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ESTIMATION OF ABILITY LEVEL BY USING ONLY OBSERVABLE QUANTITIES

IN ADAPTIVE TESTLNG

The objectives of this study were (a) to develop the

predictive adaptive testing (PAT) strategy which was based on

statistical predictive analysis; and (b) to investigate its

feasibility by comparing the performance of PAT to those of the

Flexilevel (Lord, 1971, 1980), Bayesian modal (Assessment Systems

Corporation, 1990) and expected a posteriori (EAP) (Bock & Aitken,

1982) strategies in a simulated environment.

MODEL

Predictive Statistical Analysis in Educational Testing

Much of statistical analysis is concerned with making

inferences about the distributions of unknown parameters. In

educational testing, the parameter 0 usually represents the ability

or trait of an exminee to be measured and an educational test is

a tool that quantifies his/her ability level in tome way to obtain

a numerical score. This educational test could be a fixed-length

paper-and-pencil conventional or an adaptive test.

The proposed adaptive test is based on the idea of using item

difficulty g and past information (observed data) x about an

examinee--in this case it will be the number of correct scores

during the testing up to a certain point--to acquire his/her

probability of answering future item(s) correctly.

The statistical predictive analysis is composed of two

experiments: informative experiment e and future experiment f.
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Each informative experiment ei is an experiment that is performed

in the past and its typical outcome is denoted by xi, where

1 if response is correct/
xi=1,

0 otherwise,

that is distributed as a Bernoulli variable with parameter Of

f(xi ()= 041(1-'0)1-Z1.

The informative experiment e involves responses to items that

have already been administered. The future experiment also

involves item(s) that will be administered to the examinee

following the items already administered during the informative

experiment e. Likewise, the outcome of the future experiment fir

yi, is a dichotomously scored item,

1 if response is correct,

Yi'=(
0 otherwise.

Then, the number of correct scores in future y=Eyi is

distributed binomially with parameter 0, f(y110), if items are

independent and probability of yi=1 is constant across the items.

The informative experiment e conveys information to the future

experiment f about the performance of an examinee up to a

particular point through the ability parameter 0 that is assumed to

be fixed (Aitchison & Dunsmore, 1975, p.19). This is the only link

between these two experiments. The second assumption suggested

that for a given examinee, his/her response to the previous items

do not affect the response to the future item(s). This assumption

is similar to the local independence assumption in item response

theory (IRT). In simulation study, this can easily be met.
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However, in real testing situations, an examinee's response to the

previous item(s) may affect the response to the future item(s).

DEVELOPMENT OP TEE MODEL

The development of the PAT model can best be described according to

the components of adaptive testing. These components are: (a)

initial (entry-level) item, (b) scoring method, (c) selection of

the subsequent items to be administered, and (d) terminating

criterion.

Initial (Entry-Level) Item

In general, the prior distribution contains some information

about the parameter 0. An investigator intends to generate more

accurate inferences about the parameter 0 by using the prior

information. Since generation of a posterior distribution is simp-

lified if the prior and likelihood densities belong to the same

conjugate family, the prior distribution of ability is assumed to

be a beta with a location parameter g>0 and a scale parameter h>0,

in predictive adaptive testing:

r(g+h)
0<0<1 (1)

r(g)r(h)

where ability parameter 0 is in the range of 0 and 1.

The selection of the entry-level item is closely related to

the prior distribution of an ability. Since at the beginning of

the testing there is no informative data, the total number of

correct answers x and total number of items already administered n

are 0 and 0, respectively. Therefore, the probability of answering
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the initial item correctly given item difficulty p and no observed

data, f(y=1;pfx=0), equals the mean value of the beta (prior)

distribution, q/(g+h), where g and h are location and scale parame-

ters, respectively. Thus, the initial item selected is the one

whose item difficulty level is closest to the mean of the prior

distribution.

