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 Abstract

Various realizations have led to less frequent use of OVA methods, 

and to more frequent use of general linear model approaches such as 

regression. However, too few researchers understand all the various 

coefficients produced in regression. The paper explains these 

coefficients and their practical use in formulating interpretations 

of regression results. A small heuristic data set is employed to 

make the discussion more concrete and accessible. It is argued 

that sensible interpretation of regression results usually must 

invoke an examination of both beta weights and structure 

coefficients. 



 

         

      

         

       

        

         

          

        

         

        

 
           

         

         

         

           

           

           

    

      
 

         

       

         

        

       

    

         
 
 
 

 
 
 
 

 

One reason why researchers may be prone to categorizing 

continuous variables (i.e., converting intervallic scaled 

variables down to nominal scale) is that some researchers 

unconsciously and erroneously associate ANOVA (Fisher, 1925) 

with the power of experimental designs. Researchers often 

value the ability of experiments to provide information about 

causality; they know that ANOVA can be useful when independent 

variables are nominally scaled and dependent variables are 

intervallic scaled; they then begin to unconsciously identify the 

analysis of ANOVA with design of an experiment. 

It is one thing to presume an ANOVA analysis when an 

experimental design is performed. It something quite different to 

assume an experimental design was implemented (and that causal 

inferences can be made) just because an ANOVA analysis is 

performed. These sorts of illogic, in which design and analysis are 

confused with each other, are all the more pernicious, because they 

tend to arise unconsciously and thus are not readily perceived by 

the researcher (Cohen, 1968). 

Humphreys (1978, p. 873) notes that: 

The basic fact is that a measure of individual 

differences is not an independent variable, and it 

does not become one by categorizing the scores and 

treating the categories as if they defined a 

variable under experimental control in a factorial 

designed analysis of variance. 

Similarly, Humphreys and Fleishman (1974, p. 468) note that 



        

        

        

        

  

         

         

         

            

  

         
 

        

    

        

        

         

        

         

       

       

 

         

        

          

          

         

        

       
 
 

 

categorizing variables in a non-experimental design using an 

ANOVA analysis "not infrequently produces in both the 

investigator and his audience the illusion that he has 

experimental control over the independent variable. Nothing could 

before wrong." 

These sorts of confusion are especially disturbing when the 

researcher has some independent or predictor variables that are 

intervallic scaled, and decides to convert them to nominal 

scale, just to be able to perform some ANOVA analysis. As Cliff 

(1987, p. 

130) notes, the practice of discarding variance on intervallic 

scaled predictor variables to perform OVA analyses creates problems 

in almost all cases: 

Such divisions are not infallible; think of the 

persons near the borders. Some who should be highs 

are actually classified as lows, and vice versa. In 

addition, the "barely highs" are classified the same 

as the "very highs," even though they are different. 

Therefore, reducing a reliable variable to a 

dichotomy makes the variable more unreliable, not 

less. 

Nor do enough researchers realize that the practice of 

discarding variance on an intervallic scaled predictor variables 

to perform OVA analyses "makes the variable more unreliable, not 

less" (Cliff, 1987, p. 130), which in turn lessens statistical 

power against Type II error. Perdhazur (1982, pp. 452-453) 

makes the point, and explicitly presents the ultimate 

consequences of bad practice in this vein: 



       

         

         

         

       

      

         

  

             
 

           

            

          
 

           

         

         

        

          

           

    

           

         

         

         

           

        

        

   
 

 

 

 

categorization of attribute variables is all too 

frequently resorted to in the social sciences••• It 

is possible that some of the conflicting evidence in 

the research literature of a given area may be 

attributed to the practice of categorization of 

continuous variables… Categorization leads to a 

loss of information, and consequently to a less 

sensitive analysis. 

It is the IQ dichotomy or trichotomy in the computer, and not the 

Intervallic scaled IQ data with an SEM of 3 sitting and collecting 

dust on the shelf, which will be reflected in the ANOVA printout. 

These various realizations have led to less frequent use of 

OVA methods, and to more frequent use of general linear model 

approaches such as regression (Edgington, 1974; Elmore & Woehlke, 

1988; Goodwin & Goodwin, 1985; Willson, 1982) and canonical 

correlation analysis (Thompson, 1991). However, too few researchers 

understand all the linkages and uses of the various coefficients 

(e.g., , part and partial , and bet weights, and structure 

coefficients) produced in regression. 

The present paper has two purposes: (a) to e plain the various 

coefficients produced in a regression analysis, and (b) to discuss 

the relative merits of interpreting beta weights as against 

structure coefficients. Table 1 presents the hypothetical data for 

20 subjects that will be employed to make this discussion more 

concrete. The analysis was performed with the SPSS 

commands presented in Appendix A; thus the interested reader 

can readily reproduce or further explore these results. 



