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Abstract

Statistical significance is often inappropriately equated

with evaluating result importance and evaluating result

replicability, even though these are three somewhat different

issues. The prudent researcher must separately assess each of

these elements of the "research triumvirate" by using different

methods. This paper focuses on two types of empirical methods

for estimating research result replicability, double cross-

validation and bootstrap procedures. A commonly available

statistical computer package, SPSS-X, is used to carry out the

steps required for the double cross-validation procedure, and a

recently developed microcomputer program package (Lunneborg,

1987) is implemented to demonstrate the bootstrap logic. Both

methods are applied with a heuristic data set using multiple

regression analysis so that the discussion is concrete.



Estimating Result Replicability Doing Double

Cross-Validation and Bootstrap Methods

Many researchers in the social sciences have invested

unwisely in "statistical significance testing' stock only to find

that its market value continues to shrink as the limitations of

significance testing are more widely understood. Carver (1978)

asserted in the HAgyArd Educational Review that too many

researcher use statistical significance testing to support

°fantasies."

One of these fantasies is to equate evaluating statistically

significant results with evaluating result importance or result

replicability. These null hypotheses (e.g., Ho: statistical

significance = result importance) must always be rejected by the

careful researcher. It may happen that in a given study the

results prove to be statistically significant, important (at

least by the value judgment of the researcher), and replicaLle,

but when these three descriptors are used appropriately, they are

assessed using three different methods (Thompson, 1989).

To determine if results are statistically significant, one

can quickly and mechanically "decide" if a given null hypothesis

(e.g., H0411912) at a specified alpha level should be rejected or

fail to be rejected. But results that are not statistically

significant cannot automatically be assumed to be unimportant.

This hasty generalization has produced a plethora of unpublished

studies that may not have been statistically significant, but may

have been useful nonetheless. Moreover, this somewhat arbitrary
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discrimination procedure, which is often used by journal editors,

has closed off potential research avenues (Atkinson, Furlong, &

Wampold, 1982; Greenwald, 1975).

When researchers do not "achieve" statistical significance

with their results, they may find it useful to ask, "At what

larger n would these results be statIstically significant?In

since sample size is the primary influence on statistical

significance (Thompson, 1989). Researchers should consider

effect size in order to further evaluate the importance of their

results. In multiple regression, the squared multiple

correlation coefficient, R2, is the effect size. This indicates

the percent of variance of the dependent variable explained by

the predictor variables. One possible effect size measure used

in ANOVA is called eta squared or the correlation ratio. It

indicates the percent of variance of the dependent variable that

is explained by a given treatment or group. Many other effect

size estimates are available in determining result importance.

Even if results are statistically significant and yield a

very large effect size, they still may not be important, at least

to some researchers. Result importance is inherently an

inescapable personal value judgment. Mathematical calculations

may help to inform these judgments, but cannot automate the value

judgment process. Therefore, result importance is "judged" by

carefully weighing the above mentioned factors and by considering

the phenomenon being explained. Only then can the researcher

=Ake an informed value judgment as to the overall "significance"
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or importance of the results.

Statistical significance testing is easy to carry out.

Result importance can be rather painlessly determined by looking

at several factors. But how does one determine result

replicability, the essential element of the "research

triumvirate"? The best way of predicting result replicability,

or stability across samples, is to validate result stability

empirically by conducting replications on as many independent

samples as possible and by then comparing the results. Kerlinger

(1986) explained the importance of replication:

If a study is replicated and the same or similar results

are found, our trust and confidence in the results are

increased. If the study is again replicated and the same

results are obtained, our trust and confidence are greatly

increased because the probability of obtaining the same

results three times by chance is lower than the probability

of obtaining the same results twice. (p. 124)

In the social sciences it is often impractical to conduct

numerous replication studies to determine result

generalizability; instead, the stability across samples can be

estimated using one of three types of techniques: double cross-

validation procedure (Mitchell & Klimoski, 1986; Mosier, 1951;

Pedhazur, 1982; Rowell, 1991; Thorndike, 1978), jackknife method

(Crask & Perreault, 1977; Tukey, 1958), or bootstrap applications

(Diaconis & Efron, 1983; Lunneborg, 1987; Thompson & Melancon,

1990).
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TUkey's (1958) jackknife technique, named after the

versatile and useful Boy Scout's jackknife, involves the

systematic deletion of different observations or subsets of

observations followed by the computation and comparison of

calculated estimators (e.g., B-weight coefficients, discriminant

function coefficients) derived from these revised samples.

