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Goodness of Fit Criteria
in

Structural Equation Models

INTRODUCTION

Various statistical approaches have been proposed for

conducting educational research. These statistical approaches are

reviewed to pravide a background for the development of structural

equation modeling. Each statistical approach has a criteria by

which statistical significance is indicated. These criteria or

significance tests have been given the general name, Goodness of

Fit (GOE) criteria.

Multiple regression provided the important multiple

correlation coefficient (F) and subsequent R-squared value (e) to

determine the overall contribution of a set of variables to

prediction. Multiple regression also permits full and restricted

models to be tested for the significant contribution of each

variable in a model. The use of all possible regressions can

further delineate the best set of multiple independent predictors.

The importance of multiple regression in explanation and prediction

as well as the statistical tests have been well established

(Pedhazur, 1982).

Path analysis is essentially multiple-multiple regression

equations and as such utilizes the R2 value, t-test, and F-test to

examine overall model fit, reduction in paths, and to test separate

partial (path) coefficients (Pedhazur, 1982, 607-614; Williams and

Klimpel, 1974). Another GOF criteria called a meaningfulness
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criteria (Asher, 1976, 32-34), examines the discrepancy between the

original correlations in the matrix and those reproduced from the

model based on direct, indirect, correlated, and spurious effects

(Marascuilo and Levin, 1983, 169-172). The chi-square statistic

with df equal to the number of over identified restrictions has

also been widely used (Pedhazur, 1982, 98). Another GOF criteria

termed Q (Pedhazur, 1982, 619-622) uses the ke value and depending

upon sample sizes greater than 100 involves an adjustment using W.

Boyle (1970) pr_viously introduced path analysis capability using

nominal and prdinal variable paths which was of concern in mixed

models in multiple regression.

Factor analytic models are often distinguished between

exploratory and confirmatory varieties. In either case, the

expressions of communality and uniqueness of a variable are just

expressions of the general notion of predicted P.2 and residual

variance (Loehlin, 1987, 20; Kim and Mheller, 1978a and 1978b;

Long, 1983). Factor loadings are equivalent to path coefficients

and variables or items which share communality on a factor assist

in describing or labeling latent variables.

Latent variable models or structural equation models are unique

in that "factors" are related which distinguishes it from

relationships and communalaties among observed/measured variables

(Duncan, 1975; Bentler & Weeks, 1980; Lomax, 1982; Long, 1983;

Plewis 1985). Structural equation models have become widely used

in the social and behavioral sciences (Saris & Stronkhorst 1984;

Anderson, 1987; Fassinger, 1987; Bollen & Ting, 1991).
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GOODNESS-OF-FIT CRITERIA

Several GOT criteria have been developed to assist the

researcher in interpreting structural equation models. The

determination of goodness-of-fit for structural equation models

however is not as straightforward as with other statistical

approaches in multivariable procedures such as the analysis of

variance, multiple regression, path analysis, discriminant

analysis, and canonical analysis. These multivariable methods use

observed variables which are assumed to be measured without error

and have statistical tests with known distribution3. Structural

equation modeling procedures have no single statistical test of

significance which identifies a correct model given the sample

data. Consequently, the statistical packages have developed a

number of GOF criteria, unfortunately they do not provide all of

the same GOF criteria (Table 1). The four GOF criteria common

across the statistical packages are: chi-square; goodness-of-fit;

adjusted goodness-of-fit; and root mean square residual (except EQS

program).

Insert Table 1 Here
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GOODNESS-OF-FIT CRITERIA TYPES

The various GOT criteria are typically used in combination to

assess model fit, model comparisoq, and indel parsimony (Hair, et

al., 1992, 489-496). All of the GOF criteria, except X2, do not

have an associated statistical test of significance. Therefore,

most GOF criteria range in value from 0 (no fit) to 1 (perfect fit)

(Bentler 1980; Baldwin, 1989). Table 2 summarizes many of the GOF

criteria with an associated level of acceptable fit and

interpretation.

Insert Table 2 Here

MODEL FIT

Model fit determines the degree to which the structural

equation model fits the data. Model fit GOF criteria commonly used

are: chi-square (e), goodness-of-fit index (GFI), adjusted

goodness-of-fit index (AGFI), and root mean square residual (RMR)

(Joreskog and Sorbom, 1989, 25). These GOF criteria are based on

differences between the observed (original, S) and model implied

(reproduced, Z) correlation/covariance matrix.

6
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Chi-square (0)

A large X2 value relative to the degrees of freedom indicates

that the observed and reproduced (estimated) matrices differ.