 
     

 
 

          

          

          

         

           

         

  

   
      

 
      

 
           

          

          

             

          

            

           

          

            

         

          

           

           

             

 
 
 
 

 

 

INSERT TABLE 1 ABOUT HERE.
 

All three cases employ V1 as the dependent variable. Four 

different types of cases of regression analyses are presented: use 

of (a) a single predictor variable (V2); (b) perfectly uncorrelated 

predictor variables (V2, V3, and V4); (c) correlated predictor 

variables (V5, V6, and V7) with no suppressor effects; and (d) 

correlated predictor variables (V5, V6, and VS) with suppressor 

effects present. 

Four Regression Situations
and Their Effects on Regression Results 

1. Using a Single Predictor Variable (V2) 

The simplest regression case involves the use of only a single 

predictor variable. For example, one might wish to predict height 

of adults using information about the subjects' heights at two 

years of age. There are two possible reasons why one might wish to 

employ egression in this case, or in other cases as well. 

Fir t, one might have data on both the predictor and dependent 

variables for an acceptably large (e.g., 2,000 adults now aged 21) 

and representative sample of subjects. One might wish to employ 

their data to derive a system of weighting scores on the predictor 

variable such that an optimal prediction of the dependent variable 

is produced. Then the system of weighting the predictor variable 

might be generalized for use with different persons whom we believe 

are similar to those from whom we derived our original weighting 

system, but for whom we do not have or cannot acquire scores on 
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the dependent variable (e.g., children who are now aged 2, for whom 

the height at age 21 cannot yet be determined with certainty). 

This application of regression focuses on prediction. We are 

interested in obtaining accurate prediction, but do not care very 

much as to why the prediction works. 

Second, a certain theory might predict that a certain variable 

should predict a certain dependent variable with a given degree of 

accuracy. If we have data on both variables for an acceptably large 

sample that we believe to be representative of some group about 

which we wish to generalize, then we can employ regression to test 

our theory. This application of regression focuses on explanation. 

Here we wish to be able to make good predictions, even for persons 

for whom we already have data on even the dependent variable, but 

our primary emphasis is on understanding why our prediction works 

in the way that it works. 

A Venn diagram of data involving height at age 2 and height at 

age 21 for a large sample of people might look something like the 

Case A Venn diagram in Figure 1. The overlap of the circles 

suggests that the predictor variable and the criterion variable 

overlap considerably, as reflected in the r2 statistic that 

evaluates this overlap. Such a result suggests that scores on the 

predictor variable would do a reasonably good job of predicting 

scores on the dependent variable. 
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 INSERT FIGURE 1 ABOUT HERE.

The Venn diagram is a representation of the data from a group 

or aggregate perspective. It also possible to conceptualize the 

di ta at an individual level, case by case. The individual case 

perspective requires that the weighting system used in the 

regression analysis must be made explicit. Conventional regression 

analysis employs two types of weights: an additive constant ("a") 

applied to every case and a multiplicative constant ("b") applied 

to the predictor variable for each case. Thus, the weighting system 

takes the form of a regression equation: 

Y < Y = a + b (X) 

For example, it is known that the following system of weights 

works reasonably well to predict height at age 21 from height at 

age 2: 

Y < Y = 0 + 2.0 (X) 
Thus, an individual that is 27" tall at age 2 is predicted to have 

a height of 54" (0 + 2.0 x 27 = 0 + 54 = 54) at age 21. 
The regression problem can also be conceptualized using a 

scattergram plot. The line of best fit to the data points is a 

graphical representation of the regression equation, i.e., the 

regression line actually is the regression equation (and vice 

versa). The "a" weight: is the point on the vertical Y axis that the 

regression line crosses the Y axis when X is o; this is called the 

intercept. The "b" weight is the slope (i.e., change in rise 

change in run) of the regression line, e.g., the line changes in 
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"b" units of Y. for every changes of 1 unit of X (or 2 times "b" 

units of Y for every 2 units of change in X, etc.). 

An alternative form of the prediction equation involves first 

converting both variables into z score form (i.e., scores 

transformed to have a mean of 0 and an of 1.0 via the algorithm 

Z = ((X-X)/SDx)· When all the variables are in Z score form, the 

"a" weight is still present, but it is always zero. Therefore, the 

regression equation simplifies to the form: 

Zy  < Y.
A 

= + B ( Zx) 

Note that the multiplicative weight for this case is always 

distinguished from the multiplicative weight for the non-

standardized scores by referring to the weights for Z scores as B 

weights (as against "b" weights). It happens that for a two 

variable regression problem the B weight to predict Zy  with Zx  is 

the bivariate correlation coefficient between the two variables 

(of course, so is the B weight to predict Zx  with Zy, since Xyx 

= Xxy). 

"b" and B weights can readily be transformed back and 

forth with the equation: 

"b" = B (SDyISDx) or B = "b" (SOxISOy) 

As the formulas imply, "b" and {3 will be equal when (a) either is 

zero or (b) the two variables• standard deviations are equal. Of 

course, the formulas also imply that "b" and {3 always have the same 

signs, since the SDs can't be negative, so they can't influence the 

signs of the weights. 

