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Abstract

Hierarchical Bayes procedures were compared for estimating item and ability parameters
in item response theory. Simulated data sets from the two-parameter logistic model were
analyzed using three different hierarchical Bayes procedures: the joint Bayesian with known
hyperparameters (JB1), the joint Bayesian with informative hyperpriors (JB2), and the
marginal Bayesian with known hyperparameters (MB). MB yielded consistently smaller root
mean square differences than either JB1 or JB2 for item and ability estimates. The maximum
a posteriori estimation used along with MB yielded larger biases then the joint Bayes modal
estimation in JB1 and JB2. As the sample size and test length increased, the three Bayes

procedures yieldec essentially the same result.

Key words: Bayes csiimation, hierarchical prior, item response theory, joint Bayesian

estimation, marginal Bayesian estimation.



Introduction

A common situation in item response theory (IRT) is that in which both item and ability (i.e.,
structural and incidental) parameters have to be estimated simultaneously. When this is the
case, Bayesian estimation may be preferable to maximum likelihood estimation. Bayesian
methods yield item discrimination parameter estimates which never become infinite; lower
asymptote estimates of item characteristic curves which do not have implausible values;
and ability estimates which are automatically restricted to a reasonable range (Lord,
1986). Although Bayes procedures have been available for some time, the properties of
these techniques have not been studied as thoroughly as those of maximum likelihood
methods. The purpose of this study, therefore, was to compare different Bayes procedures
for estimation of item and ability parameters in IRT.

Bayesian approaches in IRT can be distinguished on the basis of whether estimation
of item parameters is done with or without marginalization over ability parameters. If
marginalization is used, the solution is marginal Bayesian estimation; if marginalization is
not used, the solution is joint Bayesian estimation.

Swaminathan and Gifford (1982, 1985, 1986) developed the joint Bayesian procedures
for the one-, two-, and three-parameter item characteristic curve models. Their methods
implement the hierarchical Bayes procedures for the specification of prior beliefs following
the approach taken by Lindley (1971) and Lindley and Smith (1972). Evidence presented by
Swaminathan and Gifford indicated that joint Bayesian parameter estimates were superior
to those obtained via joint maximum likelihood estimation in that they remained in the
parameter space, had smaller mean square differences from the underlying values, and were
less biased (Gifford & Swaminathan, 1990).

Mislevy (1986) employed the hierarchical Bayesian estimation model of Lindley and Smith

(1972) to extend the marginal maximum likelihood approach to a marginal Bayesian solution.



This permitted prior distributions to be posited for item parameters. Supplementary
Bayesian procedures can also be used to obtain ability estimates once the marginal Bayesian
estimates are obtained for item parameters. Mislevy and Bock (1989) implemented this
Bayesian approach in the BILOG computer program. Tsutakawa and Lin (1986) also
proposed a marginal Bayesian estimation to compute the posterior mode using the EM
algorithm.

Evidence has been subsequently presented which points to the likelihood that marginal
modes may provide better approximations than joint modes to posterior means when
nuisance (i.e., ability) parameters are present (Mislevy, 1986; O’Hagan, 1976; Tsutakawa
& Lin, 1986). As yet, however, no empirical analyses have been reported which test this
point.

Bayesian approaches are characterized by incorporation of prior information or beliefs
into the estimation of parameters in order to improve the accuracy of those estimates.
Specification of priors in Bayesian analysis is a subjective matter. A number of different
forms of priors have been studied (e.g., Leonard & Novick, 1985; Lord, 1980;, Mislevy,
1986; Mislevy & Bock, 1989; Swaminathan & Gifford, 1986; Tsutakawa & Lin, 1986). The
terminology describing the structure of priors can sometimes be quite confusing. In a classical
Bayesian approach, a single prior can be selecied for the ordinary parameters. It is possible
to recognize some uncertainty in priors. When priors are expressed in terms of family or class
of prior, we call the parameters in the class of priors as hyperparameters. Hyperparameters
describe the distributional characteristics of the prior information. It is sometimes also
convenient to specify prior information on the hyperparameters as well. This second prior is
called a hyperprior and contains parameters which are referred to as hyperhyperparameters
{Good, 1980, 1983; Lindley, 1971, Lindley & Smith, 1972).

To completely exploit the potential of the Bayesian estimation requires understanding

of its mathematical underpinnings, particularly the role of prior distributions in estimating



parameters. In the present study, we compared the effectiveness of three hierarchical Bayes
procedures for obtaining item and ability estimates: the joint Bayesian estimation with
known hyperparameters (JB1), the joint Bayesian estimation with informative hyperpriors
(JB2), and the marginal Bayesian estimation with known hyperparameters (MB).

In the following sections, we present a discussion of joint and marginal Bayesian
estimation in IRT. Included is a presentation of prior and posterior distributions focusing
specifically on one- and two-stage hierarchical priors. Finally, we present a discussion of the

two joint Bayesian methods considering the specific priors dealt with in this paper.

Background
The Model

Item characteristic curve models are expressed as mathematical equations of the probabilit-
of a correct response to a test item as a function of the ability of the person responding.
Consider binary responses to a set of n test items by a set of NV examinees. A response of
an examinee 1 to an item j is represented in these models by a random variable U;;, where
i1=1,...,Nand j =1,...,n. The probability of a correct response to item j is represented
by

P(U;; = 1{6,,{ ) = Py(6y), (1)

and the probability of an incorrect response is given by

P(U;; = 0[9,-,{)) = Q,(6:), (2)

depending on a real-valued ability parameter 8;, and a real- or vector-valued item parameter

¢,



The item characteristic curve of the three-parameter model® is given by

P(6;) =c;+ (1 - ¢;)[1 +exp{~a;(6i — b;)}"", (3)

where a; is the item discrimination parameter, b; is the item difficulty parameter, c; is the
lower asymptote of the item characteristic curve for the item j, and 8, is the ability parameter

of the person z.

Likelihood Function

Under typical testing conditions, a sample of N examinees are drawn at random from. a
population of examinees possessing th'e underlying ability. No assumption is necessary as
to the distribution of the examinees over the ability continuum {Lord & Novick, 1968). For
each examinee there is a vector of dichotomously scored item responses of length n denoted
by U; = (Us,-..,Usn)'. One such vector exists for each of the N examinees. The resulting
N x n matrix of item responses is denoted by U.

Under the local independence assumption, the probability of U; given ability 6; and item

parameters { is

P(C.18:,§) = ] Pi8)™Q,(6:)", (4)
iy
where { = (Q‘,.. €. ). 1 §is the vector of the .V examinee trait scores, g =(8,...,05),
the joint probability of U given by § and { can be written as
N n
p(U,€) = [ T 2:6:)% (8., (5)

s=1 3=1

When we make inferences about both ability and item parameters from the observed

data u of the .V x n matrix of item responses, ‘he prebability of u given by § and £ is

N n

p(uig, &) = [T IT A (8., Q,(8:)'~* = [(4.£). (6)

1=1 =1

1Because of inclusiveness, that is, the one- and two-parameter item charactenstic curve
mocdels are regarded as the special cases of the three-parameter model, all expressions are
developed below only for Birnbaum'’s three-parameter model {Birnbaum, 1968).

4
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The likelihood, {(¢, £), is a function of the parameters of the n item characteristic curves and

the N abilities.

Parameter Estimation in IRT

The four main approaches currently used in IRT for parameter estimation are (a) joint
maximum likelihord estimation, (b) joint Bayesian estimation, (c) marginal maximum
likelihood estimatiin, and (d) marginal Bayesian estimation. The following discussion
presents a description of the Bayesian procedures as the extensions of the maximum likelihood
methods where the priors are posited for the item and ability parameters.

The joint maximum likelihood estimation (Birnbaum, 1968; Lord, 1980; Wingersky,
Barton, & Lord, 1982) simultaneously maximizes the likelihood function I(4, £) in Equation
6.

The joint Baresian estimation (Swaminathan & Gifford, 1982, 1985, 1986) simultaneously

maximizes the posterior distribution

(8, {lu) x (8, )= (8, §), (7)

where o denotes proportionality and (8, {) is the joint prior density of the parameters § and
§. Equivalently, the posterior distribution of parameters given the matrix of observations u

18 written as
_H8.9r@9) )

m(u) '’

(8, {|u)

where m(u) is the marginal probability density function of u defined as

m(u) = [ [ 18, £)n(8.£)dgas, (9)

where © and = are the parameter spaces for ability and item parameters, respectively. The
posterior density function is a revised expression of the belief one has about the parameters
once the data have been collected. It contains all the information necessary for making

probability statements regarding the parameters of interest.