Unlike some invariance methods, the jackknife technique allows

for coefficient stability to be determined using a very small

sample size (Crask & Perreault, 1977). But this approach tends

to focus on the influence of outliers on potential result

replicability.

This paper focuses on two other techniques for estimating

result stability, the double cross-validation and bootstrap

methods. Cross-validation methods involve randomly dividing the

original sample into subsets, conducting separate analyses, and

then empirically comparing the results (Thompson, 1989).

Bootstrap methods conceptually involve creating a "mega" data

file by copying the original data set an enormous number of

times. Random samples are then drawn from the "mega" file,

analyses are conducted on each new sample, and the impacts of

numerous different configuration of subjects are then compared

(Crask & Perreault, 1977).

Double Cross-Validation Method

The name cross-validation is used because this procedure was

originally devised to determine the validity of scoring keys in

which different weights were given to the items of a test or an
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inventory (Thorndike, 1978). The double cross-validation

procedure (Mosier: 1951) is one of several cross-validation

strategies used for splitting an original sample, called the

development sample, into two samples, and then comparing various

results from the samples to determine the likelihood that the

original results will replicate.

The double cross-validation procedure requires seven

distinct steps, each of whic:i can be easily accomplished by using

a statistical computer package such as SPSS-X. After a

description of the steps, specific concepts mentioned within the

task analysis such as "shrinkage" and "invariance coefficients"

will be discussed, and the advantages and disadvantages of this

method will be elaborated. Steps in conducting the double cross-

validation procedure include:

1. The original sample of data is randomly divided into two

subsamples (i.e., subsample 1 and subsample 2) with equal or

unequal sample sizes. It is usually convenient to use nearly

equal subsamples that are not exactly the same size.

2. Each of the variables within the two new subsets (e.g., Xii,

X121 for subsample 1, where the first subscript indicates

the subsample number and the second subscript tells the sequence

number of the predictor variable) are converted from raw scores

to z scores (i.e., standard scores with a mean of 0 and a

standard deviation of 1). The conversion is made by using the

mean and standard deviation of subsample 1 to standardize

subsample 1 data and by using the mean and standard deviation of
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subsample 2 to standardize subsample 2 data (e.g., zil =
Xii]/Spx11 for the z scores of subsample 1 (first subscript),

predictor variable 1 (second subscript)).

3. Y*11 values are calculated using z scores from subsample 1 and

Y*22 values are calculated using z scores from subsample 2.

These are the actual regression results for each subsample.

4. Regression analyses are conducted with each si;bsample's z

score data set yielding two regression equations, Y'll

(pronounced "Y-hat") for subsample 1 data (first subscript) using

B-weights derived from subsample 1 (second subscript) and Y122

for subsample 2 data using 8-weights derived from subsample 2.

(Note: For X, Z, 8, and Y'l the first subscript indicates which

subsample data set is being referenced. For V only, the second

subscript stands for the subsample number from which the 8-

weights in that regression equation were derived. For X, Z, and

B, tha second subscript tells the sequence number of the

predictor variable.)

13Yill = 811Z11 812Z12 8 Z 13 ..0 8ijk)

Y'22 = 521Z21 822Z22 823Z23 32jZ2;

5. The 8-weights are then crossed such that z scores from

subsample 1 are used in the 8-weight regression equation of

subsample 2 to calculate Y'12 and z scores from subsample 2 are

used in the 8-weight regression equation of subsample 1 to

calculate Y'21.

Yel2

Y'21

=

=

521Z11

611Z21

522Z12

812Z22

823Z13

813Z23

o..