Statistical significance indicates the prdbability that this

difference is due to sampling variation. A low X2 value with

significance levels greater than .05 indicate that ..he two matrices

are not statistically different. The researcher is interested in

obtaining a low X2 value with a non-significant probability level.

The 24:2 test being non-significant indicates that the model fits the

data, however, an uncertainty will always persist because other

models are possible that may fit the data. Although the X2 GOP

criteria is the only statistical test procedure, it is sensitive to

sample size because as sample size increases (generally above 200),

the X2 test has a tendency to indicate a significant difference

between equal models. In contrast, as sample size decreases

(generally below 100) the X2 test indicates non-significant

differences between the observed and reproduced matrices in unequal

models. The X2 test is also sensitive to departures from

multivariate normality of the observed variables.

Three approaches are commonly used to calculate X2 in latent

variable models (Loehlin, 1987, 54-67). They are maximum

likelihood (1114), generalized least squares (GLS), and ordinary

least squares (OLS). Each approach estimates a best fitting

solution and evaluates the model fit. The MIL estimates are

consistent, unbiased, efficient, scale invariant, scale free, and
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normally distributed if the observed variables meet the

multivariate normality assumption. The GLS estimates have the same

properties of the MLS approach under a less stringent multivariate

normality assumption and provide an approximate chi-square test of

model fit to the data. The ULS estimates do not depend on a

normality distribution assumption, however, the estimates are not

as efficient nor are they scale invariant or scale free. The MI X2

statistic is: X.2 = (n-1) Fa; GLS X2 statistic is: X2 = (n-1)

and ULS X2 statistic is: X2 = (n-1) F31. Where:

Fla = tr ( S ) - n + ln iLl - ln IS1

Fqjp = .5 tr ( S E ) 5-1 ]2

F", = .5 tr (S I )2 ;

df = .5 (p+q) (p+q+1) - t

t = total number of independent parameters estimated ;

n = number of observed variables ; and

(p + q) = number of observed variables analyzed.

Fig's ;

Goodness-of-Fit (GFI) and Adiusted Goodness-of-Fit (AGFI) Indices

The GFI index is based on a ratio of the sum of the squared

differences between the observed and reproduced matrices to the

observed variances, thus allowing for scale. The GFI measures the

amount of variance and covariance in S that is predicted by the

reproduced matrix I. The GFI index can be computed for ML, GLS, or

ULS estimates (Bollen, 1989, 276-277). The GFI index for ULS

estimates would be computed as:



GFI = 1 -
tr 1(5 E)2))

tr (S2)

7

The AGFI adjusts the GFI index for the degrees of freed= of a

model relative to the number of variables. The AGFI index is

computed as:

AGF1 = 1 - (k/df) (1 - GFI)

Where:

k = number of variables in matrix

df = number of degrees of freedom in model

The GFI and AGFI indices can be used to compare the fit of two

different models with the same data or compare the fit of models

with different data.

Root Mean Square Residual (R0M)

The RMR index uses the square root of the mean squared

differences between matrix elements in S and E. It is used to

compare the fit of two different models with the same data. The

RMR index is computed as:

RMR = I (1/k) Z ( s" -

MODEL COMPARISON

Given the role chi-square has in model fit of latent variable

) 2 1/ 2

models, two others have emerged as variants for model comparison:

9



Tucker-Lewis Index (TLI) and Normed Fit Lndex (NFI) (Bentler &

Bonett, 1980, 1982; Loehlin, 1987, 68). These GOF criteria

typically compare a proposed model to a null model. In the EQS

program, the null model is indicated by the Independence Model Chi-

square value. The null model could also be any model that

establishes a base for expecting other models to exceed.

Tucker-Lewis Index (TLI)

Tucker and Lewis (1973) developed this index initially for

factor analysis, but later extended it to structural equation

modeling. The measure can be used to compare alternative models or

a proposed model against a null model. It is computed using the X2

statistic as follows:

TLI =
X2Ma1 dfnu11) X2p sed dfp aa)

(X2null df dfnuu)

Normed Fit Index OUNQ

1

The NFI is a measure which rescales chi-square into a 0 (no

fit) to 1.0 (perfect fit) range (Bentler & Bonett, 1980). It is

used to compare a proposed model to a null model as follows:

NFI =
(X2ntir11 x2 pre/pos*4)

1 0
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MODEL PARSIMONY

Parsimony refers to the number of estimated coefficients

required to achieve a specific level of fit. Basically, an "over

identified" model is compared to a "restricted" model. The AGFI

measure discussed previously will also provide an index of model

parsimony. Others which provide model comparison are: Nomad Chi-

square (NC); Parsimonious Fit Index (PFI); and Akaike Information

Criterion (AIC). These indices indicate parsimonious goodness of

fits taking into account the number of parameters required to

achieve a given level of chi-square.

