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A Monte Carlo Study of Marginal Maximum Likelihood

Parameter Estimates for the Graded Model

Robert D. Ankenmann and Clement A. Stone

University of Pittsburgh

With the emerging popularity of performance asscssments, there is a rising
interest in the use of tests that contain polychotomously scored items. The
availability of computer programs such as BIGSTEPS (Wright & Linacre, 1990) and
MULTILOG (Thissen, 1988) now renders a wide selection of polychotomous item
response theory (IRT) models accessible to measurement practitioners. For example,
the polychotomous models implemented by MULTILOG include Samejima's (1969)
graded model, a version of Masters' (1982) pariial credit model, a multipie choice
model (Thissen & Steinberg, 1984), and Bock's (1972) nominal model.

Samejima’'s (1969) graded model, as implemented in MULTILOG, uses a marginal
maximum likelihood (MML) estimation procedure via the EM saigorithm. The MML
procedure employed by MULTILOG assumes a structure for the ability distribution,
typically N(0,1). Thus, the incidental parameter € is not cstimated jointly with item
parameters, and asymptolic properties (e.g., consistency) of maximum likelihood
(ML) estimates for the item parameters may apply even in small item sets {(Mislevy &
Stocking, 1989). Afier MML estimates of the item parameters are obtained, ML
estimates of O can be obtained. If either the IRT model or the assumed ability
distribution is incorrect, the statistical propesties of the MML estimates may fail 10
hold (Mislevy & Shechan, 1989). Recent results from Sione (1990) indicate that
skewed ability distributions, in particular, adversely affect MML parameter estimates
in the two-parameter logistic IRT model, but the impact of non-mormal ability

distributions diminishes with increased test length or sample size.



Reise and Yu (1990) used MULTILOG to study the effects of sample size, true
ability distribution, and true discrimination parameter distribution on parameter
recovery in the two-parameter graded model for tests with 25 items and five score
levels per item. They found that sample size had little effect on the recovery of
ability parameters, but had an effect on the recovery of item parameters. Sample
sizes of at least 500 examinees were recommended 10 achieve acceptable correlations
and root mean squared ecrrors, and sample sizes of 1,000 to 2,000 were recommended
when item parameter recovery is crucial. It was concluded that item parameter
estimation benefits from the use of highly discriminating items with examinees
having heterogeneous ability. The recovery of ability parameters was found 1o
improve as test length increased. Inconsistent effects of true ability distribution
were observed. With respect to item parameter estimation, the uniform true ability
conditions were found to be slightly superior to thc normal and skewed conditions.
However, for ability parameter estimation, the uniform irue ability conditions
yiclded inferior estimates compared to those produced for the normal and skewed
conditions.  Looking at the correlations between true and estimated parameters that
were reported by Reise and Yu (1990), it is interesting 1o note that for small sampie
sizes there were inconsistencies across true ability conditions. For example,
sometimes the corrclation corresponding to the normal true ability condition was
substantially less than that cormesponding to one of the non-normal conditions, and
other times the reverse was observed. Such inconsistencies may have been due to
the fact that only one set of data was gencrated and analyzed for each experimental
condition (i.c., multiple replications were not employed).

The purpose of the present siudy was 1o expand on this research: by
investigating the cffects of test length, sample size, and assumed ability distribution
in the context of a multiple replication Monte Carlo study; and by examining these

factors under both the onec-parameter (IP) and two-parameter (2P) logistic graded



models with five score levels. Furthermore, this study was designed to examine the
effect of small test lengths (e.g., 5 and 10 items) on the recovery of ability and item
parameters in the graded model. Typically, a small number of open-ended tasks will
constitute a performance assessment, whereas traditional multiple choice tests

consist of a greater number of items. Specifically, this study cxamined the accuracy

and variability of item parameter and ability estimates.

Method

Monie Car'o methods were used to evaluate the MML estimates that MULTILOG
produced for the 1P and 2P logistic graded models with five score levels: that is, two
Monte Carlo studies were conducted, one study for each model. The following
methodology is described in terms of a single study and was applied to both the 1P and
2P investigations.

Three factors were manipulated: test length (5, 10, and 20 items), sample size
(125, 250, and 500 examinees for the 1P model; 250, 500, and 1,000 examinees for the 2P
model), and assumed distribution of abilitly (normal and skewed positive). A test
consisting of 10 performance based items was viewed as what students can
reasonably respond to in a class period. A test length of 5 was choser to reflect small
test lengths that may occur when tests of dichotomously scored items are
restructured into testlets, where each testlet consists of several dichotomously scored
items and so becomes treated as one polychotomously scored item (Thissen, Steinberg,
& Mooney, 1989). The test length of 20 was chosen as an upper bound for the number
of polychotomously scored items that might be adminisiered in a single test. Two
considerations governed the selection of the levels of sample size: A sufficiently
large sample size was nceded to ensure stable parameier estimates, and a suitably
small sample size was required 1o determine the conditions under which parameter

cslimates become unstable. For the 1P graded model, stable estimates were achieved
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with a sample size of 500, and a sample size of 125 was required to yield less stable
results.  Because more parameters are estimated in the 2P graded mode!, a larger
sample size (N=1,000) was required to achieve stable estimates, and a sample size of
250 was small enough to produce less stable estimates. Skewed distributions are
commoniy found in educational settings when tests do not match the ability of the
examinees. Therefore, a positively skewed ability distribution was chosen to
represent the condition of non-normal ability to assess the quality of MML parameter
estimates under violation of the normality assumption.