5
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The marginal maximum likelihood estimation of item parameters (Bock & Aitkin, 1981;
Bock & Lieberman, 1970; Harwell, Baker, & Zwarts, 1988) maximizes the ma-~ginal likelihood
function

N
m(¢) = I L 108 €)m(6:)db;, (10)
=1
where 7(6;) denotes a prior distribution of ability and
i(8:,§) = iIlP:(ﬂ)"""Q;(Gn')"“"" = p(uilé;, §). (11)

Supplementary maximum likelihood estimation and Bayesian estimation procedures can be
used to obtain ability parameter estimates.

Bayesian priors on item parameters may also be used in the marginal maximum likelihood
estimation to obtain the marginal Bayesian estimation of item parameters (Harwell & Baker,
1991; Mislevy, 1986). The marginal Bayesian estimation maximizes the marginal posterior
distribution

7({lu) x m(E)m(£), (12)
where m(§) is the marginal likelihood function and 7({) is the prior distribution of item

parameters.

Prior and Posterior Distributions

Prior Distribution

A flexible family of prior distributions is available by transforming item parameters to
new parameters which may be taken to possess a multivariate normal prior distribution.
To this end Leonard and Novick (1985) and Mislevy (1986) recommend the following
transformations:

a; = lna, (13)

and

% = In{e, /(1 - ¢)}- (14)

2



Since b; is a difficulty parameter, we also use the following expression:

B; = b;. (15)

In order to define the posterior distribution precisely, we first specify the prior belief
about the parameters. We assume @ and § priors which are independently distributed with
probability density functions x(8) and 7(£), respectively.

Since we use the three-parameter model,

§= (01,4_61:‘71,---:Qmﬁm"/n)'- (16)

We assume the vector of item parameters possesses a multivariate normal distribution

conditional on the respective mean vector B and covariance matrix ¥, This prior

specification is more general than previous suggestions in the literature. The prior

distribution of item parameters is

7(gn) = (2m) " 2 ™ exp {50 - w2 E - 1)) (17)

where the hyperparameter 7= (f-‘-é’ ...{)

If we assume the vectors of the parameters a = (ay,...,a,), B8 = (B,...,0s), and
Y = {71,..-,7) to be independent, we can take the vectors a, B, and y to possess
independent multivariate normal distributions, conditional on their respective mean vectors
By By and By and covariance matrices I,, Ls, and Z, (Leonard & Novick, 1985). The

prior distribution of item parameters in this case is

m(Eh) = m(ain, Jr{Blng)n(aln, ), (18)
where 7, = (g Za), 79 = (83, Zg) 7, = (u,, L),

(aln,) = (2n)™? ixgi“” exp {~3(a - 1) E3"a ~ )}, (19)

T 4 ¥



and w(él_r_;g) and w(_w_iﬂl) are defined similarly.
If we further assume exchangeability for all three parameters, we may take p = gal,
By = #ol, g, = pyl, Ty = 03y, Ig = ofln, and I, = o3l,, where pa, pg, 4y, 03, 0§, and

02 are scalars, 1is an n x 1 vector of ones, and I, is an identity matrix of order n (Leonard

& Novick, 1985). The prior distribution of item parameters, assuming exchangeability, is

#(€lm) = [I 7(a;ltta, 03)7(Bslus, 03)7(7ilty, 03), (20)
=1
where
(el o) = (2r0D)  exp { oy — o)} (21)

and ¥(8;|ug,c3) and 7(v;|p,, 02) are defined similarly. This form of the prior distribution of
itern parameters is used in the present study for the joint Bayesian estimation as well as for
the marginal Bayesian estimation procedures. A hierarchical Bayes approach is developed
below in which another stage priors are assigned to the prior parameters, fa, lg, fy, 02, ag,

.
and o,

Hierarchical Approach

We can specify prior distributions for the parameter vectors § and { in two stages. This
tvpe of prior distribution is a hierarchical prior (Berger, 1985; Good, 1983) also called a
multistage prior {Lindley, 1971; Lindley & Smith, 1972). The idea is that one may have
structural and subjective prior information at the same time and that it is often convenient
to model this in stages.

The structural knowledge that the §, are independent and identically distributed leads

to the first stage prior description

N
7(8) = J] 7o(6.). (22)

1=l

The subscript 1 on 7y is to indicate that this is the first stage. The hierarchical approach

then places a second stage subjective prior on 1,. If we use I' to denote a class of priors, the

8.
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hierarchical approach is most commonly used when the first stage, I' , consists of priors of a

certain functional form. Thus, if
T = {mi(8lz) : m is of a given functional form and 7 € T}, (23)

then the second stage would consist of putting a prior distribution, #3{r), on the
hyperparameter 7. Such a second stage prior is sometimes called a hyperprior (Berger,
1985; Good, 1983).

The structural assumption of independence of the 6;, together with the assumption that
they have a common normal distribution (i.e., we assume that the information on these

parameters is exchangeable), leads to
N
T = {WI(Q!I) :m(flz) = H 7o(6:), 7o being .V(pa,ﬂg), —00 < pp < 00 and ‘73 > 0} » (24)
=1

where

N e 1
@) = [[Crod) esp{ (0 - . (25)

=i 8
Similarly, assumptions that item parameters are independent and identically distributed

and that the information on each of the item parameters is exchangeable lead to I'n, I'g, and
T, with the hyperparameter 7. Then the first stage prior distribution of item parameters

assuming independence and exchangeability is

n

#1({ln) = [ milaylia, 02)m(B;]us, o2)mi (75114, 02). (26)

=1

The complete prior for the hierarchicz] model, assuming independence between ability

and item parameters, is

*(4,z,§1) = m(@lz)ma(z)m(EIn)maln), (27)

where 7,(8|1) is the first stage density of § conditional on 7 which takes the second stage
density 72(z) and m({)n) is the first stage density of { conditional on 7 which takes the
second stage density w2(n).

12
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Second Stage Prior

Noninformative priors are often used at the second stage because of the difficulty in specifying
second stage priors (Berger, 1985). Sometimes, it is simply assumed that hyperparameters
are known. For example, in the joint Bayesian estimation procedures, identifying restrictions
can be incorporated directly into the prior (Swaminathan & Gifford, 1986) because the three-
parameter model does not need to be identified. Therefore, we set ug = 0 and o = 1, s0

that
N
n(8lz) = (27) M exp (—%29.-’)- (28)

=1

In the above specification, setting ug = 0 and o2 = 1 contains the explicit assumption that
the hyperparameter 7 is known.

In the present study, we use the identical form of prior for each of the item parameters.
Detailed examples, therefore, are given below only for the transformed item discrimination
parameter. Hyperpriors for s and o2 can be specified by assuming that u, and o3 are
independent, u, has a noninformative uniform distribution, and ¢2 has an inverse gamma

distribution with parameters v, and \;, Z7G(va, Aa)- That is,

. 1 1
WZ(_’Z,&) = 72(I‘Q)W2(0;aym’\a) = F(V )/\ua(a-z)v.,ﬂ exp ( ) ? (29)

Aaad

where v, > 0 and A\, > 0. Since E{0;*) = vada, we consider ;- as a prior variance

e

estimate and 2y, as a prior sample size tor the variance of item discrimination {Leonard,

1972; Novick, 1969). The prior for & can be expressed as

maln, ra(n,) = I] moles)e(a,) (30)

12 1 !
= (2702) P exp { — = pa)’ - - (3
( ‘TO'Q) e‘cp{ 20‘.‘; ;(Q} # ) } F(un)/\;,(ai)v.+l exp ( Aua"‘;) ( )

The above expression depends on the nuisance parameters, pu, and 2. These can be

10
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integrated out to yield

. g ~(n+2ma-1)/3
L /_w wl(g{ge_)wg(ge)du,da: x {-X: + ?;;(a,- - a)ﬂ} (32)
Therefore,
; = ~(n+210-1)/2
(alva, o) { . +3a - a)’} (33)
& J=1
Similar prior specifications yield
, & ~(n+p—1)/2
m(Blve, Ag) x {3; + 3 (8i - 5)3} (34)
=1
and 9 n ~(n+2y-1)/2
T(vlvy, Ay) {T + Z(‘Y;’ - 7)2} ’ (35)
v =1

