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Probability-Based Inference in a Domain

of Proportional Reasoning Tasks

Abstract

Educators and psychologists are increasingly interested in modelling the processes

and knowledge structures by which people learn and solve problems. Progress has been

made in developing cognitive models in several domains, and in devising observational

settings that provide clues about subjects' cognition from this perspective. Less attention

has been paid to procedures for inference or decision-making with such information, given

that it provides only imperfect information about cognitionin short, test theory for

cognitive assessment. This paper describes probability-based inference in this context, and

illustrates its application with an example concerning proportional reasoning.

Key words: Bayesian inference, cognitive assessment, inference networks, multiple

strategies, proportional masoning, test theory
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Introduction
The view of human learning rapidly emerging from cognitive and educational

psychology emphasizes the active, constructive role of the learner in acquiring knowledge.

Learners become more competent not simply by learning more facts and skills, but by

configuring and reconfiguring their knowltdge; by automating procedures and chunking

information to reduce memory loads; and by developing models and strategies that help

them discern when and how facts and skills are relevant. Educators have begun to view

school learning from this perspective, as a foundation for instruction in both the classroom

and intelligent computer-assisted instruction, or intelligent tutoring systems (ITSs).

Making educational decisions c.ast in this framework requires information about students in

the same terms. Glaser, Lesgold, andLajoie state,

Achievement testing as we have defined it is a method of indexing stages of

competence through indicators of the level of development of knowledge,
skill, and cognitive process. These indicators display stages of performance
that have been attained and on which further learning can proceed. They
also show forms of error and misconceptions in knowledge that result in
inefficient and incomplete knowledge and skilL and that need instructional

attention. (Glaser, Lesgold, &I..9joie, 1987, 81)

Standard test theory is designed to characterize students in terms of their tendencies

to make correct answers, not in terms of their skills, strategies, and knowledge structures.

Yet generalizations of the questions that led to standard test theory arise immediately in the

context Glaser and his colleagues describe: How can we design efficient observational

settings to gather the data we need? How can we make and justify decisions? How do we

evaluate and improve the quality of our efforts? Without a conceptual framework for

inference, rigorous answers to these questions are not forthcoming.

This presentation addresses issues in model building and statistical inference in the

context of student modelling. The statistical framework is that of inference networks (e.g ,

7
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Pearl, 1988; Andreassen, Jensen, & Olesen, 1990). Ideas are demonstrated with data from

a test of proportional reasoning, based on work by Noelting (1980a, 1980b). The

observed data are subjects' comparisons of mixtures of juice and water, and their

explanations of the strategies by which they anived at their answers. The cognitive

framework builds on Béland's (1989) stnictural analysis of the task component

relationships involved in their solution strategies.

Probability-based Inference in Cogniti ve Assessment

Comparing the ways experts and novices solve problems in domains such as

physics and chess (e.g., Chi, Feltovich & Glaser, 1981) reveals the central importance of

knowledge structaresinterconnected networks of concepts referred to as "frames"

(Minsky, 1975) or "schemas" (Rumelhart, 1980)that impart meaning to observations and

actions. The process of learning is, to a large degree, expanding these structures and,

importantly, reconfiguring them to incorporate new and qualitatively different connections

as the level of understanding deepens. Researchers in science and mathematics education

have focused on identifying key concepts and schemas in these content areas, studying

how they are typically acquired (e.g., in mechanics, Clement, 1982; in proportional

reasoning, Karplus, Pulos, & Stage, 1983), and constructing observational settings in

which students' understandings can be inferred (e.g., van den Heuvel, 1990; McDermott,

1984). A key feature of most of these studies is explaining patterns observed in learners'

problem-solving behavior in terms of their knowledge structures. Riley, Greeno, and

Heller (1983), for example, explain typical patterns of errors and correct answers in

children's word problems in terms of a hierarchy of successively sophisticated procedural

models.

Once the relevance of states of understanding to instructional decisions is accepted,

one immediately confronts the fact that these states cannot be ascertained with certainty;
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they can be inferred only imperfectly from observauons of the students' behavior.

Research in subject areas is beginning to provide observational situations (at their simplest

form, test items) that tap particular aspects of knowledge structures (e.g., Lesh, Landau, &

Hamilton, 1983; Marshall, 1989). Conformable statistical models must be capable of

expressing the nature and the strength of evidence that observations convey about

knowledge structures. Two kinds of variables are thus involved: those expressing

characteristics of an inherently unobservable student model, and those concerning

of observable student behavior, the latter of which presumably carry information about the

former.

For the special case in which a student is adequately characterized by a single

unobservable proficiency variable, a suitable statistical methodology has been developed

within the paradigm of standard test theory, most notably under the rubric or item response

theory (IRT; see Hambleton, 1989). IRT posits a model for the probability of a comet

response to a given test item, as a function of parameters for the examinee's proficiency

(often denoted 0) and measurement properties of the item. The IRT model provides the

structure through which observable responses to test items are related to one another and to

the unobservable proficiency variables. Item parameters specify the degree or strength of

relationships within that structure, by quantifying the conditional probabilities of item

responses given e. Observed item responses induce a likelihood function for 0, opening

the door to statistical inference and decision-making models. The coupling of probability-

based inference with a simple student model for overall proficiency provides the foundation

for item development, test construction, adaptive testing, test equating, and validity

researchall providing, of course, that "overall proficiency" is sufficient for the job at

hand.