.0.

82jZ:)

8 Z.1j A3
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6. Invariance can be evaluated by considering the shrinkage for

each group. "Shrinkage" for subsample 1 is calculated by

subtracting the squared multiple correlation coefficient (R212),

which is the squared bivariate correlation of Y'12 values and the

z score values in subsample 1, from the squared multiple

correlation coefficient (11211), which is the squared bivariate

correlation of Y'll values and the z score values in subsample 1.

SHRINKAGE1 = R211 - R212

The shrinkage for subsample 2 is similarly calculated.

SHRINKAGE2 = R222 R221

7. The invariance is also evaluatea by calculating two invariance

coefficients. The first is determined by calculating the

bivariate correlation coefficient of Y'il values and Y'12 values.

The bivariate correlation coefficient of Y,22 values and Y'21

values is the second invariance coefficient.

In the task analysis, steps six and seven are crucial for

evaluating the estimated invariance or stability of the research

results. One way to investigate the likelihood that results will

replicate is to measure the shrinkage of the multiple correlation

coefficient for each subsample. Step six explains the process of

calculating shrinkage. In the double cross-validation procedure,

shrinkage of the multiple correlation coefficient occurs when the

8-weights are "crossed" because the 8-weights derived from the

original subsample yield the highest pos.ible correlation between

the predictor variables and the dependent variable. Put

differently, Pedhazur (1982) explained:

7
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If one were to apply a set of weights derived from one

sample to the predictor scores of another sample and then

correlate these predicted scores with the observed

criterion scores, the resulting R would almost always be

smaller that the R obtained in the sample for which the

weights were originally calculated. (p.147)

The reason for shrinkage is that in calculating the weights to

obtain a maximum R, the zero-order correlations are treated as if

they were error-free, which is pever the case. Because of this

capitalization on chance, sometimes referred to as "overfitting,"

the original resulting R is biased upwards.

Mitchell and Klimoski (1986) concluded that shrinkage is

usually reduced when predictors are chosen based on prior theory

and experience-based knowledge of predictor-criterion

relationships (i.e., rational procedures requiring forethought)

rather than by blind empirical selection (i.e., selected with a

relatively low level of rationality). Therefore, when rational

procedures for selecting predictor variables are used instead of

implementing "data-snooping" or stepwise multiple regression

techniques (Synder, 1991), it is likely that shrinkage will be

reduced, and therefore invariance or stability will increase

since there is an inverse relationship between shrinkage and

invariance. In other words, the degree of stability across

subsamples increases as the two shrinkage estimates approach

zero.

However, shrinkage formulas work poorly with small sample

8
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sizes (i.e., less than 30 subjects per independent variable),

unfavorable ratios of sample size to predictor variables (i.e.,

less that 3) and low multiple correlations (i.e., less than .6)

(Mitchell & Klimoski, 1986; Pedhazur, 1982). Unfortunately,

these conditions are prevalent in much of social science

research; therefore, shrinkage formulas may be less useful under

these conditions.

Invariance can also be evaluated by calculating invariance

coefficients (see step seven). The shrinkage formulas described

above yield results that have no set metric (e.g., an R2

shrinkage from .9 to .7 is not equivalent to a st.rinkage from .2

to 0). However, this comparison problem is not evidenced when

invariance coefficients are used since they do have a set metric

ranging between -1 and +1. The closer the invariance

coefficients are to one, the greater the degree of confidence the

researcher has that the results are replicable (Rowell, 1991;

Thompson, 1989).

The advantages of the double cross-validation method are at

least fourfold. First, this method does not waste data by

crossing only one set of 8-weights. By crossing both sets of

weights, a more rigorous approach to validation is created

(Mosier, 1951; Pedhazur, 1982). Second, readily accessible

statistical packages such as SPSS-X can be used easily to run the

analyses needed for this procedure. A third advantage of this

technique is that it saves: time and money in that the researcher

does not have to conduct two separate studies to determine

9
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invariance. Finally, in most cases, this method can be used for

moderate sample sizes (i.e., at least 30 subjects pe- predictor

variable).