Whete B = ;x';:;":l ﬂ: a.nd ‘7 = % ;‘=1 7.1.'
In the context of the hierarchical approach (Goel, 1983; Goel & DeGroot, 1981), we can

illustrate the above specification of priors of item parameters as

m(§, n) = m(En)m(n), (36)

where m3(7) is viewed as
w2(n) = 721 (V1P )ma 2 (D), (37)

It can be seen that 7 = (7{"),7(*)). We integrate out the nuisance parameter n(*) explicitly

assuming 7(?) is known:

/m,, (¢, n)dg) = /Hm m(Eln)ma(n)dn’™ = =(¢n®). (38)

From the assumption of independence of the respective vectors of item parameters,

m(¢ln™) = n(aig®)r(BlgP)n(x1g®) (39)

For the transformed item discrimination parameter, for example,

1, = (10, 5) = (ka, 03; vay Xa)- (40)
11
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We can integrate out 312) from the prior disiribution to yield
/ oy T (@I )ma(m, )dn ) = m(ainl) = 7(alva, da). (41)

Posterior Distribution

Bayesian analysis is performed by combining the prior information and the sample
information into what is called the posterior distribution; all decisions or inferences are
made about the parameter of interest from the posterior distribution. The joint posterior

density of § and £, given observations u, 7, and 7, is

(8, {lu,z,1) o< {8, {)n(8lz)m(¢In)- (42)

When ignorance (i.e., noninformative) priors are assigned to the hyperparameters, 7 and
7, the posterior evaluation will be based largely on the data. Th's will provide Stein-type
shrinkage estimates for the item and ability parameters, smoothing each of these toward
respective average values (Leonard & Novick, 1985). When the hyperparameters are assumed
to be known, the simultaneous maximization of the joint posterior results in JBI.

In JB2, the following joint posterior distribution will be simultaneously maximized to

find the joint modal estimates:
(8, &lu, 7,0 o 1{8, )7 (Blz)m (Eln ). (43)

In the marginal Bayesian estimation context (Harwell & Baker, 1991; Mislevy, 1986),
assuming the hyperparameters are known, the examinee parameters § are integrated over

their distribution to obtain the marginal posterior distribution

W(sf?“s I ZZ) x m(ﬂl)w(ﬂﬂ) (44)

Marginal Bayesian modal estimates of item parameters can be found by maximizing the

marginal posterior distribution.

12
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When the two-stage hierarchical priors are employed in the marginal Bayesian estimation
of item parameters, assuming the ability hyperparameter r is known, the marginal posterior

distribution can be defined as

w(€Ju, 7,7 o m(¢|z )7 (Eln). (45)

In the marginal Bayesian estimation procedures, ability parameters are estimated after
obtaining the item parameter estimates assuming these are true values. Two Bayes methods
are available; Bayes modal estimation and Bayes expected a posteriori (EAP) estimation
(Bock & Mislevy, 1982).

Since detailed mathematical derivation can be found for the marginal Bayesian estimation
procedures (Harwell & Baker 1991; Mislevy, 1986), in tke next section we presents only the

two joint Bayesian estimation procedures.

Joint Bayesian Estimation

JB2 Estimation

In order to estimate the item and ability parameters, the log posterior distribution
Inx(6,{|u,z,7¥) is to be maximized by taking partial derivatives with respect to the.
parameters and setting them equal to zeros. A procedure such as the Newton-Raphson
method is then used to obtain the joint modal estimators.

Since the parameters for all n items and the abilities for all N examinees are unknown,
we first to take derivatives of the logarithm of the posterior distribution with respect to these
parameters. These are then set equal to zero and the 3n + N simultaneous equations solved
to obtain the Bayes modal estimates of the unknown parameters. Assuming item and ability
parameters are independent, we can obtain joint Bayes modal estimates via Birnbaum’s

(1968) method.

1316



In Birnbaum’s method the item parameter estimation part and the ability parameter
estimation part are repea_ted iteratively until a stable set of item and ability estimates is
obtained. In the item parameter estimation part, the Newton-Raphson (Kennedy & Gentle,
1980) equation is

g-) — éin-l) _ {Hsa-x)}* f,(n-l) (46)
where s indexes the iteration, f; is the gradient vector, H; is the Hessian matrix of the log
posterior distribution, F = In (8, {]u,7,7(?). The Newton-Raphson equation of the ability

parameter estimation part, for examinee 3, is

(o aeny  (PFNT(OF ’-
i =i - (25 (55) (&)
507 ) 1y \ OB/ sy

We take a partial derivative of the log posterior distribution with respect to each item

parameter, for example a;, and set to zero. The resulting equation becomes

o l(8.6) + 5 I (gn®) = (48)

Similarly, when we take a partial derivative of the log of the posterior distribution with

regard to an examinee’s ability parameter, §,, and set to zero, the resulting equation is

d 3
EEIn 06,) ~ ()—9:11”@!1) = 0. (49)

In the subsequent sections, we derive the individual elements which are needed in the

Newton-Raphson method for the joint Bayesian-2 estimation procedure.

Likelithood

Taking logarithms, the log likelihood function is

N n
Inl(8,€) = Y 3 [wyy In {P;(6:)} + (1 - w;;) In {Q;(6:)}]. (50)

s=1 =1

174



First, we need partial derivatives of P;(6,) with respect to each item parameter. The partial
derivatives of P;(4;) with respect to aj, 9;, and v; are

0

{9‘;’7}’1(9*) = exp(a;){1 — ¥(v;)Hb: ~ B;) P} (8:)Q;(6:), (51)
2 Pi(6) = —exple 1 - ¥} POIQ}(0), 52)

and
5‘2‘;1’ i(6) = W(v){1 - ¥(v;)}Q5(6:), (53)

where P(6;) = [1 + exp{-exp(a,-)(@t- - G;)}™* and Q3(6:) = 1 — P;(6:). Using these
expressions and the relationship

Q;(6:) 1
Qi(6) 1 -¥(y,)’ (54

the derivatives of the log likelihood with respect to the item parameters are

N
5?,_’.1“ 8, §) = exp(a; {1 - ¥(v,)} 2 (6 ~ B, )wii{wi; — Pi(6:)}, (53)
0 N
5&; 1111(& _{) = —exp(a,){l - W(‘)’j)} gw;,‘{u,-, - P,(H,-)}, (56)
and
k) N

57 1L €) = ¥() YAR (6} s - A6, (57)

where
_P(6,)Q;(6:) (58)

AR ICATN N
The partial derivative of P;(6;) with respect to §; is

5%’" 5(6:) = exp(a;){1 — W(;)} P} (6:)Q;(6:) (59)

and hence the derivative of the log likelihood with respect to the ability parameter is

102, €) = 3 exp(e, {1 — (v, oy — Py (80} (60)

1518
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Second Derivatives of the Likelihood

The Newton-Raphson procedures require the second derivatives of the log posterior
distribution with respect to each parameter. Following standard practice (Finney, 1971;

Rao, 1973), the expectations of the second derivatives of the log likelihood for respective

item parameters are

B{Z1nl0.0} = -expl2m){1 - U2 L6 - BV woBOIG0), (61
B {75 e0) = ~expl2a)1 - w(m}’;ww(e JE) (6
p{ Lo} = - ru-vonTim@riee. 6
B {5 P L.0] = expiza)(1 — ¥ln) L0~ AP OIQ), (64

B{ 5 10 l(8.6)} = —expla)¥()0 P S~ B w6, (65)

=1

and

2 Y N
B{ g 8.0} = espl@ W)L - )P T Qi6). (69

The expectation of the second derivative of the '~g likelihood with respect to the ability

parameter is

5 n
g {5@5’ Ini(8 g)} = -3 exp(2a,){1 - ¥(x)}ui, P(6)Q;60). (67)
=1

Derivatives of Priors

The logarithm of the prior of the item parameters is
In7(£7') = In7(@iva, Aa) + In 7(5lvs, \g) + In7(v]wy, Ay), (68)

where

Inw(alv,, Aa) x -(n 1)In{-—--—-+g1 } (69)
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ln"(é.lyﬁa ’\B) X - (ﬁ'j:'zzi'—_l) In {:\g; + i(ﬁj - ﬁ)?} ! (70)