Models connecting observations with a broader array of cognitively-motivated

unobservable variables have begun to appear in the psychometric literatwe. Table 1 offers
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a sampling. The approach we have begun to follow continues in the same spirit. In any

given implementation, the character of unobservable variables and the structure of their

int....elationships is derived from the structure and the psychology of the substantive area,

with tt- goal of capturing key distinctions among students. Probability distributions

charactuue the likelihoods ofpotential observable variables, given values of the variables

in the unobservable student model. The relationship of the observable variables to the

unobservable variables characterizes the nature and amount of information they carry,

[Insert Table 1 about here]

Of particular importance is the concept of conditional independence: a set of

variables may be interrelated in a population, but independent given the values of another

set of variables. In cognitive models, relationships among observed variables are

"explained" by inherently unobservable, or latent, variables. Pearl (1988) argues that

creating such intervening variables is not merely a technical convenience, but a natural

element in human reasoning:

U.
conditional independence is not a grace of nature for which we must wait

passively, but rather a psychological necessity which we satisfy actively by
organizing our knowledge in a specific way. An important tool in such
organization is the identificadon of intermediate variables that induce
conditional independence among observables; if such variables are not in
our vocabulary, we create them. In medical diagnosis, for instance, when
some symptoms directly influence one another, the medical profession
invents a name for that interaction (e.g., `syndrome,"complication,'
'pathological state') and treats it as a new auxiliary variable that induces
conditional independence; dependency between any two interacting systems
is fully attributed to the dependencies of each on the auxiliary variable."
(Pearl, 1988, p. 44)
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Inference Networks

A heritage of statistical inference under the paradigm described above extends back

beyond IRT, to Charles Spearman's (e.g., 1907) early work with latent variables, Sewell

Wright's (1934) path analysis, and Paul Lazarsfeld's (1950) latent class models. The

resemblance of the inference networks presented below to LISREL diagrams (Joreskog &

Sörbom, 1989) is no accident! The inferential logic of test theory is built around

conditional probability relationshipsspecifically, probabilities of observable variables

given theoretically-motivated unobservable variables.

The starting point is a recursive representation of the joint distribution of a set of

random variables; that is,

= p(X1-11Xn.2,...,X1)...1)(X2IX1) p(X1)

where the term for j=1 is defmed as simply p(Xi). A recursive representation can be

written for any ordering of the variables, but one that exploits conditional independence

relationships can be more useful. For example, under an IRT model with one latent

proficiency variable 0 and three test items, X1, X2, and X3, it is equally valid to write

Or

(1)

P(X1,X2,X3,0) = p(01X3,X2,X1) P(X31X2,X 1C29C1)1)(X1) (2)

p(X1,X2,X3,0) = p(X3IX21X1,0) p(X21X1,0) p(XII0) p(e) . (3)

But (3) simplifies to

p(Xi,X2,X3,0) = p(X316) p(X210) p(X110) p(0) , (4)

1 1
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the form that harnesses the power of MT by expressing test performance as the

concatenation of conditionally independent item performances. More generally, (1) can be

re-written as

.,Xn) = ri pArparents of Xj") ,
i=1

(5)
where (parents of Xj) is the subset of variables upon which N is directly dependent.

Corresponding to the algebraic representation of p(Xi,...,Xn) in (5) is a graphical

representation a directed acyclic graph (DAG). Each variable is a node in the graph;

dirxted arrows run from parents to children, indicating conditional dependence

relationships among the variables. In this paper we refer to such a structure or its graphical

representation as an inference network. Fig= 1 shows the DAGs that correspond to (2)

and (4) in the MT example. Note that the simplified structure is apparent only in the graph

for (4). A DAG does not generally reveal conditional independence relationships that might

arise under alternative orderings of the variables.

[Insert Figure 1 about here]

Different fields of application emphasize different aspects of inference network

representations of systems of variables. In factor analyses of mental tests, for example,

one important objective is to find a "simple structure" representation of the relationships

among test scores, wherein each test has only a few latent variables as parents (e.g.,

Thurstone, 1947). In sociological and economic applications, path analysis is uset'l to sort
out the direct and indirect effects of selected variables upon others (e.g., Blalock, 1971).

In animal husbandry, where genotypes are latent nodes and inherited characteristics of

animals are observable, interest lies in the predicted distribution of characteristics of the

offspring of potential matings (e.g., Hilden, 1970). In medical diagnosis, disease states
and syndromes are unobserved nodes, while symptoms and test results are potential
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observables; ascertaining the latter guides diagnosis and treatment decisions (e.g.,

Andreassen, Jensen, & Olesen, 1990).

The latter arenas have sparked interest in calculating distributions of remaining

variables conditional on observed values of a subset. If the topology of the DAG is

favorable, such calculations can be cazried out in real time in large systems by means of

local operations on small subsets of interrelated variables ("cliques") and their intersections.

The interested reader is referred to Lauritzen and Spiegelhalter (1988), Pearl (1988), and

Shafer and Shenoy (1988) for updating strateees, a kind of generalization of Bayes

theorem. The calculations for the following example werecarried out with Andersen,

Jensen, Olesen, and Jensen's (1989) 1-11.1GIN computer program.

The point of this presentation is that inference networks can be constructed around

cognitive student models. The analogy to medical applications is sketched in Table 2. A

key aspect of the correspondence is the flow of diagnostic reasoning: Theory is expressed

in terms of conditional probabilities of observations given theoretically suggested

unobservable variables, and it is from this direction that the inference network is

constructed. Reasoning in practical applications flows in the opposite direction, as

evidence from observations is absorbed, to update belief about the unobservable variables.

This necessity of bidirectional reasoning stimulates interest in probability-basal inference,

as accomplished by the generalizations of Bayes Theorem mentioned above.

[Insert Table 2 about here]

An Inference Network for a Set of Juice-Mixing Tasks

Proportional reasoning is a tcpic of great current interest among mathematics and science

educators, because it constitutes perhaps half of the middle school mathematics curriculum, and is

a prerequisite for quantitative aspects of the sciences as well as advanced topics in mathematics.

There is consequently considerable research on this topic among the communities of both

1 3
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developmental psychology (e.g., Inhelder & i'iaget, 1958; Siegler, 1978) and the psychology of

mathematics education (e.g., Romberg, Lamon, & Zarinnia, 1988). The network presented here is

based on a program of research on the development of proportional reasoning represented by

Noelting (1980a; 1980b) and B6land (1990). According to this conceptual framework, subjects'

cognitive strategies are explained it. terms of the relationships they address vis a vis the structural

properties of the items. Development is viewed as a progression through qualitatively distinct

lertls of understanding.