= BWhen two variables are uncorrelated, Xxy "b" - . In this 
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case the predictor has no linear predictive value. Since the 

regression line always yields the optimal prediction from the 

predictive data in hand, the "a" weight in such a case will 

always be Y, and each person's Y. = "a" = Y. Upon reflection, this 

seams perfectly sensible. If IQ scores and shoe sizes are 

perfectly 

uncorrelated for adults, and you are told the shoe sizes of adults 

and are asked to predict the IQ score of each person, your best 

prediction is simply to estimate that each and every person's IQ is 

100. 

Table 2 presents the bivariate correlation matrix associated 

with the Table 1 heuristic data. Given these results, the 

prediction equation would be: 

Zv  < Y. = +.0878 (Zx) 

It also happens that regression lines (and all other regression 

functions) always pass through the means of all variables. Since 

the means of both V1 and V2 for the Table 1 data are 50, the point 

where the regression line passes through the Y axis is 50.0, and 

thus "a" equals so. Furthermore, since for these data both SDy and 

SDx are equal, for these data the "b" multiplicative weight also 

equals B equals +.0878. These dynamics are illustrated in the 

Figure  plot of the data and the regression line that best fits 

the data. Note that the regression line is relatively flat, since 

{3, the correlation coefficient (and "b" and for these data) is 

nearly zero. 
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INSERT TABLE 2 AND FIGURE 2 ABOUT HERE. 

Table 3 presents related concepts from the perspective of the 

individual scores of the 20 subjects. Since we select the 

regression equation to yield the best possible prediction of Y for 

the group as a whole, on the average, then it is no surprise that 

the mean "e" score is always zero. This is part of an operational 

definition of a "best fit" position for the regression line. 

INSERT TABLE 3 ABOUT HERE. 

Since Y.  scores are derived by weighting (with "a" and "b" or 

with 13 weights) and then summing the weighted values of the 

"observed" variables, scores are "synthetic" or "latent" 

variables. A set of "e'' scores are defined as the Y. scores minus 

the Y scores; "e" scores are also synthetic variables. Thus, a 

regression analysis always involves k observed variables plus two 

additional synthetic variables. Indeed, the whole analysis focuses 

on the synthetic variables. 

The sum of squares of the Y scores (.147) (i.e., the explained 

variance in Y) plus the sum of squares of the "e" scores (18.857) 

(i.e., the unexplained variance in Y) exactly (within rounding 

error) equals the sum of squares total (19.000). We can even look 

at the "e" scores to find the person who most deviates from the 

regression line (person #16). In Figure 2 the "e" scores are the 

distance, always in vertical units of Y (since Y is what we care 

about, we focus of the entire analysis on Y units), of a given 
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score from the regression line. And the sum of squares explained 

divided by the sum of squares of Y tells us the proportion of Y 

2that we can explain with the predictors, i.e., the • B

Table 4 makes these and some other important points. As might 

be expected, since their areas in the Venn diagram by definition 

never overlap at all, the correlation of the "e" scores and the Y 

scores is always zero. By the same token, the multiple correlation 

Y of with the predictors as a set (e.g., R1.234) always exactly 

equals the bivariate between Y and Y, since Y is all the useful 

part of any and all the predictors with all the useless parts 

of the predictors deleted. 

INSERT TABLE 4 ABOUT HERE. 

2. Using Perfectly Uncorrelated Predictor Variables
(V2. V3. and V4) 

Regression analysis is also relatively straightforward in the 

case of multiple predictors that are perfectly uncorrelated. This 

sounds like an improbable occurrence, but in practice happens quite 

frequently, as when we employ certain kinds of scores from factor 

analysis (Thompson, 1983) or when we use planned contrasts in a 

balanced ANOVA model (Thompson, 1985, 1990). 

In a sense, the use of a single predictor is a special case of 

having multiple predictor variables that are uncorrelated with each 

other, and many of the same dynamics occur. For example, when there 

is a single predictor, or when multiple predictor variables are 

perfectly uncorrelated with each, the o f  each predictor with the 



         

          

        

 
     

 

         

        
 

      

             
 

           

             

          

           

           

        

         
 

    

    

 

 

  

            
 
 

   
 
 

  
    

 
        

 
 
 
 
 
 

 

dependent variable is that predictor's individual weight. This is 

illustrated in the Table 5 results involving the prediction of V1 

with perfectly uncorrelated predictors V2, V3, and V4. 

INSERT TABLE 5 ABOUT HERE. 