=1
and
In7(y|vy, Ay) x — (n+2u., )ln{-——-&-z } (711)
J=1
The partial derivative of the log prior of the item parameters with respect to a; is
2 Inn(alva, Aa) o ~(a; - &) (72)
6a,~ Qg Aq) X ’g ; — Qa),
and similarly,
0
aﬁ a7 ln W(ﬁ]l’p, Aﬂ) (ﬂJ = B): (73)
’ B
and
7 lnn(alim ) & =25 = %) (14)
a'YJ ALYy 83 7] Y)
where
3o T Ximi(a; —a)?
2 _ Aa J=1AH
fa T n+2we—-1 ' (75)
2 J:I(BJ )
BT s ug~1 (76)
and
 + X0l =)
5-';1 — ‘r., 2 l( F ) (77)
n+2vy, -1
Second Derivatives of Priors
The second derivatives of the log prior of the item parameters are
(1 - ;"-) 82 —2a;-a)/(n+2u,~1)
E—z-?-lnw(g{u‘,,z\a) x ~ o , (78)
5 (1-2) 54 -2 - A)/(n + 205 — 1)
a—ﬂz In ‘n‘(ﬂ!Ug, ,\9) X - 83 s (79)
and ( )
» 1~ 1) 58— 25 = 1)/ (n + 20, ~ 1)
5-1-5-111 T(Ylvy, Ay) x ~ . : (80)
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Since
In7w(flr) —%i@?, (81)

the partial derivative of the log prior distribution of ability parameters with respect to 8, is

d
577 I 7(8lD) o =6, (82)
and the second derivative is
52
b-b-?;lnw(ﬂij;) x -1 (83)

Initial Values for the Newton-Raphson Method

The Newton-Raphson method typically requires close approximations to the solution as
starting points. Initial values for these starting points may be obtained from the following

equations (Baker, 1987; Swaminathan & Gifford, 1986):

, 1.702r.
a}o) =!n ago) =in ( ', 7‘5: ) , (84)
Vl -— Tg’,
3§°) = 3:2'_, (85)
rb,-
{0}
{0) 2] 1
v =lIn =In ( ) , (86)
7o (i 2p) - (75
and
T ug 4+ 1
6t =ln( ==t B0 1), (87)
n-— 2:,’:1 Uss + 2

where ry; is the biserial correlation of the item ; and the item-excluded total score, z; is
the normal deviate z; = ®-1(1 ~ p;), ® denotes the standard normal cumulative density
function, p; is the classical item difficulty (i.e., p; = TN u,;/N), and m, 1s the number of

options in multiple choice item ;.



JB1 Estimation

The difference between the two joint Bayesian estimation procedures lies in the form of the
prior distributions. Since JB1 also requires the Newton-Raphson method, we need partial
and second derivatives of the log likelihood and log prior distributions. When we take a
partial derivative of the log posterior distribution with respect to an item parameter, say a;,

and set to zero, we obtain

5%; Inl(g,€) + 5‘3—!; Inw(§|n) =0. (88)

Since the partial derivative of log likelihood function is the same as one used in JB2
estimation, we dispense with description of the likelthood part and present the elements

for the item priors.

Denrivatives of Priors

The term 32 Inw(£|n) represents the contribution of the item priors. The partial derivatives
; ¢

of Inw({in) with respect to a;, 3;, and v, are

0
5&:13‘7(5177) = "‘3;( aj — fia ), (89)
a
6—6-;1n 'T(é _71) = Ola (ﬁ: - l‘.ﬁ)) (90)
and
4, __ 1 91
3y; nridin) = —?3(7" = by). (1)

Second Derivatives of Prior

The second derivatives of the priors for the item parameters are

-;— In7({ln) = ——‘-7-1-;— (92)
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g3 1
5-3-15 Inn{£ln) = a7 (93)

and
o 1
E—;In 'ﬁ(i‘ﬂ) = —-;—3—. (94)

Empirical Study

In this section we present an empirical comparison of the three Bayesian methods. Data
were simulated under the following conditions: (1) sumber of examinees (N = 100, 300), (2)
number of items (n = 15,45), (3) estimation (JB1, JB2, MB), and (4) prior condition (prior-
ay, prior-at, prior-aBr). The sample sizes and the test lengths were selected to emulate
the situation in which estimation procedures and priors might have some impact upon item
and ability parameter estimates. The sample size and test length, were completely crossed
to yield four situations.

Three Bayesian estimation procedures were used: JB1 is the joint Bayes modal estimation
procedure with known hyperparameters; JB2 is the joint Bayes modal estimation procedure
with informative hyperpriors; and MB is the marginal Bayes modal estimation of item
narameters with known hyperparameters and the EAP estimation of ability parameters.

Each estimation procedure had the three prior conditions: prior-ay, prior-at, and prior-
adr. The prior-a;, condition used a loose prior for the transformed item discrimunation;
the prior-ay condition used a tight prior for the transformed item discrimination; and the
prior-afr condition used tight priors for both the transformed item discrimination and the
item difficulty. The exact specification of the prior condition is presented in a subsequent
section on the iterr and ability parameter estimation.

Data Generation

Using the two-parameter logistic model,

Py(6;) = (1 + exp{-a,{f - bj)}]—l , {95)
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dichotomous item response vectors were generated via the computer program GENIRV
(Baker, 1982). Based on the usual ranges of item parameters for the two-parameter
logistic model, the underlying item discrimination parameters were assumed to be normally
distributed with mean 1.046 and variance 0.103, o; ~ N(1.046,0.103); that is, a; ~
N(0.0,0.09). The underlying item difficulty parameters are distributed normally with mean
0.0 and variance 1.0, b, ~ .V(0,1).

For data generation purposes, an approximation based on histograms was adopted. Item
discrimination and item difficulty parameters for the 15-item test were set to have three
different values respectively. For the 45-item test, each of the item parameters was set to
have five different values. Itemn parameters used to generate the data sets are given in Table

1 and Table 2 for the 15-item test and for the 45-item test, respectively.

Insert Tables 1 and 2 about here

The underlying ability parameters were matched to the item difficulty distribution.
Hence, a normal distribution with mean 0.0 and variance 1.0, §; ~ \'(0, 1), was used to
specify the underiying ability parameters. Table 3 shows the ability groups and the number

of examinees in each ability group for samples of 100 and 300.

Insert Table 3 about here

For each of the factors of sample size and test length, four replications of the simulated
data were generated. Since the two factors were completely crossed, a total of 16 GENIRV

runs was needed to obtain the data sets for the empirical comparison.

Item and Ability Parameter Estimation

Each of the generated data sets was analyzed via the computer program BILOG (Mislevy

& Bock, 1989) for the marginal Bayesian estimation and via the computer program
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JBAYES, specifically developed for this study to provide the joint Bayesian estimates. In
each estimation procedure, three prior conditions, prior-ay,, prior-ar, and prior-aft, were
employed. Hence, for example, the generated item response data set for the first replication
of sample size 100 and test length 15 was analyzed by nine computer runs (three estimation
procedures with three prior conditions).

The default options of the computer program BILOG (Mislevy & Bock, 1989) provide
the marginal Bayesian modal estimates of item parameters and the expected a posteriori
estimates of ability parameters for the two-parameter model. In the prior-ay, condition for
MB, a lognormal prior with mean 0.0 and variance 0.25 was used, that is, Ina; ~ .\(0, 0.25).
This is, in fact, the default prior specification in BILOG for the two-parameter model.
In the prior-ar condition, a lognormal distribution with mean 0.0 and variance 0.09,
Ing; ~ .V(0,0.09), was used. For the prior-afr condition, the same prior in the prior-
at condition along with a normal prior was used for the item difficulty with mean 0.0 and
variance 1.0, 3; ~.V{0,1).

For JB1 estimation via JBAYES, a, ~ .\"(0,0.25) was used for the prior-a;, condition.
For the prior-ar condition, a, ~.\'(0,0.09) was used. The prior-adr, used a; ~ .V(0,0.09)
and 3; ~ .V(0,1). For JB2 estimation, the mean hyperparameter was assumed to have a
noninformative uniform distribution and the variance hyperparameter was set to have an
inverse gamma distribution. In the prior-ap, condition, the inverse gamma distribution with
va = 4 and A, = 1 was used for the variance hyperparameter of the transformed item
discrimination parameters: 02 ~ IG(4,1). The inverse gamma distribution with parameters
Ya = 11 and Aa = 1 was used in the prior-at condition: o2 ~ IG(11,1). Two inverse
gamma distributions with parameters v, = 11 and \; = 1, and vg = 4 and Mg = 0.25 for the
variance hyperparameters of the transiormed item discrimination and of the item difficulty,
respectively, were adopted for the prior-adr condition: ¢ ~ IG(11,1) and o ~ IG(4,0.25).