Scoring Method

The likelihood function L(0) of item responses (x11...,xn) is

the multiplication of Bernoulli distributions,

foci;60= Iva (1_0)1-xi. Thus,

1l f(x1;0)= T
exi (1_ 8) l-xi ex(1.491-x

3.

(2)

where 0<9<1, x.--Exi and x=011,...0n.

Then, the posterior distribution is a beta distribution with

density

f(0;x)=(constant).0x.9-1(1_
0rt+h-x-1, (3)

where constant= r(n+g+h)/(r(x+g)r(n+h-x)). The mean of this

distribution is (x+g)/(n+g+h) and variance is (x+g)(n+h-

x)/(n+g+h)2(n+g+h+1). As mentioned before, the probability

assessment about the unknown parameter 0 is not the final objective

of the predictive analysis. The main purpose is to assess a

probability about the future outcome y given informative data x

without the unknown parameter 0. Thus, the predictive density

function can be expressed as

f(y;x)=ff(y;0)f(0;x)d0 (4)

where f(y;0), which describes the future experiment, is distributed

6
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binomially with parameter 0 and sample size m (number of items to

be administered in the future),

f(1703)-- ( )011(1-0)m-Y, (5)

where y=0,1,...,m. Then, the predictive distribution, beta-

binomial, for y given f(0) and x, can be written as

r(u+v)r(y+u)r(m+v-y)
f(y;x).= ( ) I (6)

r(u)r(v)r(m+u+v)

where y=0,1, u=x+g, and v=n+h-x (Ferguson, 1967). The mean of

this distribution is mu/(u+v) and the variance is

muv(m+u+v)/(u+v)2(u+v+1).

Figure 1

The Basic Steps Leading to the Predictive
Distribution/

L(0)

f(y;6)

3

4
f(y;x

.4

Figure 1 summarizes the basic steps leading to the predictive

distribution. The arrows I and 2 converge to the f(0;x) that is a

1The figure presented here is provided by Aitchison and

Dunsmore, 1975.
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result of Bayesian theorem. From that point, posterior

distribution together with the distribution of future outcome y,

arrows 3 and 4, are combined by using the definition of predictive

distribution in (4).

Predictive distribution f(vx) is the best approximation to

the f(y;e) (Aitchison, 1975) that describes the examinee's future

performance. To find the ability estimate of an examinee, i.e.,

the probability of answering next item correct given item diffi-

culty p and number of correct scores x, f(y=1;p,x), the

proportionality of f(y=1;p1x) to f(p;y=10x)f(y=1;x) is used

(Hacking,1965). f(y=1;x) is the predictive probability and

f(p;y=1,x) is the posterior probability of item difficulty given

past (observed data) and future information of an examinee. The

item difficulty p is calculated as the proportion of total group

responding an item incorrectly. To obtain the posterior

distribution of item difficulty p, a prior distribution for item

difficulty p is defined as a beta distribution with certain scale

1>0 and location parameter k>0. The resulting posterior

distribution is again distributed as a beta with parameters k+x and

1-x, where x=Exi.. Therefore, after terminating the test,

f(y=1;p,x) which is the probability of answering next item

correctly, y=1, given item difficulty p and the number of correct

response to items already administered, x, will be regarded as an

ability estimate of an examinee. Thus, the probability f(y=1;p1x)

combines the information from item difficulty, observed data and

examinee's ability level.

8
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Selection of Subsequent Items to be Administered

To find the most appropriate item to administer to an

examinee, the following criterion is considered:

min J
f(y=l;x)-f(y=l;p,x) I, (7)

where f(y=1;x) is the predictive probability of answering the next

item correctly given an examinee's numher of correct scores to the

items already administered. The item difficulty larameter p is

calculated as the proportion of total group responding an item

incorrectly. The above criterion is constructed by considering the

following relations: (a) for a given adequately large item pool,

almost perfect positive correlation between f(y=1;x) and f(y=l;p1x)

that is the probability of answering the next item correctly given

item difficulty and number of correct scores; and (b) also high

negative correlation between f(y=l;p,x) and item difficulty p

(0pl). According to the above criterion, the most appropriate

item to be administered is the one with item difficulty that is

closest to his/her predictive probability. In adequately large

item pool, it can be shown that the values of f(y=1;x) and

f(y=l;p1x) are similar for an item selected according to the

criteria (7) specified above. Therefore, they both can be used as

an ability estimate of an examinee. Thus, the most appropriate

item to be administered is the one whose item difficulty is closest

to the examinee's ability level.

