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Probability-Based Inference in a Domain

of Proportional Reasoning Tasks

Abstract

Educators and psychologists are increasingly interested in modeiling the processes
and knowledge structures by which people learn and solve problems. Progress has been
made in developing cognitive models in several domains, and in devising observational
settings that provide clues about subjects’ cognition from this perspective. Less attention
has been paid to procedures for inference or decision-making with such information, given
that it provides only imperfect information about cognition—in short, test theory for
cognitive assessment. This paper describes probability-based inference in this context, and

illustrates its application with an example concerning proportional reasoning,

Key words:  Bayesian inference, cognitive assessment, inference networks, multiple

strategies, proportional reasoning, test theory
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Introduction

The view of human leaming rapidly emerging from cognitive and educational
psychology emphasizes the active, constractive role of the learner in acquiring knowledge.
Learners become more competent not simply by learning more facts and skills, but by
configuring and reconfiguring their knowlcdge; by automating procedures and chunking
information to reduce memory loads; and by developing models and strategies that help
them discern when and how facts and skills are relevant. Educators have begun to view
school learning from this perspective, as a foundation for instruction in both the classroom
and intelligent computer-assisted instruction, or intelligent tutoring systems (ITSs).
Making educational decisions «ast in this framework requires information about students in
the same werms.  Glaser, Lesgold, and Lajoie state,

Achievement testing as we have defined it is a method of indexing stages of

competence through indicators of the level of development of knowledge,

skill, and cognitive process. These indicators display stages of performance

that have been attained and on which further learning can proceed. They

also show forms of error and misconceptions in knowledge that result in

inefficient and incomplete knowledge and skill, and that need instructional
attention. (Glaser, Lesgold, & Lajoie, 1987, 81)

Standard test theory is designed to characterize students in terms of their tendencies
to make correct answers, not in terms of their skills, strategies, and knowledge structures.
Yet generalizations of the questions that led to standard test theory arise immediately in the
context Glaser and his colleagues describe: How can we design efficient observational
settings to gather the data we need? How can we make and justify decisions? How do we
evaluate and improve the quality of our efforts? Without a conceptual framework for
inference, rigorous answers to these questions are not forthcoming,

This presentation addresses issues in model building and statistical inference in the

context of student modelling. The statistical framework is that of inference networks (e.g,
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Pearl, 1988; Andreassen, Jensen, & Olesen, 1990). Ideas are demonstrated with data from
a test of proportional reasoning, based on work by Noelting (1980a, 1980b). The
observed data are subjects’ compaﬁsons of mixtures of juice and water, and their
explanations of the strategies by which they arrived at their answers. The cognitive
framework builds on Béland’s (1989) structural analysis of the task component

relationships involved in their solution strategies.

Probability-based Inference in Cognitive Assessment

Comparing the ways experts and novices solve problems in domains such as
physics and chess (e.g., Chi, Feltovich & Glaser, 1981) reveals the central importance of
knowledge structures—interconnected networks of concepts referred to as “frames”
(Minsky, 1975) or “schemas” (Rumelhart, 1980)—that impart meaning to observations and
actions. The process of learning is, to a large degree, expanding these structures and,
importantly, reconfiguring them to incorporate new and qualitatively different connections
as the level of understanding deepens. Researchers in science and mathematics education
have focused on identifying key concepts and schemas in these content areas, studying
how they are typically acquired (e.g., in mechanics, Clement, 1982; in proportional
reasoning, Karplus, Pulos, & Stage, 1983), and constructing observational settings in
which students’ understandings can be inferred (¢.g., van den Heuvel, 1990; McDermott,
1984). A key feature of most of these studies is explaining patterns observed in learners’
problem-solving behavior in terms of their knowledge structures. Riley, Greeno, and
Heller (1983), for example, explain typical patterns of errors and correct answers in
children’s word problems in terms of a hierarchy of successively sophisticated procedural
models.

Once the relevance of states of understanding to instructional decisions is accepted,

one immediately confronts the fact that these states cannot be ascertained with certainty;




Probability-Based Inference
Page 3

they can be inferred only imperfectly from observauons of the students’ behavior.
Research in subject areas is beginning to provide observational situations (at their simplest
form, test items) that tap particular aspects of knowledge structures (¢.g., Lesh, Landau, &
Hamilton, 1983; Marshall, 1989). Conformable statistical models must be capable of
expressing the nature and the strength of evidence that observations convey about
knowledge structures. Two kinds of variables are thus invoived: those expressing
characteristics of an inherently unobservable student model, and those concerning q.  ties
of observable student behavior, the latter of which presumably carry information about the
former.

For the special case in which a student is adequately characterized by a single
unobservable proficiency variable, a suitable statistical methodology has been developed
within the paradigm of standard test theory, most notably under the rubric of item response
theory (IRT; see Hambleton, 1989). IRT posits a model for the probability of a correct
response to a given test item, as a function of parameters for the examinee’s proficiency
(often denoted 6) and measurement properties of the item. The IRT model provides the
structure through which observable responses to test items are related to one another and to
the unobservable proficiency variables. Item parameters specify the degree or strength of
relationships within that structure, by quantifying the conditional probabilities of item
responses given 8. Observed item responses induce a likelihood function for 6, opening
the door to statistical inference and decision-making models. The coupling of probability-
based inference with a simple student model for overall proficiency provides the foundation
for item development, test construction, adaptive testing, test equating, and validity
research—-all providing, of course, that “overall proficiency” is sufficient for the job at
hand.

Models connecting observations with a broader array of cognitively-motivated

unobservable variables have begun to appear in the psychometric literatuse. Table 1 offers

J
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a sampling. The approach we have begun to follow continues in the same spirit. In any
given implementation, the character of unobservable variables and the structure of their
int..elationships is derived from the structure and the psychology of the substantive area,
with tI"> £oal of capturing key distinctions among students. Probability distributions
charact.rize the likelihoods of potential observable variables, given values of the variables
in the unobservable student model. The relationship of the observable variables to the
unobservable variables characterizes the nature and amount of information they carry.