When the mean hyperparameter s assumed to have a fixed value, 4, then the specification

o
t
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of the variance hyperparameter by the inverse gamma distribution with parameters v and ),
IG(v,A), yields the parameter of interest which is distributed as a ¢ with mean u, variance
o, and degrees of freedom 2v, that is, T{2v,u, ) (Berger, 1985). Therefore, for the
transformed item discrimination, assuming the mean hyperparameter uo has a fixed value,
specification of the hyperparameter of variance by the inverse gagmma with v, = 4 and
Ax = 1 yields a transformed item discrimination parameter which is distributed as a ¢ with
mean pq, variance o= = (.25, and degrees of freedom 2u, = 8, that is, a; ~ T(8, pta, 0.25).
Similarly, the specification ¢ ~ ZG(11,1) implies a; ~ 7(22, y1a, 0.09); and the specification
o3 ~ IG(4,0.25) yields 3; ~ T(8,us,1). In the above illustration, because we assumed a
noninformative prior for the mean hyperparameter, the specifications used in JB2 will not
produce the same specifications of item hyperparameters used in the marginal Bayesian and
the joint Bayesian-1 procedures. These specifications are 02 ~ IG(4,1), o3 ~ IG(11,1),
and 0§ ~ 7G(4,0.25) and are similar to their counterparts in the MB and JB1 estimation
procedures.

The EAP estimation was used in MB for the ability estimation via BILOG. Bayes modal
estimation was employed in the ability estimation for both joint Bayesian procedures via
JBAYES. All three Bayesian estimation procedures used a standard normal distribution as

the prior for the ability parameters.

Metric Transformation

In parameter recovery studies, such as the present one. comparisons between two or more
sets of estimates and the underlying parameters require that the item and ability estimates
obtained from different calibration runs and their parameters be placed on a common metric
(Baker & Al-Karni, 1991; Yen, 1987). Parameter estimation procedures under IRT yield
metrics which are unique up to a linear transformation. To link both sets of estimates and

parameters, it is necessary to determine the slope and intercept of the equating coefficients

23< b

®



required for the transformation. The estimates of the item and ability parameters for each
of the estimation procedures were placed on the scale of the true parameters using test
characteristic curve method by Stockirg and Lord (1983) as implemented in the computer

program EQUATE (Baker, 1990).

Criteria

The empirical comparisons in this study involved three criteria: root mean square differences
(RMSD), correlation, and bias. RMSD is the square root of the average of the squared
differences between estimated aud true values. For item discrimination, for example, RMSD

is defined as

n 5

\jl i(&:‘ - a,)%. (96)

The bias B, of a point estimator & is given by B, = E(a) — o; the bias for item difficulty
is given by By, = E(b) — b; and the bias for the ability estimator is defined by By = E(§) -6
(Mendenhall, Scheaffer, & Wackerly, 1981). For the 15-item test, B, (or B;) was obtained
with regard to the three different underlying parameters across the four replications. For
the 15-item test, B, (or B;) was calculated with regard to the five different underlying
parameters across the four replications. The bias By was obtained for the 11 ability levels

over the four replications.

Results
RMSD and Correlation Results

RMSD and Correlation Resuits for ltem Discrimination. RMSDs of item discriminations for
each data set are reported in Table 4. As sample size increased, RMSDs decreased; marginal

RMSD means were 0.24924 and 0.20646 for sample sizes 100 and 300, respectively.

Insert Tables 4 and 5 about here
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MB yielded smaller RMSDs than either of the two joint Bayesian procedures. For the
two joint Bayesian procedures, JB1 yielded larger RMSDs. Increasing the number of items
reduced the size of RMSDs, particularly for JB1 and JB2. For the 15-item test, MB yielded
smaller RMSD values although all three estimation methods produced nearly the same values
for the 45-item test. RMSDs for the third replication of the sample size 100 and 15-item
test were slightly smaller than for the other cases and RMSDs for the fourth replication of
the sample size 100 and 15-item test were slightly larger than for the other cases. These
differences were probably due to sampling fluctuations in the data generation procedures
used in this study. The effect of this probable sampling fluctuation could also be seen for
tie respective correlations in Table 5.

When the loose prior was used in JB1 and JB2, it yielded comparatively larger values of
RMSD than did either of the tight prior conditions. This was particularly the case for the
short 15-item test.

The correlations between true and estimated values of item discriminations are given in
Table 5. For each data set, the three Bayesian estimation procedures yielded practically
the same correlations. Generally, the larger the sample sizes the higher correlations. Also,
increasing the number of items tended to produce slightly higher correlations. For the three
prior condition used, there seemed no definitive tendency observed in the correlations.

RMSD end Correlation Results for ltem Difficulty. Table 6 contains RMSDs for item
difficulty. The pattern of results was nearly the same as that for item discrimination. An
increase in sample size appeared to be associated with a decrease in the size of RMSDs. For
JBI and JB2, increasing the number of items appeared to slightly decrease RMSDs. The
values of RMSD from MB were r.early the same regardless of the test size. MB consistently
yielded the smallest RMSDs.

Prior-aft condition yielded a relatively smaller RMSDs than did either the prior-ay, or

prior-ar conditions. MB consistently yielded smaller RMSDs than JB1 and JB2 regardiess
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the prior condition employed.

Insert Tables 6 and 7 about here

For each data set, the three estimation procedures yielded nearly the same correlations
between estimates and parameters (see Table 7). Generally, the larger sample sizes yielded
higher correlations. Increasing the number of items tended to produce slightly higher
correlations. There seemed to be no definitive trends in the correlations among the three
prior conditions.

RMSD and Correlation Results for-Ability. The RMSD results between ability estimates
and the underlying parameters are reported in Table 8. As expected, RMSD values were
much smaller for the 45-item test than for the 15-item test. Sinaller values were consistently
obtained for MB than for either of the two joint Bayesian procedures. The differences
between MB and either of the two joint Bayesian procedures were particularly noticeable
with the short test. As the number of items increased, the differences in RMSDs among the

three estimation procedures appeared to decrease.

Insert Tables 8 and 9 about here

Prior conditions did not have an apparent impact on the size of RMSD values for ability.
This might be expected as the prior conditions used -vere manipuiated only with respect to
item parameters.

The correlations between the ability estimates and the true values are reported in Table
9. The correlations were nearly identical across the three estimation procedures for each data
set. The 45-item test yielded higher correlations than the 15-item test. The prior conditions
did not seem to affect the correlations between the ability estimates and the underlying
parameters. As was the case with RMSD results, the prior used in the context of the item

parameter estimation had minimal effect when estimating ability parameters.
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Bias Results

Bias Results for Item Discrimination. The bias results for item discrimination, presented in
Table 10, appear to reflect influence by a number of factors. Each bias statistic was obtained
by combining all four replications torether; that is, the numbers of items used to obtain bias
values were 16, 28, and 16, for a = 0.66, 1.00, and 1.51, respectively, for the 15-item test.
For the 45-item test, 16, 36, 76, 36, and 16 items were used for ¢ = 0.57, 0.76, 1.00, 1.32,

and 1.77, respectively.

Insert Table 10 about here

For each test length, increasing the sample size resulted in a decrease in bias values. In
general, positive bias values were observed for the smaller item discrimination parameters
(i.e., @ = 0.66 for the 15-item test, and a = 0.57 and 0.76 for the 45-item test) due to the
regression toward the mean of the prior distribution. Negative values of bias were obtained
for the relatively larger item discrimination parameters (i.e., ¢ = 1.51 for the 15-item test,
and @ = 1.32 and 1.77 for the 45-item test). This shrinkage effect can be observed for all data
sets except when the loose prior on item discrimination (prior-ar) was used for the 15-item
test. When a large sample size was used with {5-item test, all three estimation procedures

yielded similar results.

For the three different levels of item discrimination, both JB1 and JB2 produced more
positive bias for the 15-item test than did MB. The two tight prior conditions, prior-at and
prior-afr, yielded similar pattern of bias for all data sets.

Bias Results for Item Difficulty. The bias results for item difficulty are reported in Table
11. The pattern of results was somewhat different from that for item discrimination. For
the 15-item test, the two joint Bayesian methods yielded negative bias values for the easy

items (b = —1.38) and positive bias values for the difficult items (b = 1.38). When both
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priors on item difficulty and item discrimination were used, the same pattern was observed.
Even though the test size and sample size increased, the same pattern was observed for three

methods of estimation. MB yielded the smallest bias for all item difficulty levels in all data

sets.