Table 5 also presents the structure coefficient (r5) for each 

predictor variable. A structure coefficient (Thompson & Borrello, 

1985) is the correlation of a predictor with Y, and is very useful 

in giving us a better understanding of what the synthetic variable, 

derived by weighting the observed variables, actually is. As 

Thompson and Borrello (1985) emphasize, a predictor can have a 

B weight of zero, but can actually be an exceptional powerful 

predictor variable. One must always look at both and structure 

coefficients when evaluating the importance of a predictor. 

Table 6 makes clear that something else intriguing happens 

when the predictors are perfectly uncorrelated, i.e., the sum of 

the r2 ' s for the predictors (each representing how much of the 

dependent variable a predictor can explain) will equal the R2 involving 

all the predictors, since in this case the predictors do not overlap 

at all with  each other. This is illustrated in Figure 

1. Thus, .0077 plus .1440 plus .0471 equals the R2 of 19.86%. 

6 ABOUT HEREINSERT TABLE . 

3. Using Correlated Predictor Variables (V5, V6. and V7) 
with No Suppressor Effects 

Things get appreciably more complicated when the predictors 



           

            

                
 

              
 

            
 

 
 

         
    

 
       

           

            

           

           

             

           

            

            

       
 

         

          

         

         

          

          

          

          

 

 
 

 

 

overlap with each other. The B weights for given predictors no 

longer equal the r’s for the same predictors, as reflected in Table 

2ected in Table 6, R5. As refl the r’s no longer sum to , i.e., the 

2 sum, .5094 does not equal the R of 49.575%. And notice how in Table 

5 variable V7 has a near-zero  weight (+.082372) and an r5 of 

+.6238. 

	 4. Using Correlated Predictor Variables (V5. V6. and V8) 
with Suppressor Effects Present 

However, appreciably more complicated dynamics occur when 

suppressor effects are present in the data. As defined by Pedhazur 

(1982, p. 104), "A suppressor variable is a variable that has a 

zero, or close to zero, correlation with the criterion but is 

correlated with one or more than one of the predictor variables." 

Variable VB in variable set V5, V6, and V8 as predictors of Vl 

.involve something of this dynamic, as reflected in the Table 2 

correlation coefficients. Notice in Table 6 that the sum of the 2 

values is .3468, but the B2 value for these data is 54.677%, which 

is larger than the sum of the 2 values! 

Suppressor effects are quite difficult to explain in an 

intuitive manner. Horst (1966) gives an example that is relatively 

accessible. He describes the prediction of pilot training success 

during World War II using mechanical, numerical and spatial 

abilities, each measured with paper and pencil tests. The verbal 

scores had very low correlations with the dependent variable, but 

had larger correlations with the other two predictor, since they 

were all measured with paper and pencil tests, i.e., measurement 
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artifacts inflate correlations among traits measures with similar 

methods. As Horst (1966, p. 355) noted, "Some verbal ability was 

necessary in order to understand the instructions and the items 

used to measure the other three abilities." 

Including verbal ability scores in the regression equation in 

this example actually serves to remove the contaminating influence 

of the predictor from the other predictors, which effectively 

increases the B2 value from what it would be if only mechanical and 

spatial abilities were used as predictors. The verbal ability 

variable has negative weights in the equation. As Horst (1966, p. 

355) notes, "To include the verbal score with a negative weight 

served to suppress or subtract irrelevant ability, and to discount 

the scores of those who did well on the test simply because of 

their verbal ability rather than because of abilities required for 

success in pilot training." 

This last example makes a very important point: The latent or 

synthetic variables analyzed in all Parametric methods are always 

more than the sum of their constituent parts. If we only look at 

observed variables, such as by only examining a series of bivariate 

r’s, we can easily under or overestimate the actual effects 

that are embedded within our data. We must use analytic methods 

that honor the complexities of the reality that we purportedly 

wish to study a reality in which variables can interact in all 

sorts of complex and counterintuitive ways. 

beta versus Structure Coefficients 

Debate over the relative merit of emphasizing beta weights as 
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against structure coefficients during interpretation has been 

fairly heated (Harris, 1989, 1992). The position taken here is 

that the thoughtful researcher should always interpret either (a) 

both the beta weights and the structure coefficients (b) both 

the beta weights and the bivariate correlations of the predictors 

with Y. 

It has been noted by Pedhazur (1982, p. 691) that structure 

coefficients "are simply zero-order correlations of independent 

variables with the dependent variable divided by a constant, 

namely, the multiple correlation coefficient. Hence, the zero-order 

correlations provide the same information." Thus, the structure 

r’s and the predictor-dependent variable r’s will lead to identical 

interpretations, because they are merely expressed in a different 

metric. Because r3 = rx with YHAT I R, structure r's and predictor dependent 

variable r•s will always have the same sign, since R cannot be 

negative, and will equal each other only when R=0.0 or R=1.0. 