[Insert Table 1 about here]

Of particular importance is the concept of conditional independence: a set of
variables may be interrelated in a population, but independent given the values of another
set of variables. In cognitive models, relationships among observed variables are
“explained” by inherently unobservable, or latent, variables. Pearl (1988) argues that
creating such intervening variables is not merely a technical convenience, but a natural

ciement in human reasoning:

“...conditional independence is not a grace of nature for which we must wait
passively, but rather a psychological necessity which we satisfy actively by
organizing our knowledge in a specific way. An important tool in such
organization is the identification of intermediate variables that induce
conditional independence among observables; if such variables are not in
our vocabulary, we create them. In medical diagnosis, for instance, when
some symptoms directly influence one another, the medical profession
invents a name for that interaction (e.g., ‘syndrome,’ ‘complication,’
‘pathological state’) and treats it as a new auxiliary variable that induces
conditional independence; dependency between any two interacting systems
is fully attributed to the dependencies of each on the auxiliary variable.”
(Pearl, 1988, p. 44)

10
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Inference Networks

A heritage of statistical inference under the paradigm described above extends back
beyond IRT, to Charles Spearman’s (e.g., 1907) early work with laient variables, Sewell
Wright's (1934) path analysis, and Pau} Lazarsfeld’s (1950) latent class models. The
resemblance of the inference networks presented below to LISREL diagrams (Joreskog &
Strbom, 1989) is no accident! The inferentiai logic of test theory is built around
conditional probability relationships—specifically, probabilities of observable variables
given theoretically-motivated unobservable variables.

The starting point is a recursive representation of the joint distribution of a set of

random variables; that is,

p(X1s....Xn) = pXnlXn.1s-.-X1) PXKn1lXp2s---X1) -+ - p(X2IX1) P(X)

n
= [T p(XiXj1,0--X1)
j=1

(1
where the term for j=1 is defined as simply p(X1). A recursive representation can be
written for any ordering of the variables, but one that exploits conditional independence
relationships can be more useful. For example, under an IRT model with one latent
proficiency variable © and three test items, X3, X2, and X3, it is equuiiy valid to write

P(X1,X2,X3,0) = p(81X3,X2,X1) p(XslX2.X+ 1 4£2'X)) p(X1) 2)
or
p(xl’x2’x3,9) = P(x3lx2’xl,9) D(X2|X1,9) P(xlw) P(e) . (3)
But (3) simplifies to
P(X1,X2,X3,0) = p(X3l6) p(X2i0) p(X,116) p(6) , (4)

o , 1
ERIC

Full Tt Provided by ERIC.
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the form that hamesses the powver of IRT by expressing test performance as the
concatenation of conditionally independent item performances. More generally, (1) can be
re-written as

n
P(X1,....Xp) = H p(Xl“parents of X;"),
il s)

where {parents of Xj) is the subset of variables upon which X;j is directly dependent.

Corresponding to the algebraic representation of p(X1,...,Xp) in (5) is a graphical

representation— a directed acyclic graph (DAG). Each variable is a node in the graph;

ircoted arrows run from parents to children, indicating conditional dependence
relationships among the variables. In this paper we refer to such a structure or its graphical
representation as an inference network. Figure 1 shows the DAGs that correspond to (2)
and (4) in the IRT example. Note that the simplified structure is apparent only in the graph
for (4). A DAG does not generally reveal corditional independence relationships that might
arisz under alternative orderings of the variables.

[Insert Figure 1 about here)

Different fields of application emphasize different aspects of inference network
representations of systems of variables. In factor analyses of mental tests, for example,
one important objective is to find a “simple structure” representation of the relationships
among test scores, wherein each test has only a few fatent variables as parents (e.g.,
Thurstone, 1947). In sociological and economic applications, path analysis is usec to sort
out the direct and indirect effects of selected variables upon others (¢.g., Blalock, 1971).
In animal husbandry, where genotypes are latent nodes and inherited characteristics of
animals are observable, interest lies in the predicted distribution of characteristics of the
offspring of potential matings (e.g., Hilden, 1970). In medical diagnosis, disease states

and syndromes are unobserved nodes, while symptoms and test results are potential

12
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observables; ascertaining the latter guides diagnosis and treatment decisions (¢.g.,
Andreassen, Jensen, & Olesen, 1990).

The latter arenas have sparked interest in calculating distributions of remaining
variables conditional on observed values of a subset. If the topology of the DAG is
favorable, such calculations can be carried out in real time in large systems by means of
local operations on small subsets of interrelated variables (“cliques”) and their intersections.
The interested reader is referred to Lauritzen and Spiegelhalter (1988), Pearl (1988), and
Shafer and Shenoy (1988) for updating strategies, a kind of generalization of Bayes
theorem. The calculations for the following example were carried out with Andersen,
Jensen, Olesen, and Jensen's (1989) HUGIN computer program.

The point of this presentation is that inference networks can be constructed around
cognitive student models. The analogy to medical applications is sketched in Table 2. A
key aspect of the correspondence is the flow of diagnostic reasoning: Theory is expressed
in terms of conditional probabilities of observations given theoretically suggested
unobservable variables, and it is from this direction that the inference network is
constructed. Reasoning in practical applications flows in the opposite direction, as
evidence from observations is absorbed, to update belief about the unobservable variables.
This necessity of bidirectional reasoning stimulates interest in probability-based inference,
as accomplished by the generalizations of Bayes Theorem mentioned above.

[Insert Table 2 about here]

An Inference Network for a Set of Juice-Mixing Tasks

Proportional reasoning is a tcpic of great current interest among mathematics and science
educators, because it constitutes perhaps half of the middle school mathematics curriculum, and is
a prerequisite for quantitative aspects of the sciences as well as advanced topics in mathematics.

There is consequently considerable research on this topic among the communities of both

[d
‘
ot
.Y 13
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developmental psychology (e.g., Inhelder & i'iaget, 1958; Siegler, 1978) and the psychology of
mathematics education (e.g., Romberg, Lamon, & Zarinnia, 1988). The network presented here is
based on a program of research on the development of proportional reasoning represented by
Noelting (1980a; 1980b) and Béland (1990). According to this conceptual framework, subjects’
cogritive strategies are explained i:. terms of the relationships they address vis a vis the structural
properties of the items. Development is viewed as a progression through qualitatively distinct
levels of understanding.