Termination Criteria

There are two widely used termination criteria in literature:

9
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(a) testing continues until a prespecified number of items are

administered, (b) testing continues until a prespecified value of

an information function or standard error of estimate is reached.

In predictive adaptive testing, a combination of these two widely

used termination criteria are employed. That is, testing will

continue until either a prespecified number of items are

administered or a prespecified value of standard error of estimate

is reached.

The standard error of estimate obtained from a posteriori

distribution of ability (3) is considered as a termination

criterion. The following beta distribution in (3) is derived as a

posterior distribution of ability in the process of extraction of

predictive distribution, beta-binomial,

1(0;x)=(constant).0"9-1(3.- 0)n+h-x-1, (8)

where (constant)= r(n+g+h)/(r(x+g)r(n+h-x)). The mean of this

distribution is (x+g)/(n+g+h) and variance is (x+g) (n+hx)/

(n+g+h)2(n+g+h+1). The parameters g and h stand for the location

and scale parameters of a prior distribution of ability, x denotes

the number of correct scores out of n items already administered.

Testing will continue until the square root of the variance of the

above beta distribution reaches the prespecified value. As a

result, after terminating the testing, predictive adaptive testing

provides a final predictive probability, f(y=lip,x) or f(y=l;x),

both can be used as an ability estimate.

i0
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METHOD AND PROCEDURE

The performance of predictive adaptive testing was compared to

those of the flexilevel, the Bayesian modal and BAP strategies. In

order to show the feasibility of predictive adaptive testing, data

were generated by the Monte-Carlo simulation technicpe.

Generation of Population

In this Monte-Carlo simulation study, each examinee was

identified by a numerical value reflecting their ability level, 0.

Ability levels of a total of 999 examinees were randomly generated

from a standard normal distribution in the interval of 3.0 to +3.0.

The seventy-one-item test was generated by assuming that the

discrimination parameter A was distributed uniformly in the

interval of 0.19 to 1.69 (Hambleton & Traub, 1971). The difficulty

level b was distributed normally with mean 0 and variance 1 in the

interval of -3.0 to +3.0. Finally, the guessing parameter c was

assumed to be uniformly distributed in the interval of 0 to 0.20.

In order to simulate the responses of 999 examinees to the seventy-

one-item test, the subprograms of IMSL (1984, version 9.2) library

on PITT VAX/VMS system were used.

The dichotomous (0, 1) score of any examinee on any item was

a probabilistic function of their ability level 0, the item

difficulty h, and the parameters a and c. The probability P1(0j)

of a correct response under the 3-parameter logistic model item

characteristic curve was calculated according to the following

formula



Pi(0j)=c1 +
1-ci

1+e-C40( ej-bf)

10

where i and j denoted itk_mi and examinee, respectively. In order to

simulate dichotomous item response, each probability value P1(0j)

was compared with a random number ro which was generated from a

uniform distribution in the interval of 0 to 1. The response was

assumed correct and a score of 1 was assigned, if the probability

valuewasequalorgreaterthantherandomnumber r1j,--otherwise a

score of 0 was assigned.

The Program ASCAL (Assessment Systems Corporation, 1990) was

used to estimate ability and item parameters based on the generated

item responses from 999 examinees. Chi-squared goodness-of-fit2

tests for the true and estimated values of ability and £:". the true

and estimated values of item parameters were carried out in order

to provide an evidence for how well the data generation process

worked.