In order to study the concept of proportion, a basic test of twenty items was

devised. Each consisted of predicting the relative taste of two drinks, labeled A and B,

which comprised varying numbers of glasses of juice and glasses of water. Each mixture

defined an ordered pair, that is (a, b) for the drink labeled A, and (c, d) for the drink

labeled B. The first term in each pair defined the number of glasses of juice and the second

term defined the number of glasses of water, as shown by the example in Figure 2. In the

test, the child had to decide if either A or B would taste juicier, or if both drinks would taste

the same. The subjects also had to explain the reasons for their choices by writing a

detailed explanation of how they had solved each problem. A total number of 448 subjects,

ranging from fourth graders to university freshman, were assessed. Instructions were

given and data collected in class groups. The order of item presentation was randomized

for each child. To assure that the task was understood, sample items were solved by the

classes.

[Insert Figure 2 about here]

An item's components were differentiated as being the varying quantities of juice glasses,

which defined the attribute, and water glasses, which defined the complement, in each pair. When

a subject attempted to solve an item by constivcring transformations between similar terms in both

pairs, that is, either between the attribute or the complement in both mixtures, then the relationships

were described as scalar. On the other hand, when the transformations were constructed between

1 4
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the complementary terms within each pair, that is, between the attribute and the complement in a

mixture, then the relationships were described as functional. Three qualitatively distinct ordered

levels (listed below) were defined as a set of additive and multiplicative relations among the values

of these terms. These levels characterize both items and solution strategies: solution strategies, in

terms of the kinds of transformations and comparisons they involve; items, by virtue of their

structure, in terms of the minimal level required for a correct understanding of the problem. The

fact that some strategies led to success with items at one level, but to failure with items at higher

levels, indicates a structural discontinuity between these levels. This implies that the transition

between these levels involves restructuring, or reconceptualizing, the relationships among task

components, in response to the structural properties of the items. The three levels of

understanding are as follows.

Level 1, the preoperational level, is characterized by the differentiatkm

coordination of scalar and functional relationships. For example, one justification

for solving the item (2,1) vs. (3,4) was: "Mixture A tastes juicier because the

number of juice glasses is greater than the number of water glasses. By

comparison, mixt= B tastes less juicy because the quantity ofwater glasses is

greater than juice glasses."

Level 2, the concrete operational level, is characterized by the construction of an

equivalence class. For example, to solve the item (2,6) vs. (3,9), the typical

justificadon for the functional operator was: "Both drinks taste alike because there is

o.le glass of juice for three glasses of water, which defines the ratio 1:3 in both

pairs."

Level 3, theformal operational level, is characterized by the construction of a

combinatorial system, building upon the concepts from the previous levels. An

item is solved either by the between state ratios (common denominator)or the

within state ratios (percentage). For example, when a ratio strategy was used to

15
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solve (3,5) vs. (2,3), the typical justification was: "In Mixture A there are three

glasses ofjuice for five glasses of water, a ratio of 9:15. In Mixture B the ratio is

10:15 juice to water. Therefore, B tastcs juicier."

The gradual extension of these structures, through exercise and practice, leads to the

consolidation of the cognitive strategies as they are applied to solve the increasing complexity of

the items within a level. This progression was defined as stage within level. Three successive

stages, denoted as a, b, and c, were defined within each level. Table 3 summarizes the stages

within levels. The reader is referred to B6land (1990) for additional detail and discussion.

[Insert Table 3 about here]

An Overview of the Network

An inference network was constructed on the basis of the data described above,

addressing subjects' optimal cognitive stage x level, or the highest stage and level a, which

they were observed to perform during the course of observation, and the details of their

responses to three items, one at each level. This section introduces the network. The

following section describes the variables in more detail, and discusses the specification of

conditional probabilities. The section after that gives examples of reasoning from

observations back to cognitive levels.

The network addresses the three items shown in Figure 3, which appeared as 3, 8,

and 17 in the master list. Item 3, (2,1) vs. (3,4), is a level 1 item, since it can be correctly

solved by a level 1 strategy: Mixture A has more juice than water, while B has more water

than juice. Item 8, (2,6) vs. (3,9), is a level 2 item, since it requires the construction of an

equivalence class. Item 17, (3,5) vs. (2,3), is a level 3 item, since a solution that correctly

attends to its structure must, in some way, compare ratios.

[Insert Figure 3 about here]
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The 21 variables in the network are listed below, with the number of possible

values each variable can take in parentheses. Detailed descriptions appear in the following

section.

Xi Optimal cognitive level (3).

X2 Stage within optimal level (3).

X3 Optimal stage x level (9).

X4j Strategy employed on Item j, for j=3, 8, and 17 (10 per item).

X5i Procedural analysis for Item j (4 per item).

X6j Understanding of structure of Item j (2 per item).

X.i.i Solution of Item j (2 per item).

X8j Response choice on Item j (3 per item).

X9ti Objective correctness of response choice on Item j (2 per item).

Without constraints, the joint distribution of the variables listed above would be

specified as a probability for each of the 3x3x9x(10x4x3x2x2x2)3 possible combinations

of valuesabout 7x1010 of them. Under the assumed network, however,

p(Xi,X2,X3,X4,31X4,8,X4,17, ,X9,3,X9,8,X9,17)

= p(Xi) p(X21X1)p(X31X2,X1)

x ri p(X4J1X3)p(X5j1X4j)p(X6i1X5j)p(X7j1X5i) p(X8JIX5J,X4i)p(X9A8J)

i (6)

As examples, (6) implies conditional independence of item responses, X4,3, X4,8, and X4,17,

given a subject's optimal cognitive stage x level, X3 (although we discusa below relaxing this

assumption to account for processes that characterize the adaptive quality of children's strategy

choices during the course of testing); and conditional independence of the correctness of the

response choice for Item j, X9j, from all other variables given the identity of that response choice,

X8j. The most complex of these local relationships in (6) involves only three variables, and the

total number of distinct probabilities needed to approximate the full joint distribution is 3+9+81+

1 7
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3(90+40+120+8+8+6), or 909. As we shall see, many of these relationships are logical rather

than empirical, and can be specified without recourse to data.