All simulated item responses were created as follows: (a) an ability parameter
was randomly generated from an assumed distribution, (b) this randomly genecrated
ability parameter and the defined item parameters were used with the graded model
to calculate the corresponding probabilities and cumulative probabiiities of scoring
at each of the five score levels, and (¢) these cumulative probability values were
compared to a randomly generated number from a uniform [0,1] distribution. The
simulated item response was defined as the highest score level at which the random
number was less than or equal to the associated cumulative probability. In
Samejima's graded model, these cumulative probabilities must increase as the score
level increases. Iteration of this procedure produced the simulaied data set
corresponding to a particular experimental condition; for a 5-item test written by 125
examinees the data set would consist of 125 simulated item response vectors, each
with § scores.

Normal ability distributions were generated using the IMSL function RNNOA.
The skewed ability distiributions represented deviations from a normal distribution
and were derived by using a power method described by Fleishman (1978). This
method involves the transformation of a standard normal deviate, Z. as follows:

Z'=a+bZ+cZ%+ dZ3; where @, b, c, and d are power method weights. To produce a




skewed distribution (skewness=0.75 and kurtosis=0.0) the following coefficients were
used: a = -0.1736300195, b = 1.1125146004, c = 0.1736300195, and d = -0.0503344487.
Item discriminations (aj) and item thresholds (b, It sz. b3j. and b4j) for J test
items werc the defined item parameters. Researchers typically define these
parameters in onc of two ways: by using cstimates from a particular test calibration,

or by randomly sampling item parameters. Although random assignment may

provide more general results, a disadvantage is that an unusual distribution of a; or
bij parameters could occur in a test of short length. As well, the combination of a;

and b‘.j parameters for a panicular item could be quite unrealistic. Therefore, in the

present study, response data from a 10-item subset of the QUASAR Cognitive
Asscssment Instrument (QCAI) (Lane, 1991)--a multi-form mathematics test
consisting of open-ended reasoning and problem solving tasks--were used 1o
determine the. defined item parameters. The items in the subset were chosen 1o
reflect as broad a range of difficulty as was possible: three items were moderately
casy (items 1, 2, and 3); three items were moderately to very difficult (items 8, 9, and
10); and the remaining items were of moderate difficulty. MULTILOG was used to
calibrate 1P and 2P graded mode! item parameter estimates for this subset of 10 items.
These estimates served as the defined (true) item parameters for the study: they were
used to generate simulated data sets, and they were also used as the true parameters
against which the estimated parameters were compared. Their values and
distributional information are given in Table 1. Note that the S-item 1est was
obtained by using every even numbered item from the 10 items and the 20-item test

was obtained by duplicating the sct of 10 items.

-------------------------------

-------------------------------



Basing 8 Montc Carlo study on estimates from a tes' calibration of real data may
only be valid to the extent that the calibration is itself valid. Several procedures
were used to determine whether the data used to define the item parameters
conformed to 1P and 2P graded models. Unidimensionality of the QCAI was assessed
through the use of confirmatory factor analysis (Lane, Stone, Ankenmann, & Liu,
1992). A one factor model fit the: data, providing evidence that the test measured a
single mathematics dimension. It was assumed that if the entire test measured a
single dimension then a subset of items would also measure a single dimension. For
cach of the items the goodness of fit between the real data and the graded model was
examined by comparing the proportion of examinees who responded 1o each of the
response levels in the real versus simulated data (see Table 2). The simulated data
contained the expected responses given that the model was true; that is, based on the
defined item parameters. Chi-square siatistics of observed versus expected
proportions for each of the 1P and 2P models were calculaied for each item based on
sample sizes of 1,695. The largest chi-square valuc was %2 (4, 1695) = 8.46, p > .05.
Therefore, nonc of the chi-square statistics were significant, and it was concluded
that both the 1P and 2P logistic graded modcls adequatcly fit the data. Note that the
observed versus expecied proportions were compared at one level of examinee ability
(from -5 to 5), rather than subdividing the examinees by ability into five or six levels
and then comparing the proportions at each abi'ity level. Accurate classification of
the examinees by ability, based on estimates for the tests considered in this study

(lengths of 5 and 10 items), was impossible.

-------------------------------

-------------------------------

To justify the use of a 1P graded model with the data, a statistical comparison of

the 1P and 2P models estimated by MULTH.OG was performed. Because the 1P and 2P
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models are hierarchical (i.c., the 2P model estimates ail the parameters of the 1P
mode]l plus additional parameters), the two models may be . oiapared statistically by
comparing the "negative twice the loglikelihood” statistic reported by MULTILOG for
each model. The difference between the statistics for the hierarchical models is
distributed as chi-square (Thissen, Steinberg, & Gerrard, 1986) and may be used to
calculate the significance of specifying additional parameters in the model. The
difference of the "negative twice the loglikelihood" between the IP and 2P models
was xz (9) = 84, p> 40. Because the difference chi-square was not significant, the
additional item discrimination parameters estimated in the 2P mode! did not
significantly improve modcl-data fit. Therefore, although a 2P model could be
estimated, a 1P model was also appropriate.

For each of the 18 different experimental conditions associated with a
particular Monte Carlo study--three levels of test length, three levels of sample size,
and two levels of true ability distribution--100 data sets were generated. For example,
100 data sets were generated for the experimental condition consisting of 125
examinees, 5 items, and nomal true ability distribution. A total of 1,800 data sets
were analyzed. A different "seed” (starting value for the random number generator)
was used for each of the 18 experimental conditions. The results may be less
comparable across conditions but they are less dependent upon specific seed values
and thc sampling results are independent of each other.