The calculated chi-squared values are presented in Table 1 for

ability parameter 0 and item parameters A, hf g. It was concluded

that the estimated values of the ability parameter 0 and item

parameters were not significantly different from their generated

values.

2 2Ac =E(01-Ei)/Ei
degrees of freedom,
Ei are observed and

is distributed as a chi-squared with k-1
where k is the number of categories and 0i and

expected values, respectively.

12
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Table 2.

Chi-Squared Goodness-of-Fit Test Results

Test

Chi-squered
df test value

Ability, 8 89 19.787

Discrimination, A 70 6.456

Difficulty, k 70 42.249

Guessing, g 70 8.317

Note: The goodness-of-fit tests are non-significant at the

a=0.05 level.

Table 2

Conventional Item Statistics for Raw Scores

Number of items 71 Minimum

II I

5

Number of examinee 999 Maximum 71

Mean 37.856 Median 38

Variance 167.929 Alpha 0.926

Std.Dev. 12.959 SEM 3.532

Skewness 0.036 Mean Eis 0.545

Kurtosis -0.675

Mean p 0.533

Mean item-total 0.405

The program ITEMAN (Assessment Systems Corporation, 1990) was

employed to calculate the conventional item statistics such as

proportion correct, biserial correlation, and point-biserial

correlation. Furthermore, the alpha-reliability coefficient was

calculated, 0.926. The results in Table 2 suggested that the 71-

item test adequately represented examinees in the medium ability

grnup.

13
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Finally, the test for unidimensionality of the abilit pace,

which is assumed by IRT, was performed. According to the test

proposed by Reckase (1979), inter-item correlation coefficients

were calculated in order to find the eigenvalues. The test results

showed that the first eigenvalue accounted for 37% of the total

variance which was greater than the recommended 20% value.

Therefore, the assumption of unidimensionality of the ability space

appeared to be reasonable.

Sample

Examinees were grouped into three different ability levels

based on their randomly generated true abilities. In order to

assign each examinee to one of the three groups of low, medium, or

high, examinees were ranked according to their generated true

ability level. Then, the examinees were clustered into nine

mutually exclusive groups in such a way that each section contained

an equal number of examinees, i.e., 111. From each section, ten

examinees were randomly selected. Thirty examinees from the top

three ability sections were grouped into the high ability group.

Similarly, the same number of eAaminees from the bottom three

ability sections were classified as a low ability group. The

remaining examinees formed the middle ability group.

Procedure

The Bayesian modal, EAP and PAT strategies required the

specification of prioi. distributi-m about the examinee's ability

level. The medium ability level assumption was the only one

assumed for all strategies requiring the specification of prior

14



13

distribution. For the Bayesian modal and EAP strategies, the mean

and variance of normal distribution were specified as 0 and 1,

respectively. Since IRT-based adaptive testing strategies and PAT

were based on different distributional assumptions, the prior

distributions were not perfectly comparable. However, in this

case, the prior was a beta distribution with the location and scale

parameters g=2 and h=2, respectively. Since this beta

distribution is symmetrical, its mean, mode and median values were

all equal to 0.5.

Two termination criteria were used in the present study: In

determining the ability estimate of an examinee and the final

standard error of estimate, thirty-six items were administered to

every examinee. This maximum number of items administered was

required by the 71-item flexilevel test. Therefore, the comparison

of the ability estimates and the final error variance of the

ability estimates from different strategies were based on the same

number of items. In determining the number of items required to

reach the prespecified termination criterion, for the Bayesian

modal, EAP and PAT strategies, the standard error of estimate that

was calculated from the expected test information was set to 0.30.

To simulate the adaptive testing for the predictive and

flexilevel strategies, Fortran IV computer programs were prepared.