There are at least four disadvantages of the double cross-

validation technique. First, not unlike split-half reliability

coefficients which fluctuate depending on how tile data is srAlt,

invariance coefficients change when different splits E the

original sample are used. Second, since the sample data under

examination are usually collected all at one time for

convenience, any changes due to timing would not be evidenced.

Third, as is always the case in res,narch investigaticons, if the

sample is not representative of t-he target population, inaccurate

conclusions may be drawn by using this method. Finally, as

previously mentioned, shrinkage formulas may not work well with

small sample sizes, small ratios of sample size to predictor

variables, and low multiple correlations.

Bootstrap Procedures

Bootstrap methods are named after the old saying about

pulling yourself up by your own bootstraps, in this case by

creating many samples from only one available sample (Crask &

Perreault, 1977). Thirty years ago it would have been

unthinkable to use the bootstrap logic. Although the actual

steps required to use bootstrapping are simple from the viewpoint

of practicality, the computer is a nes.essary partner in the

process. Several microcomputer programs now allow researchers to

use these methods easily (e.g., Lunneborg, 1987).

10
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Following a description of the required steps, advantages

and disadvantages of bootstrapping will be discussed. The task

analysis of the bootstrap logic includes three definitive steps.

1. The original data set for each of n subjects is copied a very

large number of times (e.g., 100,000,000).

2. "Bootstrap" samples of size n are randomly selected from the

"mega" file, regression analyses are conducted and the 8-weights

for each sample are calculated.

3. The mean, standard deviation, and median of bootstrap trials

for the 8-weight estimators are calculated, and various

confidence intervals are computed also. The original 8-weight

estimators are compared with the bootstrap information generated

from resampling.

Three advantages of the bootstrap logic overlap with those

of the double cross-validation method. Like the double cross-

validation method, bootstrap procedures use all of the data and

do not waste any, can be quickly implemented with easy to use

microcomputer programs, and provide a savings of time and money.

Moreover, a unique benefit of bootstrapping is that it does not

require the assumption that standard er-ors in the observed

values be randomly and normally distributed in order to work

effectively. Often this assumption is required before

statistical analysis can proceed, but as Thompson and Melancon

(1990) explained:

It seems illogical to make strong assumptions that standard

errors are randomly and normally distributed, when one has
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data in hand that can be employed to gagricalky estimate

standard error. (p. 8)

Computer-intensive bootstrap methods can provide estimates for

the standard errors of results by using the actual data, rather

than relying on the assumption that sampling error is normally

distributed, whAch often is not the case.

Yet another advantage of bootstrapping lies in its power.

Since these methods consider many configurations of subjects in

their analyses, researchers can draw hypotheses abou:- result

generalizability across many different groupings of subjects.

The disadvantages of using bootstrap methods are few. As in

the double cross-validation method, the influence of time factors

are not considered since one data set is used instead of two or

more from different research studies. Also, cne must be cautious

in making generalizations from a single sample since, like all

statistical procedures, bootstrapping will give misleading

answers for a small percentage of the possible samples (Diaconis

& Efron, 1983). Finally, these methods require fairly large

sample sizes to maximize their power.

Both Methods Applied to a Meuristic Data Set

Result replicability of a readily available data set from

Edwards (1985, p.57) was assessed using both the double cross-

validation and bootstrap methods. Observed values of three

independent variables (X1, X2, X3) and one dependent variable

(DV) for a sample of 25 subjects were used in the multiple

regression analysis. In practice, the sample size of 25 would be

12
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too small to apply either of the two methods with confidence;

however, for illustrative purposes, both will be employed.

The double cross-validation procedure was applied to the

data using two separate runs of SPSS-X. The computer program is

found in Table 1. Tal* 2 contains the complete raw data set

with the randomly assigned invariance subsample numbers (i.e., 1

or 2) for each subject so that the reader can re-create the

results from this example.