Normed Chi-sauare (NC)

Jöreskog, K.G. (1969) proposed that X2 be adjusted by the

degrees of freedom to assess model fit. The NC measure can

identify inappropriate models in two ways: (1) a model which is

"over-identified" and capitalizes on chance; or (2) models that do

not fit the observed data and need improvement. The NC measure,

like many others is affected by sample size. It is calculated as:

X2 =
X2

df

Parsimonious Fit Index (FM

The PFI measure is a modification of the NFI measure (James,

Muliak, & Brett, 1982). The PFI however takes into account the

11
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number of degrees of freedom used to obtain a given level of fit.

Parsimony is achieved with a high degree of fit for fewer degrees

of freedom in specifying coefficients to be estimated. The PFI is

used to compare models with different degrees of freedom and is

calculated as:

PFI = ( dfp nud /dfnun ) x NFI

Akaike Information Criterion (AIC)

The AIC measure is used to compare models with differing number

of constructs similar to the PFI Chkaike, 1987). The AIC measure

will always be negative, but values close to zero indicate a more

parsimonious model. It indicates both model fit (S and I elements

similar) and a model not "over-identified" (parsimony). The A/C

measure is calculated as:

AIC =
,X2

2

Muliak et al. (1989) evaluated the X2, NFIr GFIr AGFI, and AIC

goodness-of-fit indices. They concluded that these indices fail to

assess parsimony and are insensitive to misspecification of causal

relationships. Moreover, they recommend an approach that assesses

relative fit of the structural equation model among latent

variables (model fit) independent of assessing the fit of the

hypothesized relations of indicator variables to latent variables

2
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(measurement model). Their rationale is that with few latent

variables, most parameter estimates iavolve relations among

observed indicator variables of latent variables and therefore

measurement model estimates rather than latent variable

relationship estimates determine a greater proportion of the

covariance structure explained. They prapose the following

adjustment to separately estimate the effects of the latent

variable estimates from the measurement model estimates:

RNFIl

Where:

F = X2 of full model

Fl = X2 of structural equation model (latent variable model)

F, = X2 of confirmatory factor model (measurement model)

dl = degrees of freedom for structural equation model

d, = degrees of freedom for measurement model

A corresponding relative parsimony ratio is given by:

Where:

RP, = - / d - j

d, = degrees of freedom for structural equation model

d = degrees of freedom for measurement model

ds, = degrees of freedom for null model

13
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To compare different models for fit, multiply RP1 x RNFIi to obtain

a relative parsimonious fit index appropriate for assessing how

well and to what degree the models explain relationships both in

indicator variable measurement of latent variables and among the

the latent variables.

NEW MEASURE OF MODEL FIT

Recent developments have offered another approach to assessing

model fit (Joe and Mendoza, 1989a). The maximum internal

correlation coefficient has been recommended for further

development in structural equation models as a GOY criteria (Joe

and Mendoza, 1989b, 243). It could be used to test the equality of

pairs of eigenvalues from a correlation matrix or test the null

hypothesis of independence in a set of variables. It is also

useful in resolving "heywood cases" and multicollinearity problems

(identifies which variables are causing the problem). There are

several potential problems however in that several internal

correlations are possible (pairwise combinations of eigenvalues of

a correlation matrix) and the distribution of the statistic is

unknown. Venables (1980 however has presented the distribution of

the internal correlation and a test of significance which

approximates an F distribution under the special case of a 2 x 2

covariance matrix. The maximum internal correlation is calculated

as:

p (s) = ) / + )

1 4



Where:
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= largest eigenvalue in the population correlation matrix

= smallest eigenvalue in the population correlation matrix

The author proposes that the application of the internal

correlation coefficient to structural equation modeling would take

the form of:

p (*) = ( X ( + 24.1

Where:

Xs = largest eigenvalue in original correlation matrix

Xz = largest eigenvalue in reproduced correlation matrix

This would provide an overall measure of the comparison of equality

in the elements of the original and reproduced correlation

/covariance matrices or between two proposed model correlation

matrices.

SUMMARY

Structural equation modeling requires the use of various GOF

criteria in combination to interpret a model. Additionally,

appropriate sample size, standardization of variables, and

normality determinations need to be considered. Appropriate sample

size can be determined using the Critical N (CN) statistic

(Hoelter, 1983) which is: CN = (X2 / F) + 1. CN gives the sample

size at which the F value would lead to a rejection of H0: S = I at

1 5
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a specified alpha level. The CN statistic is output by the

SAS/CALIS progrim and indicates the recommended sample size.