Items were selected according to the adaptive testing strategies

and the corresponding response (correct or incorrect) was entered

by the program itself. For the Bayesian modal and EAP strategies,

MicroCAT was used to administer adaptive testing. When the program

15
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selects the appropriate item to administer, that particular item

was seen on the screen. The investigator then entered the response

either correct or incorrect based on the examinee's simulated res-

ponse.

In order to assess the accuracy of the performance of PAT1 the

correlation coefficients were calculated between ability estimate

(final predictive probanility) obtained from PAT and the generated

ability score. Furthermore, the correlations between the generated

ability score and the other ability estimates obtained from

flexilevel, the Bayesian modal and EAP were computed as well. The

test of equality for the above correlation coefficients were

carried out in order to examinee the similarity between estimated

and true ability scores in terms of order of scores.

Data Collection

The following data were collected for each strategy:

1. item identifier;

2. subject's response; (0,1),

3. flexilevel test score, ability estimate scores obtained

from the Bayesian modal, EAP and PAT--final predictive probability

was used as an ability estimate for PAT-- strategies;

4. the final error variance- of ability estimate, i.e.,

standard error of posterior distribution for the Bayesian modal,

EAP and PAT strategies; and

5. the number of items required to reach a prespecified

terminating criterion.

1 6
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Data Analysis

The independent variables that were considered are as follows:

1. adaptive testing strategy, and

2. ability levels.

The ability level (high, medium, low) was regarded as a

between-subjects variable. On the other hand, the adaptive testing

strategy (flexilevel PAT, the Bayesian modal, the EAP) was

considered to be a within-subjects variable. In this study, a two-

way mixed factorial design with repeated measures on one of the

factors was used.

The dependent variables that were considered are:

1. The number of items required for each strategy to reach a

prespecified terminating criterion. This dependent variable was

the indicator of efficiency in adaptive testing;

2. The absolute value of the difference between generated

true ability and estimated ability scores obtained from flexilevel,

the Bayesian modal, EAP and PAT strategies. Since the ability

estimates obtained from IRT-based adaptive testing strategies,

flexilevel and PAT could not be compared on the same metric--due to

the difference in distributional assuluptions, the difference was

calculated between the standardized scores. Thus, the comparisons,

in some sense, were made possible. Furthermore, the absolute value

of the difference was taken in order to show the accuracy and the

similarity of the obtained scores; and

3. The absolute value of the difference between error

variance of the final estimate obtained from adaptive testing

17
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strategy and error variance when the complete test was considered.

Due to the reasons mentioned in the previous paragraph, all the

error variances of ability estimates were transformed to

standardized scores before taking the differences. This dependent

variable was an indicator of similarity between error variances ob-

tained from adaptive testing strategy and error variance of the

complete test (true error variance).

The following hypotheses were tested:

Hm: There is no significant difference between means of

examinees for different adaptive testing strategies for each of the

dependent variables 1-3,

fi02: There is no significant difference between means of

examinees for three different ability levels for each of the

dependent variables 1-3,

Ho: There is no significant interaction effect of the

adaptive testing strategy and ability level for each of the

dependent variables 1-3.

Since the flexilevel test administers the same number of items

to each examinee, it was excluded from hypotheses testing when the

first dependent variable was considered. For the second dependent

variable, all four adaptive testing strategies were included. How-

ever, for the third dependent variable, since the error variance

could not be calculated for the flexilevel test, it was excluded

from hypotheses testing.

18
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RESULTS AND DISCUSSIONS

Number of Items Required to Reach the Prespecified

Termination Criterion

The strategies that were considered here were the Bayesian

modal, EAP and PAT. The preliminary studies showed that the raw

scores of the number of items required did not meet the assumptions

to carry out F-tests in mixed factorial design (Kirk, 1982, p.74),

i.e., the observations were not normally distributed and variances

were not equal. Therefore, an angular transformation (Kirk, 1982,

p. 83) of the observed scores was performed. The cell and marginal

means corresponding to the adaptive testing strategies and ability

groups are summarized in Table 3. The results of two-way mixed

factorial design in Table 4 revealed that the interaction effect

between adaptive testing strategy and ability group was

statistically significant at a----0.01. In order to show the nature

of the interaction effect, Figure 2 was plotted by considering cell

means provided in Table 3. The plot indicated that, at the low

ability level, the PAT strategy required more items to reach the

prespecified termination criterion than the Bayesian modal and EA.P.

