 (90. Using these

expressions and the relationship

1
(54)

,(94) 1 W(7,)'

the derivatives of the log likelihood with respect to the item parameters are

a
in l(P., = exP(42 )1 E(9+ /33)wii{uil ii(Oi)}$ (55)

$=1

a
-51-3; In kill = exP(a3){1 'kVA} E wii{ui, Poo}, (56)

$.1

and
a

077 ln a = 11/(-Ii) {P;(90}-Ift43 (57)
s=1

where

P;(9s)Q;(91)

P;(9)( MO.
(58)

The partial derivative of P,(91) with respect to 9$ is

a
-57,P3(03 = exp(aMl 11('y1)IP;(91)Q;(91) (59)

and hence the derivative of the log likelihood with respect to the ability parameter is

In l(2.3 ) = exP(%){1 W(yj)}wii{usi P2(91)}. (60)
3=1

1518



Second Derivatives of the Likelihood

The Newton-Raphson procedures require the second derivatives of the log posterior

distribution with respect to each parameter. Following standard practice (Finney, 1971;

Rao, 1973), the expectations of the second derivatives of the log likelihood for respective

item parameters are

02
E ln 1(9 4)1 = - exp(2%),(1 - kii(-yi)}2E(9i /3j)2w,,P1 (90Q;(1901,acq 8=1

E{ in ICC = - exp(2ai){1 - tli(ri)}2 wiiP;(90Q;(9)1
52

s=1

E 1n 1(2, 4)1 = -{P(7))}2{1
02

and

(61)

(62)

(63)

In /(61, _4)} = exp(2a3){1 W(7.7)}2 i(Oi i3j)wijP;(ei)Q;(901
a2

(64)
1=1

a
a2 In Ikz,C)} = exp (a )11) N.,){1 w(y_)}2i4tei

a,131, I" i=1" (65)

0
ln 40, = exp(a,)41(7;){1 9(1,i)}2 tviii2;(0%). (66)

03,7-Yi

The expectation of the second derivative of the !-)g likelihood with respect to the ability

parameter is

E

{a2
-57-)2 In 411,0 = exp(2a:){1 41(.7i)}2woP;(0)Q;(0i). (67)

Derivatives of Priors

The logarithm of the prior of the item parameters is

In-:T.(00)) = In 7r(tx I v., A.) -r In -r(,611/3, Ao) + ln

where

x
2v.

in
2

6)21
S.

+ E(aj
1=1

1 9

16
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and

+
2vo 1\ 2 "

InIttlivs) As) cc 2 ) {-,

In Ireyiu.. A.,) cc
(n 1)in {2

2

The partial derivative of the log prior of the item parameters with respect to (21 is
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Second Derivatives of Priors

The second derivatives of the log prior of the item parameters are

and
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Since

In r(PJE)
1 E (81)
4' 8= 1

the partial derivative of the log prior distribution of ability parameters with respect to 9 is

and the second derivative is

a
in7c(811-) cc 6i

89;

ln7r(CE) a 1.

Initial Values for the Newton-R.aphson Method

(82)

(83)

The Newton-Raphson method typically requires close approximations to the solution as

starting points. Initial values for these starting points may be obtained from the following

equations (Baker, 1987; Swaminathan St Gifford, 1986):

and

(2°) = .111 u(o)

1.702rb,uil
'1

V

Zi

rbi

= in

Enj,_.1(o) uo + 1(
n + -2-

where rbi is the biserial correlation of the item j and the item-excluded total score, zi is

the normal deviate zj = 43-'0 pi), denotes the standard normal cumulative density

function, pi is the classical item difficulty (i.e., p = E,N=iu,l/N), and rril is the number of

options in multiple choice item 3.

(84)

(85)

(86)

(87)
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J131 Estimation

The difference between the two joint Bayesian estimation procedures lies in the form of the

prior distributions. Since JB1 also requires the Newton-Raphson method, we need partial

and second derivatives of the log likelihood and log prior distributions. When we take a

partial derivative of the log posterior distribution with respect to an item parameter, say (xi,

and set to zero, we obtain

a
in 49,

0
+ In ir(01) = O.0a; aal (88)

Since the partial derivative of log likelihood function is the same as one used in J132

estimation, we dispense with description of the likelihood part and present the elements

for the item priors.

Derivatives of Priors

The term 447 Inir(c) represents the contribution of the item priors. The partial derivatives

of Inir(C2) with respect to aj, :3), and -yi are

and

a
1117(07)

a
1117(07) = --.0713A pss),

a
= -72-0; /4-f )

Second Derivatives of Prior

The second derivatives of the priors for the item parameters are

32
In 7(112) =

da; CT 2
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and

1

772 ln7r(12) =

02
In 11§..111) =

Cr27

Empirical Study

(93)

(94)

In this section we present an empirical comparison of the three Bayesian methods. Data

were simulated under the following conditions: (1) number of examinees (N = 100, 300), (2)

number of items (n = 15,45), (3) estimation (JB1, JB2, MB), and (4) prior condition (prior-

at, prior-ar, prior-43i). The sample sizes and the test lengths were selected to emulate

the situation in which estimation procedures and priors might have some impact upon item

and ability parameter estimates. The sample size and test length, were completely crossed

to yield four situations.

Three Bayesian estimation procedures were used: JB1 is the joint Bayes modal estimation

procedure with known hyperparameters; JI32 is the joint Bayes modal estimation procedure

with informative hyperpriors: and MB is the marginal Bayes modal estimation of item

parameters with known hyperparameters and the EAP estimation of ability parameters.