Although the interpretation of predictor-dependent variable 

correlations will lead to the same conclusions as interpretations 

of ·s, some researchers have a stylistic preference for structure 

coefficients. As Thompson and Borrello (1985, p. 208) argue, 

it must be noted that interpretation of only the 

bivariate correlations seems counterintuitive. It 

appears inconsistent to first declare interest in an 

omnibus system of variables and then to consult 

values that consider the variables taken only two at 

a time. 



 
     

         

     
 

 

         
 

           

 

      
 

         

        

         

         

            

      

        

        

          

        

            

          

        

          

     

          
 

         

         

  

A 

E&LC 

The squared predictor-dependent variable correlation 

coefficients inform the researcher regarding the proportion of Y 

variance e x p la i n ed  by the predictor. Squared structure 

coefficients inform the researcher regarding the proportion of Y 

(i.e., only the explained portion of Y) variance explained by the 

predictors. 

Some researchers object to interpreting structure 

coefficients, because they are not affected by the collinearity 

(i.e., the correlations) among predictor variables. Beta weights, 

on the other hand, are affected by correlations among the 

predictors, and therefore may change if these correlations change 

or if the variables in a study are added or deleted in 

replications. These are not instrinsic weaknesses. 

Since science is about the business of generalizing 

relationships across subjects, across variables and measures of 

variables, and across time, in some respects it is desirable that 

structure coefficients are not impacted by collinearity. On the 

other hand, when the variables in a study are fixed for the 

researcher's purposes, then one is less troubled by the impacts of 

collinearity among a widely accepted and fixed se of predictors. 

Thus, the utility of statistics varies somewhat from problem to 

problem or situation to situation. 

Other researchers are troubled by the fact that structure r's 

are inherently bivariate. One response is that all conventional 

parametric methods are correlational, i.e., are special cases of 
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canonical correlation analysis (Knapp, 1978), and that even a 

multivariate method such as canonical can be conceptualized as a 

bivariate statistic (Thompson, 1991). Indeed, R itself is a 

bivariate statistic, albeit one involving a synthetic variable, 
A 

since R is the Pearson between Y and Y. It should also be noted 

that rs is really not completely bivariate, in that it is a 
A A 

correlation involving Y, and Y is a synthetic or latent variable 

involving all the predictors variables. 

Interpreting only beta weights is not sufficient, except in 

the one variable case, since then x = beta and Xs = 1.0 (unless 

B=0.0). Together, the beta weights and the structure coefficients 

tell the researcher which case applies as regards the data. Three 

possibilities exist, as reflected in the Figure 1 diagrams. 

Case #1. When the betas of multiple predictors each equal the 

predictors' respective r's with Y (and each r5 = ry with X/R = 
beta/R), then the researcher knows that the predictors are 

uncorrelated. In this case interpreting betas, structure 

coefficients, or predictor-dependent variable correlations 

will all lead to the same conclusions regarding the importance 

of predictor variables. 

Case #2. When all predictors have nonzero betas and nonzero 

structure coefficients (or r’s with Y), then predictor 

variables overlap with each other, i.e., are multicollinear. 

The R2 will be less than the sum of the r2's. 

Case #3. When a predictor has, at the extreme, a zero structure 

Coefficient (and a zero correlation with Y), but a nonzero 



       
 

            

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

beta weight, then suppressor effects are present. 

Only by consulting more than one set of results will one really 

understand the data. 
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Table 1
 
Heuristic Data for 3 cases
 

ID Vl V2 V3 V4 vs V6 V7 V8 
1 49.553 48.473 51.610 49.338 49.162 49.718 49.488 50.240 
2 50.094 48.812 50.537 51.545 50.576 49.640 49.925 51.286 
3 50.799 49.152 49.732 49.890 50.386 49.662 49.889 50.641 
4 50.778 49.491 49.195 48.786 646 49. 50.297 51.399 51.116 
5 50.296 49.830 48.927 49.338 50.579 49.924 49.732 49.904 
6 51.420 50.170 48.927 50.662 50.598 50.704 50.303 3 2250.
7 49.582 50.509 49.195 51.214 48.595 49.350 48.549 49.095 
8 50.345 50.848 49.732 50.110 49.087 51.979 49.566 48.004 
9 49.988 51.188 50.537 48.455 50.386 48.923 49.148 51.652 
10 50.860 51.527 51.610 50.662 50.806 .068 50 49.481 49.781 
11 49.753 50. 170 48.927 50.662 49.768 51.384 49.325 48.400 
12 50.491 50.509 49.195 51.214 51.681 .026 49 50.357 49.841 
13 48.415 50.848 49.732 50.110 48.873 49.657 50.294 49.378 
14 49.474 51.188 50.537 48.455 51.746 48.945 51.679 50.997 
15 49.506 51.527 51.610 50.662 49.755 50.467 50.510 50.224 
16 47.166 48.473 51.610 49.338 48.393 49.058 47.365 49.210 
17 50.480 48.812 50.537 51.545 50.857 48.217 50.556 51.488 
18 51.158 49.152 49.732 49.890 50.760 50.537 50.344 49.275 
19 49.067 49.491 49.195 48.786 49.834 50.541 