Simulated data sets were calibrated using MULTILOG. To minimize computer
time, the defined model parameters that were used to generate simulated data sets
were used as the starting valucs for item parameter estimation with MULTILOG.
Maximum likelihood estimates of ability were then obtained by again running
MULTILOG, but with item parameters fixed at their estimated values. It could be
argucd that the use of true values as start values may spuriously avoid the problem of

local maxima. However, this was not considered 10 be a major concern, because a



noted strength of the EM algorithm is that the choice of starting values is not critical
(Bock, 1991).

Before the results from MULTILOG could be compared against true values. it
was necessary that a common metric underlic both the estimaied and true values of
the item and ability parameters. The estimates from MULTILOG were placed on the
same metric as the true values using the computer program EQUATE (Baker, 1991).
This program obtains equating coefficients (slope and intercept adjustments) using
Stocking’s and Lord's (1983) procedure of minimizing the difference between the test
characteristic curves for the items that are common to the target test and the test to
be transformed. In the case of a Monte Carlo siudy, the targel test consists of the
known paramecter values, and the number of common items is equal to the number of
items in the data set being analyzed. After the cquating cocfficients are obtained, a
simple linear transformation is performed on the parameter estimates to place them
on the same scale as the true values (Baker, 199]1). Becausc a linear transformation is
used to perform the equating., the probabilities of scoring at each score level remain
the same whether rescaled or non-rescaled ability and item parameter estimates are
substituted into the IRT model.

The defined ability and item parameters that were used to gencrate a simulated
data set were also used as true paramelters against which estimated ability and item
parameters were compared. The MML item parameter and ability estimates were
evaluated using two criteria: the bias of the estimate, and the root mean squared
error (RMSE) of the estimate. Recovery of item parameter values was assessed by
averaging information across 100 replications. The use of muliiple replications
allowed for analyses based on sialistics computed across replications as opposed to
most IRT Monte Carlo research which utilizes a single data set and analyscs based on
statistics computed across items. Results for a single data set can be panicularly

misleading when the sample size is small or the test length is shornt,
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Bias in each a; was assessed by examining the difference between the mean of

a ; across 100 replications and a;:

100

biasinaj=(k2; 8y, 21100 - a; (1)

where k references the replication and j the item. Bias in b‘.}. was similarly assessed:

100

bias in b, = ( 2,
k=1

where j and & are defined as above and i references the score category boundary.

liem parameter recovery was also assessed by examining the RMSE for each a; or b‘.j

across 100 replications. The formulae are presented below:
100

RMSE a; = [1100) 2 (@ -aps'’? (3)
k=1

100

RMSE b, = [(1/100) Y (S;jg'b,-,->211/2 . (4)
k=1

The recovery of ability cstimates was also assessed by examining bias and RMSE;
however, this information was averaged across subjects within each replication. The
formulac are presented below:

N
amy X, 8,-6,) . | (5)

n=1

bias in 9‘E

N
amy 2 (8- 02", (6)

n=1

RMSE 6,

where & references the replication number (bciween 1 and 100), n references the

¢xaminee number, and N is the sample size. By cxamining both bias and RMSE, it was
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possible to consider the accuracy and variability of the point estimates. The use of
bias as a measure of accuracy and RMSE as a measure of variability of point estimates
precluded the need to employ correlations as evaluation ~riteria. It was felt that
correlations, which only indicate the exient 10 which rank ordering is maintained,
would be inferior to the more direct and informative measures of accuracy and

variability.

Results

Ancillary Results: 2P Siudy

The following ancillary results from the MULTILOG analyses are given in
Table 3: the average number of iterations, the average posterior mean and standard
deviation of the quadrature distribution at the final iteration, and the average and

standard deviation of the slope and intercept equating coefficients.

-------------------------------

-------------------------------

Fewer iterations werc required as sample size increased and as test length
decreased from 20 items 10 a test of length S or 10. There were small differences
between the number of iterations required for normal and positively skewed ability
distributions; however, there did not appear to be a svsiematic pautern 10 the size or
the direction of these differences across sample size and test length. The posterior
mean moved further from 0 and the posierior standard deviation increased as sample
size increased; the differences in the posterior means. however, were negligible. As
sample size and test length increased, the mean of the slope equating coefficient
moved further from 1 and the standard deviation decrcased. The mean of the

intercept equating coefficient tended to remain stable and close 1o 0. The standard
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deviation of the intercept equating coefficient decreased as sample size increased,
and tended 10 increase slightly as test length increased. Although not reported in
Table 3, it should be noted that the slope equating coefficient varied from 0.821 1o
1.221 across 100 replications of a particular experimental condition, and the intercept
cquating coefficient varied fror: -0.212 to 0.276 across another. These variations
illustrate the importance of multiple replications and rescaling. A single replication
could yield an extreme data sct, not typical and therefore not representative; and the
ilem paramcter estima.es produced by a particular data sct could be on a metric quite
different from the true parametcrs, thus making the comparison of truec and

estimated parameters spurious.

liem Parameter Recovery: 2P Study

The signed bias in the slope and threshold parameteis was calculated using
equations (1) and (2), previously defined. To facilitale the interpretation of results
thc mean absolute bias of the slope parameier corresponding to a particular
experimental condition was calculated by averaging the absolute bias of the slope
parameters across the ilems that were common 10 the three test lengths. Similarly,
the mean absolute bias of each of the four threshold paramelers was averaged across
common items. Averaging absolute bias across common items had two advantages:
results were summarized, hence easier 1o assimilate; an  resuits were reported for the
same sel of items across conditions, thus facilitaling comparisons.