Each estimation procedure had the three prior conditions: prior-aL, prior-aT, and prior-

ca..3T. The prior-aL condition used a loose prior for the transformed item discrimination;

the prior-aT condition used a tight prior for the transformed item discrimination; and the

prior-a,ar condition used tight priors for both the transformed item discrimination and the

item difficulty. The exact specification of the prior condition is presented in a subsequent

section on the item and ability parameter estimation.

Data Generation

Using the two-parameter logistic model,

1;(9i exp {a., (0, bi)}ri
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dichotomous item response vectors were generated via the computer program GENIRV

(Baker, 1982). Based on the usual ranges of item parameters for the two-parameter

logistic model, the underlying item discrimination parameters were assumed to be normally

distributed with mean 1.046 and variance 0.103, el ./V(1.046,0.103); that

N.(0.0, 0.09). The underlying item difficulty parameters are distributed normally with mean

0.0 and variance 1.0, b, .V(0,1).

For data generation purposes, an approximation based on histograms was adopted. Item

discrimination and item difficulty parameters for the 15-item test were set to have three

different values respectively. For the 45-item test, each of the item parameters was set to

have five different values. Item parameters used to generate the data sets are given in Table

1 and Table 2 for the 15-item test and for the 45-item test, respectively.

Insert Tables 1 and 2 about here

The underlying ability parameters were matched to the item difficulty distribution.

Hence, a normal distribution with mean 0.0 and variance 1.0, 9, .V(0, 1), was used to

specify the underlying ability parameters. Table 3 shows the ability groups and the number

of examinees in each ability group for samples of 100 and 300.

Insert Table 3 about here

For each of the factors of sample size and test length, four replications of the simulated

data were generated. Since the two factors were completely crossed, a total of 16 GENIRV

runs was needed to obtain the data sets for the empirical comparison.

Item and Ability Parameter Estimation

Each of the generated data sets was analyzed via the computer program BILOG (Mislevy

& Bock, 1989) for the marginal Bayesian estimation and via the computer program
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JBAYES, specifically developed for this study to provide the joint Bayesian estimates. In

each estimation procedure, three prior conditions, prior-at, prior-aT, and pr2or-al3T, were

employed. Hence, for example, the generated item response data set for the first replication

of sample size 100 and test length 15 was analyzed by nine computer runs (three estimation

procedures with three prior conditions).

The default options of the computer program BILOG (Mislevy ge Bock, 1989) provide

the marginal Bayesian modal estimates of item parameters and the expected a posteriori

estimates of ability parameters for the two-parameter model. In the prior-at, condition for

MB, a lognormal prior with mean 0.0 and variance 0.25 was used, that is, Ina; V(0, 0.25).

This is, in fact, the default prior specification in BMOC for the two-parameter model.

In the prior-aT condition, a lognormal distribution with mean 0.0 and variance 0.09,

in ai .V(0,0.09), was used. For the prior-al3T condition, the same prior in the prior-

aT condition along with a normal prior was used for the item difficulty with mean 0.0 and

variance 1.0 .V(0, I).

For JB1 estimation via JBAYES, a, .V(0,0.25) was used for the prior-at, condition.

For the prior-aT condition, (21 .V(0,0.09) was used. The prior-a/3T, used a, Al.(0, 0.09)

and ;3, .V(0,1). For JB2 estimation, the mean hyperparameter was assumed to have a

noninformative uniform distribution and the variance hyperparameter was set to have an

inverse gamma distribution. In the prior-aL condition, the inverse gamma distribution with

= 4 and A. = 1 was used for the variance hyperparameter of the transformed item

discrimination parameters: cr2 Ig(4,1). The inverse gamma distribution with parameters

v. = 11 and = 1 was used in the prior-aT condition: a! Ig(11,1). Two inverse

gamma distributions with parameters v. = 11 and = 1, and vs = 4 and As = 0.25 for the

variance hyperparameters of the transformed item discrimination and of the item difficulty,

respectively, were adopted for the prior-a3T condition: a! 1g(11, 1) and ail rg(4, 0.25).

When the mean hyperparameter is assumed to have a fixed value, A, then the specification
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of the variance hyperparameter by the inverse gamma distribution with parameters v and A,

rg(v, A), yields the parameter of interest which is distributed as a t with mean s, variance

et, and degrees of freedom 2v, that is, T(2v, is, ex) (Berger, 1985). Therefore, for the

transformed item discrimination, assuming the mean hyperparameter A. has a fixed value,

specification of the hyperparameter of variance by the inverse gamma with v = 4 and

= 1 yields a transformed item discrimination parameter which is distributed as a t with

mean pt., variance * = 0.25, and degrees of freedom 2v. = 8, that is, ai 7(8, IA., 0.25).

Similarly, the specification a! Ig(11, 1) implies al T(22, j4 0.09); and the specification

Ig(4, 0.25) yields 02 T(8, po, 1). In the above illustration, because we assumed a

noninformative prior for the mean hyperparameter, the specifications used in JB2 will not

produce the same specifications of item hyperparameters used in the marginal Bayesian and

the joint Bayesian-1 procedures. These specifications are al Tg(4,1), cr,2, Ig(11, 1),

and cl Ig(4,0.25) and are similar to their counterparts in the MB and JB1 estimation

procedures.

The EAP estimation was used in MB for the ability estimation via BILOG. Bayes modal

estimation was employed in the ability estimation for both joint Bayesian procedures via

JBAYES. All three Bayesian estimation procedures used a standard normal distribution as

the prior for the ability parameters.