Figure 4 is the DAG corresponding to (6). Figure 5 is a similar mph from HUGIN,

exhibiting for each node the baseline marginal distribution for each variable with bars representing

the probabilities for each potential value of a variable. These population base rates were

established from the responses of all subjects, as described in the next section. Figure 5 represents

the state of knowledge one would have as a new subject from the same population is introduced.

As she makes responses, the relevant nodes will be updated to reflect certain knowledge of, say,

the correctness of a response or the strategy level used to justify it. This would be represented by a

probability bar extending all the way to one for the observed value. This information updates (still

imperfect) knowledge about her optimal cognitive level, and expectations about what might be

observed on subsequent items.

[Insert Figures 4 and 5 about here]

Instantiating the Network

The initial status of the network is the joint distribution of all the variables. It is specified

via (6) in term3 of the baseline distribution of any variables without parents, and the conditional

distributions of each of the remaining variables given its parents. B6land's classifications of all

response explanations of all subjects into stage x level categories were employed, and treated as

known with certainty.1 Explanations of the variables and discussions of the conditional

probabilities associated with each follow.

1 A small proportion of the response strategies could not be classified, because subjects' explanations were
either omitted or incomprehensible. These responses were not useful in determining a subject's highest
strategy level, but they were included in the following analyses, with "undifferentiated" as a potential value
of strategy choice. The proportions for hems 3, 8, and 17 were 2%, 1%, and 11% respectively.
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X1LOP.IiMALQUIlitiUltye. Each subject was classified as to the stage and level of

his or her highest level solution strategy, based on Biland's analyses of all twenty of their

response explanations. X1 denotes their highest level, collapsing over stages within levels.

Because it has no parents, we need specify only population proportions: .08 for Level 1,

.45 for Level 2, and .47 for Level 3.

Xy. Stage within optimal level. X2 breaks down stage membership within levels, so X1 is

its parent. Empirical proportions were employed, leading to the values shown in Table 4. Again

these values are based on B6land's classification. Among the subjects whose highest observed

level of solution strategy was Level 2, for example, what proportions of these highest strategies

were at Stages a, b, and c of Level 2? Stages are meaningful only within levels, so the marginal

distribution of X2 that appears in Fig= 5 is not very useful. If X1 were fixed at a particular value

of level, however, the resulting marginal distribution for X2 would be meaningful, taking the

values from the appropriate row of Table 4.

[Insert Table 4 about here]

mn geit lexel. X3 is the detailed categorization of subjects into mutually

exclusive and exhaustive categories, in terms of levels and stages. It has as parents both level, X1,

and stage within level, X2. The specification of conditional probabilities under this arrangement is

logical rather than empirical: The conditional probability of a given stage-within-level value is 1

only if Xi and X2 take the appropriate values; otherwise, the conditional probability is zero. This

can be seen in Figure 6, where conditioning on X3=3b leads to probabilities of one for Level=3

and Stage-within-level=b. Actually no information would be lost by having X1 and X2 but not X3

in the model, or X3 but not X1 and X2. We have included all of them for interpretive convenience;

for example, Xi is useful for summarizing the "level" information in X3, whereas the values for

X3 lie at the same level of detail as those of the Item Strategy variables described below.

1 9
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Under the "dialectical constructivist" developmental model sketched above, a subject's

optimal structure level defines the repertoire of strategies available for solving a given item, as

constructed through the changes and transformations that the subjects generated during the course

of testing. That is, the optimal state of understanding was ccnstructed by the learners through a

series of mental operations that defined the successive levels of conceptualization elaborated to seek

the structural properties of the item. Consequently, the optimal structure was not necessarily

operationalized before the subjects undertook the Lask. The dynamics of this process are not

modelled in the present example, but will be discussed below. Conversely, the strategy required to

solve a given problem was not ultimately at the same level as the subject's optimal stage x level,

even when that level has been attained. This observation is taken into account in the present

model, through the conditional probability matrices for the following item strategy variables.

[Insert Figure 6 about here]

X4jatta (j=3, 8, 17). In addition to subjects' optimal strategy

stage x level, the particular strategies they employed in the three exemplar items were classified

according to stage x level, constituting the variables X4j. The additional value, abbreviated "Ud"

in the HUG1N diagrams, stands for "Undifferentiated;" these are the responses which could not be

classified. The X4j variables are modelled as conditionally independent, given their common

parent X3, optimal cognitive level. The conditional probability matrices are presented in Table 5.

The following features are noting:

With a few exceptions, a strategy at any level could be applied to any item. A small

number of "logical zeros" appear when the conceptual elements in a given strategy

class had no possible correspondents in the structure of an item (e.g., a 2b strategy

for Item 17).

2C
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The entire upper right triangle of each matrix is filled with "logical zeros." By

definition, it is not possible to observe a response strategy at a higher stage x level

than a subject's optimal stage x level.

The lower left triangle of each matrix was estimated empirically for the most part,

by simply entering the proportion of subjects classified in a given optimal stage x

level who were classified as employing each of the response strategies for a given

item. Probabilities that were logically possible but empirically zero were replaced

by small positive probabilities. It can be seen that considerable variation in strategy

choice on a given item often existed among subjects with the same optimal level.

Among subjects whose optimal stage x level was 3b, for example, about half

employed this powerful strategy for the more simply structured Item 8, while about

40% adapted their strategies to the structure of the item and employed a "minimally

sufficient" strategy at level 2b. This information appears graphically in Figure 6.