5
51.022 50.030 

20 50.778 49.830 48.927 49.338 48.512 1.904 51.070 49.216 

Mean 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 
SD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 2 
Bivariate correlation Matrix 

Vl V2 V3 V4 vs V6 V7 
V2 .0878 1.0000 
V3 -.3795 .0000 1.0000 
V4 .2170 .0000 .0000 1.0000 
V5 .4819 .1757 -.0053 .1247 1.0000 
V6 .2903 .1426 -.3929 -.0795 -.3758 1.0000 
V7 .4392 .1525 -.3123 -.1864 .4213 •1671 1.0000 
V8 .1740 -.1400 .2691 -.1437 .5089 -.6302 .3542 



   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 

 

 
 

  
   
   
   
   
   

 

 

 
 

   
    
    
    
    

 

 

   
   
   
   
   
   
   
   
   
   
   
   

   
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 

 
 
 
 
 
 
 
 

 

  
     

    
 

    
    
    
    
    

        
        
        
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

    
    
    
    
    
    
    

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Table 3
 
Observed and Synthetic Variable Scores
 

Predicting V1 with V2
 

dev devsq V2 YHAT -MYHAT dev devsq e e2
Case V1 

-0.134 0.018 -0.313 0.098 
1 49.553 50.0 -0.449 0.201 48.473 49.866 50.0 

0.009 48.812 49.896 50.0 -0.104 0.011 0.198 0.039 
2 50.094 50.0 0.093 

-0.074 0.006 0.873 0.763 
3 50.799 50.0 0.797 0.636 49.152 49.926 50.0 

-0.045 0.002 0.823 0.677 
4 50.778 50.0 0.776 0.603 49.491 49.955 50.0 0.0970.087 49.83 49.985 50.0 -0.015 0.000 0.311
5 50.296 50.0 0.294 

2.012 50.17 50.015 50.0 0.015 0.000 1.405 1.974 
6 51.420 50.0 1.419 

-0.463 0.214 50.0 -0.419 0.176 50.509 50.045 50.0 0.045 0.002 7 49.582 0.006 0.270 0.0730.118 50.848 50.075 50.0 0.074 
8 50.345 50.0 0.343 

0.000 51.188 50.104 50.0 0.104 0.011 -0.116 0.014
9 49.988 50.0 -0.014 

0.737 51.527 50.134 50.0 0.134 0.018 0.726 0.527
10 50.860 50.0 0.858 

0.015 0.000 -0.262 0.069 
11 49.753 50.0 -0.248 0.062 50.17 50.015 50.0 

0.045 0.002 0.446 0.199 
12 50.491 50.0 0.489 0.240 50.509 50.045 50.0 

50.075 50.0 0.074 0.006 -1.660 2.754 
13 48.415 50.0 -1.587 2.517 50.848 

0.278 51.188 50.104 50.0 0.104 0.011 -0.630 0.398 
14 49.474 50.0 -0.528 

50.134 50.0 0.134 0.018 -0.628 0.395
15 49.506 50.0 -0.495 0.246 51.527 

49.866 50.0 -0.134 0.018 -2.700 7.290
16 47.166 50.0 -2.836 8.040 48.473 

-0.104 0.011 0.584 0.341
17 50.480 50.0 0.478 0.229 48.812 49.896 50.0 
18 51.158 50.0 1.157 1.337 49.152 49.926 50.0 -0.074 0.006 1.232 1.519 

-0.045 0.002 -0.888 0.789
19 49.067 50.0 -0.935 0.873 49.491 49.955 50.0 

50.0 0.776 0.603 49.83 49.985 50.0 -0.015 0.000 0.793 0.629 
20 50.778 0.147 0.000 18.857 19.00 1000.00 1000.00 

Total 1000.00 
0.000 Mean 50.00 50.00 50.00 
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Table 4
 
Correlation coefficients Among Two Observed


and Two Synthetic Variables
 

V1 YHAT E V2 
V1 1.0000 .0878 .9961** .0878 
YHAT .0878 1.0000 .0000 1.0000** 
E .9961** .0000 1.0000 .0000 
V2 .0878 1.0000** .0000 1.0000 

Note. RY.X = rY.Y. 

r3 =X. y. 

re.Y always= o. 