Metric Transformation

In parameter recovery studies, such as the present one, comparisons between two or more

sets of estimates and the underlying parameters require that the item and ability estimates

obtained from different calibration runs and their parameters be placed on a common metric

(Baker & Al-Karni, 1991; Yen, 1987). Parameter estimation procedures under IRT yield

metrics which are unique up to a linear transformation. To link both sets of estimates and

parameters, it is necessary to determine the slope and intercept of the equating coefficients
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required for the transformation. The estimates of the item and ability parameters for each

of the estimation procedures were placed on the scale of the true parameters using test

characteristic curve method by Stockhl and Lord (1983) as implemented in the computer

program EQUATE (Baker, 1990).

Criteria

The empirical comparisons in this study involved three criteria: root mean square differences

(RMSD), correlation, and bias. RMSD is the square root of the average of the squared

differences between estimated and true values. For item discrimination, for example, RMSD

is defined as
1

.7=1

The bias B. of a point estimator a is given by B. = E(a) a; the bias for item difficulty

is given by Bb = E(i)) b; and the bias for the ability estimator is defined by Bo = E(.0) 0

(Mendenhall, Scheaffer, Sz Wacker ly, 1981). For the 15-item test, B. (or Bb) was obtained

with regard to the three different underlying parameters across the four replications. For

the 45-item test, B. (or Bb) was calculated with regard to the five different underlying

parameters across the four replications. The bias Bo was obtained for the 11 ability levels

over the four replications.

(96)

Results
RMSD and Correlation Results

RMSD and Correlation Results for Item Discrimination. RMSDs of item discriminations for

each data set are reported in Table 4. As sample size increased, RMSDs decreased; marginal

RMSD means were 0.24924 and 0.20646 for sample sizes 100 and 300, respectively.

Insert Tables 4 and 5 about here
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MB yielded smaller RMSDs than either of the two joint Bayesian procedures. For the

two joint Bayesian procedures, JB1 yielded larger RMSDs. Increasing the number of items

reduced the size of RMSDs, particularly for JB1 and JB2. For the 15-item test, MB yielded

smaller RMSD values although all three estimation methods produced nearly the same values

for the 45-item test. RMSDs for the third replication of the sample size 100 and 15-item

test were slightly smaller than for the other cases and RMSDs for the fourth replication of

the sample size 100 and 15-item test were slightly larger than for the other cases. These

differences were probably due to sampling fluctuations in the data generation procedures

used in this study. The effect of this probable sampling fluctuation could also be seen for

the respective correlations in Table 5.

When the loose prior was used in JB1 and 3B2, it yielded comparatively larger values of

RMSD than did either of the tight prior conditions. This was particularly the case for the

short 15-item test.

The correlations between true and estimated values of item discriminations are given in

Table 5. For each data set, the three Bayesian estimation procedures yielded practically

the same correlations. Generally, the larger the sample sizes the higher correlations. Also,

increasing the number of items tended to produce slightly higher correlations. For the three

prior condition used, there seemed no definitive tendency observed in the correlations.

RMSD and Correlation Results for Item Difficulty. Table 6 contains RMSDs for item

difficulty. The pattern of results was nearly the same as that for item discrimination. An

increase in sample size appeared to be associated with a decrease in the size of RMSDs. For

JB1 and JB2, increasing the number of items appeared to slightly decrease RMSDs. The

values of RMSD from MB were nzarly the same regardless of the test size. MB consistently

yielded the smallest RMSDs.

Prior-afh condition yielded a relatively smaller RMSDs than did either the prior-as or

prior-aT conditions. MB consistently yielded smaller RMSDs than 3B1 and JB2 regardless

25

26



the prior condition employed.

Insert Tables 6 and 7 about here

For each data set, the three estimation procedures yielded nearly the same correlations

between estimates and parameters (see Table 7). Generally, the larger sample sizes yielded

higher correlations. Increasing the number of items tended to produce slightly higher

correlations. There seemed to be no definitive trends in the correlations among the three

prior conditions.

RMSD and C.7rrelation Results for-Ability. The RMSD results between ability estimates

and the underlying parameters are reported in Table 8. As expected, RMSD values were

much smaller for the 45-item test than for the 15-item test. Smaller values were consistently

obtained for MB than for either of the two joint Bayesian procedures. The differences

between MB and either of the two joint Bayesian procedures were particularly noticeable

with the short test. As the number of items increased, the differences in RMSDs among the

three estimation procedures appeared to decrease.

Insert Tables 8 and 9 about here

Prior conditions did not have an apparent impact on the size of RMSD values for ability.

This might be expected as the prior conditions used were manipulated only with respect to

item parameters.

The correlations between the ability estimates and the true values are reported in Table

9. The correlations were nearly identical across the three estimation procedures for each data

set. The 45-item test yielded higher correlations than the 15-item test. The prior conditions

did not seem to affect the correlations between the ability estimates and the underlying

parameters. As was the case with RMSD results, the prior used in the context of the item

parameter estimation had minimal effect when estimating ability parameters.
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Bias Results

Bias Results for Item Discrimination. The bias results for item discrimination, presented in

Table 10, appear to reflect influence by a number of factors. Each bias statistic was obtained

by combining all four replications tonether; that is, the numbers of items used to obtain bias

values were 16, 28, and 16, for a = 0.66, 1.00, and 1.51, respectively, for the 15-item test.

For the 45-item test, 16, 36, 76, 36, and 16 items were used for a = 0.57, 0.76, 1.00, 1.32,

and 1.77, respectively.