The mean absolute bias and RMSE for the slope parameiers (aj) are summarized
in Figure 1. Bias and RMSE diminished as sample size increased. In general, the
decrease was larger when sample size increased from 250 to 500 than when it
increased from 500 to 1,000, = trend that was observed in both the normal and skewed
conditions across all test lengths. For test lengths of 10 and 20 items, RMSE was very

ncarly the same but increased when itest length dropped to § items. The amount of
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increase in RMSE from the 10- and 20-item conditions 10 the 5-item condition
diminished as sample size increased. For a sample size of 1,000 the difference in
RMSE between 5 items and 10 or 20 items was negligible. The same test length effect
was observed in the bias of the slope parameters, but the test length by sample size
interaction that was observed in the RMSE was less pronounced for the bias. There
was no distributional effect on RMSE, and only a slight but negligible effect was

observed for bias.

-------------------------------

-------------------------------

Mean absolute bias in the threshold parameters b, It sz. b3j. and b, j) are

shown in Figure 2. The bias of the three lowest thresholds (b, j° sz. and b, j) was low

and stable across test length and sample size conditions for normal ability
distributions. For sample sizes of 500 and 1,000, and for all test lengths under the
normal true ability condition, the bias of the highest threshold (b4 j) was also low and
stable; however, for a sample size of 250 the bias was noticeably higher. This may be
an artifact attributable to the extreme true value of the b, threshold in the eighth
item (i.e., 174}s = 3.458). No upper limit was imposed on the parameter estimates
calibrated by MULTILOG. Therefore, under those simulation conditions which
included the smallest sample size (N=250) it was not uncommon for a b48 threshold as
large as 7.0 10 appear in at least a few replications. Bias of the threshold estimates
under the skewed true ability conditions was generally higher than for the normal
true ability conditions. In addition. bias of the b]j, b:,,.. and b3j thresholds under the
skewed condition was higher for the S-item test length than for the 10- or 20-item

test lengths.
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-------------------------------

-------------------------------

Root mean squared error in the threshold parameters are reported in Figure 3.
For all thresholds and at all levels of 1est length and ability distribution, RMSE

decreased as sample size increased. As would be expected, the extreme thresholds
(b1 L 1';4 j) had higher RMSEs than the two middle thresholds (sz,b:;j). As was seen for

the bias, the large RMSE observed in the b4j thresholds for the experimental

condition consisting of normal ability distribution, N=250, and S-item 1est length, may
be an anifact attributable to the fact that no upper limit was placed on parameter
estimates; the presence of high estimates for the bsg threshold in a few of the
replications would of course result in higher variability of the estimates. Neither
test length nor ability distribution effecis were observed in the RMSEs of the b, j‘b2j'

or b3j threshold parameters.

-------------------------------

-------------------------------

Results conceming the direction of bias in each of the parameters, for all
items, were tabulated. The proportion of negative bias values (i.e., proportion of
times a; - 'a'j < 0 across J items, where Ej is the mean of the dj. across 100 replications)
are given in Table 4. Systematic positive or ncgative bias is indicated by a

disproportionate number of positive or negative bias values. Positive and negative

bias in a; were determined by looking at the signed bias valuc that was calculated for

each item by equation (1).

-------------------------------
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Four trends were observed: (a) the proportion of negative a; bias was
generally low, indicating positive bias (i.e., overestimation); (b) as sample size
increased, the proportion of negative a; bias values increased; (c) as test length
increased, the proportion of negative a; bias values remained fairly constant; and (d)

the proportion of negative a; bias values for the skewed ability distributions was

always greater than or equal to the proportions for the N(0,1) distributions. As Lord
(1983) indicated, it is not surprising 1o find positive bias in the slope parameter
estimates. However, the resulis reported here indicate that the positive bias can be
reduced by increasing sample size.

Although not reported in tabular form, the direction of the bias in each of the

threshold parameters (b, j'b2j' b3j. and b4j) was also examined. For the lowest

threshold (bl j) the bias tended to be negative, and when there was positive bias it

appearced only when the true ability distribution was normal. For normal true ability
distributions, the amount of negative bias tended 10 decrease as test length increased;

for the 20-item test length and normal true ability conditions, bias was slightly

positive across all sample sizes. Note that all of the true b, j parameters were
negative. Bias in the sz and b3 j thresholds was almost always positive; recall that six
of the true sz parameters were negative, and only one true b3j parameter was
negative.  For the b, j thresholds there tended to be positive bias under the normal

true ability distributions and negative bias under the skewed distributions; all of the

true b4j. paramelers were positive.

fer
Bias and RMSE in ability parameier recovery were calculated using equations
(5) and (6), respectively. As well, the correspondence beiween the true ability and

estimated ability distributions werc examincd by using the following statistics: mean,
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standard deviation, skewness coefficient, and kuriosis coefficient. These statistics are

presented in Table §5.

-------------------------------

-------------------------------

Several interesting trends are noteworthy.  Under all conditions of test length,
sample size, and truc ability distribution, the distribution of ability estimates was
always platykurtic and had a smaller standard deviation than the corresponding
distribution of true ability. Under both conditions of true ability, normal and skewed
positive, these deviations from the true distribution diminished as test length
increased, but not as sample size increased. Also, for all of the nomal true ability
distributions, the estimated ability distributions were positively skewed. In all but
one case (N=250, 10 items, N(0,1)) this devialion diminished with increased test length
but not with increased sample size.

That the standard deviation was smaller in the estimated ability distributions
than in the true ability distributions is probably due 10 the fact that the range in ‘rue
traits was from -5 to 5 but considerably narrower in the estimated traits. This seems
to indicate that there was an underestimation of extreme abilitics, in an absolute
sense. That is. the highest positive ability estimales were not as extreme (high) as
their corresponding true values, and the lowest negative ability estimates were not as
extreme (low) as their corresponding true values.