[Insert Table 5 about here]

X5 ji...tgalckillmalaiikaranj. These variables summarize the results of the

matchups between cognitive strategies and qualitative outcomes. The four possible values

are "Success," in which a strategy at the same level as (isomorphic to) the item, or higher,

was successfully employed; "Strategic error," in which a strategy was employed which

failed to accaunt for the item's structure; "Tactical error," in which a strategy appropriate to

the item structure was employed but not successfully executed; and "Computational error,"

in which the attempt would have been a "Success" except for an error in numerical

calculations. The respective X4j variables are the parents. Conditional probabilities

corresponding to "Strategic error" are logical, since this outcome is necessary if a strategy

that is insufficient vis a vis the item structure is applied, and impossible if a sufficient

\ 21
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strategy is applied.2 In the latter case, conditional probabilities are apportioned among

"Success," "Tactical error," and "Computational error." Table 6 lists the conditional

probability values.

[Insert Table 6 about here]

idindgrundi_suggnamillicia These variables simply collapse from

their parents, the X5is, into the dichotomy of "Understood" or "Misunderstood" the

structural prcperties of the item. In each case, the conditional probability matrix is logical:

the probability for "Understood" is one if the procedural analysis is "Success," "Tactical

error," or "Computational error," and zero otherwise; the probability for "Misunderstood"

is one if the procedural analysis is "Strategic error," and zero otherwise.

20.43o1ution of Item j. Each of these variables is an alternative collapsing of the

corresponding X5j, into the dichotomy of "Succeed" or "Failed." "Failed" occurs if the

procedural analysis takes the value of "Strategic error," "Tactical error," or "Computational

error." "Success" signifies a correct response through an appropriate strategy.

2{8j: Response choice on Item I. These variables are the actual values of subjects'

response choices: Mixture A juicier, Mixture B juicier, or equal. The parents of X8j are

X4j, strategy, and X5j, procedural analysis. That is, conditional on a particular choice of

strategy and the way it is applied on a given item, what are the probabilities of each of the

three potential response choices? Table 7 gives the conditional probability table for Item 17

as an example. Recall that whenever a strategy level is insufficient for an item's structure,

that strategy level for X4j and "Success" for X5i cannot co-occur. This fact is accounted

for in the conditional probability matrix for X5j given X4j, so the corresponding row in X8j

2 One exception: two distinct strategies are classified as lb; one is appropriate for Item 3 but the other is

not.
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is moot. Entries of equal probabilities appear as spaceholders. Other combinations that

were not logically impossible but which few or no subjects exhibited were assigned

conditional probabilities that reflected 861and's judgement about likely outcomes, or, if

there were no basis for such judgements, equal conditional probabilities.

[Insert Table 7 about here]

. These variables indicate

whether the choices specified in X83 are in fact correctregardless of how they have been

reached. We refer to these as "objective" responses because they are typically the only

observations that are available in standard multiple-choice "objective" educational tests. In

that context they are thought of as "noisy" versions of the X6js. The conditional

probabilities are logical: for "Correct," the choice that happens to be correct for that item is

assigned one and the other two are assigned zero; vice versa for "Incorrect."

Absorbing Evidence

The construction of the network described in the preceding section exemplifies reasoning

from causes to effects, as it were. The initial status shown as Figure 5 represents our state of

knowledge about a new Lidividual from the same population, beliefs about her likely responses to

the sample items and the optimal stage x level we might expect to observe over the course of the

twenty-item test. Once she begins to respond, we update our knowledge about observed variables

directly, and about still unobserved variables probabilistically. This section offers some examples

of how observations update beliefs, particularly with regard to X1, "optimal cognitive level," and

X2, "optimal stage x level." We focus on some interesting contrasts among the strength and nature

of various observations for inferring subjects' cognitive levels.

Recall that these data provide two distinct pieces of evidence on each item, a response

choice and an explanation. A first example illustrates a distinction between the value of evidence

from the two. Figure 7 shows the network after an incorrect response has been observed to Item

23
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17. The updated status of X6p, the "Structure understood?" variable for Item 17, indicates an

88% probability that this occurred because of an insufficient strategy and 12% due to inaccurate

execution of a sufficient strategy, with probabilities of particular strategy levels shown in X437,

the "Item strategy" variable for Item 17. Initial beliefs for cognitive levels 1, 2, and 3 in X1 of 8%,

45%, and 47% have shifted down to 13%, 54%, and 33% (c.f. Figure 5). Expectations for

correct responses and understandings of Items 3 and 8 have also been downgraded. Figure 8

shows the additional updating that occurs if we learn this incorrect response was arrived at by a

strategy at level 3b, the level isomorphic to the item. Probable explanation for the failure is 20%

tactical error, 80% computational error. Belief about overall cognitive level is concentrated on

Level 3, and expectations for correct responses to remaining items increase beyond their initial

status.

[Insert Figures 7 and 8 about here]

As mentioned above, correct answers to multiple-choice items are typically taken as

proxies for correct understandings in educational testing. Test developers avoid items with

high "false positive" rates, or probabilities of correct answers by chance or by incorrect

reasoning. Figure 9 reveals that Item 17 is just such an item. Of the subjects who

responded with the correct choice, fewer than half did so with a strategy that accounted for

the true structure of the item! In particular, a quarter of the correct responders employed a

level lb strategy: (3,5) is less juicy than (2,3) because (3,5) has more water. For this

reason, a correct response on Item 17 shifts beliefs about optimal level upward only

slightly. A correct explanation, on the other hand, would immediately establish certain

belief at Level 3.

In contrast, Item 8 is a good muitiple-choice item by test theoretic standards.

Fig= 10 shows that the overwhelming majority of subjects who answered correctly did so

through a correct understanding of the equivalence-class structure of the item.