Insert Tables 1 and 2 about here

After the data set was randomly split into two subsamples

(step 1), the SPSS-X program converted the raw scores to z scores

(step 2). The conversion was made by using the mean and standard

deviation of subsample 1 to standardize subsanple 1 data and by

using the mean and standard deviation of subsample 2 to

standardize subsample 2 data. See Table 2 for a listing of the z

scores.

Regression analyses were then conducted (step 3) with each

subsample's z score data set producing two regression equations:

= (+.342957*Z11) + (+.60406*Z-12) + (+.188967*Z13)

= *Z22)(+.339154*Z21) + (+.815982 + (-.254246*Z23)YI22

Then Y'11 values were calculated using z scores from subsample 1

and Y/22 values were calculated using z scores from subsample 2

(step 4). Table 2 presents these results. The crossing of the

5-weight coefficients yielded two new regression equations

13



(step 5;:

11"12 = (+.339154*Z11) + (+.81 5982*Z12) + (-.254246*Z13)

Y921 = (+.342957*Z21) + (+.60406* Z22) + (+.188967*Z23)

Finally, the invariance was evaluated by considering

shrinkage (step 6) and invariance coefficients (step 7). Given

that R211 was .76249 and R212 was .61121, SHRINKAGE1 equals .76249

minus .61121 or .15128. The shrinkage of the squared multiple

correlation coefficient for subsample one was 15 percent. Since

it222 was .74564 and R221 was .57943, SHRINKAGE2 equals .74564

minus .57943 or .16621. The shrinkage of R2 for subsample 2 was

16 percent. Since the shrinkage is not zero, these estimators

must be interpreted with some caution. However, since both

results are similar they give support to stability across

samples.

Both invariance coefficients suggest that the original

regression equation for the full sample is an accurate predictor

of the dependent variable in this sample and that the equation is

fairly stable across samples. The two invariance coefficients

were ry.11...1 12, which was .8953, and ry'21.,1122, Which WaS .8815.

Since both coefficients are approaching one, stability across

samples is likely.

The bootstrap logic was applied to this data set by using a

package of relatively "user-friendly" microcomputer programs

(Lunneborg, 1987). The program gives prompts that ask for

specific information (e.g., "How many bootstrap samples do you

want?") in a step-by-step fashion. There is a publication that

14
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ace zpanies the software (Lunneborg, 1987). One must enter the

data set either by hand on the keyboard or by supplying an MS/DOS

data file. In order to get 8-weight coefficients for the

regression analyses, one must enter the data already converted

into z scores. Raw scores are standardized by using the sample

mean and sample standard deviation of the variable being

considered (e.g., use mean of X1 and standard deviation of X/ to

calculate hi).

The program REGBOOT generated a series of bootstrap samples,

and then calculated the 8-weights for each sarple. The 8-weights

for the original sample were also calculated by the REGBOOT

program. The results were stored in an output file and used for

other programs to calculate various descriptive statistics. Five

hundred bootstrap samples were randomly selected from the "mega"

file created by copying the heuristic data set many times. Table

3 lists a sampling of the 8-weights calculated from the 500

bootstrap samples.

Insert Table 3 about here

Next, the BOOTLV program individually calculated the mean,

median, standard deviation (which is analogous to standard

error), skewness and kurtosis of the 8-weights for each of the

predictor variables. Table 4 contains these values. Finally,

the BOOTCI program computed 90% confidence intervals for each 8-

weight estimator value. Selected results are presented in Table

15
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4. BOOTCI can calculate any width intervals (e.g., 95%, 90%,

75%) and can also provide intervals constructed using several

different methods (e.g., normal theory, percentile method, bias

corrected percentile, minimum width). Results from the BOOTCI

program for this data set are found in Table 5.

Insert Tables 4 and 5 about here

Results from the bootstrap programs indicate that the three

B-weights derived from the original 25 subject sample data set

are accurate predictors of the dependent variable in this sample

and v.hat the equation is fairly stable across samples. The means

of the 8-weights for each predictor variable from the 500

bootstrap samples were very comparable to the B-weights derived

from the original sample (see Table 4).