In order to study the concept of proportion, a basic test of twenty items was
devised. Each consisted of predicting the relative taste of two drinks, labeled A and B,
which comprised varying numbers of glasses of juice and glasses of water. Each mixture
defined an ordered pair, that is (a, b) for the drink labeled A, and (c, d) for the drink
labeled B. The first term in each pair defined the number of glasses of juice and the second
term defined the number of glasses of water, as shown by the example in Figure 2. In the
test, the child had to decide if either A or B would taste juicier, or if both drinks would taste
the same. The subjects also had to explain the reasons for their choices by writing a
detailed explanation of how they had solved each problem. A total number of 448 subjects,
ranging from fourth graders to university freshman, were assessed. Instructions were
given and data collected in class groups. The order of item presentation was randomized
for each child. To assure that the task was understood, sample items were solved by the
classes.

[Insert Figure 2 about here]

An item’s components were differentiated as being the varying quantities of juice glasses,
which defined the attribute, and water glasses, which defined the complement, in each pair, When
a subject attempted to solve an item by constructing transformations between similar terms in both
pairs, that is, either between the attribute or the complement in both mixtures, then the relationships

were described as scalar. On the other hand, when the transformations were constructed between

14
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the complementary terms within each pair, that is, between the attribute and the complement in a
mixture, then the relationships were described as functional. Three qualitatively distinct ordered
levels (listed below) were defined as a set of additive and multiplicative relations among the values
of these terms. These levels characterize both items and solution strategies: solution strategies, in
terms of the kinds of transformations and comparisons they involve; items, by virtue of their
structure, in terms of the minimal level required for a correct understanding of the problem. The
fact that some strategies led to success with items at one level, but to failure with items at higher
levels, indicates a structural discontinuity between these levels. This implies that the transition
between these levels involves restructuring, or reconceptualizing, the relationships among task
components, in response to the structural properties of the items. The three levels of
understanding are as follows.

. Level 1, the preoperational level, is characterized by the differentiation and
coordination of scalar and functional relationships. For example, one justification
for solving the item (2,1) vs. (3,4) was: “Mixture A tastes juicier because the
number of juice glasses is greater than the number of water glasses. By
comparison, mixture B tastes less juicy because the quantity of water glasses is
greater than juice glasses.” '

’ Level 2, the concrete operational level, is characterized by the construction of an
equivalence class. For example, to solve the item (2,6) vs. (3,9), the typical
justification for the functional operator was: “Both drinks taste alike because there is
o.ie glass of juice for three glasses of water, which defines the ratio 1:3 in both
pairs.”

. Level 3, the formal operatienal level, is characterized by the construction of a
combinatorial system, building upon the concepts from the previous levels. An
item is solved cither by the between state ratios (common denominator) or the

within state ratios (percentage). For example, when a ratio strategy was used to
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solve (3,5) vs. (2,3), the typical justification was: “In Mixture A there are three

glasses of juice for five glasses of water, a ratio of 9:15. In Mixture B the ratio is

10:15 juice to water. Therefore, B tastcs juicier.”

The gradual extension of these structures, through exercise and practice, leads to the
consolidation of the cognitive strategies as they are applied to solve the increasing complexity of
the items within a level. This progression was defined as stage within level. Three successive
stages, denoted as a, b, and c, were defined within each level. Table 3 summarizes the stages
within levels. The reader is referred to Béland (1990) for additional detail and discussion.

[Insert Table 3 about here]

An Overview of the Network

An inference network was constructed on the basis of the data described above,
addressing subjects’ optimal cognitive stage x level, or the highest stage and level at which
they were observed to perform during the course of observation, and the details of their
responses to three items, one at each level. This section introduces the network. The
following section describes the variables in more detail, and discusses the specification of
conditional probabilities. The section after that gives examples of reasoning from
observations back to cognitive levels.

The network addresses the three items shown in Figure 3, which appeared as 3, 8,
and 17 in the master list. Item 3, (2,1) vs. (3,4), is a level 1 item, since it can be correctly
solved by a level 1 strategy: Mixture A has more juice than water, while B has more water
than juice. Item 8, (2,6) vs. (3,9), is a level 2 item, since it requires the construction of an
equivalence class. Item 17, (3,5) vs. (2,3), is a level 3 item, since a solution that correctly
attends to its structure must, in some way, compare ratios.

[Insert Figure 3 about here)

16
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The 21 variables in the network are listed below, with the number of possible
values each variable can take in parentheses. Detailed descriptions appear in the following
section.

X;  Optimal cognitive level (3).

Xo  Stage within optimal level (3).

X3  Optimal stage x level (9).

X4j  Strategy employed on Item j, for j=3, 8, and 17 (10 per item).
Xsj  Procedural analysis for Item j (4 per item).

Xe6j Understanding of structure of Item j (2 per item).

X7j  Solution of Item j (2 per item).

Xgj Response choice onItem j (3 per item).

Xoj  Objective correctness of response choice on Item j (2 per item).

Without constraints, the joint distribution of the variables listed above would be
specified as a probability for each of the 3x3x9x(10x4x3x2x2x2)3 possible combinations

of values-—about 7x1010 of them. Under the assumed network, however,

p(X1,X2,X3,X4,3.X4,8.X4,17,---.X9,3,X9,8,X9,17)

= p(Xl) p(Xz'Xl) p(X3|X2,X1)

x [T p(XajiX3) p(XsiXaj) p(X1X5) P(X 71X 5)) p(X 8/ X 55, X4j) P(X 93l Xs;)
j (6)

As examples, (6) implies conditional independence of item responses, X4 3, X4,8, and X417,
given a subject’s optimal cognitive stage x level, X3 (although we discuss below relaxing this
assumption to account for processes that characterize the adaptive quality of children’s strategy
choices during the course of testing); and conditional independence of the correctness of the
response choice for Item j, Xoj, from all other variables given the identity of that response choice,
Xsg;j. The most complex of these local relationships in {6) involves only three variables, and the

total number of distinct probabilities needed to approximate the full joint distribution is 3+9+81+

17
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3(90+40+120+8+8+6), or 909. As we shall see, many of these relationships are logical rather
than empirical, and can be specified without recourse to data.