Interestingly, posterior beliefs shift substantially to level 3 even though only a level 2
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strategy is required for correct understanding. This is because nearly all the subjects whose

optimal level was 3 understood the structure of Item 8, while less than half of those whose

optimal level was 2 did. To further identify whet:ter a correct responder had level 2 or level

3 as an optimal cognitive level would require additional information, such as checking the

Item 8 explanation to see if it employed a level 3 strategy (if not, the probability for level 3

would be reduced but not eliminated), or presenting a level 3 item not so prone as Item 17

to false positives (an incorrect response would shift belief to level 2, a correct one to level

3). We note in passing that the second of these options is conditionally independent of the

Item 8 choice, given optimal level, whereas the first is not. The DAU (Figure 4) indicates

the potential confounding or overlap of information about optimal level from multiple

aspects of a response to a given item, due to the presence of the shared "Item strategy"

variables linking aspects of information from the same item. One avoids 'double

counting," or overinterpreting partially redundant information by acting as if it were

independent, by properly accounting for the inferential structure of the observations, as

demonstrated in this example.

[Insert Figures 9 and 10 about here]

The question of which observation to secure next is addressed by a series of "what

if" experimentsa preposterior analysis, in Bayesian terminology. At a given state of

knowledge, one can run through the values of a yet unobserved variable, summing the

information (in terms of, say, reduced entropy or decreased loss) at each with weights

proportional to their predicted probability under current beliefs. The next observation can

then be selected to be optimal, in terms of, say, reducing expected loss or reducing

expected entropy for a particular unknown variable. This is a straightforward application

of statistical decision theory (Raiffa & Schlaifer, 1961).
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Comments on the Example

This network provides a simple demonstration compared to the range of potential

applications for probabilistic inference about cognitive student models. It does illustrate, however,

probability-based reasoning built around structural relationships among cognitive strategies and the

qualitatively different states of knowledge under a theory for the acquisition of proportional

reasoning.

One of the limitations of this model is that it only provides an explanation of the

individual's knowledge organization for a single ability. Consequently, one next step in

development might be broadening the scope of the model to accommodate more than one ability

for example, proportional reasoning in a different domain, or something more disparate such as

spatial visualization or short-term memory capacity. This can be accomplished by analyzing the

structural relationships among individuals' state of learning in different domains. From the

cognitive researcher's point of view, an interesting outcome of this study is that it opens up new

avenues of exploration in the research of mechanisms and/or processes that lead to the construction

of knowledge. Such efforts might create new perspectives for a test theory based on cognitive

models. The inferential machinery explored here complements the skill lattice theory Haertel and

Wiley (in press) propose as a basis for constructing educational achievement tests.

A more serious limitation is the treatment of subjects' cognitive state. Optimal level

was operationalized in the network as the highest strategy level that a subject employed

during the course of observation. This is appropriate for inferring the likelihood of a

subject's highest level in the entire set knowing just a selected subset of responses. It only

tells the whole story, however, under the assumption that a subject's likelihoods of

response remained constant over the course of testingthat is, that a subject's toolkit of

available cognitive strategies remains unchanged during testing. There is evidence that this

is not the case. Cases have been observed in which a subject's previously highest level

strategy proves inadequate for a subsequent item, the subject recognizes its inadequacy,
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and, in response to the structure of the item, adapts or extends previous strategies or

devises new concepts and strategies. Indeed, selecting an item most likely to provoke this

kind of restructuring lies at the essence of cognitive-based instruction ('y osniadou &

Brewer, 1987)!

The data from which the inference network described above was constructed would

support an analysis of this phenomenon, and such work is cuirently in progress. Figure

11 sketches one direction in which the network described above might be extended to

capture key aspects of it. Rather than a single variable expressing a subject's cognitive

status throughout the test, there is a distinct variable for cach item presented. Cognitive

status as it is in effect for Item j depends on the individual's cognitive status as it was

before the item was presented and on the structure of Item j itself. The probability that

assimilation or accommodation may occur from this interplay is expressed in a new

"cognitive processes" variable. We would expect probabilities of adaptive restructuring to

be essentially zero when the structure of the item lies below the subject's entering level and

low when the item structure is far above her entering level, but maximal when the item lies

just beyond what she has been able to handle up to that point.

[Insert Figure 11 about here]

Discussion

A host of practical issues must be addressed in exploring the applicability of

probability-based inference, via inference networks, to cogaitive assessment. We conclude

by mentioning a number of them.

More ambitious student models. The proportional reasoning network discussed

above has a very simple representation at its deepest levela single "optimal level" variable

entailing a class of available concepts and strategies. Our challenge was to model the

structure of uncertain, partially redundant, sometimes conflicting evidence that observations
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convey about the deep variable. A single deep variable is obviously too simple for many

practical applications, and we must explore ways to implement student models with many

descriptors of knowledge structures, multiple strategy options, and metacognitive and/or

affective variables.

The assumed completeness of the network. The inference networks we have

discussed are closed systems, which presume to account for all relevant possibilities; i.e.,

the space of student models is complete. In my application we can hope at best to model

the key features distinguishing learners, certainly missing differences that will impact

behavior. These differences are modelled as random variation. How does this affect

inference? Can we build networks in such a way as to identify unexpected patterns, and to

minimize resulting inferential errors?

The nature of student models. Our basic idea is to provide for probabilistic

reasoning from observations to student models. This idea can be entertained for any type

of student models, but certainly it will prove more useful for some types of student models

than others. Characteristics of student models that need to be explored in this connection

include model grain-size, and the distinctions between overlay vs. performance models

(Ohlsson, 1986), and static vs. dynamic models.

Grain-size concerns the level of detail at which to model students. As Greeno

(1976) points out, "It may not be critical to distinguish between models differing in

processing details if the details lack important implications for quality of student

performance in instructional situations, or the ability of students to progress to

further stages of knowledge and understanding." The grain-size of our example

was stage x level. A coarser model would address level only, while a finer model

might further differentiate strategies within stages within levels.

An "overlay" approach to diagnosing knowledge in the context of intelligent

tutoring systems builds a representation of an expert's knowledge base, and infers
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from observed behavior where a student's representation falls short (e.g., C.

Frederiksen & Breuleux, 1989). A "performance model" attempts to specify

correct and/or incorrect elements of knowledge and application rules in sufficient

detail to solve the same problems the student is attempting (e.g., VanLehn, 1990).