Insert Table 11 about here

Bias Results for Ability. The bias results for ability from the 100-examinee-15-item data
set are presented in Table 12. Those for the 100-examinee-45-item, 300-examinee-15-item,
and 300-examinee-45-item data sets are presented in Tables 13, 14, and 15, respectively. It
can be seen from these tables that shrinkage was more evident when a small number of items
was used. The prior conditions employed in item parameter estimation did not produce any
difference among the bias results. The expectied a posterion estimation of ability employed
in MB yielded consistently larger sizes of bias than the Bayes modal method used in the two
joint Bayesian methods. JB1 and JB2 yielded nearly the same pattern of bias for all data
sets. JB2 yielded relatively smaller values of bias, however, then the other two methods.

It should be noted that the bias values for the different ability levels were obtained by

combining the four replications.

Insert Tables 12, 13, 14, and 15 about here

Discussion

Maximum likelihood approaches in IRT suffer from a number of problems, an important
one being the possibility that unreasonable values will be obtained for parameter estimates,
particularly for item discrimination and pseudo-guessing. In addition, these approaches
perform poorly when estimating item and ability parameters for unusual response patterns

such as all correct or all incorrect answers. These problems have led to interest in the
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develupment of Bayesian approaches for estimation of item and ability parameters. In the
present stugy, we used a recovery study approach to compare parameter estimates obtained
via a marginal Bayesian algorithm, MB, and two joint Bayesian algorithms, JB1 and JB2.

Analysis of itern parameter recovery results indicated that MB yielded parameter
estimates which were generally better than those obtained from JB1 or JB2. RMSD and
Bias results for item discrimination and difficulty were smaller for MB estimates. JB1 and
JB2 estimates were similar although JB2 results were slightly better. These differences were
primarily evident in the small sample and short test conditions. This superiority was likely
due to the fact that MB permits item parameters to be estimated without the concurrent
need to estimate ability. Differences due to sample size are interesting if only for the fact
that the two sample sizes simulated in the present study, 100 and 300 examinees, were
both relatively small. In reality, all three Bayesian methods performed well, yielding item
parameter estimates which were not markedly different from the underlying values. Failure
of the joint Bayesian methods to provide estimates as accurate as MB under these conditions
should not be viewed as something that indicates a serious deficiencies for the joint Bayesian
methods. Rather, what these results suggest is that marginalized Bayesian solutions are
relatively powerful under the somewhat extreme conditions simulated in the present study.

The EAP ability estimates obtained via MB were more accurate in terms of RMSD than
those from either of the two joint methods. The bias values for EAP estimates, however,
were larger than Bayes model estimates of ability for JB1 and JB2. This is well-known result
and demonstrates the impact of the use of the posterior mean in the EAP estimation rather
than the posterior mode (Bock & Mislevy, 1982).

The effectiveness of the marginalization in MB may depend in part on the accuracy of
the ability hyperparameters. Seong (1991) has shown that item parameter estimates from
the marginalized distribution are sensitive to misspecification of the ability distributions. In

this study we generated the ability had standard normal distribution. Consequently, the
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marginalization of the posterior distribution was performed under an optimal situation.

Both the shape and the variance of the prior distribution play a part in the estimation
of parameters. The more informative the prior (i.e., the smaller the variance), the more
the parameter estimate tends to be pulled toward the mean of the prior. The tight prior
conditions used in the present study, prior-ar and prior-afr, yielded better item parameter
estimates than did the loose prior, prior-a;. The use of tight priors seemns appropriate
when there is strong a priori information about the parameters. In the MB context, the
misspecification of prior information has not been found to be a serious problem except
when the mean of the underlying item discrimination parameters was quite smaller than the
mean of the prior (Al-Karni, 1990).

Incorrect specification of the prior may result in more serious consequences for JB1 and
MB than for JB2. This condition was not tested in the present study because priors were
relatively well-matched to the generated data sets.

Several issues remain to be studies in the present context. In particulur, little has been
done on the shrinkage efect except for Al-Karni (1990) and Gifford and Swaminathan (1990).
Neither are the effects of priors well-known with respect to the robustness of two-stage
hierarchical models. This kind of research is particularly valuable for small samples and
short tests. Marginal Bayesian estimation was arguably the more desirable algorithm in
the present study. Even so, it remains to be seen whether incorporation of a two-stage

hierarchical procedure might improve marginal Bayes modal estimates.
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Table 1: Jtem Discrimination and Item Difficulty Parameters for 15-Item Test

Item Discrimination®  Difficulty
1 0.66 (-0.41) -1.38
2 0.66 (-0.41) 0.00
3 0.66 (-0.41) 0.00
4 0.66 (-0.41) 1.38
5 1.00 (0.00) -1.38
6 1.00 (0.00) -1.38
7 1.00 (0.00) 0.00
8 1.00 (0.00) 0.00
9 1.00 (0.00) 0.00

10 1.00 (0.00) 1.38
11 1.00 (0.00) 1.38
12 1.51 (0.41) -1.38
13 1.51 (0.41) 0.00
14 1.51 (0.41) 0.00
15 1.51 {0.41) 1.38

2Parentheses contain the transformed item
discrimination.
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Table 2: Item Discrimination and Item Difficulty Parameters for 45-Item Test

Item Discrimination®  Difficulty
1 0.57 (-0.57) 0.95

-3 0.57 (-0.57) 0.00

4 0.57 (-0.57) 0.95

5 0.76 (-0.28) -1.90

6-7 0.76 (-0.28) 0.95
8§10 0.76(-0.28) 0.00
11-12 0.76 (-0.28) 0.95
13 0.76 (-0.28) 1.90
14-15 1.00 (0.00) -1.90
16-18 1.00 (0.00) -0.95
19-27 1.00 (0.00) 0.00
28-30 1.00 (0.00) 0.95
31-32 1.00 (0.00) 1.90
33 1.32 {0.28) -1.90
34-35 1.32 (0.28) -0.95
36-38 1.32 (0.28) 0.00
39-40 1.32 (0.28) 0.95
11 1.32 (0.28) 1.90
42 1L.77 (0.57) -0.95
13-14 1.77 (0.57) 0.00
15 1.77 (0.57) 0.95

Parentheses contain the transformed item
discrimination.
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Table 3: Number of Examinees at Each of the 11 Ability Levels

Number of Examinees

8 Level N =100 N= 300

2.5 1 4
-2.0 3 8
-1.5 7 20
-1.0 12 36
-0.5 17 o2
0.0 ' 20 60
0.5 17 52
1.0 12 36
1.5 7 20
2.0 3 8
2.5 1 4
g
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Table 4: Root Mean Square Differences of Item Discrimination

Joint Bayesian-1

Joint Bayesian-2 Marginal Bayesian

Nnrs aL ar afr

a, or afr oo or abr

100151 0.315 0.254 0.251
2 0.282 0.231 0.211
3 0.349 0.217 0.194
4 0.332 0.337 0.295

0.263
0.245
0.285
0.301

0.250
0.229
0.225
0.294

0.253
0.214
0.215
0.291

0.272
0.253
0.181
0.313

0.251
0.208
0.158
0.290

0.258
0.225
0.175
0.296

1 0.270 0.233 0.241
2 0.241 0.233 0.233
3 0.313 0.264 0.261
1 0.225 0.209 0.206

0.234
0.239
0.261
0.215

0.240
0.249
0.264
0.228

0.239
0.250
0.263
0.228

0.261
0.252
0.299
0.206

0.227
0.240
0.259
0.197

0.233
0.249
0.266
0.204

300151 0.204 0.195 0.188
2 0.329 0.184 0.174
3 0.595 0.288 0.277
4+ 0.755 0.231 0.228

0.199
0.195
0.533
0.260

0.199
0.179
0.291
0.229

0.195
0.173
0.281
0.228

0.152
0.178
0.277
0.212

0.160
0.169
0.211
0.191

0.167
0.176
0.209
0.189

451 0.155 0.137 0.134
2 0.203 0.189 0.183
3 0.166 0.152 0.151
4 0206 0.179 0.172

0.138
0.188
0.152
0.178

0.136
0.180
0.153
0.171

0.137
0.i81
0.153
0.169

0.151
0.199
0.164
0.208

0.132
0.182
0.151
0.171

0.134
0.182
0.153
0.174

*Number of Examinees (N), Number of Items (n), and Replication (r).
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Table 5: Correlations Between Estimates and Parameters for Item Discrimination