Figure 4 is the DAG corresponding to (6). Figure 5 is a similar graph from HUGIN,
exhibiting for each node the baseline marginal distribution for each variable with bars representing
the probabilities for each potential value of a variable. These population base rates were
established from the responses of all subjects, as described in the next section. Figure 5 represents
the state of knowledge one would have as a new subject from the same population is introduced.
As she makes responses, the relevant nodes will be updated to reflect certain knowledge of, say,
the correctness of 2 response or the strategy level used to justify it. This would be represented by a
probability bar extending all the way to one for the observed value. This information updates (still
imperfect) knowledge about her optimal cognitive level, and expectations about what might be
observed on subsequent items.

[Insert Figures 4 and 5 about here]

Instantiating the Network

The initial status of the network is the joint distribution of all the variables. It is specified
via (6) in terms of the baseline distribution of any variables without parents, and the conditional
distributions of each of the remaining variables given its parents. Béland’s classifications of all
response explanations of all subjects into stage x level categories were employed, and treated as
known with certainty.! Explanations of the variables and discussions of the conditional

probabilities associated with each follow.

1 A small proportion of the response strategies could not be classified, because subjects’ explanations were
cither omitted or incomprehensible. These responses were not useful in determining a subject’s highest
strategy level, but they were included in the following analyses, with “undifferentiated” as a potential value
of strategy choice. The proportions for Iiems 3, 8, and 17 were 2%, 1%, and 11% respectively,

18
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X1; Optimal cognitive level. Each subject was classified as to the stage and level of
his or her highest level solution strategy, based on Béland’s analyses of all twenty of their
response explanations. X denotes their highest level, collapsing over stages within levels.
Because it has no parents, we need specify only population proportions: .08 for Level 1,
.45 for Level 2, and .47 for Level 3.

X»: Stage within optimal Jevel. X7 breaks down stage membership within levels, so X is
its parent. Empirical proportions were employed, leading to the values shown in Table 4. Again
these values are based on Béland’s classification. Among the subjects whose highest observed
level of solution strategy was Level 2, for example, what proportions of these highest strategies
were at Stages a, b, and ¢ of Level 2? Stages are meaningful only within levels, so the marginal
distribution of X7 that appears in Figure 5 is not very useful. If X; were fixed ata particular value
of level, however, the resulting marginal distribution for X2 would be meaningful, taking the
values from the appropriate row of Table 4.

[Insert Table 4 about here]

X3; Optimal stage x level. X3 is the detailed categorization of subjects into mutually
exclusive and exhaustive categories, in terms of ievels and stages. It has as parents both level, X1,
and stage within level, X2. The specification of conditional probabilitics under this arrangement is
logical rather than empirical: The conditional probability of a given stage-within-level value is 1
only if X and X3 take the appropriate values, othcrwisé, the conditional probability is zero. This
can be seen in Figure 6, where conditioning on X3=3b leads to probabilitics of one for Level=3
and Stage-within-level=b. Actually no information would be lost by having X) and X but not X3
in the model, or X3 but not X; and X3. We have included all of them for interpretive convenience;
for example, X is useful for summarizing the “level” information in X3, whereas the values for

X3 lic at the same leve] of detail as those of the Item Strategy variables described below.
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Under the “dialectical constructivist” developmental model sketched above, a subject’s
optimal structure level defines the repertoire of strategies available for solving a given item, as
constructed through the changes and transformations that the sub jects generated during the course
of testing. That is, the optimal state of understanding was censtructed by the learners through a
series of mental operations that defined the successive levels of conceptualization elaborated to seek
the structural properties of the item. Consequently, the optimal structure was not necessarily
operationalized before the subjects undertook the .usk. The dynamics of this process are not
modelled in the present example, but will be discussed below. Conversely, the strategy required to
solve a given problem was not ultimately at the same level as the subject’s optimal stage x level,
even when that level has been attained. This observation is taken into account in the present
model, through the conditional probability matrices for the following item strategy variables.

[Insert Figure 6 about here]

X4j: Strategy employed on Item j (=3, 8, 17). In addition to subjects’ optimal strategy

stage x level, the particular strategies they employed in the three exemplar items were classified
according to stage x level, constituting the variables X4j. The additional value, abbreviated “Ud”
in the HUGIN diagrams, stands for “Undifferentiated;” these are the responses which could not be
classified. The X4j variables are modelled as conditionally independent, given their common
parent X3, optimal cognitive level. The conditional probability matrices are presented in Table 5.
The following features are noting:
. With a few exceptions, a strategy at any level could be applied to any item. A small
nuraber of “logical zeros” appear when the conceptual elements in a given strategy
class had no possible correspondents in the structure of an jtem (c.g.,a 2b strategy

for Item 17).
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. The entire upper right triangle of each matrix is filled with “logical zeros.” By
definition, it is not possible to observe a response strategy at a higher stage x level
than a subject’s optimal stage x level.

. The lower left triangle of each matrix was estimated empirically for the most part,
by simply entering the proportion of subjects classified in a given optimal stage x
level who were classified as employing each of the response strategies for a given
item. Probabilities that were logically possible but empirically zero were replaced
by small positive probabilities. It can be seen that considerable variation in strategy
choice on a given item often existed among subjects with the same optimal level.
Among subjects whose optimal stage x level was 3b, for example, about half
employed this powerful strategy for the more simply structured Item 8, while about
40% adapted their strategies to the structure of the item and employed a “minimally
sufficient” strategy at level Zb. This information appears graphically in Figure 6.

[Insert Table 5 about here]

Xsj.rocedural analysis for Item j. These variables summarize the results of the

matchups between cognitive strategies and qualitative outcomes. The four possible values
are “Success,” in which a strategy at the same level as (isomorphic to) the item, or higher,
was successfully employed; “Strategic error,” in which a strategy was employed which
failed to account for the item’s structure; “Tactical error,” in which a strategy appropriate to
the item structure was employed but not successfully executed; and “Computational error,”
in which the attempt would have been a “Success” except for an error in numerical
calculations. The respective X4j variables are the parents. Conditional probabilities
corresponding to “Strategic error” are logical, since this outcome is necessary if a strategy

that is insufficient vis a vis the item structure is applied, and impossible if a sufficient
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strategy is applied.? In the latter case, conditional probabilities are apportioned among
“Success,” “Tactical error,” and “Computational error.” Table 6 lists the conditional
probability values.