Insert Table 10 about here

For each test length, increasing the sample size resulted in a decrease in bias values. In

general, positive bias values were observed for the smaller item discrimination parameters

(i.e., a = 0.66 for the 15-item test, and a = 0.57 and 0.76 for the 45-item test) due to the

regression toward the mean of the prior distribution. Negative values of bias were obtained

for the relatively larger item discrimination parameters (i.e., a = 1.51 for the 15-item test,

and a = 1.32 and 1.77 for the 45-item test). This shrinkage effect can be observed for all data

sets except when the loose prior on item discriminatkn (prior-ctL) was used for the 15-item

test. When a large sample size was used with 45-item test, all three estimation procedures

yielded similar results.

For the three different levels of item discrimination, both JB1 and JB2 produced more

positive bias for the 15-item test than did MB. The two tight prior conditions, prior-aT and

prior-a0r, yielded similar pattern of bias for all data sets.

Bias Results for Item Difficulty. The bias results for item difficulty are reported in Table

11. The pattern of results was somewhat different from that for item discrimination. For

the 15-item test, the two joint Bayesian methods yielded negative bias values for the easy

items (b = 1.38) and positive bias values for the difficult items (b = 1.38). When both
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priors on item difficulty and item discrimination were used, the same pattern was observed.

Even though the test size and sample size increased, the same pattern was observed for three

methods of estimation. MB yielded the smallest bias for all item difficulty levels in all data

sets.

Insert Table 11 about here

Bias Results for Ability. The bias results for ability from the 100-examinee-15-item data

set are presented in Table 12. Those for the 100-examinee-45-item, 300-examinee-15-item,

and 300-exarninee-45-item data sets are presented in Tables 13, 14, and 15, respectively. It

can be seen from these tables that shrinkage was more evident when a small number of items

was used. The prior conditions employed in item parameter estimation did not produce any

difference among the bias results. The expected a posteriori estimation of ability employed

in MB yielded consistently larger sizes of bias than the Bayes modal method used in the two

joint Bayesian methods. JB1 and J82 yielded nearly the same pattern of bias for all data

sets. JB2 yielded relatively smaller values of bias, however, then the other two methods.

It should be noted that the bias values for the different ability levels were obtained by

combining the four replications.

Insert Tables 12, 13, 14, and 15 about here

Discussion

Maximum likelihood approaches in IRT suffer from a number of problems, an important

one being the possibility that unreasonable values will be obtained for parameter estimates,

particularly for item discrimination and pseudo-guessing. In addition, these approaches

perform poorly when estimating item and ability parameters for unusual response patterns

such as all correct or all incorrect answers. These problems have led to interest in the
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deveLpment of Bayesian approaches for estimation of item and ability parameters. In the

present study, we used a recovery study approach to compare parameter estimates obtained

via a marginal Bayesian algorithm, MB, and two joint Bayesian algorithms, JB1 and JB2.

Analysis of item parameter recovery results indicated that MB yielded parameter

estimates which were generally better than those obtained from JB1 or JB2. RMSD and

Bias results for item discrimination and difficulty were smaller for MB estimates. JB1 and

JB2 estimates were similar although JB2 results were slightly better. These differences were

primarily evident in the small sample and short test conditions. This superiority was likely

due to the fact that MB permits item parameters to be estimated without the concurrent

need to estimate ability. Differences due to sample size are interesting if only for the fact

that the two sample sizes simulated in the present study, 100 and 300 examinees, were

both relatively small. In reality, all three Bayesian methods performed well, yielding item

parameter estimates which were not markedly different from the underlying values. Failure

of the joint Bayesian methods to provide estimates as accurate as MB under these conditions

should not be viewed as something that indicates a serious deficiencies for the joint Bayesian

methods. Rather, what these results suggest is that marginalized Bayesian solutions are

relatively powerful under the somewhat extreme conditions simulated in the present study.

The EAP ability estimates obtained via MB were more accurate in terms of RMSD than

those from either of the two joint methods. The bias values for EAP estimates, however,

were larger than Bayes model estimates of ability for JB1 and JB2. This is well-known result

and demonstrates the impact of the use of the posterior mean in the EAP estimation rather

than the posterior mode (Bock & Mislevy, 1982).

The effectiveness of the marginalization in MB may depend in part on the accuracy of

the ability hyperparameters. Seong (1991) has shown that item parameter estimates from

the marginalized distribution are sensitive to misspecification of the ability distributions. In

this study we generated the ability had standard normal distribution. Consequently, the
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marginalization of the posterior distribution was performed under an optimal situation.

Both the shape and the variance of the prior distribution play a part in the estimation

of parameters. The more informative the prior (i.e., the smaller the variance), the more

the parameter estimate tends to be pulled toward the mean of the prior. The tight prior

conditions used in the present study, prior-aT and prior-cti3T, yielded better item parameter

estimates than did the loose prior, prior-aL. The use of tight priors seems appropriate

when there is strong a priori information about the parameters. In the MB context, the

misspecification of prior information has not been found to be a serious problem except

when the mean of the underlying item discrimination parameters was quite smaller than the

mean of the prior (Al-Karni, 1990).

Incorrect specification of the prior may result in more serious consequences for JB1 and

MB than for JB2. This condition was not tested in the present study because priors were

relatively well-matched to the generated data sets.

Several issues remain to be studies in the present context. In particular, little has been

done on the shrinkage effect except for Al-Karni (1990) and Gifford and Swaminathan (1990).