However, the pairwise mean differences calculated according to the

Scheffe post-hoc method, at the low ability level, were not statis-

tically significant (see Table 5).

1 9
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Table 3

Cell and Marginal Means of the Number of Items Required

to Reach the Prespecified Termination Criterion

Low Medium High Marginal

Modal 17.43 10.87 12.80 13.70

EAP 19.97 12.40 14.90 15.76

PAT 17.47 19.63 19.73 18.94

Marginal 18.29 14.30 15.81

Table 4

Results of the Mixed Factorial Design on the Number of

Items Required to Reach the Prespecified Termination
Criterion in Terms of Angular Transformation

Sources SS df MS F-ratio p-value

111/i.=.11.1.1

Mean 0.05 1 0.05 0.11 0.744

Ability(A) 3.08 2 1.54 3.42 0.037

Error(A) 39.17 87 0.45

Strategy(S) 31.26 2 15.63 42.38 0.000

S X A 11.17 4 2.79 7.57 0.000

Error(S) 64.18 174 0.37

If the starting point matched with the actual ability level,

the medium ability level/ the Bayesian modal and EAP required less

number of items than the PAT strategy. As can be noticed in Table

51 the pairwise mean differences between PAT and EAP and also PAT

and the Bayesian modal were statistically significant at a=0.01

level.

0011
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Table 5

F-Values of Scheffe Test for Adaptive Testing Strategy

and Ability Group on the Number of Items Required to

Reach the Prespecified Termination Criterion
in Terms of Angular Transformation

Ability
Group

EAP PAT

Modal 2.043 2.177

Low EAP 0.134

Modal 1.521 7.505*

Medium EAP 5.983*

Modal 5.461* 6.194*

High EAP 0.732

* p<0.01

Figure 2

Interaction Effect Between Adaptive Testing Strategy

and Ability Group on the Number of Items Required

to Reach the Prespecified Termination Criterion
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At the high ability level, the number of items required

increased for the Bayesian modal and LAP strategies. However, for

PAT strategy, the number of items required was higher than those of

Bayesian modal and EAP. The post-hoc comparison for pairwise mean

difference between PAT and EAP strategies, at the high ability

level, was not significant at a=0.01. The Bayesian modal strategy

required significantly fewer number of items than the PAT and EAP.

In summary, the results revealed that at the low ability

level the number of items required by the three adaptive testing

strategies were not significantly different. The Bayesian modal

and EAP strategies required significantly fewer number of items

than the PAT when the starting point matched with the actual

ability level. At the high ability level, the Bayesian modal

strategy required significantly less number of items than the PAT

and EAP.

Absolute Value of the Difference Between

Standardized Ability Estimate and Generated Ability

The second dependent variable was the absolute value of the

difference between standardized ability estimate obtained from the

adaptive testing strategies and generated ability scores. The data

were analyzed by two-way mixed factorial design. The first factor

was the adaptive testing strategy (the Bayesian modal, EAP, and

PAT). The second factor was the ability group, i.e., low, medium,

and high.

For the same reasons mentioned in preceding section, a

transformation of data was necessary to meet the assumptions of

22
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normality and homogeneity of variances. The data were transformed

by using the square-root method (Kirk, 1982, p. 82). The cell and

marginal means are presented in Table 6. The results of two-way

mixed factorial design were summarized in Table 7.