     
           
     

 

 
 

 
 

 
 

 
 

 
     
     

 

 
 

 
 

   
 

 
     
     

 

   
   
   

 

  
     

               
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  
      

            
 

 
 

 
 

 

 

 
 

 

   
   
   

   
 

 
 

 
 

 
   
   

   
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 5
 
Regression Results for Predicting V1


with V1, V2 and V3, or V5, V6 and V7, or V5, V6 and V8
 

Set beta r partial structure 
V2 0.08786 0.0878 0.0977 0.1970 
V3 -0.379456 -0.3795 -0.3903 -0.8511 
V4 0.216955 0.2170 0.2356 0.4866 

V5 0.641788 0.4819 0.5791 0.6844 
V6 0.517727 0.2903 0.5287 0.4123 
V7 0.082372 0.4392 0.0865 0.6238 

V5 0.584123 0.4819 0. 5971 0.6517 
V6 0.716874 0.2903 0.6359 0.3926 
V8 0.328547 0.1740 0.3310 0.2354 

regcomp.wk1 
Table 6 

Results Associated with Table 1 Data 
and the Prediction of V1 with Variable Sets of Size k=3 

Predictor/

Sum
 

V2 
V3 
V4 

Sum 

vs 
V6 
V7 

sum 

V5 
V6 
V8 

sum 

rY with P 

0.0878 
-0.3795 
0.2170 

0.4819 
0.2903 
0.4392 

0.4819 
0.2903 
0.1740 

r2 
Y with P

0.0077 
0.1440 
0.0471 
0.1988 

0.2322 
0.0843 
0.1929 
0.5094 

0.2322 
0.0843 
0.0303 
0.3468 
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Figure 1
 

Case # 1: One Predictor 

Multiple Uncorrelated 

Predictors 

Case •3: 

Multiple Correlated 
Predictors 

Suppressor Variable 

Case #4: 
Suppressor Effects 



  
    

 

  
 

  

 

Figure 2

V1 Correlated With V2
 



  
       

 
      
   
     
    

    
   

    
   
 

      
     
     

    
    

    
    
  
  

      
      

     
     

   
         
         
         
     

    
    

    
    

     
   

  
  

     
         
          
          

     
     
   
    

    
     
   

  
  

       

         
         
         

 
 
 
 
 
 
 
 
 
 
 

 

APPENDIX A 
SPSS Program to Analyze Table 1 Data 

TITLE 'CHECK OUTPUT FROM GENNEW.FOR' DATA 
LIST FILE•ABC /1
ID V1 TO VB (F4.0,8F8.3)

LIST VARIABLES n ALL/CASES=500/FORMAT=NUMBERED
SUBTITLE '1. UNCORRELATED PREDICTORS' 
REGRESSION VARIABLES=V1 TO V8/DESCRIPTIVE=ALL/DEPENDENT=V1/

ENTER V2/ENTER V3/ENTER V4
compute yhat=45.607930+(.087844*V2) compute
e=v1-yhat
print formats yhat e (f10.5) list
variables=id v1 yhat e v2
correlations variables=v1 yhat e V2/statistics=all
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/

ENTER V2/ENTER V4/ENTER VJ
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/

ENTER V3/ENTER V4/ENTER V2
compute yhat1=53.733930+(.087844*V2)-(.379495*V3)+(.216975*V4)
compute e1=V1-yhat1
correlations variables=V1 TO V4 yhat1 e1/STATISTICS=ALL
PLOT /TITLE 'V1 Correlated With V2'

/HORIZONTAL='Predictor V2' REFERENCE (50) MIN(47) MAX(SS) 
/VERTICAL-'Dependent V1' REFERENCE (50) MIN(47) MAX(SS) 
/PLOT=V1 WITH V2

PARTIAL CORR VARIABLES=V1 WITH V2 BY V3, V4 (2)

PARTIAL CORR VARIABLES=V1 WITH VJ BY V2, V4 (2)
 
PARTIAL CORR VARIABLES=V1 WITH V4 BY V2, V3 (2)

SUBTITLE '2. PREDICTORS POSITIVELY CORRELATED'
 
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/


ENTER V5/ENTER V6/ENTER V7
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/

ENTER V5/ENTER V7/ENTER V6
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/ ENTER

V6/ENTER V7/ENTER VS
compute yhat1=-12.097163+(.641816*V5)+(.517747*V6)+(.082382*V7)
compute e1=V1-yhat1

correlations variables=V1 V5 TO v7 yhat1 e1/STATISTICS=ALL

PARTIAL CORR VARIABLES=V1 WITH VS BY V6, V7 (2)

PARTIAL CORR VARIABLES=l V1 WITH V6 BY VS, V7 (2)

PARTIAL CORR VARIABLES=V1 WI H V7 BY VS, V6 (2)

SUBTITLE 13. SUPPRESSOR VARIABLE EFFECTS'
 
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/ ENTER

V5/ENTER V6/ENTER VB
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/

ENTER V5/ENTER V8/ENTER V6
REGRESSION VARIABLES=V1 TO VB/DESCRIPTIVE=ALL/DEPENDENT=V1/ ENTER

V6/ENTER VB/ENTER VS

compute yhat1=-31.480230+(.584149*V5)+(.716902*V6)+(.328556*VB)

compute e1=V1-yhat1

correlations variables=V1 V5 V6 V8 yhat1 el/STATISTICS=ALL

PARTIAL CORR VARIABLES=Vl WITH V5 BY V6, V8 (2) 
PARTIAL CORR VARIABLES=Vl WITH V6 BY VS, V8 (2) 
PARTIAL CORR VARIABLES=Vl WITH V8 BY V5, V6 (2) 