Neither are the effects of priors well-known with respect to the robustness of two-stage

hierarchical models. This kind of research is particularly valuable for small samples and

short tests. Marginal Bayesian estimation was arguably the more desirable algorithm in

the present study. Even so, it remains to be seen whether incorporation of a two-stage

hierarchical procedure might improve marginal Bayes modal estimates.
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Table 1: Item Discrimination and Item Difficulty Parameters for 15-Item Test

Item Discriminations Difficulty

1 0.66 (-0.41) -1.38
2 0.66 (-0.41) 0.00
3 0.66 (.0.41) 0.00
4 0.66 (-0.41) 1.38
5 1.00 (0.00) -1.38
6 1.00 (0.00) -1.38
7 1.00 (0.00) 0.00
8 1.00 (0.00) 0.00
9 1.00 (0.00) 0.00

10 1.00 (0.00) 1.38
11 1.00 (0.00) 1.38
12 1.51 (0.41) -1.38
13 1.51 (0.41) 0.00
14 1.51 (0.41) 0.00
15 1.51 (0.41) 1.38

'Parentheses contain the transformed item
discrimination.



Table 2: Item Discrimination and Item Difficulty Parameters for 45-1tem Test

Item Discrhninationa Difficulty

1 0.57 (-0.57) -0.95
2-3 0.57 (-0.57) 0.00

4 0.57 (-0.57) 0.95
5 0.76 (-0.28) -1.90

6-7 0.76 (-0.28) -0.95
8-10 0.76 (-0.28) 0.00

11-12 0.76 (-0.28) 0.95
13 .0.76 (-0.28) 1.90

14-15 1.00 (0.00) -1.90
16-18 1.00 (0.00) -0.95
19-27 1.00 (0.00) 0.00
28-30 1.00 (0.00) 0.95
31-32 1.00 (0.00) 1.90

33 1.32 (0.28) 4 .90
34-35 1.32 (0.28) -0.95
36-38 1.32 (0.28) 0.00
39-40 1.32 (0.28) 0.95

41 1.32 (0.28) 1.90
42 1.77 (0.37) -0.95

43-44 1.77 (0_57) 0.00
45 1.77 (0.57) 0.95

°Parentheses contain the transformed item
discrimination.
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Table 3: Number of Examinees at Each of the 11 Ability Levels

Number of Examinees

6 Level N = 100 N = 300

-2.5 1 4
-2.0 3 8
-1.5 7 20
-1.0 12 36
-0.5 17 52
0.0 20 60
0.5 17 52
1.0 12 36
1.5 7 20
2.0 3 8
2.5 1 4
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Table 4: Root Mean Square Differences of Item Discrimination

N

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

n Ta QL °LT a* at aT al5IT at cer

100 15 1 0.315 0.254 0.251 0.263 0.250 0.253 0.272 0.251 0.258
2 0.282 0.231 0.211 0.245 0.229 0.214 0.253 0.208 0.225
3 0.349 0.217 0.194 0.285 0.225 0.215 0.181 0.158 0.175
4 0.332 0.337 0.295 0.301 0.294 0.291 0.313 0.290 0.296

45 1 0.270 0.233 0.241 0.234 0.240 0.239 0.261 0.227 0.233
2 0.241 0.233 0.233 0.239 0.249 0.250 0.252 0.240 0.249
3 0.313 0.264 0.261 0.261 0.264 0.263 0.299 0.259 0.266
4 0.225 0.209 0.206 0.215 0.228 0.228 0.206 0.197 0.204

300 15 1 0.204 0.195 0.188 0.199 0.199 0.195 0.152 0.160 0.167
2 0.329 0.184 0.174 0.195 0.179 0.173 0.178 0.169 0.176
3 0.595 0.288 0.277 0.533 0.291 0.281 0.277 0.211 0.209
4 0.755 0.231 0.228 0.260 0.229 0.228 0.212 0.191 0.189

45 1 0.155 0.137 0.134 0.138 0.136 0.137 0.151 0.132 0.130.

2 0.203 0.189 0.183 0.188 0.180 0.181 0.199 0.182 0.182
3 0.166 0.152 0.151 0.152 0.153 0.153 0.164 0.151 0.153
4 0.206 0.179 0.172 0.178 0.171 0.169 0.208 0.171 0.174

*Number of Examinees (N), Number of Items (n), and Replication (r).



Table 5: Correlations Between Estimates and Parameters for Item Discrimination

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

N m LT aOT at, aT ai3T aL aT OJT

100 15 1 0.615 0.612 0.614 0.616 0.610 0.592 0.618 0.621 0.612

2 0.770 0.745 0.772 0.771 0.740 0.774 0.748 0.748 0.703

3 0.809 0.826 0.852 0.817 0.828 0.840 0.879 0.893 0.862

4 0.383 0.362 0.385 0.389 0.372 0.388 0.423 0.423 0.400

45 1 0.695 0.677 0.691 0.677 0.687 0.698 0.700 0.695 0.683

2 0.674 0.678 0.685 0.679 0.676 0.683 0.665 0.659 0.641

3 0.526 0.559 0.564 0.559 0.569 0.572 0.566 0.577 0.562

4 0.742 0.752 0.765 0.757 0.773 0.771 0.783 0.796 0.796

300 15 1 0.869 0.865 0.874 0.870 0.865 0.872 0.878 0.872 0.857

2 0.865 0.860 0.870 0.860 0.869 0.874 0.846 0.845 0.831

3 0.688 0.761 0.761 0.701 0.160 0.761 0.766 0.776 0.780

4 0.574 0.767 0.766 0.758 0.765 0.750 0.784 0.798 0.804

45 1 0.906 0.905 0.909 0.906 0.906 0.908 0.906 0.908 0.906
2 0.821 0.813 0.819 0.815 0.822 0.820 0.817 0.820 0.819