Table 6

Cell and Marginal Means of the Obtained Ability Estimate
and Generated True Ability in Terms of

Raw Scores

Low Medium High Marginal

True -1.22 -0.05 0.94 -0.11

Flex 0.38 0.53 0.68 0.53

Modal -1.15 -0.06 0.96 -0.08

EAP -1.17 -0.06 0.93 -0.10

PAT 0.32 0.41 0.55 0.42

The test results showed that the interaction effect between

adaptive testing strategy and ability group in terms of

square-root of the absolute value of the difference between

standardized ability estimate and standardized generated ability

score was not significant at the a=0.01 level. Therefore, the next

step in data analysis was to test the main effects due to the

adaptive testing strategy and ability group.
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Table 7

Results of the Mixed Factorial Design on the
Absolute Value of Difference Between Standardized
Ability Estimate and Generated Ability in Terms of

Square-Root Transformation

Source SS df MS F-ratio p-value

Mean 70.11
Ability(A) 0.15
Error(A) 4.07

Strategy(S)
S X A
Error(S)

0.62
0.29
8.93

1 70.01 1496.52
2 0.08 1.65

87 0.05

3
6

261

0.21
0.05
0.03

6.06
1.42

0.000
0.198

0.001
0.208

Table 7 revealed that the main effect of adaptive testing

strategy was significant at a=0.01. The post-hoc comparisons of

pairwise mean differences were calculated by using the Scheffe

method and are summarized in Table 8. According to the results

pre-ented in Table 8, the pairwise mean differences between

adaptive testing strategies were all non-significant at the a=0.01

level. The pairwise comparisons computed by the Scheffe method

were not able to detect any significant mean differences between

adaptive testing strategies. On the other hand, the main effect of

ability group was found to be non-significant at the a=0.01 level.



Table 8

F-Values of Scheffe Test for the Main Effect of
Adaptive Testing Strategy on the Absolute Value of
Difference Between Standardized Ability Estimate and

Generated Ability Score in Terms of
Square-Root Transformation

Modal EAP PAT

Flex
Modal
EAP

0.548 0.629
0.082

2.164
2.711
2.793
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In summary, the main effects of adaptive testing strategy and

ability group were additive. Although the main effect of adaptive

testing strategy was significant, the post-hoc comparisons did not

reveal any significant pairwise differences between the means of

adaptive testing strategies.

Absolute Value of Difference Between Standardized Error

Variances of Ability Estimate and Complete Test

Since the flexilevel test did not yield any error variance of

ability estimate, it was not included into the statistical

analysis. The strategies which were considered here were the

Bayesian modal, EAP, and PAT.

Due to the procedural differences among adaptive testing

strategies, IRT-based adaptive testing strategies and PAT did not

produce comparable error variances. All the error variances of

abilities were trapsformed to z scores before takinq the absolute

value of differences. These absolute value of differences that

were taken between the error variance obtained from the complete
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test and error variance obtained from adaptive tests showed the

accuracy.

For the same reasons mentioned in previous sections, a

transformation of data was necessary to meet the assumptions for

normality and homogeneity of variances. The scores were trans-

formed by using the logarithmic transformation.

The cell and marginal means are presented in Table 9. The

results of mixed factorial design were summarized in Table 10. The

test results of mixed factorial design showed that the interaction

effect between adaptive testing strategy and ability group in terms

of logarithmic transformation of the absolute value of the differ-

ence between standardized error variances was not

significant at a=0.01 level. The tests for the main effects due to

the adaptive testing strategy and ability group ryvealed that the

main effects of adaptive testing strategy and ability group were

not significant at a=0.01. According to the above results, the

means of the error variances produced by the Bayesian modal, EAP

and PAT, were statistically similar.