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

Nnr* a oar afty a oar afr a or abr

100151 0.615 0.612 0614 0.616 0.610 0.592 0.618 0.621 0.612
2 0.770 0.745 0.772 0.771 0.740 0.774 0.748 0.748 0.703
3 0.809 0.826 0.852 0.817 0.828 0.840 0.879 0.893 0.862
4 0.383 0.362 0.385 0.389 0.372 0.388 0.423 0.423 0.400

451 0.695 0.677 0.691  0.677 0.687 0.698 0.700 0.695 0.683
2 0.674 0.678 0.685 0.679 0.676 0.683 0.665 0.659 0.641
3 0.526 0.559 0.564 0.559 0.569 0.572 0.566 0.577 0.562
4 0.742 0.752 0.765 0.757 0.773 0.771 0.783 0.796 0.796

300151 0.869 0.865 0.874 0.870 0.865 0.872 0.878 0.872 0.857
2 0.865 0.860 0.870 0.860 0.869 0.874 0.846 0.845 0.831
3 0.688 0.761 0.761 0.701 0.760 0.761 0.766 0.776 0.780
4 0.574 0.767 0.766 0.758 0.765 0.750 0.784 0.798 0.804

1 0.906 0.905 0.909 0.906 0.906 0.908 0.906 0.908 0.906
2 0.821 0813 0.819 0.815 0.822 0.820 0.817 0.820 0.819
3 0.879 0.878 0.880 0.878 0.880 0.882 0.877 0.878 0.876
4 0.843 0.843 0.848 0.845 0.845 0.848 0.850 0.854 0.850

*Number of Examinees (N), Number of ltems (n), and Replication (7).
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Table 6: Root Mean Square Differences of Item Difficulty

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

Nar* a ar afr aa ar aftr a, ot afr

100 151 0.374 C.360 0.344 0.374 0.375 0.355 0.325 0.310 0.308
0.379 0.361 0.327 0.381 0.389 0.359 0.259 0.263 0.248
0.481 0.499 0.462 0.498 0.522 0.496 0.382 0.402 0.388
0.346 0.337 0.310 0.344 0.355 0.333 0.292 0.290 0.286

= W b

0.370 0.346 0.313° 0.349 0.342 0.319 0.335 0.312 0.294
0.314 0.306 0.298 0.316 0.319 0.308 0.304 0.301 0.299
0.314 0.303 0.251 0.308 0.310 0.272 0.269 0.260 0.246
0.330 0.308 0.274 0.314 0.315 0.289 0.282 0.276 0.272

= o

300 151 0.347 0.334 0.320 0.345 0.343 0.333 0.167 0.170 0.165

2 0.330 0.301 0.283 0.316 0.304 0.292 0172 0.174 0.174
0.344 0.329 0.295 0.343 0.330 0.305 0.222 0.188 0.186
0.213 0.203 0.192 0.222 0.211 0.198 0.133 0.721 0.120

H- 2 b

1 0.157 0.189 0.174 0.192 0.193 0.180 0.158 0.153 0.152
2 0.226 0.209 0.197 0.213 0.208 0.198 0.208 0.188 0.184
3 0.262 0.255 0.236 0.257 0.257 0.242 0.232 0.228 0.228
4 0.227 0.215 0.194 0.219 0.220 0.203 0.189 0.174 0.171

45

sNumber of Examinees (), Number of Items (n), and Replication (7).
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Table 7: Correlations Between Estimates and Parameters for Item Difficulty

Jeint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

Nnr* a ar afr a or abr a ar abr

100151 0946 0950 0.951 0.950 0.951 0.953 0.946 0.951 0.952
2 0976 0975 0976 0.977 0.974 0.976 0.976 0.975 0.973
3 0937 0935 0937 0.937 0.934 0.936 0939 0.936 0.935
4 0955 0.957 0.961 0.960 0.960 0.961 0.957 0.959 0.959

1 0.948 0955 0958 0.958 0.961 0.962 0.949 0.957 0.959
2 0.953 0.955 0.956 0.955 0.955 0.9556 0.953 0.955 0.955
3 0.970 0972 0976 0.972 0.972 0.975 0.970 0.972 0.973
4 0.956 0.960 0.964 0.961 0.961 0.963 0.961 0.963 0.963

300151 0993 0.993 0.993 0.993 0.992 0.992 0.993 0.993 0.992
2 0.985 00987 0988 0.987 0.987 0.988 0.988 0.987 0.986
3 0.968 0976 0979 0970 0.976 0.979 0.975 0.982 0.983
4 0989 0.993 0.993 0.992 0.993 0.994 0.992 0.994 0.994

1 0988 0.988 0.989 0.988 0.988 0.980 0.988 0.989 0.989
2 0980 0.983 0.984 0.983 0.984 0984 0.979 0.983 0.983
3 0972 0974 0.976 0.974 0.974 0.976 0.973 0.974 0.974
4 0.985 0.986 0.987 0.986 0.986 0.987 0.984 0.986 0.986

sNumber of Examinees (N), Number of Items (n), and Replication ().
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Table 8: Root Mean Square Differences of Ability

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

Nnr* o ar afr a ar afr a ar afr

100151 0.501 0.492 0.501 0.514 0.512 0.520 0.456 0.455 0.454
2 0.534 0.522 0.532 0.542 0.533 0.547 0.497 0.491 0.491
3 0.570 0.554 0.565 0.572 0.565 0.572 0.537 0.536 0.536
4 0.609 0.582 0.589 0.616 0.603 0.610 0.546 0.538 0.538

451 0.316 0.327 0.33¢ 0.334 0.336 0.344 0.315 0.319 0.320
2 0352 0350 0.360 0.362 0.360 0.376 0.342 0.341 0.341
3 0.310 0.308 0.314 0.310 0.311 0.317 0.314 0.310 0.309
4 0.298 0.302 0.308 0.309 0.308 0.317 0.286 0.291 0.292

300151 0.552 0.549 0.554 0.556 0.555 0.558 0.521 0.517 0517
2 0552 0.551 0.556 0.557 0.559 0.562 0.521 0.522 0.523
3 0.565 0.557 0.560 0.566 0.560 0.563 0.539 0.537 0.538
4 0.582 0.548 0.553 0.557 0.560 0.568 0.498 0.498 0.498

1 0325 0.323 0.325 0.325 0.325 0.328 0.320 0.318 0.318
2 0337 0339 0.344 0.344 0.345 0.349 0.326 0.328 0.328
3 0.304 0.305 0.308 0.306 0.306 0.309 0.302 0.301 0.301
4+ 0339 0.339 0.341 0.342 0.342 0.345 0.330 0.329 0.329

*Number of Examinees { V), Number of Items (n), and Replication (r).

42

ERIC

Full Tt Provided by ERIC.



Table 9: Correlations Between Estimates and Parameters for Ability

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

Nnr® a or aftr a ar afr a oar abr

100 151 0.890 0.893 0.893 0.893 0.894 0.893 0.892 0.893 0.894
0.868 0.871 0.871 0.870 0.872 0.872 0.870 0.874 0.873
0.847 0.849 0.849 0.848 0.848 0.349 0.848 0.849 0.848
0.849 0.852 0.853 0.853 0.853 0.854 0.851 0.853 0.853

> W N

0.951 0.948 0.948 0.948 0.947 0.947 0.950 0.949 0.949
0.944 0.945 0.944 0.944 0.944 0.944 0.944 0.944 0.944
0.951 0.952 0.952 0.952 0951 0.951 0.950 0.951 0.951
0.958 0.957 0.958 0.957 0.956 0.957 0.959 0.958 0.958

w DN e

300151 0.854 0.855 0.855 0.855 0.855 0.855 0.857 0.857 0.857
0.856 0.856 0.857 0.856 0.857 0.857 0.855 0.855 0.854
0.837 0.844 0.845 0.838 0.844 0.345 0.845 0.845 0.845
0.858 0.873 0.874 0.973 0.874 0.873 0.874 0.873 0.873

W W I

0.048 0.948 0.949 0.948 0.948 0.949 0.948 0.949 0.949
0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.946 0.946
0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954 0.954
0.94¢ 0.944 0.944 0.944 0.944 0945 0.945 0.945 0.945

> L BN e

*Number of Examinees (N), Number of Items (rn), and Replication (7).
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Table 10: Bias Results for Item Discrimination