For the skewed irue ability conditions, the estimated distributions exhibited a
lesser degrec of skew than the true distributions. The correspondence between
estimated and true skewed distributions improved as test length increased, but
remained constant as sample size incrcased. The fact thait the amount of skew in the
estimated distributions was less than in the true distributions may be due to the fact

that MULTILOG assumes a normal N(0,1) prior on the ability distribution.
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Bias and RMSE in ability parameter recovery are shown in Figures 4 and §,
respectively. In Figure 4, it can be seen that ability decreased as test length
increased, for all sample sizes and true ability distributions, when looking at all
ranges of ability except for -5 < @< S. Note that the bias results for the whole ability
range -5 < @< 5 are not particularly informative (i.e., all biases in this range are
close to 0) due to the offsetting effect of positive and negative bias values which
occur in the narrower ability ranges (e.g., -2 SO<-1vs. 150<2;-1<0< 0 vs.
0s @< 1) The amount of bias and the difference in bias among the various test
length conditions decreased for abilities in the range -1 < 0 < 1, where bias was less
than 0.15 under all conditions of test length, sample size, and ability distribution;
furthermore, the differences in bias among the various test length conditions was
very small. As ability became more extreme, the amount of bias and the difference in

bias among the various test lengths increased.

-------------------------------

-------------------------------

Turning to Figure 5, the effect of test length on the RMSE of ability was similar
to that of bias: RMSE of ability decreased as test length increased. For abilities in the
range 6> 2 the size of the RMSE and the difference in RMSE among different test
lengths was larger than for abilities in the range -2 < @< 2. For all ability levels
(i.e., -5 € 0 5) the RMSE for the S-item test length condition was about 0.5. For the
20-item test length condition, considering only the five items that were common with

the 5-item test length condition, the RMSE was about 0.3.

-------------------------------

-------------------------------
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Results from the 1P study were examined in the same way as those that were
presented for the 2P study. However, because the presentation and discussion of the
figures would be lengthy, and few effects of the manipulated factors were observed,
an overview of results is given below.

With respect to the slope parameter (aj). mean absolute bias was negligible
(less than 0.02) for all levels of test length, sample size, and true ability distribution.
The RMSE in the slone parameter was also small (less than 0.05) across all levels of
test length, sample size, and ability distribution. Although the values of bias and
RMSE were small for all sample sizes, they did decrease as sample size increased.

Mean absolute bias in the three lowest threshold parameters CH j‘sz' and ij)
was small (less than 0.02) and fairly stable for all test lengths and sample sizes under
the normal true ability condition. A slight sample size effect., in which bias

decreased as sample size increased, was observed. Bias in the sz and b3j thresholds,

for the skewed true ability conditions, was also small (less than 0.02) and stable across
all test lengths and sample sizes. Bias in the bl j threshold under the skewed true
ability condition ranged from 0.01 to 0.04, and a small test length effect was observed,
in which bias was smallest for the 20-item test length conditions and larger for the 5-
and 10-item conditions. As in the 2P siudy, bias in the extreme threshold b 4j was
considerably less stable than for the other thresholds. For the nommal true ability
conditions, bias was considerably higher for sample sizes of N=125; and the bias
associated with sample sizes of N=250 and N=500 was less than 0.02, and somewhat
more stable across sample size and test length conditions. Bias in the b‘” threshold
under the skewed true ability conditions was unstable and ranged from 0.01 to 0.05,
and demonstrated no consistent differences among the various sample sizes and test

lengths.
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Root mean squared error in the threshold parameters of the 1P study showed
trends that were very similar 1o those in the 2P study. For all thresholds, at all levels

of test length and true ability distribution, RMSE decreased as sample size increased.
The extreme thresholds (b, j b4j) had higher RMSEs than the two middle thresholds

Finally, bias and RMSE in the ability parameters of the 1P study were vinually

the same as those reported for the 2P study. There was a test length effect in which

bias and RMSE decreased as test length increased.

Discussion

This study cxamined the recovery of MML ability and item parameter estimates
produced by MULTILOG under the 1P and 2P logistic graded models. Test length,
sample size, and true ability distribution were manipulated factors. The accuracy and
variability of item parameter and ability estimates were examined with bias and
RMSE statistics. These results suggest several implications for measurement
practitioners.

Item parameter bias and RMSE in the 2P study indicatc that a minimum sample
size of 500 examinees is required 10 obtain accurate and siable estimates of the 2P
graded mode! item parameters. This conclusion is consistent with the Reise and Yu
(1990) findings involving iest lengths. For a sample size of 500, if the ability
distribution is normal, test lengths as small as 5 items will yield slope and threshold
parameter estimates that are just as accuratc and stablc as those produced by test
lengths of 10 or 20 items. When the ability distribution is skewed, increasing the
sample size to 1,000 cxaminees produces slope estimates that are as accurate and stable
as those produced for normal true ability distributions. Based on Seong's (1990) work
with dichotomous IRT meodels, increasing the number of gquadrature points to 20 may

also help to minimize the effect of non-normal truc ability distributions. With

24
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regard 10 the threshold estimates., however, the same gain in accuracy is not obtained
with a sample size of 1,000. Thercfore, it is imponant 1o consider the nature of the
ability distribution when deciding whether a sample size as low as 500 will be
adequate to achieve accurate and stable item parameter estimates. For the 1P graded
model a minimum sample size of 250 is required to obtain accurate and stable item
parameter estimates.