[Insert Table 6 about here]

Xej: Understanding of structure of Item j. These variables simply collapse from

their parents, the Xs;s, into the dichotomy of “Understood” or “Misundersiood” the
structural pre perties of the item. In each case, the conditional probability matrix is logical:
the probability for “Understood” is one if the procedural analysis is “Success,” “Tactical
error,” or “Computational error,” and zero otherwise; the probability for “Misunderstood”

is one if the procedural analysis is “Strategic error,” and zero otherwise.

X7j.Solution of Item j. Each of these vgm’ables is an alternative collapsing of the
corresponding Xs;, into the dichotomy of “Succeed” or “Failed.” “Failed” occurs if the
procedural analysis takes the value of “Strategic error,” “Tactical error,” or “Computational

error.” “Success” signifies a correct response through an appropriate strategy.

Xs;: Response choice on Item j. These variables are the actual values of subjects’
response choices: Mixture A juicier, Mixture B juicier, or equal. The parents of Xg; are
X4j, strategy, and Xs;, procedural analysis. That is, conditional on a particular choice of
strategy and the way it is applied on a given item, what are the probabilities of each of the
three potential response choices? Table 7 gives the conditional probability table for Item 17
as an example. Recall that whenever a strategy level is insufficient for an item’s structure,
that strategy level for X4jand “Success” for Xs; cannot co-occur. This fact is accounted

for in the conditional probability matrix for Xs;j given X4, so the corresponding row in Xgj

2 One exception: two distinct strategies are classified as 1b; one is appropriate for Item 3 but the other is

not.
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is moot. Entries of equal probabilities appear as spaceholders. Other combinations that
were not logically impossible but which few or no subjects exhibited were assigned
conditional probabilities that reflected Béland’s judgement about likely outcomes, o, if
there were no basis for such judgements, equal conditional probabilities.

[Insert Table 7 about here]

Xo;: “Objective” correctness of response on Itemj. These variables indicate

whether the choices specified in Xg; are in fact correct—regardless of how they have been
reached. We refer to these as “objective” responses because they are typically the only
observaticns that are available in standard multiple-choice “objective” educational tests. In
thiat context they are thought of as “noisy” versions of the Xgjs. The conditional
probabilities are logical: for “Correct,” the choice that happens to be correct for that item is

assigned one and the other two are assigned zero; vice versa for “Incorrect.”

Absorbing Evidence

The construction of the network described in the preceding section exemplifies reasoning
from causes to effects, as it were. The initial status shown as Figure 5 represents our state of
knowledge about a new iidividual from the same population, beliefs about her likely responses to
the sample items and the optimal stage x level we might expect to observe over the course of the
twenty-item test. Once she begins to respond, we update our knowledge about observed variables
directly, and about still unobserved variables probabilistically. This section offers some examples
of how observations update beliefs, particularly with regard to X1, “optimal cognitive level,” and
X7, “optimal stage x level.” We focus on some interesting contrasts among the strength and nature
of various obscrvations for inferring subjects’ cognitive levels.

Recall that these data provide two distinct pieces of evidence on each item, a response
choice and an explanation, A first example illustrates a distinction between the value of evidence

from the two. Figure 7 shows the network after an incorrect response has been observed to Item
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17. The updated status of Xs,17, the “Structure understood?” variable for Item 17, indicates an
88% probability that this occurred because of an insufficient strategy and 12% due to inaccurate
execution of a sufficient strategy, with probabilities of particular strategy levels shown in X417,
the “Item strategy” variable for Item 17. Initial beliefs for cognitive levels 1, 2, and 3 in X of 8%,
45%, and 47% have shifted down to 13%, 54%, and 33% (c.f. Figure 5). Expectations for
correct responses and understandings of Items 3 and 8 have also been downgraded. Figure 8
shows the additional updating that occurs if we learn this incorrect response was arrived at by a
strategy at level 3b, the level isomorphic to the item. Probable explanation for the failure is 20%
tactical error, 80% computational error. Belief about overall cognitive level is concentrated on
Level 3, and expectations for correct Tesponses to remaining items increase beyond their initial
status.

[Insert Figures 7 and 8 about here]

As mentioned above, correct answers to multiple-choice items are typically taken as
proxies for correct understandings in educational testing. Test developers avoid items with
high “false positive” rates, or probabilities of correct answers by chance or by incorrect
reasoning. Figure 9 reveals that Item 17 is just such an item. Of the subjects who
responded with the correct choice, fewer than half did so with a strategy that accounted for
the true structure of the item! In particular, a quarter of the correct responders employed a
level 1b strategy: (3,5) is less juicy than (2,3) because (3,5) has more water. For this
Teason, a correct response on Item 17 shifts beliefs about optimal level upward only
slightly. A correct explanation, on the other hand, would immediately establish certain
belief at Level 3.

In contrast, Item 8 is a good multiple-choice item by test theoretic standards.

Figure 10 shows that the overwhelming majority of subjects who answered correctly did so
through a correct understanding of the equivalence-class structure of the item.

Interestingly, posterior beliefs shift substantially to level 3 even though only a level 2
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strategy is required for correct understanding. This is because nearly all the subjects whose

optimal level was 3 understood the structure of Item 8, while less than half of those whose
optimal level was 2 did. To further identify whetiier a correct responder had level 2 or level
3 as an optimal cognitive level would require additional information, such as checking the
Item 8 explanation to see if it employed a level 3 strategy (if not, the probability for level 3 -
would be reduced but not eliminated), or presenting a level 3 item not so prone as Item 17
to false positives (an incorrect response would shift belief to level 2, a correct one to level
3). We note in passing that the second of these options is conditionially independent of the
Item 8 choice, given optimal level, whereas the first is not. The DAG (Figure 4) indicates
the potential confounding or overlap of information about optimal level from multiple
aspects of 4 response 10 a given item, due to the presence of the shared “Item strategy”
variables linking aspects of information from the same item. One avoids “double
counting,” or overinterpreting partially redundant information by acting as if it were
independent, by properly accounting for the inferential structure of the observations, as
demonstrated in this example.