Our example was a probabilistic version of a simple performance model, as it

provides predictions of response probabilities for all items for subjects at all

modelled states.

Static models assume a constant knowledge structure during the course of data-

gathering; dynamic models expect, and attempt to model, changes in the learner

along the way. The latter is obviously more ambitious, yet critical to applications

such as ITSs in which learning is expected. White and J. Frederiksen's (1987)

QUEST system, for example, builds performance models in the domain of simple

electrical circuits; the process of instruction is viewed as facilitating the evolution of

models, successively shaping student understanding toward that of an expert.

Kimball's (1982) calculus tutor utilizes an approach that might be generalized: A

student model is built under an assumption of statis during a problem, but the prior

distribution for the next problem is modified to reflect the outcome of the experience

and a reinforcement model. Our example was static; Figure 11 sketched one

possible dynamic extension.

Decision-making and prediction. In the context of medical diagnosis, Szolovits and

Pauker (1978, p. 128) point out the necessity of "...introducing some model of disease

evolution in time, and dealing with treatment, as diagnosis is hard to divorce from therapy

in any practical sense." In the context of education, we are concerned with learning and

instruction. The Bayesian inferential machinery, as a component of statistical prediction

and decision theory, is natural for this task. What is required is to extend a network to

prediction and decision nodes, and to incorporate utilities as well as probabilities into
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decision rules. Andreassen, Jensen, and Olesen (1990) illustrate these ideas with a simple

example from medical diagnosis. We must lay out the analogous extension in networks for

cognitive assessment.

Practical tools. While the inference network approach holds promise for tackling

class of problenis in cognitive assessment, we are a long way from routinely engineering

solutions to particular members of that class. This requires a methodological toolkit of

generally applicable techniques and well-understood approaches. Building block models

and heuristics are useful, for example, so that each application need not start from scratch.

Foundational work on building-block models appears in Schum (1987). Work tailored to

the kinds of observational settings and the ldnds of psychological models anticipated in

educational applications is required. And since simplifications of reality are inevitable, it is

important to learn about the consequences of various model violations, and to develop

diagnostic techniques for detecting serious ones.

Conclusion

The modelling approach sketched in this paper was motivated by the folowing

consideration:

Standard test theory evolved as the application of statistical theory with a

simple model of ability that suited the decision-making environment of most

mass educational systems. Broader educational options, based on insights

into the nature of learning and supported by more powerful technologies,

demand a broader range of models of capabilitiesstill simple compared to

the realities of cognition, but capturing patterns that inform a broader range

of instructional alternatives. A new test theory can be brought about by

applying to well-chosen cognitive models the same general principles of

statistical inference that led to standard test theory when applied to the

simple model. (Mislevy, in press).
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Probabilistic inference about cognitive student models via inference networks provides a

potential framework for a more broadly based test theory. Exploiting conceptual and

computational advances in statistical inference, the approach presents an opportunity to

extend the achievements of model-based measurement to educational problems cast in terms

of contemporary cognitive and educational psychology.

I 31
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Table 1

Test Theory Applications with a Cognitive Perspective

1. Mislevy and Verhelst's (1990) mixture models for item responses when different
examinees follow different solution strategies or use alternative mentai models.

2. Falmagne's (1989) and Haertel's (1984) latent class models for Binary Skills.
Students are modelled in tams of the presence or absence of elements of sidll or

knowledge, and observational situations demand various combinations of them.

3. Masters and Mislevy's (in press) and Wilson's (1989a) use of the Partial Credit
rating scale model to characterize levels of understanding, as evidenced by the

nature of a performance rather than its correctness. This incorporate into a
probabilistic framework the cognitive perspective of Biggs and Collis's (1982)
SOLO taxonomy for describing salient qualities of perform !ices.

4. Wilson's (1989b) Saltus model for characterizing stages of conceptual

development, which model parameterizes differential patterns of strength and
weakness as learners progress through successive conceptualizations of a domain.

5. Yamamoto's (1987) Hybrid model for dichotomous responses. This model
characterizes an examinee as either belonging to one of a number of classes

associated with states of understanding, or in a catch-all IRT class. The approach is

useful when certain response patterns signal states of understanding for which
particular educational experiences art known to be effective.

6. Embretson's (1985) multicomponent models integrate item construction and
inference within a unified cognitive model. The conditional probabilities of solution
steps given a multifaceted student model are given by statistical structures
developed in IRT.

7. Tatsuoka's (1989) Rule space analyses uses a generalization of IRT methodology
to define a metric for classifying examinees based on likely patterns of item

atterns of Imowledie and strAcras



Table 2

Parallels between Inference Networks in Medical and Educational Applications

Medical Application

Observable symptoms, medical tests

Disease states, syndromes

Architecture of interconnections based

on medical theory

Conditional probabilities given by

physiological models, empirical data,

expert opinion

Edam& i_BLADAlicatian

Test items, verbal protocols,

observers' ratings, solution traces

States or levels of understanding of

key concepts, available strategies

Architecture of interconnections based

on cognitive and educational theory

Conditional probabilities given by

psychological models, empirical data,

expert opinion

39



Table 3

Stages within Cognitive Levels

11111=1

Level 1: Conceptual orpreoperational

a Sole comparison of the number of juice glasses, the attribute in both pairs.

Appraisal of the dilution effect of the water on the fmal taste of juice. From this,

the order of magnitude became a comparison of the number of water glasses, the

complement in both pairs.

Construction of functional relations between the complementary terms in each pair,

establishing between relations in the pair of within relations first constructed.

Level 2: Concrete operational

a Use of the ratio "one glass of juice for one glass of water" to demonstrate that both

terms within each pair were equal.

Joint multiplication of both terms within a pair or, otherwise, an operation of co-

multiplication. (Scalar operator; e.g.,"Both drinks taste alike because there is one

glass of juice for three glasses of water, which defines the ratio 1:3 in both pairs.")

Relationships formed between both terms of each pair, when the first term was

divided by the second. (Functional operator, e.g.,"The ratio of two glasses of juice

for six glasses of water is the same as one glass of juice for thme glasses of water.