Standardization of variables occurs automatically when inputing a

correlation matrix without mean and standard deviation values

specified. This however doesn't occur when inputing a covariance

matrix therefore caution is advised in selecting and interpreting

GOF criteria because the variables may not be on the same scale of

measurement. Normality of variables should further be examined

prior to inputing a correlation or covariance matrix in structural

equation models. As noted previously, several GOF criteria have

evolved as adjustments to the X2 and subjective interpretation has

been made easier with scaling from 0 to 1. However, GOF criteria

must be interpreted in view of sample size, standardizatioA of

variables, and the normality assumption.

The new GOF criteria, internal correlation coefficient, holds

the possibility of yet another statistical test of model fit once

the distributional properties are better known. However, model fit

is of itself a subjective approach since no single "correct" model

is being determined. Other models may be equally plausible given

the sample data. What then is the solution to this dilemna? The

author suggests mg4g1 testing for effectiveness and functionality

of the specified variable relationships. This implies that the

variables are chosen such that they can be manipulated to examine

(test) the effect upon other variables in the model. Model testing

takes the researcher to the next step beyond determining whether

the model "fits" the sample data.

16



15

REFERENCES

Akaike,H. (1987). Factor Analysis and AIC. Psycliometrika,

317-332.

Anderson, J.G. (1987). Structural equation models in the

social and behavioral sciences: Model building.

Child Development, 58, 49-64.

Asher, H. (1976). CAusal Modeling. CA: Sage Publications.

Baldwin, B. (1989). A Primer in the Use and Interpretation of

Structural Equation Models. Measurement and Evaluation in

Counseling and DeveloPment, 22, 100-112.

Bentler, P.M. & D.G. Bonett (1980). Significance tests and

goodness-of-fit in the analysis of cavariance structures.

Psychological Bulletin, 88, 588-606.

Bentler, P.M. & D.G. Bonett (1982). Significance Tests and

Goodness of Fit in Analysis of Covariance Structures.

In ASecond Generation of Multivariate Analysis: Measurement

and Evaluation (Val. 2). Edited by Claes Parnell, NY: Praeger

Publishers.

Bollen, K.A. (1989). §tructural Equations with Latent Variables.

NY: John Wiley & Sons.

Bollen, K.A. and Ting, K. (1991). Statistical Computing Software

Reviews. The American Statistician, 45(1), 68-73.

Boyle, R. (1970). Path analysis and ordinal data.

American Journal of Sociology, 75(4), 461-480.

17



16

Duncan, 0.D. (1975). Introduction to structural equation models.

New York: Academic Press.

Fassinger, R. (1987). Use of the structural equation modeling in

counseling psychology research. Journal of Counseling

Psychology, 14. 425-440.

Hair, J.F. Jr., Anderson, R.E., Tatham, and Black, W.C.

(1992). Multivariap Data Analysis with Readinas(3rd Ed.).

New York: Macmillan Publishing.

Hayduk, L.A. Structural Eguation Modeling with LISREL: Essentials

and Advanc9s. MD: Johns Hopkins University Press.

Hoelter, J.W. (1983). The analysis of covariance structures:

Goodness-of-Fit indices. Sociological Methodq and Research,

11, 325-344.

James, L.R., Muliak, $.A., Brett, J.M. (1982). Causal Analysis:

Assumptions, Models, and Data. California: Sage Publications.

Joe, G.W. and J.L. Mendoza (1989a). The internal correlation: Its

applications in statistics and psychometrics. Journal of

Educational Statistics, 14(3), 211-226.

Joe, G.W. and J.L. Mendoza (1989b). Further comments on the

internal correlation: A rejoinder. Journal of Educational

Statistics, 14(3), 239-244.

Jöreskog, K.G. (1969). A general approach to confirmatory maximum

likelihood factor analysis. Psychometrika, 34, 183-202.

Jöreskog, K.G. and Sörbom, D. (1989). LISREL 7 User's Reference

Guide. Mooresville, IN: Scientific Software Inc.

1 6



17

Kim, J. and C.W. Mueller (1978a). Introduction to Factor Analysis:

What it is and how to do it. CA: Sage Puhacations.

Kim, J. and C.W. MUeller (1978b). Factor Analysis: Statistical

Methods and Practical Issues. CA: Sage Publications.

Loehlin, J.C. (1987). Latent Variable Mgdels: AA introduction to

factor, path, and structural analysis. NJ: Lawrence Erlbaum.