[Insert Figures 9 and 10 about here]

The question of which observation to secure next is addressed by a serics of “what
if”” experiments—a preposterior analysis, in Bayesian terminology. Ata given state of
knowledge, one can run through the values of a yet unobserved variable, summing the
information (in terms of, say, reduced entropy or decreased loss) at each with weights
proportional to their predicied probability under current beliefs. The next observation can
then be selected to be optimal, in terms of, say, reducing expected loss or reducing
expected entropy for a particular unknown variable. This is a straightforward application
of statistical decision theory (Raiffa & Schlaifer, 1961).

N
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Comments on the Example

This network provides a simple demonstration compared to the range of potential
applications for probabilistic inference about cognitive student models. It does illustrate, however,
probability-based reasoning built around structural relationships among cognitive strategies and the
qualitatively different states of knowledge under a theory for the acquisition of proportional
reasoning.

One of the limitations of this model is that it only provides an explanation of the
individual’s knowledge organization for a single ability. Consequently, one next step in
development might be broadening the scope of the model to accommodate more than one ability-—
for example, proportional reasoning in a different domain, or something more disparate such as
spatial visualization or short-term memory capacity. This can be accomplished by analyzing the
structural relationships among individuals’ state of learning in different domains. From the
cognitive researcher’s point of view, an interesting outcome of this study is that it opens up new
avenues of exploration in the research of mechanisms and/or processes that lead to the construction
of knowledge. Such efforts might create new Perspectives for a test theory based on cognitive
models. The inferential machinery explored here complements the skill lattice theory Haertel and
Wiley (in press) propose as a basis for constructing educational achievement tests.

A more serious limitation is the treatment of subjects’ cognitive state. Optimal level
was operationalized in the network as the highest strategy level that a subjest employed
during the course of observation. This is appropriate for inferring the likelihood of a
subject’s highest level in the entire set knowing just a selected subset of responses. It only
tells the whole story, however, under the assumption that a subject’s likelihoods of
response remained constant over the course of testing—that is, that a subject’s toolkit of
available cognitive strategies remains unchanged during testing. There is evidence ihat this
is not the case. Cases have been observed in which a subject’s previously highest level

strategy proves inadequate for a subsequent item, the subject recognizes its inadequacy,
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and, in response to the structure of the item, adapts or extends previous strategies or
devises new concepts and strategies. Indeed, selecting an item most likely to provoke this
kind of restructuring lies at the essence of cognitive-based instruction (vosniadou &
Brewer, 1987)!

The data from which the inference network described above was constructed would
support an analysis of thié phenomenon, and such work is currently in progress. Figure
11 sketches one direction in which the network described above might be extended to
capture key aspects of it. Rather than a single variable expressing a subject’s cognitive
status throughout the test, there is a distinct variable for cach item presented. Cognitive
status as it is in effect for Item j depends on the individual’s cognitive status as it was
before the item was presented and on the structure of Item j itself. The probability that
assimilation or accommodation may occur from this interplay is expressed in a new
“cognitive processes” variable. We would expect probabilities of adaptive restructuring to
be essentially zero when the structure of the item lies below the subject’s entering level and
low when the item structure is far above her entering level, but maximal when the item lies
just beyond what she has been able to hqndlc up to that point.

[Insert Figure 11 about here]

Discussion
A host of practical issues must be addressed in exploring the applicability of
probability-based inference, via inference networks, to cogaitive assessment. We conclude
by mentioning a number of them.
More ambitious student models. ‘The proportional reasoning network discussed
above has a very simple representation at its deepest level—a single “optimal level” variable
entailing a class of available concepts and strategies. Our challenge was to model the

structure of uncertain, partially redundant, sometimes conflicting evidence that observations
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convey about the deep variable. A single deep variable is obviously too simple for many

practical applications, and we must explore ways to implement student models with many

descriptors of knowledge structures, multiple strategy options, and metacognitive and/or
affective variables.

The assumed completeness of the network. The inference networks we have
discussed are closed systems, which presume to account for all relevant possibilities; i.c.,
the space of student models is complete. In any application we can hope at best to model
the key features distinguishing learners, certainly missing differences that will impact
behavior. These differences are modelled as random variation. How does this affect
inference? Can we build networks in such a way as to identify unexpected patterns, and to
minimize resulting inferential errors?

The nature of student models. Our basic idea is to provide for probabilistic
reasoning from observations to student models. This idea can be entertained for any type
of student models, but certainly it will prove more useful for some types of student models
than others. Characteristics of student models that need to be explored in this connection
include model grain-size, and the distinctions between overlay vs. performance models
(Ohlsson, 1986), and static vs. dynamic models.

. Grain-size concerns the level of detail at which to model students. As Greeno
(1976) points out, “It may not be critical to distinguish between models differing in
processing details if the details lack important implications for quality of student
performance in instructional situations, or the ability of students to progress to
further stages of knowledge and understanding.” The grain-size of our example
was stage X level. A coarser model would address level only, while a finer model
might further differentiate strategies within stages within levels.

. An “overlay” approach to diagnosing knowledge in the context of intelligent

tutoring systemns builds a representation of an expert’s knowledge base, and infers

28



Probability-Based Inference
Page 23

from observed behavior where a student’s representation falls short (e.g., C.
Frederiksen & Breuleux, 1989). A “performance model” attempts to specify
correct and/or incorrect elements of knowledge and application rules in sufficient
detail to solve the same problems the student is attempting (e.g., VanLehn, 1990).
Our example was a probabilistic version of a simple performance model, as it
provides predictions of response probabilities for all items for subjects at all
modelled states.

. Static models assume a constant knowledge structure during the course of data-
gathering; dynamic models expect, and attempt to model, changes in the learner
along the way. The latter is obviously more ambitious, yet critical to applications
such as ITSs in which learning is expected. White and J. Frederiksen’s (1987)
QUEST system, for example, builds performance models in the domain of simple
electrical circuits; the process of instruction is viewed as faciliiating the evolution of
models, successively shaping student understanding toward that of an expert.
Kimball’s (1982) calculus tutor utilizes an approach that might be generalized: A
student model is built under an assumption of statis during a problem, but the prior
distribution for the next problem is modified to reflect the outcome of the experience
and a reinforcement model. Our example was static; Figure 11 sketched one
possible dynamic extension.