Table 9

Cell and Marginal Means of the Error Variances
Obtained from Complete and Adaptive Tests

in Terms of Raw Scores

Low Medium High Marginal

True .03 .04 .03 .03

Modal .07 .05 .05 .06

EAP .08 .05 .06 .06

PAT .05 .06 .06 .06

6
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Table 10

Results of the Mixed Factorial Design on the
Absolute Value of Difference Between Standardized
Error Variances Obtained from Adaptive Testing

Strategies and Complete Test in Terms of
Logarithmic Transformation

Source SS df MS F-ratio p-value

Mean 14.58 1 14.58 11.86 0.001
Ability(A) 2.59 2 1.29 1.05 0.354
Error(A) 106.94 87 1.23

Strategy(S) 2.25 2 1.12 1.23 0.295
S X A 8.51 4 2.13 2.33 0.058
Error(S) 158.98 174 0.91

Corralation Coefficients Between Ability Estimate and

Generated Ability

In the final section, the correlation coefficients between

ability estimates obtained from adaptive testing strategies and

generated ability scores were computed. The results were summar-

ized in Table 11.

Table 11

Correlation Coefficients Between True Ability and
Ability Estimates and Also Between Ability Estimates

Flex Modal EAP PAT

True 0.966 0.971 0.976 0.933
Flex 1.000 0.934 0.925 0.916
Modal 1.000 0.980 0.889
EAP 1.000 0.876
PAT 1.000

Note: "True" stands for generated true ability score.

2 7
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The results showed that all the correlation coefficients

presented in Table 11 were statistically significant at the 0=0.001

level. The correlation coefficients between generated true ability

and ability estimates obtained from adaptive testing strategies

were all above 0.93. This revealed that all the ability estimates

obtained frail, adaptive testing strategies were highly correlated

with the generated true ability scores. The EAP strategy had the

highest correlation coefficient (0.976).

The test for equality of the above correlation coef-

ficients (Glass & Stanley, 1970, p.313) such as

corr(True,Flex)=corr(True,Modal) are summarized in Table 12.

Table 12

Test for Equality of Correlation Coefficients Between
True Score and Ability Estimates

(True,Modal) (True,EAP) (True,PAT)

(True,Flex) -0.7348
(TruelModal)
(True,EAP)

-1.5481
-0.8051

2.7247'
2.5797
3.6108'

* p<0.01

The results showed that, in terms of correlations with true

score, PAT is significantly different from the flexi/evel and EAP

at 0.01 level. However, all the other correlations coefficients

between adaptive test scoves and true scores were not significantly

different.
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SUMMARY AND anicieusroN

A model using predictive statistical analysis was developed.

The feasibility of the model was compared with other adaptive

testing strategies in a simulation study. The results of the data

analysis can be summarized as follows:

1. In terms of nnmber of items administered to reach the

prespecified termination criterion, all the three adaptive testing

strategies performed similar at the low ability level. At the

medium ability level, the Bayesian modal and EAP strategies were

the most efficient ones. At the high ability level, the Bayesian

modal strategy required significantly less number of items than the

PAT and EAP.

2. In terms of the absolute value of the difference between

standardized ability estimate and generated ability score, all the

strategies yielded statistically comparable estimates.

3. In terms of the absolute value of the differcmce between

standardized error variances, all the adaptive testing strategies,

the Bayesian modal, EAP, and PAT, produced equally comparable and

similar results.

4. As a final analysis, the correlation coefficients were

calculated between ability estimates obtained from adaptive testing

strategies and generated true ability score. The results showed

that all the correlation coefficients were comparable and highly

significant. The tests for the equality of the correlation

coefficients, mentioned above, revealed that the PAT and Bayesian

modal strategies produced significantly similar ability estimates
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to the true ability scores in terms of the order of scores.

The performance of PAT was not quite as efficient as the

Bayesian modal and EAP strategies at the middle ability level in

terms of number of items required. However, PAT produced similar

results in terms of error variance. When ability estimates were

considered, all the adaptive testing strategies produced equally

comparable results.

Based on the results of this study, it can be concluded that

PAT has a potential to be utilized. Since IRT-based adaptive

testing strategies require a larger sample size to calibrate item

parameters and some assumptions to be met, the implementation of

PAT into small classroom testing is more practical.
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