Lomax, R.G. (1982). A guide to LISREL-type structural equation

modeling. Behavior Research Methods and Instrumentation, 14,

1-8.

Long, J.S. (1983). Confirmatory Factor Analysis. CA: Sage Publ.

Marascuilo, L. and J. Levin (1983). MUltivariate Statistics in the

Social Sciences: A Researcher's Guide. CA: Brooks Cole.

Muliak, S.A., James, L.R., Alstine, J.V.1 Bennett, N., Lind, Sof

Stilwell, C.D. (1989). Evaluation of Goodness-of-fit Indices

for Structural Equation Models. Psychological Bulletin,

105(3), 430-445.

Pedhazur E.J. (1982). Multiple Regression in Behavioral Research

(2nd Ed.). NY: Holt Rinehart Winston.

Plewis, I. (1985). Analyzing Change: Measurement and Explanation

Using Longitudinal Data. New York: John Wiley & Sons.

Saris, W. and Stronkhorst, H. (1984). Causal Modelling in

Nonexperimental Research. Amsterdam: Sociometric Research Fnd.

Tucker, L.R. and Lewis, C. (1973). The reliability coefficient for

maximum likelihood factor ana:ysis. Psychometrika, 38, 1-10.

1,9



18

1/enables, W. (1976). Some implications of the union-intersection

principle for tests of sphericity. Journal of Multivariate

Analvs4s, 6, 185-190.

Williams, J.D. and R.J. Klimpel (1974). Path analysis and causal

models as regression techniques. Multiple Linear Rearessionj

Viewpoints, 5(3), 1-20.

20



19

Table 1: Goodness-of-fit Criteria in Statistical Packages

Package/Program GOF Criteria

SAS / CALIS Chi-square
Goodness-of-Fit Index
Adjusted Goodness-of-Fit
Root Mean Square Residual
*Bentler Comparative Fit Index
*Normal Theory Reweighted LS Chi-square
Akaikes Information Criterion
*Consistent Information Criterion
*Schwarz Bayesian Criterion
*MtDonald Centrality
*Bentler & Bonett Non-normed Fit Index
Bentler & Bonett Normed Fit Index
James, Muliak, & Brett Parsimonious Fit Index
*Wilson & Hilferty Z-test
*Bollen Normed Index Rhol
*Bollen Non-normed Index Delta2
Hoelter Critical N

SPSS / LISREL 7 Chi-square
Goodness-of-Fit Index
Adjusted Goodness-of-Fit Index
Root Mean Square Residual

BMDP / EQS Chi-square
Goodness-of-Fit Index
Adjusted Goodness-of-Fit Index
Akaikes Information Criterion
*Bozdogan Consistent AIC
Normal Theory Reweighted LS Chi-square
*Bentler & Bonett Non-normed Fit Index
Bentler & Bonett Normed Fit Index
*Bentler Comparative Fit Index

Scientific
Software/ LISREL 7 Chi-square

Goodness-of-Fit Index
Adjusted Goodness-of-Fit Index
Root Mean Square Residual

Note: The following require individual calculation:
Tucker-Lewis
Normed Chi-square
Internal Correlation

These indices are not covered in the manuscript, consult the
respective statistical user guide for a reference.
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Table 2: GOF criteria, acceptable fit levels and interpretation.

GOF Criteria Acceptable Level Interpretation

Chi-square

Goodness-of-Fit
(GFI)

Adjusted GFI

Root Mean Square
(R.MR)

Tucker-Lewis

Normed Fit Index

Tabled X2 value

0 (no fit) to
1 (perfect fit)

0 (no fit) to
1 (perfect fit)

Researcher
defines level

0 (no fit) to
1 (perfect fit)

0 (no fit) to
1 (perfect fit)

Normed Chi-square 1.0 to 5.0

Compare obtained X2 value
to tabled value for given
degrees of freedom. ML and
GLS estimates preferred for
covariance matrix and ULS for
correlation matrix.

Value close to .9 reflects a
good fit.

Value adjusced for df with .9
reflecting a good model fit.

Relationship to observed S
residual variance/covariance

Value close to .9 reflects a
good model.

Value close to .9 reflects a
good model.

Less than 1.0 is a poor model
fit. More than 5.0 raflects
need for improvement.
Differences of .06 to .09
when comparing models.

Parsimonious Fit 0 (no fit) to Compare alternative models.
Index 1 (perfect fit)

Akaike 0 (perfect fit) Compare alternative models.
Information - (poor fit)
Criterion

Internal 0 (S = /..) to Model Fit between S and
Correlation 1 (S E) reproduced L.