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

Nna® a oar oabr oa or afr oo ar afr

10015 0.66 027 030 028 030 033 0.32 0.19 023 022
1.00 006 004 0.03 0.05 006 0.05 -0.02 -0.03 -0.05
1.51 0.08 -0.13 -0.16 -0.03 -0.18 -0.19 -0.07 -0.27 -0.30

450.57 020 026 024 029 032 0.3l 0.16 023 0.22
0.76 0.1 014 0.4 017 0.19 0.18 0.08 0.12 0.10
1.00 0.07 004 002 0.04 003 0.02 0.03 0.01 -0.01
1.32 -0.04 -0.13 -0.13 -0.16 -0.20 -0.19 -0.04 -0.15 -0.19
1.77 -0.25 -0.33 -0.37 -0.38 -0.54 -0.57 -0.25 -0.44 -0.46

300 150.66 0.16 020 0.19 019 0.2l 0.21 0.08 0.12 0.12
1.00 0.07 007 0.06 0.07 007 0.07 -0.02 -0.02 -0.03
1,51 0.33 0.03 0.02 0.16 0.02 0.0 -0.02 -0.15 -0.16

450.57 0.06 0.12 011 012 015 0.14 0.02 0.08 0.08
0.76 0.1 0.13 013 013 014 0.4 0.07 0.09 0.08
1.00 0.03 002 002 002 002 002 0.01 -0.01 -0.01
1.32 -0.01 -0.07 -0.07 -0.06 -0.09 -0.09 -0.04 -0.10 -0.11
.77 0.09 -0.05 -0.09 -0.06 -0.12 -0.16 0.07 -0.09 -0.09

aNumber of Examinees (.V), Number of Items (n), and Discrimination (a).




Table 11: Bias Results for Item Difficulty

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

Nnb® a a afr a ar afr a ar afbr

10015-1.38 -0.19 -C.18 -0.14 -0.22 -0.24 -0.20 0.03 0.00 0.05
0.00 000 000 000 000 000 000 0.00 000 0.00
1.38 0.19 020 0.15 023 023 020 -001 0.00 -0.05

45-1.90 -0.10 -0.11 0.02 -0.16 -0.:r -0.08 0.05 0.00 0.06
-095 -0.13 -0.11 -0.09 -0.12 -0.12 -0.11 -0.06 -0.05 -0.01
0.00 0.02 0.02 002 002 002 002 002 002 0.01
095 0.11 010 008 012 011 0.11 0.05 005 0.00
1.90 -0.01 0.01 -0.10 0.06 007 -0.02 .0.15 -0.10 -0.17

30015-1.38 -0.28 -0.28 -0.26 -0.29 -0.29 -0.28 -0.01 -0.01 0.00
0.00 0.00 0.00 0.1 0.02 001 0.01 001 0.00 0.01
1.38 028 028 026 029 029 0.27 004 0.03 0.01

45-1.80 -0.09 -0.11 -0.04 -0.12 -0.13 -0.07 0.07 0.04 0.06
-0.95 -0.15 -0.14 -0.14 -0.15 -0.15 .0.14 -0.07 -0.06 -0.04
0.00 003 003 003 003 003 003 0.03 003 0.03
095 0.04 0.04 004 0.04 0.05 0.05 -0.05 -0.04 -0.05
190 0.17 016 ©0.09 017 0.8 0.12 000 0.01 0.00

*Number of Examinees (V), Number of Items (n), and Difficulty (5).
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Table 12: Bias Results for Ability from 100-Examinee-15-Item Data Set

Joint Bayesian-1 Joint Bayesian-2 Marginal Bayesian

flevl a. ar abr a or afr a. oar abr

225 0.17 024 0.18 009 012 007 055 055 0.6
220 021 024 019 016 015 012 048 047 048
1.5 042 045 0.2 0.08 010 007 032 033 034
1.0 -0.12 -0.09 -0.12 -0.14 -0.14 -0.15 004 0.04 0.05
0.5 -001 000 -0.01 -0.02 .0.02 -0.03 005 005 0.05
0.0 -0.05 -0.05 -0.05--0.05 .0.06 -0.06 -0.04 -0.05 -0.04
0.5 -0.03 -0.04 -0.03 -0.02 -0.03 -0.02 -0.09 -0.10 -0.10
1.0 -0.04 -0.05 -0.02 -0.01 -0.01 001 -015 -0.15 -0.15
1.5 -0.21 -0.21 -0.18 -0.16 -0.16 -0.13 -0.37 -0.36 -0.36
2.0 -027 -0.31 -0.26 -0.21 -0.24 -0.20 -0.49 -0.51 -0.52
2.5 -0.70 -0.71 -0.66 -0.62 -0.62 -0.58 -0.94 -0.91 -091

{
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Table 13: Bias Results for Ability from 100-Examinee-45-Item Data Set

Joint Bayesian-1

—

Joint Bayesian-2

Marginal Bayesian

8 Level

ag

ar afr

Qay,

aTt

afr

ay

ar

afy

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

0.15
0.08
0.05
0.00
-0.02
-0.03
0.02
-0.01
-0.10
-0.10
-0.27

0.15 0.09
0.09 0.03
0.03 -0.01

-0.01 -0.04
-0.02 -0.04
-0.03 -0.03

0.02 0.04
0.00 0.03

-0.09 -0.05
-0.11 -0.05
-0.24 -0.18

0.10
0.05
0.00
-0.03
-0.03
-0.03
0.03
0.03
-0.06
-0.07
-0.18

0.11
0.06
0.01
-0.02
-0.03
-0.03
0.03
0.02
-0.07
-0.08
-0.18

0.03
0.00
-0.04
-0.05
-0.05
-0.03
0.04
0.05
-0.03
-0.02
-0.10

0.28
0.20
0.13
0.05
0.01
-0.03
0.00
-0.05
-0.16
-0.19
-0.35

0.27
0.18
0.11
0.04
0.00

0.26
0.18
0.11
0.04
0.00

-0.03 -0.03

0.01
-0.03
-0.15
-0.19
-0.33

0.00

-0.04
-0.15
-0.19
-0.32
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Table 14: Bias Results for Ability from 300-Examinee-15-Item Data Set

Joint Bayesian-1

Joint Bayesian-2 Marginal Bayesian

6 Level

aL

ar

afr

G,

aT

afr

ay

aTt

aBr

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

0.65
0.37
0.10
0.02
-0.01
0.02
-0.02
-0.10
-0.15
-0.28
-0.51

0.57
0.33
0.09
0.03
0.01
0.04
-0.02
-0.08
-0.13
-0.25
-0.47

0.35
0.31
0.07
0.01
0.00
0.04-
-0.01
-0.07
-0.11
-0.23
-0.44

0.57
0.33
0.08
0.02
0.01
0.05
0.00
-0.07
-0.12
-0.24
-0.47

0.53
0.30
0.06
0.01
0.00
0.04
-0.01
-0.07
-0.10
-0.22
-0.43

0.51
0.29
0.05
0.00
0.00
0.04
0.00
-0.06
-0.09
-0.20
-0.41

0.86
0.59
0.31
0.18
0.09
0.04
-0.10
-0.23
-0.34
-0.53
-0.80

0.85
0.59
0.31
0.17
0.09
0.04
-0.09
-0.22
-0.33
-0.52
-0.79

0.86
0.60
0.32
0.18
0.09
0.04
-0.08
-0.22
-0.33
-0.52
-0.80
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Table 15: Bias Results for Ability from 300-Examinee-45-Item Data Set

Joint Bayesian-1  Joint Bayesian-2 Marginal Bayesian

@ Level ay, or afr ar ar afr aL ar afr

-25 0.10 008 005 006 005 002 026 023 0.23
-20 011 0.11 o008 009 008 006 023 022 022
-1.5 0.08 0.07 005 006 005 0.03 0.17 0.15 0.15
-1.0 0.06 005 003 004 003 002 011 010 0.10
-05 001 001 000 001 001 000 0.04 004 0.04
00 002 003 003- 003 003 003 002 0.03 0.02
05 0.00 000 001 001 001 002 -0.03 -0.02 -0.03
1.0 -001 o0.00 002 0.01 001 003 -0.07 -0.05 -0.06
1.5 0.03 004 006 006 006 008 -0.07 -0.04 -0.05
20 -0.18 -0.17 -0.14 -0.15 -0.15 -0.13 -0.30 -0.28 -0.28
25 -0.29 -0.29 -0.26 -0.26 -0.26 -0.23 -0.44 -0.42 -0.42
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