3 0.879 0.878 0.880 0.878 0.880 0.882 0.877 0.878 0.876

4 0.843 0.843 0.848 0.845 0.845 0.848 0.850 0.854 0.850

*Number of Examinees (N), Number of Items (n), and Replication (r),
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Table 6: Root Mean Square Differences of Item Difficulty

N n

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

at, aT ai3T at, aT ath aT al3T

100 15 1 0.374 0.360 0.344 0.374 0.375 0.355 0.325 0.310 0.308

2 0.379 0.361 0.327 0.381 0.389 0.359 0.259 0.263 0.248
3 0.481 0.499 0.462 0.498 0.522 0.496 0.382 0.402 0.388

4 0.346 0.337 0.310 0.344 0.355 0.333 0.292 0.290 0.286

45 1 0.370 0.346 0.313 0.349 0.342 0.319 0.335 0.312 0.294

2 0.314 0.306 0.298 0.316 0.319 0.308 0.304 0.301 0.299

3 0.314 0.303 0.251 0.308 0.310 0.272 0.269 0.260 0.246

4 0.330 0.308 0.274 0.314 0.315 0.289 0.282 0.276 0.272

300 15 1 0.347 0.334 0.320 0.345 0.343 0.333 0.167 0.170 0.165

2 0.330 0.301 0.283 0.316 0.304 0.292 0 172 0.174 0.174

3 0.344 0.329 0.295 0.343 0.330 0.305 0.222 0.188 0.186
4 0.213 0.203 0.192 0.222 0.211 0.198 0.133 0.121 0.120

45 1 0.157 0.189 0.174 0.192 0.193 0.180 0.158 0.153 0.152

2 0.226 0.209 0.197 0.213 0.208 0.198 0.208 0.188 0.184

3 0.262 0.255 0.236 0.257 0.257 0.242 0.232 0.228 0.228

4 0.227 0.215 0.194 0.219 0.220 0.203 0.189 0.174 0.171

*Number of Examinees (N), Number of Items (n), and Replication (r).

40

13



Table 7: Correlations Between Estimates and Parameters for Item Difficulty

Jcint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

N n :A at, aT a* at aT Or at aT aaT

100 15 1 0.946 0.950 0.951 0.950 0.951 0.953 0.946 0.951 0.952
2 0.976 0.975 0.976 0.977 0.974 0.976 0.976 0.975 0.973
3 0.937 0.935 0.937 0.937 0.934 0.936 0.939 0.936 0.935
4 0.955 0.957 0.961 0.960 0.960 0.961 0.957 0.959 0.959

45 1 0.948 0.955 0.958 0.958 0.961 0.962 0.949 0.957 0.959
2 0.953 0.955 0.956 0.955 0.955 0.955 0.953 0.955 0.955
3 0.970 0.972 0.976 0.972 0.972 0.975 0.970 0.972 0.973
4 0.956 0.960 0.964 0.961 0.961 0.963 0.961 0.963 0.963

300 15 1 0.993 0.993 0.993 0.993 0.992 0.992 0.993 0.993 0.992
2 0.985 0.987 0.988 0.987 0.987 0.988 0.988 0.987 0.986
3 0.968 0.976 0.979 0.970 0.976 0.979 0.975 0.982 0.983
4 0.989 0.993 0.993 0.992 0.993 0.994 0.992 0.994 0.994

45 1 0.988 0.988 0.989 0.988 0.988 0.989 0.988 0.989 0.989
2 0.980 0.983 0.984 0.983 0.984 0.984 0.979 0.983 0.983
3 0.972 0.974 0.976 0.974 0.974 0.976 0.973 0.974 0.974
4 0.985 0.986 0.987 0.986 0.986 0.987 0.984 0.986 0.986

°Number of Examinees (N), Number of Items (n), and Replication (r).
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Table 8: Root Mean Square Differences of Ability

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

N n ra at aT oar tT T afiT aL a'r ai3T

100 15 1 0.501 0.492 0.501 0.514 0.512 0.520 0.456 0.455 0.454
2 0.534 0.522 0.532 0.542 0.533 0.547 0.497 0.491 0.491
3 0.570 0.554 0.565 0.572 0.565 0.572 0.537 0.536 0.536
4 0.609 0.582 0.589 0.616 0.603 0.610 0.546 0.538 0.538

4A 1 0.316 0.327 0.334 0.334 0.336 0.344 0.315 0.319 0.320
2 0.352 0.350 0.360 0.362 0.360 0.376 0.342 0.341 0.341
3 0.310 0.308 0.314 0.310 0.311 0.317 0.314 0.310 0.309
4 0.298 0.302 0.308 0.309 0.308 0.317 0.286 0.291 0.292

300 15 1 0.552 0.549 0.554 0.556 0.555 0.558 0.521 0.517 0 517
2 0.552 0.551 0.556 0.557 0.559 0.562 0.521 0.522 0.523
3 0.565 0.557 0.560 0.566 0.560 0.563 0.539 0.537 0.538
4 0.582 0.548 0.553 0.557 0.560 0.568 0.498 0.498 0.498

45 1 0.325 0.323 0.325 0.325 0.325 0.328 0.320 0.318 0.318
2 0.337 0.339 0.344 0.344 0.345 0.349 0.326 0.328 0.328
3 0.304 0.305 0.308 0.306 0.306 0.309 0.302 0.301 0.301
4 0.339 0.339 0.341 0.342 0.342 0.345 0.330 0.329 0.329

°Number of Examinees (N), Number of Items (n), and Replication (r).