- Decision-making and prediction. In the context of medical diagnosis, Szolovits and
Pauker (1978, p. 128) point out the necessity of “...introducing some model of disease
evolution in time, and dealing with treatment, as diagnosis is hard to divorce from therapy
in any practical sense.” In the context of education, we are concerned with learning and
instruction. The Bayesian inferential machinery, as a component of statistical prediction
and decision theory, is natural for this task. What is required is to extend a network to

prediction and decision nodes, and to incorporate utilities as well as probabilities into
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decision rules. Andreassen, Jensen, and Olesen (1990) illustrate these ideas with a simple
example from medical diagnosis. We must lay out the analogous extension in networks for
cognitive assessment.

Practical tools. While the inference network approach holds promise for tackling
class of problems in cognitive assessment, we are a long way from routinely engineering
solutions to particular members of that class. This requires a methodological toolkit of
generally applicable techniques and well-understood approaches. Building block models
and heuristics are useful, for example, so that each application need not start from scratch.
Foundational work on building-block models appears in Schum (1987). Work tailored to
the kinds of observational settings and the kinds of psychological models anticipated in
educational applications is required. And since simplifications of reality are inevitable, it is
important to learn about the consequences of various model violations, and to develop

diagnostic techniques for detecting serious ones.
Conclusion

The modelling approach sketched in this paper was motivated by the folowing
consideration:

Standard test theory evolved as the application of statistical theory with a
simple model of ability that suited the decision-making environment of most
mass educational systems. Broader educational options, based on insights
into the nature of learning and supported by more powerful technologies,
demand a broader range of models of capabilities—still simple compared to
the realities of cognition, but capturing patterns that inform a broader range
of instructional alternatives. A new test theory can be brought about by
applying to well-chosen cognitive models the same general principles of
statistical inference that led to standard test theory when applied to the
simple model. (Mislevy, in press).
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Probabilistic inference about cognitive student models via inference networks provides a
potential framework for a more broadly based test theory. Exploiting conceptual and
computational advances in statistical inference, the approach presents an opportunity to
extend the achievements of model-based measurement to educational problems cast in terms

of contemporary cognitive and educational psychology.
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Table 1
Test Theory Applications with a Cognitive Perspective

Mislevy and Verhelst’s (1990) mixture models for item responses when different
exaniinees follow different solution strategies or use alternative mentai models.

Falmagne’s (1989) and Hacnci’s (1984) latent class models for Binary Skills.
Students are modelled in terms of the presence or absence of elements of skill or
knowledge, and observational situations demand various combinations of them.,

Masters and Mislevy’s (in press) and Wilson’s (1989a) use of the Partial Credit
rating scale model to characterize levels of understanding, as evidenced by the
nature of a performance rather than its correctness. This incorporate into a
probabilistic framework the cognitive perspective of Biggs and Collis's (1982)
SOLO taxonomy for describing salient qualities of perform..nces.

Wilson’s (1989b) Saltus model for characterizing stages of conceptual
development, which model parameterizes differential patterns of strength and
weakness as learners progress through successive conceptualizations of 2 domain.

Yamamoto’s (1987) Hybrid model for dichotomous responses. This model
characterizes an examinee as either belonging to one of a number of classes
associated with states of understarding, or in a catch-all IRT class. The approach is
useful when certain response patterns signal states of understanding for which
particular educational experiences are known to be effective.

Embretson’s (1985) multicomponent models integrate item construction and
inference within a unified cognitive model. The conditional probabilities of solution
steps given a multifaceted student model are given by statistical structures
developed in IRT.

Tatsuoka’s (1989) Rule space analyses uses a generalization of IRT methodology
to define a metric for classifying examinees based on likely patterns of item

response given patterns of knowledge and strategies.



Table 2
Parallels between Inference Networks in Medical and Educational Applications

___M

Medical Applicati Educational Applicati
Observable symptoms, medical tests Test items, verbal protocols.

observers’ ratings, solution traces

Disease states, syndromes States or levels of understanding of
key concepts, available strategies

Architecture of interconnections based Architecture of interconnections based
on medical theory on cognitive and educational theory
Conditional probabilities given by Conditional probabilities given by
physiological models, empirical data, psychological models, empirical data,
expert opinion expert opinion

Y

ay



Table 3

Stages within Cognitive Levels
Level 1: Conceptual or preoperational
a Sole comparison of the number of juice glasses, the attribute in both pairs.

b Appraisal of the dilution effect of the water on the final taste of juice. From this,
the order of magnitude became a comparison of the number of water glasses, the
complement in both pairs.

c Construction of functional relations between the complementary terms in each pair,
establishing between relations in the pair of within relations first constructed.

Level 2: Concrete operational
a Use of the ratio “one glass of juice for one glass of water” to demonstrate that both

terms within each pair were equal.

b Joint multiplication of both terms within a pair or, otherwise, an operation of co-
multiplication. (Scalar operator; ¢.g., ”Both drinks taste alike because there is one
glass of juice for three glasses of water, which defines the ratio 1:3 in both pairs.”)

c Relationships formed between both terms of each pair, when the first term was
divided by the second. (Functional operator; ¢.g.,”The ratio of two glasses of juice
for six glasses of water is the same as one glass of juice for three glasses of water.
Three times the ratio 1:3 equal three glasses of juice for nine glasses of water.
Therefore both drinks taste alike.”)

vel 3: Formal tional
a Either a scalar or functional operator in the between or the within relations.

b Ratio treatment: The components of the relationships were the attribute and the
complement. (E.g., “In Mixture A there are three glasses of juice for five glasses
of water, a ratio of 9:15. In Mixture B the ratio is 10:15 juice to water. Therefore,
Mixture B tastes juicier.”)

c Fraction treatment: the components of the relationships were the attribute and the
quantity of liquid. (E.g., “In Mixture A, of a total of 8 glasses, 3 contain juice,
representing a fraction of 15/40. In Mixture B, of a total of 5 glasses, 2 were juice,
representing a fraction of 16/40. Therefore, Mixture B tastes juicier.”)