Conclusions

Although result replicability is an essential part of the

research triumvirate (i.e., statistical significance, result

importance, result replicability), researchers often either

ignore result generalizability or evaluate it in inappropriate

ways. With the advent of computers, invariance techniques such

as the jackknife, double cross-validation, and bootstrap methods

can be quickly and easily applied to data sets to determine the

confidence of result replicability. Although each of these

pro adures have some shortcomings, the advantages far outweigh

the disadvantages. When actual replication of research studies is

16
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nct feasible, researchers should always employ one of these

invariance procedures to determine result stability over

different samples.
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Table 1

SP8S-8 Commands for Double Cross-Validation

Procedure using heuristic Data Set

TITLE 'Regression Invariance Procedure'
DATA LIST FILE:ABC/ 11 1-2 12 4-5 13 7-0 DV 10-11 INV 13
IF (INV EQ 1)Z11=(X1-11.846)/3.436
IF 1INV EQ 1)Z12=00-33.231)/7.328
IF (INV EQ 1)Z13=(X3-14.231)/2.774
IF (INV EQ 2)Z21=(X1-10.417)/2.392
IF (INV EQ 2)Z22=(X2-21)/6.742
IF (INV EQ 2)Z23=(X3-13.5)/2.78
IF (INV EQ 1)YHAT11=(.342957*Z11)+(.60406*Z12)+(.188967*Z13)
IF (INV EQ 1)YHAT12=(.339154*Z11)+(.815982*Z12)+(-.254246*Z13)
IF (INV EQ 2)YHAT21=(.342957*Z21)+(.60406*Z22)+(.188967*Z23)
IF (INV EQ 2)YHAT22=(.339154*Z21)+(.815982*Z22)+(-.254246*Z23)
VARIABLE LABELS YHAT11 'SUBSAMPLE 1 DATA USING SUBSAMPLE 1 BETAS'

YHAT12 'SUBSAMPLE 1 DATA USING SUBSAMPLE 2 BETAS'
YHAT21 'SUBSAMPLE 2 DATA USING SUBSAMPLE 1 BETAS'
YHAT22 'SUBSAMPLE 2 DATA USING SUBSAMPLE 2 BETAS'

PRINT FORMATS 211 TO YHAT22 (F8.5)
LIST VARIABLES=X1 TO YHAT22/CASES=500/FORMAT=NUMBERED
SUBTITLE 'Regression Using All Data'
REGRESSION VARIABLES=X1 TO DV/DESCRIPTIVES=ALL/

DEPENDENT=DV/ENTER XI 82 83
TEMPORARY
SELECT IF (INV EQ 1)
SUBTITLE 'REGRESSION FOR SUBSAMPLE 91'
REGRESSION VARIABLES=X1 TO DV/DESCRIPTIVES=ALL/

DEPENDENT=DV/ENTER XI 82 13
TEMPORARY
SELECT IF (INV EQ 2)
SUBTITLE 'REGRESSION FOR SUBSAMPLE #2'
REGRESSION VARIABLES=X1 TO DV/DESCRIPTIVES=ALL/

DEPENDENT=DV/ENTER 81 82 83
TEMPORARY
SELECT IF (INV EQ 1)
CORRELATIONS VARIABLES=DV YHAT21/STATISTICS=ALL
TEMPORARY
SELECT IF (INV EQ 2)
CORRELATIONS VARIABLES=DV YHAT21/STATISTICS=ALL
SUBTITLE 'CHECK Z CALCULATIONS'
CONDESCRIPTIVE Z11 TO YHAT22
SUBTITLE 'INVARIANCE RESULTS'
CORRELATIONS VARIABLES=DV YHAT11 TO YHAT22/STATISTICS=ALL

Note. This program was adapted from Thompson (1989). It
requires two runs. The first run uses the boldfaced commands.
The second run includes all the commands listed above.
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Table 2

Heuristic Data Set Raw Data, Converted 2 Score Data, and
Estimated Y Scores Using Double Crossed Regression Equations