For both the 1P and 2P models, ability distribution and calibration sample size
arc not important factors in thc estimaiion of ability paramcters. This conclusion,
loo, is consistent with Reise and Yu (1990). Sample size is not a factor in the
estimation of @ because, as Seong (1990) noted, @ is estimated for each examinec
scparately without consideration of the sample size. As expected, the accuracy of
ability parameter estimates increases and the variability decreases as test length
increases. Comparing the bias and RMSE results from this 2P graded model study with
those of Stone's (1990) 2P dichotomous model study, it is interesting to observe that
for 5-item tests the 2P graded model with five score levels will yield ability estimates
having the same accuracy and variability as those produced by the 2P dichotomous
model having double the test length. However, this benefit to the graded mode] test
items decreases as test length increases.

Some important differences between the results of the present study and those
of the Reise and Yu (1990) study can be identified. The effect of skewed true ability
distribution on threshold parameter estimation that is reporied in this study was not
observed by Reise and Yu. This may be due to the fact that the test length used by
Reise and Yu was long, and fixed a1 25 items. In the present study, thc skewness
effect was observed in the short 5- and 10-item test length conditions. Another
important observation from the present study, that was not reported by Reise and Yu,
is that extreme abilities are underestimated in an absolute sense (i.c., the range of the

estimated ability distribution tends 10 be smaller than that of the true ability

2
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distribution).  Typically, the normal true ability distributions ranged from -5 < 8 5,
whereas the comesponding estimated ability distributions ranged from -3 < 6< 3.
Similarly, the positively skewed estimated ability distributions were truncated, as
compared to the corresponding true ability distributions.

Another imponant difference between the present study and that of Reise and
Yu (1990) concerns the rescaling of parameter estimates. As previously mentioned,
the present study utilized Stocking's and Lord's (1983) procedure of minimizing the
differences  between the test characteristic curves, as implemented in Bakers (1991)
EQUATE program, to place item parameler estimates on the same metric as true
paramecter values. By contrast, Reisc and Yu did not place parameter estimates on the
same metric as the truc parameters, for the normal and skewed ability conditions. In
the present study, the mean of the slope transformation coefficient (m) across
replications was observed 1o be consistently close to 0.9 (sce Table 3). Therefore, the
rescaled slope parameter estimates, obtained using the formula aj‘ =ajlm » would
tend 10 be larger that thc non-rescaled estimates. The mean of the intercept
transformation coefficient (k) across replications was almost always very close to O
(sce Table 3). Therefore, the rescaled threshold parameter estimates, obtained using
the formula b‘.j‘ =m(b,.j) + k, would almost always be smaller than the non-rescaled
estimates.

It is important to note that the quality of the corrclations rcported by Reise
and Yu (1990) were not compromised by the non-equivalence of true and estimated
parameter metrics. The rescaling of parameter estimates employs a linear
transformation, which would preserve rank ordering. Therefore, the rescaling of
Reise's and Yu's parameler estimates to achieve metric equivalence with true
parameters would probably not alter their conclusions. However, RMSEs are affected
by rescaling. In panicular, correct RMSEs can only be obtained when a rescaling of

parameter estimates that places them on the same metric as the true parameters is
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performed. If the purpose of a study is simply to ascertain whether or not cenain
factors have an cffect on parameter estimates, or to comparc the effects of different
estimation procedures (e.g.,, MML vs. JML), then the use of uncquated parameter
estimates may be adequate. However, if the purpose of the study is 10 understand the
errors in estimation that occur because of certain factors. then the use of rescaled
estimates becomes relevant.

The results of this study, in conjunction with the results of Reise and Yu
(1990), provide a fairly complcte picture of the factors which may influence the usc
of the 1P or 2P graded models. Considering the two studies, a variety of test lengths,
sample sizes, assumed abilily distributions, and iruc slopc parameter distributions has
been ecvaluated. Nonetheless, as with all Monie Carlo research, other studies are
nceded to establish the generality of the results. Also, other factors may be relevant
to thosc who wish to use the graded model. As Reise and Yu noted. the effect of the
number of score levels on the MML parameter estimates produced for the graded
model should also be studicd. Finally, it may not be the casc that the factors identificd
and investigated in this study and in the Reisc and Yu study have the same influence
on parameter estimation in other polychotomous IRT models. Other models, such as

the partial credit model (Masters, 1982), should also be studicd.



23

References

Baker, F. B. (1991). Equating under the graded response model. Unpublished
manuscript, University of Wisconsin.

Bock, R. D. (1972). Estimating item parameters and latent ability when responses
are scored in two or more nominal categories. Psychometrika, 37, 29-51.

Bock, R. D. (1991, April). Jtem parameter estimation. Paper presented at the Annual
Meeting of the American Educational Resecarch Association, Chicago, IL.

Fleishman, A. 1. (1978). A method for simulating non-normal distributions.
Psychometrika, 43, 521-532,

Lane. S. (1991, April). The conceptual framework for the development of a
mathematics assessment instrument for QUASAR. Paper presented at the
Annual Meeting of the American Educational Research Association, Chicago, IL.

Lanc, S., Stone, C. A., Ankenmann, R. D., & Liu, M. (1992, April). Empirical evidence
for the reliability and validity of performance assessments. Paper presented at
the Annual Mecting of the American Educational Rescarch Association,

San Francisco, CA.

Lord, F. M. (1980). Applications of item response theory to practical testing
problems. Hillsdale, NJ: Erlbaum.

Lord, F. M. (1983). Siatistical bias in maximum likelihood estimators of item
parameters. Psychometrika, 48, 205-217.

Masiers, G. A. (1982). Rasch model for parial credit scoring. Psychometrika. 47,
149-174.

Mislevy, R. J., & Sheehan, K. M. (1989). The role of collateral information about
examinees in the estimation of item parameters. Psychometrika, 54. 661-679.

Mislevy, R. J., & Stocking,M. L. (1989). A consumer's guide to LOGIST and BILOG.
Applied Psychological Measurement, 13, 57-15.