40




Table 4
Conditional Probabilities of Stages within Cognitive Levels

M

Stage within Level
Level a b c
1 000 612 388
2 582 345 073
3 145 567 188
41
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Table 5
Conditional Probabilities of Strategies given Optimal Cognitive Levels

M

Strategy Level of Response
Optimal
Level Ud. la 1b Ic 2a 2b 2 3a 3b 3
(Tte 3)
la 50 .50 .00 .00 00 .00 .00 .00 .00 .00
1b 08 .04 8 .00 .00 .00 .00 .0 .00 .00
Ic 01 .01 334 64 00 .00 .00 .00 .00 .0C
2a 01 .02 .37 .39 21 00 .00 .00 .00 .00
2b 01 01 .34 54 09 .01 .00 .00 .00 .00
2c 01 01 .39 .52 .06 .01 01 .00 .00 .00
3a 0l 01 20 .74 .02 01 .01 .01 .00 .00
3b 01 01 .02 21 .02 01 01 .01 .71 .00
3 01 .01 .01 .18 .02 .01 .01 .01 .10 .65

(Item 8)
la 50 .50 .00 .00 .00 00 .00 .00 .00 .00
1b 01 .04 95 .00 .00 .00 .00 .00 .00 .00
Ic 01 .02 96 .01 .00 .00 .00 .00 .00 .00
2a 0l .02 .58 .04 35 00 .00 .00 .00 .00
2b 01 .02 .32 .01 .31 .33 .00 .00 .00 .00
X 01 .02 06 .01 24 60 .06 .00 .00 .00
3a 01 02 .11 .01 08 74 02 .01 .00 .00
3b 01 01 0 .01 01 41 01 .01 .52 .00
i 01 01 01 01 01 29 .01 .01 .07 .57
(Item 17)
la 50 .50 .00 .00 00 .00 .00 00 .00 .00
1b 07 .01 92 00 .00 00 .00 00 .00 .00
1c 04 01 94 01 00 .00 .00 .00 .00 .00
2a 03 01 .43 06 47 00 00 .00 .00 .00
2b 01 .01 46 01 51 00 .00 .00 .00 .00
) 04 01 .13 .01 S50 00 31 .00 .00 .00
3a 04 01 .12 03 40 00 .28 22 .00 .00
3b 01 01 .01 01 04 00 .01 .01 90 .00
3c 01 o0 01 01 01 .00 .01 01 .18 .75

ERIC | 42
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Table 6
Conditional Probabilities of Procedural Analysis given Item Strategies

' mputation
Item Strategy Success Strategic Ermor  Tactical Error Error
(Item 3)
Ud .00 1.00 .00 .00
la .00 1.00 .00 .00
1b 75 20 .05 .00
Ic 98 .00 .02 .00
2a .85 .00 15 00
2b 98 . .00 01 .01
I 97 .00 .02 .01
3a 96 .00 .02 .02
3b 98 .00 .01 .01
3 .90 .00 .08 .02
(Item 8)
Ud .00 1.00 .00 .00
la .00 1.00 .00 .00
1b .00 1.00 .00 .00
Ic .00 1.00 .00 .00
2a .00 1.00 .00 .00
2b .98 .00 .01 .01
/v .00 1.00 .00 N0
3a 98 .00 .01 R
3b .98 .00 .01 .01
3c 96 .00 .02 .02
(Item 17)
ud .00 1.00 .00 .00
la .00 1.00 .00 .00
1b .00 1.00 .00 .00
Ic .00 1.00 .00 .00
2a .00 1.00 .00 .00
2b .00 1.00 .00 00
2 .00 1.00 00 .00
3a 70 .00 .10 20
3b 95 .00 01 04
3c 97 .00 .02 .01
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Table 7
Conditional Probabilities.of Item 17 Choice given Item Strategies and Procedural Analysis

W

Procedural Choice
Strategy Analysis Mixure A Mixture B Equal
Undifferentiated Success 33 33 33
Undifferentiated Strategic Error 13 12 15
Undifferentiated Tactical Error 33 33 33
Undifferentiated Computational Error 33 33 33
la Success 33 33 .33
la Strategic Error 98 .01 .01
la Tactical Error 33 33 33
la Computational Error 33 33 33
1b Success 33 33 33
1b Strategic Error ' 23 76 .01
1b Tactical Error 33 33 33
1b Computational Error 33 33 33
Ic Success » 33 33 33
Ic .. Strategic Error 01 .01 98
Ic Tactical Error 33 33 33
ic Computational Error 33 33 33
2a Success 33 33 33
2 Strategic Error .03 95 .02
2a Tactical Error . 33 33 33
2a Computational Error 33 33 33
2b Success 33 .33 33
2b Strategic Error 33 33 33
2b Tactical Error 33 .33 33
2b Computational Error 33 33 33
) Success 33 33 33
2c Strategic Error 01 .01 98
2 Tactical Error 33 33 33
2 Computational Error 33 33 o, 33
(continued)
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Table 7, continued
Conditional Probabilities of Item 17 Choice given Item Strategies and Procedural Analysis

i;maa EhOlOC

Strategy Analysis Mixture A Mixtwre B Equal
3a Success .00 1.00 .00
3a Strategic Error 33 33 33
3a Tactical Error .80 .00 .20
3a Computational Error S0 .00 50
3b Success .00 1.00 .00
3b Strategic Error 33 33 33
3b Tactical Error .50 .00 .50
3b Computational Error 38 00 .62
3 Success .00 1.00 .00
3 Strategic Error 33 .33 33
3 Tactical Error 90 .00 .10
3 Computational Error 70 .00 .30
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X, | 0

p(X1,X2,X3,0) = p(81X3,X2,X1) p(X3X2,X1) p(X2lX1) pX1)

@
Y
X

X, X

p(X1,X2,X3,8) = p(X110) p(X218) p(X3!0) p(v)

Figure 1

Graphical Representations in the IRT Example
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Which mixture will be more juicy—A, B, or both the same?

(2,1) (3,4)

Figure 2

A Sample Juice-Mixing Task
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Mixwre A Mixture B
@1 (3.4)

Item 3

Item 8

Item 17

Figure 3
Three Juice-Mixing Tasks
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