X1 X2 X3 DV INV 211 Z12 213 22I 222 223 YHATli YHAT12 YHAT21 ,re-AT22

1 11 28 10 15 i -.24622 .65079 -1.52523 02046 .835312 7 42 16 18 1 -1.41036 1.19664 .63771 35966 .335983 12 38 18 17 1 .04482 65079 1.35869 .66524 200794 13 36 15 16 1 .33586 .37787 .27722 .39582 3517614 40 15 17 1 .62689 .92372 .27722 82536 .895876 15 32 11 14 1 .91793 -.16799 -1.16474 -.00676 .470387 5 20 13 10 1 -1.99243 -1.80554 -.44376 - 85783 -2 036218 14 44 18 21 1 .62689 1.46957 1.35869 35945 1 066319 14 24 12 47 62689 10494 -.80425 12641 5027210 10 28 16 '1 1 - 53725 -.71384 .63771 - 49495 9268211 8 24 10 't3 1 -1.11932 -1.25969 -1.52523 43303 -i 0197212 16 30 16 t 1.20896 -.44091 .63771 26879 1118943 15 26 15 '6 1 .91793 -.98676 27722 - 22887 5643414 14 24 12 '5 2 i 49791 44497 - 5397 68055 115 10 26 12 -4 2 -.17433 .74162 -.53957 2862316 9 18 14 '3 2 - 59239 .44497 .17986 43797 - 6:9-_17 11 30 16 16 2 .24373 1.33492 89928 1 05989 943;.118 9 26 13 '3 2 -.59239 .74162 -.17986 21083 4439C19 7 18 11 11 2 -1.42851 .44497 -.89928 92864 683-20 10 10 17 6 2 -.17433 1.63156 1.25899 80744 1 7/021 9 12 8 12 2 -.59239 1.33492 -1.9784 , -1 38339 7871722 tO 32 18 '8 2 -.17433 1 63156 1.618 i 23166 6E06E.23 10 18 14 /2 2 -.17433 .44497 .179, 29459 -24 16 20 15 -6 2 2.33403 14832 53957 81284 533825 10 18 12 15 2 -.17433 .44487 -.53857 43054
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Table 3

Calculated Beta Weight Coefficients for the Sample of 25 Subjects

and Eleven 'xf the 500 Random Resamplinqs of the 25 Subjects

Sample Estimates of the 8-weight Coefficients
0 .30103E+00 66605E+00 . 23807E-01
1 .40761E+00 .80936E+00 -. 64835E-01
2 .20332E+00 59310E+00 . 52362E-01
3 .39495E+00 .55578E+00 . 11935E+00
4 .36818E+00 .55590E+00 -. 10182E+00
5 .21115E+00 64848E+00 . 28202E-02

499 .26095E+00 .66821E+00 -.68605E-02
500 18396E+00 .51799E+00 81274E-01

Note. Sample 0 is the original sample of data for the 25
subjects. The results in the first row are the B-weights for the
three predictor variables presented in order: Zxl, Zx2, Zx3. The
rows that follow contain 8-weights from the random bootstrap
samples.

Table 4

BOOTLV Bootstrap Results Across 500 Resamplings

of 25 Subjects in Random Configurations

Statistic First Predictor

B-weights from

Second Predictor Third Predictor

Original 25 .30103 .66605 .023807

Mean of B-weights
from 500 Samples .2925403 .6610973 .01918864

Standard
Deviation .1183305 .1288992 .12074520

Median of 500
Samples .2932150 .661830 .0162600
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Table S

BOOTCI 90% Confidence Intervals from SOO Bootstrap Trials

First Predictor Second Predictor Third Predictor

Estimator .30103 .66605 .023807

Confidence Interval
Method Used:

Symmetric .10534 to .45208 to -.17499 to
(Normal Theory) .49554 .87712 .22316

Percentile .10730 to .43928 to -.17820 to
Method .49149 .86267 .23212

Bias Corrected .12417 to .44150 to -.15397 to
Percentile .51435 .86395 .26306

Minimum .10093 to .44831 to -.19189 to
Width .47708 .86809 .24087
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