Reise, 5. P., & Yu, J. (1990). Parameler recovery in the graded response model using
MULTILOG. Journal of Educational Measurement,27, 133-144.

Samejima, F. (1969). Estimation of latent ability using a responsc pattern of graded
scores. Psychometrika Monograph Supplement, No. 17.

Seong, T. J. (1990). Sensitivity of marginal maximum likelihood cstimation of jtem
and ability parameters 10 the characteristics of the prior ability distributions.
Applied Psychological Measurement, 14, 299-311.

Siocking, M. L., & Lord, F. M. (1983). Developing a common metric in item responsc
theory. Applied Psychological Measurement, 7, 201-210.



24

Stone, C. A. (1990, April). An evaluation of marginal maximum likelihood
estimates via the EM algorithm in the 2-parameter logisiic response model. Paper
presented a1t the Annual Meeling of the American Educational Research
Association, Boston, MA.

Thissen, D. (1988). MULTILOG: Multiple, categorical item anals -~ and t1est
scoring using item response theory (Version S5.1). Mooresviile, IN: Scientific
Software.

Thissen, D., & Stcinberg, L. (1984). A modecl for mulliple choice items.
Psychometrika, 49, 501-519,.

Thissen, D., Steinberg, L., & Gerrard, M. (1986). Beyond group mean differences: The
concept of item bias. Psychological Bulletin, 99, 118-128.

Thissen, D., Steinberg, L., & Mooney, J. A. (1989). Trace lines for testlets: A use of
muliiple-categorical-response models.  Journal of Educational Measurement, 26,
247-260.

Wright, B. D., & Linacre, J. M. (1990). A user's guide to BIGSTEPS. Chicago, IL: MESA.



25

Table 1
liem Paramecters for the Monte Carle Study
Onc-parameter Model Two-parameter Model
10-item Test 10-item Test
Item a; blj sz b3j b41' a; b”. sz b3j b4j
1 1284 -1.100 -0.887 -0.156 0.791 1.516 -1.003 .0.810 -0.145 0.720
2 1284 -1925 -0.972 0.352 1.403 1.266 -1.940 -0.979 0.355 1.414
3 1284 -1.221 -0.455 0214 1.116 1.353  -1.182 -0.441 0207 1.080
4 1.284 -2.072 -0.110 0.782 1.679 1.251  -2.123 -0.113 0802 1.720
5 1284 -1.926 -0.015 1.039 1.510 1.280 -1.930 -0.015 1041 1.513
6 1284 -1.180 -0.070 0.808 1.715 . 1.932  -0.939 .0.054 0647 1.364
7 1284 -1.171 0259 0818 1.421 1.164 -1.257 0.278 0877 1.529
8 1.284 -0.887 0048 0.712 3.337 1.213  -0.905 0.053 0.733 3.458
9 1.284 -1.271 0.116 1.359 2.582 0.982 -1.546 0.135 1.650 3.160
10 1.284 -0.140 0649 1.109 1.917 1.225  -0.138  0.663 1.131  1.957
avg 1.284 -1.289 -0.144 0.704 1.747 1.318  -1.296 -0.128 0.730 1.792
sd 0 0575 0500 0.452 0.734 0.254 0604 0.494 0.507 0.870
J-item Test: Every even numbered item from the 10-item test was used.
avg 1.284 -1.241 -0.091 0.753 2.010 1.377  -1.209 -0.086 0.734 1.983
sd 0 0.791 0.580 0.271 0.764 0.311 0.819 0.587 0.280 0.859
20-item _Test: The items from the 10-item test were repeated.
avg 1.284 -1.289 -0.144 0.704 1.747 1.318  -1.296 -0.128 0.730 1.792
sd 0 0559 0487 0.440 0.715 0.248 0.588  0.48]1 0.494 0.847

26
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Table 2
Model-Data Fit
Proportion of Responses
at Each Score Levcl
Item Data Source 0 1 2 3 4 chi-sq df P
observed .244 041 .163 225 328
1 1P model .233 042 .168 210 .347 4.75 4 p>.30
2P model .228 .051 .162 212 .347 8.35 4 p>.05
observed .124 152 306 216 201
2 1P model .138 153 203 .199 216 7.62 4 p>.10
2P model .139 .152 291 .202 218 7.24 4 p>.10
observed 232 160 160 .198 .249
3 1P model 222 161 .169 .201 .247 1.69 4 p>.70
2P model 223 .163 .166 .201 248 1.16 4 p> .80
observed 107 375 208 .154 .156
4 1P model .105 .365 .198 .158 174 4.71 4 p>.30
2P model .104 .363 202 160 171 3.73 4 p>.40
observed .125 371 .239 .083 .182
S 1P model .120 .356 253 .088 .183 3.23 4 p>.50
2P .odel 120 358 251 .089 .183 2.81 4 p>.50
observed .241 .244 .204 .158 .153
6 1P model 224 .242 .206 172 .156 4.28 4 p>.30
2P model 228 .243 .203 .163 .163 2.57 4 p> .60
observed 241 .332 126 .110 191
7 1P model .241 .304 131 115 209 7.69 4 p>.10
2P model 241 .303 130 .121 .206 8.46 4 p~ .08
observed .295 216 .155 308 029
8 1P model .289 224 154 302 .031 0.98 4 p>.90
2P model 291 219 157 .303 .029 0.23 4 p>.99
observed 216 310 273 .139 062
9 1P model 230 .299 .263 .146 063 3.37 4 p> .40
2P model 223 .302 .269 .145 061 1.28 4 p> .80
observed 457 .188 098 127 130
10 1P model 434 .184 110 .129 143 6.49 4 p>.10
2P model 433 183 109 .130 .144 6.79 4 p>.10

Note: All data sets had a sample size of 1,695.