 
 
 

 
 
 
 

 

  
     

 
 

     
    
    

    
   

   
   
   
   

 
  
 

 
 

 

   
  
  

   
 

  
  
  

  
  

   
   
   
   

  
  
 

 
 

 

             
                 

                               
                            

                                                   
   
 

 

 
 

        
    
               

              
                              

   
 
 

         
            
           
            

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Appendix B
 
Calculation of a Partial correlation coefficient
 

r12.3 regcom2.wk1 
(r12 -(r13 x r23))/((1- r13**2)**.5 x(1 - r23**2)**.5) 
(0.087836-{-0.37945 X 0))/((1- -0.37945**2)**.5 X(1 - 0**2)**.5)
{0.087836-(-0.37945 X 0))/((1- 0.143986)**.5 X(1 - 0)**.5)
(0.087836- 0 )/(( 0.856013 )**.5 X( 1 )**.5)
(0.087836 )/( 0.925209 X 1) 
0.087836 / 0.925209 
0.094936 

r14.3
 
(r14 -(r13 x r34))/((1- r13**')**.5 x(1 - r34**2)**.5)
 
(0.216955-(-0.37945 X 0))/((1--0.37945**2)**.5 X(1 - 0**2)**.5)

(0.216955-(-0.37945 X 0))/((1- 0.143986)**.5 x(1 - 0)**.5)

(0.2169 5- 0 )/(( 0.856013 )**.5 X( 1 )**.5)

(0.21695!5 )/( 0.925209 X 1)
 
0.216955 / 0.925209
 
0.234492
 

r24.3
 
(r24 -(r23 x r34))/((1- r23**2)**.5    x(1 - r34**2)**.5)
 
( 0-( 0 X 0))/((1- 0**2)**.5  X(1 - 0**2)**.5)
 
( 0-(    0 X 0))/((1- 0)**.5   X(1 - 0)**.5)

( o- 0 ) / ( (    1 )* /5   X( 1 )**.5)
 
( 	 0 ) / ( 1 X 1)


0 / 1
 
0
 

(r12.3 -(r14.3 x r24.3))/((1 - 14.3**2)**.5 x(1 -r24.3**2)**.5) 
(0.094936-(0.234492 x 0))/((1- 0.234492**2)**.5x{1- 0**2)**.5) 
(0.094936-(0.234492 x 0))/((1- 0.054986)**.5x(1- 0)**.5)
(0.094936- o )/(( 0.945013 )**.5x( 1 )**.5) 
(0.094936 )/(     0.972117 X 1)
0.094936 /	 0.972117 

Note. This partial correlation coefficient was derived using algorithms
5.2 and 5.3 from Pedhazur (1982, pp. 102 and 106, respectively). "**2" 
means raise to the second exponential power, i.e. , square. "**.5" 
means raise to the .5 exponential power, i.e., take the square root. 
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Appendix C

Calculation of a Semi-Partial (or Part) Correlation Coefficient
 

:r 1(2.34): = 	SQRT r2 1(2.34) = R2 1.234 - R2 1.34 
SQRT 0.00771 - 0.19877- 0.19106 
0.08781 

:r 1(3.24): = SQRT r2 1(2•34)= R2 1.234 - R2 1.24 
SQRT 0.14399 - 0. 19877- 0.05478 
0.37946 

:r 1(4.23): = SQRT r21(2•34) = R2 1.234 - R2 1.23 
SQRT 0.04707 = 0.19877- 0.15170 
0.21696 

:r 1(5.67): = SQRT r2 1(5•67) = R2 1.567 - R2 1.67 

SQRT 0.00474 = 0.49575- 0.49101 
0.06885 

:r 1(6.57): = SQRT r2 1(6•57) = R2 1.567 - R2 1.57 
SQRT 0.19567 = 0.49575- 0.30008 
0.44235 

:r 1(7.56): = SQRT r2 1(7.56) = R2 1.567 - R2 1.56 
SQRT 0.25443 = 0.49575- 0.24132 
0.50441 

:r 1(5.68): = 	SQRT r2 1(5.68) = R2 1.568 - R2 1.68 
SQRT 0.05576 = 0.54677- 0.49101 
0.23614 

:r 1(6.58): = SQRT r2 1(6•58) = R2 1.568 - R2 1.58 
SQRT 0.30769 = 0.54677- 0.23908 
0.55470 

:r 1(8.56): = SQRT r2 1(8•56) - R2 1.568 - R2 1.56 
SQRT 0.25110 = 0.54677- 0.29567 
0.50110 

Note. These absolute values of part correlations were derived using
algorithm 5.19 from Pedhazur (1982, p. 119). 
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