Table 9: Correlations Between Estimates and Parameters for Ability

N n

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

ra at, aT ai3T aT aGT at aT ai3T

100 15 1 0.890 0.893 0.893 0.893 0.894 0.893 0.892 0.893 0.894

2 0.868 0.871 0.871 0.870 0.872 0.872 0.870 0.874 0.873

3 0.847 0.849 0.849 0.848 0.848 0.849 0.848 0.849 0.848

4 0.849 0.852 0.853 0.853 0.853 0.854 0.851 0.853 0.853

45 1 0.951 0.948 0.948" 0.948 0.947 0.947 0.950 0.949 0.949

2 0.944 0.945 0.944 0.944 0.944 0.944 0.944 0.944 0.944

3 0.951 0.952 0.952 0.952 0.951 0.951 0.950 0.951 0.951

4 0.958 0.957 0.958 0.957 0.956 0.957 0.959 0.958 0.958

300 15 1 0.854 0.855 0.855 0.855 0.855 0.855 0.857 0.857 0.857

2 0.856 0.856 0.857 0.856 0.857 0.857 0.855 0.855 0.854

3 0.837 0.844 0.845 0.838 0.844 0.845 0.845 0.845 0.845

4 0.858 0.873 0.874 0.973 0.874 0.873 0.874 0.873 0.873

45 1 0.948 0.948 0.949 0.948 0.948 0.949 0.948 0.949 0.949

2 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.946 0.946

3 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954

4 0.944 0.944 0.944 0.944 0.944 0.945 0.945 0.945 0.945

°Number of Examinees (N), Number of Items (n), and Replication (r).
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Table 10: Bias Results for Item Discrimination

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

N aa at a aAr at, al. ai3r at ath

100 15 0.66 0.27 0.30 0.28 0.30 0.33 0.32 0.19 0.23 0.22

1.00 0.06 0.04 0.03 0.05 0.06 0.05 -0.02 -0.03 -0.05

1.51 0.08 -0.13 -0.16 -0.03 -0.18 -0.19 -0.07 -0.27 -0.30

45 0.57 0.20 0.26 0.24 0.29 0.32 0.31 0.16 0.23 0.22

0.76 0.11 0.14 0.14 0.17 0.19 0.18 0.08 0.12 0.10

1.00 0.07 0.04 0.02 0.04 0.03 0.02 0.03 0.01 -0.01

1.32 -0.04 -0.13 -0.13 -0.16 -0.20 -0.19 -0.04 -0.15 -0.19

1.77 -0.25 -0.33 -0.37 -0.38 -0.54 -0.57 -0.25 -0.44 -0.46

300 15 0.66 0.16 0.20 0.19 0.19 0.21 0.21 0.08 0.12 0.12

1.00 0.07 0.07 0.06 0.07 0.07 0.07 -0.02 -0.02 -0.03

1.51 0.33 0.03 0.02 0.16 0.02 0.00 -0.02 -0.15 -0.16

45 0.57 0.06 0.12 0.11 0.12 0.15 0.14 0.02 0.08 0.08

0.76 0.11 0.13 0.13 0.13 0.14 0.14 0.07 0.09 0.08

1.00 0.03 0.02 0.02 0.02 0.02 0.02 0.01 -0.01 -0.01

1.32 -0.01 -0.07 -0.07 -0.06 -0.09 -0.09 -0.04 -0.10 -0.11

1.77 0.09 -0.05 -0.09 -0.06 -0.12 -0.16 0.07 -0.09 -0.09

"Number of Examinees (N), Number of Items (n), and Discrimination (a).



Table 11: Bias Results for Item Difficulty

Joint Bayesian-1

N n ba at aT 42
100 15 -1.38 -0.19 -e.18 -0.14

0.00 0.00 0.00 0.00
1.38 0.19 0.20 0.15

45 -1.90 -0.10 -0.11 0.02
-0.95 -0.13 -0.11 -0.09
0.00 0.02 0.02 0.02
0.95 0.11 0.10 0.08
1.90 -0.01 0.01 -0.10

300 15 -1.38 -0.28 -0.28 -0.26
0.00 0.00 0.00 0.01
1.38 0.28 0.28 0.26

45 -1.90 -0.09 -0.11 -0.04
-0.95 -0.15 -0.14 -0.14
0.00 0.03 .0.03 0.03
0.95 0.04 0.04 0.04
1.90 0.17 0.16 0.09

Joint Bayesian-2 Marginal Bayesian

at aT a th at air ai3T

-0.22
0.00
0.23

-0.24
0.00
0.23

.0.20
0.00
0.20

0.03
0.00

-0.01

0.00
0.00
0.00

0.05
0.00

-0.05

-0.16 -0.: i -0.08 0.05 0.00 0.06
-0.12 -0.12 -0.11 -0.06 -0.05 -0.01
0.02 0.02 0.02 0.02 0.02 0.01
0.12 0.11 0.11 0.05 0.05 0.00
0.06 0.07 -0.02 -0.15 -0.10 -0.17

-0.29 -0.29 -0.28 -0.01 -0.01 0.00
0.02 0.01 0.01 0.01 0.01 0.01
0.29 0.29 0.27 0.04 0.03 0.01

-0.12 -0.13 -0.07 0.07 0.04 0.06
-0.15 -0.15 -0.14 -0.07 -0.06 -0.04
0.03 0.03 0.03 0.03 0.03 0.03
0.04 0.05 0.05 -0.05 -0.04 -0.05
0.17 0.18 0.12 0.00 0.01 0.00