ERIC <¥
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Table 3
Results From 2P Graded Model MULTILOG Analyses
5-item Test 10-item Test 20-item Test
N(0,1) Skewed + N(0,1) Skewed + N(0,1) Skewed +

N =250
avg. cycles 19 17 17 17 26 27
post. mean 0.000 0.002 - -0.002 0.004 -0.012 -0.028
post. sd 1.002 1.001 1.009 1.008 1.061 1.074
m mean® 0.980 0.990 0.980 0.978 0.925 0.914
m sd 0.074 0.075 0.051 0.053 0.047 0.038
k mean® 0010  -0.010 0.003  -0.020 0.018 0.019
k sd 0.080 0.073 0.065 0.070 0.09%4 0.107

N =300
avg. cycles 16 1§ 14 15 21 23
post. mean 0.000 0.000 0.001 -0.002 0.008 -0.005
post. sd 1.001 1.000 1.010 1.011 1.067 1.080
m mean 0.996 1.009 0.980 0.984 0.923 0.917
m sd 0.053 0.053 0.038 0.039 0.032 0.027
k mean -0.007 -0.014 -0.001 -0.006 -0.001 0.002
k sd 0.056 0.049 0.050 0.053 0.066 0.071

N = 1,000
avg. cycles 13 13 13 14 20 21
post. mean 0.000 0.000 0.001 0.002 0.003 -0.001
post. sd 1.001 1.000 1.011 1.010 1.072 1.081
m mean 0.995 1.014 0.976 0.988 0.920 0.915
m sd 0.034 0.038 0.027 0.029 " 0.020 0.018
k mean -0.003 -0.011 0.005 -0.012 -0.002 -0.003
k sd 0.040 0.036 0.032 0.038 0.048 0.055

m denotes the slope adjustment equating coefficient.

4 denotes the intercept adjustment equating cocfficient.




Table 4

Proportion. of Times the Biss of g. was Negal

N=250 N = 500 N = 1,000

A-item Test

N(0,1) .00 .20 40

Skewed + .20 .40 .60
10-item Test

N(0,1) 10 .30 .20

Skewed + 10 .40 50
20-item Test

N(0,1) 00 .30 A0

Skewed + .05 40 55

L%
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N = 250 N =500 N = 1,000
N(0,1) Skewed N(0,i) Skewed N(0,1) Skewed
2-item Test
True Traits
mean -0.001 0.000 -0.004 -0.003 -0.003 0.003
sd 0.991 0.999 1.001 0.996 0.999 1.000
skew 0.014 0.749 -0.001 0.736 0.003 0.751
kurtosis -0.032 -0.015 -0.057 -0.023 -0.011 0.011
Est. Traits
mean 0.017 0.000 0.000 -0.005 0.005 -0.003
sd 0.834 0.842 0.843 0.854 0.839 0.858
skew 0.067 0.352 0.061 0.330 0.066 0.342
kurtosis -0.340 -0.334 -0.358 -0.382 -0.395 -0.382
10-item Test
True Traits
mean 0.005 -0.006 -0.004 0.000 0.005 -0.003
sd 0.998 0.994 1.002 1.002 0.995 1.001
skew -0.010 0.744 0.012 0.750 -0.002 0.753
kurtosis 0.002 -0.018 0.029 -0.008 -0.028 0.014
Est. Traits
mean 0.004 -0.014 0.002 -0.005 0.009 -0.008
sd 0.892 0.890 0.890 0.895 0.886 0.897
skew 0.008 0.457 0.036 0.461 0.027 0.451
kurtosis -0.263 -0.315 -0.252 -0.308 -0.292 -0.306
20-it~m_Test
True Traits
mean 0.001 0.000 0.004 0.003 0.002 -0.001
sd 0.999 1.001 1.001 1.002 0.999 1.000
skew -0.001 0.746 0.010 0.740 -0.002 0.757
kurtosis -0.061 -0.056 0.011 -0.041 0.00S 0.017
Est. Traits
mean 0.008 -0.003 0.007 0.000 0.003 -0.002
sd 0.924 0.922 0.925 0.927 0.924 0.926
skew 0.018 0.567 0.023 0.560 0.014 0.570
kurtosis -0.207 -0.243 -0.212 -0.262 -0.217 -0.234

R1s




FIGURE 1

Mean Absolute Bias and RMSE in Slope Parameters
in the 2-Parameter Study
(Averaged Across the Common items)

] -~ 5 ltems
-9 10 Items

—a— 20 ltems

o
Q
M

o

o

&
b

Mean Absolute Bias

250 500 1000 250 500 1000
Normal Skewed

Simulation Conditions
(Test Length by N Size by Distribution)

o
Q
N
| LLL dad

O

0.500 -
0.450
0.400
0.350 - —&— 20 items

- 5 items

-&— 10 items

0.300 3
w ]

m -
0.250 =

g ; \ \
0.200

-4

E
-

0.150
0.100
0.050 3
0.000 3

250 500 1000 250 500 1000
Normal Skewed
Simulation Conditions

(Test Length by N Size by Distribution)

ERIC 31

Full Tt Provided by ERIC.



FIGURE 2

Mean Absolute Bias in Threshold Parameters for the 2-Parameter Study
(Averaged Across the Common ltems)
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FIGURE 3

RMSE in Threshold Parameters in the 2-Parameter Study
(Averaged Across the Common ltems)
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FIGURE 4

Bias in Ability Parameters in the 2-Parameter Study
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FIGURE 5

RMSE in Ability Parameters in the 2-Parameter Study
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