*Number of Examinees (N), Number of Items (n), and Difficulty (b).
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Table 12: Bias Results for Ability from 100-Examinee-15-Item Data Set

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

8 Level aL aT Or at cer aih at, a'r agf.r

-2.5 0.17 0.24 0.18 0.09 0.12 0.07 0.55 0.55 0.56

-2.0 0.21 0.24 0.19 0.16 0.15 0.12 0.48 0.47 0.48

-1.5 0.12 0.15 0.12 0.08 0.10 0.07 0.32 0.33 0.34

-1.0 -0.12 -0.09 -0.12 -0.14 -0.14 -0.15 0.04 0.04 0.05

-0.5 -0.01 0.00 -0.01 -0.02 -0.02 -0.03 0.05 0.05 0.05

0.0 -0.05 -0.05 -0.05 -0.05 -0.06 -0.06 -0.04 -0.05 -0.04

0.5 -0.03 -0.04 -0.03 -0.02 -0.03 -0.02 -0.09 -0.10 -0.10

1.0 -0.04 -0.05 -0.02 -0.01 -0.01 0.01 -0.15 -0.15 -0.15

1.5 -0.21 -0.21 -0.18 -0.16 -0.16 -0.13 -0.37 -0.36 -0.36

2.0 -0.27 -0.31 -0.26 -0.21 -0.24 -0.20 -0.49 -0.51 -0.52

2.5 -0.70 -0.71 -0.66 -0.62 -0.62 -0.58 -0.94 -0.91 -0.91



Table 13: Bias Results for Ability from 100-Examinee-45-Item Data Set

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

8 Level at aT afIT at aT ai3T at aT afirr

-2.5 0.15 0.15 0.09 0.10 0.11 0.03 0.28 0.27 0.26
-2.0 0.08 0.09 0.03 0.05 0.06 0.00 0.20 0.18 0.18
-1.5 0.05 0.03 -0.01 0.00 0.01 -0.04 0.13 0.11 0.11
-1.0 0.00 -0.01 -0.04 -0.03 -0.02 -0.05 0.05 0.04 0.04
-0.5 -0.02 -0.02 -0.04 -0.03 -0.03 -0.05 0.01 0.00 0.00
0.0 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
0.5 0.02 0.02 0.04 0.03 0.03 0.04 0.00 0.01 0.00
1.0 -0.01 0.00 0.03 0.03 0.02 0.05 -0.05 -0.03 -0.04
1.5 -0.10 -0.09 -0.05 -0.06 -0.07 -0.03 -0.16 -0.15 -0.15
2.0 -0.10 -0.11 -0.05 -0.07 -0.08 -0.02 -0.19 -0.19 -0.19
2.5 -0.27 -0.24 -0.18 -0.18 -0.18 -0.10 -0.35 -0.33 -0.32

5 1
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Table 14: Bias Results for Ability from 300-Examinee-15-Item Data Set

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

0 Level al, aT aOT cgt. aT ai9T at aT ai3T

-2.5 0.65 0.57 0.55 0.57 0.53 0.51 0.86 0.85 0.86
-2.0 0.37 0.33 0.31 0.33 0.30 0.29 0.59 0.59 0.60
-1.5 0.10 0.09 0.07 0.08 0.06 0.05 0.31 0.31 0.32
-1.0 0.02 0.03 0.01 0.02 0.01 0.00 0.18 0.17 0.18
-0.5 -0.01 0.01 0.00 0.01 0.00 0.00 0.09 0.09 0.09
0.0 0.02 0.04 0.04. 0.05 0.04 0.04 0.04 0.04 0.04
0.5 -0.02 -0.02 -0.01 0.00 -0.01 0.00 -0.10 -0.09 -0.09
1.0 -0.10 -0.08 -0.07 -0.07 -0.07 -0.06 -0.23 -0.22 -0.22
1.5 -0.15 -0.13 -0.11 -0.12 -0.10 -0.09 -0.34 -0.33 -0.33
2.0 -0.28 -0.25 -0.23 -0.24 -0.22 -0.20 -0.53 -0.52 -0.52
2.5 -0.51 -0.47 -0.44 -0.47 -0.43 -0.41 -0.80 -0.79 -0.80
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Table 15: Bias Results for Ability from 300-Exarainee-45-ltem Data Set

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

0 Level at air aOr at aT aih at aT aOT

-2.5 0.10 0.08 0.05 0.06 0.05 0.02 0.26 0.23 0.23
-2.0 0.11 0.11 0.08 0.09 0.08 0.06 0.23 0.22 0.22
-1.5 0.08 0.07 0.05 0.06 0.05 0.03 0.17 0.15 0.15
-1.0 0.06 0.05 0.03 0.04 0.03 0.02 0.11 0.10 0.10
-0.5 0.01 0.01 0.00 0.01 0.01 0.00 0.04 0.04 0.04
0.0 0.02 0.03 0.03- 0.03 0.03 0.03 0.02 0.03 0.02
0.5 0.00 0.00 0.01 0.01 0.01 0.02 -0.03 -0.02 -0.03
1.0 -0.01 0.00 0.02 0.01 0.01 0.03 -0.07 -0.05 -0.06
1.5 0.03 0.04 0.06 0.06 0.06 0.08 -0.07 -0.04 -0.05
2.0 -0.18 -0.17 -0.14 -0.15 -0.15 -0.13 -0.30 -0.28 -0.28
2.5 -0.29 -0.29 -0.26 -0.26 -0.26 -0.23 -0.44 -0.42 -0.42
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