Three times the ratio 1:3 equal three glasses of juice for nine glasses of water.

Therefore both drinks taste alike.")

Level 3; Formal om tmiQra_1

a Either a scalar or functional operator in the between or the within relations.

Ratio treatment: The components of the relationships were the attribute and the

complement. (E.g., "In Mixture A there are three glasses of juice for five glasses

of water, a ratio of 9:15. In Mixture B the ratio is 10:15 juice to water. Therefore,

Mixture B tastes juicier.")

Fraction treatment: the components of the relationships were the attribute and the

quantity of liquid. (E.g., "In Mixture A, of a total of 8 glasses, 3 contain juice,

representing a fraction of 15/40. In Mixture B, of a total of 5 glasses, 2 were juice,

representing a fraction of 16/40. Therefore, Mixture B tastes juicier.")



Table 4

Conditional Probabilities of Stages within Cognitive Levels

Stage within Level

Level a

1

2

.000

.582

.145

.612

.345

567

.388

.073

.188



Table 5

Conditional Probabilities of Strategies given Optimal Cognitive Levels

Optimal
Level

Strate 3 Level of Re OS nse

Ud. la 1 b lc 2a 2b 2c 3a 3b 3c

(Item 3)

la .50 .50 .00 .00 .00 .00 .00 .00 .00 .00

lb .08 .04 .8 .00 .00 .00 .00 .00 .00 .00

lc .01 .01 .34 .64 .00 .00 .00 .00 .00 .00

2a .01 .02 .37 .39 .21 .00 .00 .00 .00 .00

2b .01 .01 .34 .54 .09 .01 .00 .00 .00 .00

2c .01 .01 .39 .52 .06 .01 .01 .00 .00 .00

3a .01 .01 .20 .74 .02 .01 .01 .01 .00 .00

3b .01 .01 .02 .21 .02 .01 .01 .01 .71 .00

3c .01 .01 .01 .18 .02 .01 .01 .01 .10 .65

(Item 8)

la .50 .50 .00 .00 .00 .00 .00 .00 .00 .00

lb .01 .04 .95 .00 .00 .00 .00 .00 .00 .00

lc .01 .02 .96 .01 .00 .00 .00 .00 .00 .00

2a .01 .02 .58 .04 .35 .00 .00 .00 .00 .00

2b .01 .02 .32 .01 .31 .33 .00 .00 .00 .00

2c .01 .02 .06 .01 .24 .60 .06 .00 .00 .00

3a .01 .02 .11 .01 .08 .74 .02 .01 .00 .00

3b .01 .01 .01 .01 .01 .41 .01 .01 .52 .00

3c .01 .01 .01 .01 .01 .29 .01 .01 .07 .57

(Item 17)

la .50 .50 .00 .00 .00 .00 .00 .00 .00 .00

lb .07 .01 .92 .00 .00 .00 .00 .00 .00 .00

lc .04 .01 .94 .01 .00 .00 .00 .00 .00 .00

2a .03 .01 .43 .06 .47 .00 .00 .00 .00 .00

2b .01 .01 .46 .01 .51 .00 .00 .00 .00 .00

2c .04 .01 .13 .01 .50 .00 .31 .00 .00 .00

3a .04 .01 .12 .03 .40 .00 .18 .22 .00 .00

3b .01 .01 .01 .01 .04 .00 .01 .01 .90 .00

3c .01 .01 .01 .01 .01 .00 .01 .01 18 .75



Table 6

Conditional Probabilities of Procedural Analysis given Item Strategies

Item Stategy Success Stratetynor Tactical Error
mputation

Error
(Item 3)

Ud .00 1.00 .00 .00
la .00 1.00 .00 .00
lb .75 .20 .05 .00
lc .98 .00 .02 .00
2a .85 .00 .15 .00
2b .98 .00 .01 .01
2c .97 .00 .02 .01
3a .96 .00 .02 .02
3b .98 .00 .01 .01
3c .90 .00 .08 .02

(Item 8)
Ud .00 1.00 .00 .00
la .00 1.00 .00 .00
lb .00 1.00 .00 .00
lc .00 1.00 .00 .00
2a .00 1.00 .00 .00
2b .98 .00 .01 .01
2c .00 1.00 .00 .00
3a .98 .00 .01 .01
3b .98 .00 .01 .01
3c .96 .00 .02 .02

(Item 17)
Ud .00 1.00 .00 .00
la .00 1.00 .00 .00
lb .00 1.00 .00 .00
lc .00 1.00 .00 .00
2a .00 1.00 .00 .00
2b .00 1.00 .00 .00
2c .00 1.00 .00 .00
3a .70 .00 .10 .20
3b .95 .00 .01 .04
3c .97 .00 .02 .01



Table 7

Conditional Probabilities of Item 17 Choice given Item Strategies and Procedural Analysis

41.1....=1"rioiceProcedural
Strategy Mixture A Mixture B EQual

Undifferentiated Success .33 .33 .33

Undifferentiated Strategic Error .13 .12 .75

Undifferentiated Tactical Error .33 .33 .33

Undifferentiated Computational Error .33 .33 .33

la Success .33 .33 .33

la Strategic Error .98 .01 .01

la Tactical Error .33 .33 .33

la Computational Error .33 .33 .33

lb Success .33 .33 .33

lb Strategic Error .23 .76 .01

lb Tactical Error .33 .33 .33

lb Computational Error .33 .33 .33

lc Success .33 .33 .33

lc , Strategic Error .01 .01 .98

lc Tactical Error .33 .33 .33

lc Computational Error .33 .33 .33

2a Success .33 .33 .33

2a Strategic Error .03 .95 .02

2a Tactical Error . .33 .33 .33

2a Computational Error .33 .33 .33

2b Success .33 .33 .33

2b Strategic Error .33 .33 .33

2b Tactical Ermr .33 .33 .33

2b Computational Error .33 .33 .33

2c Success .33 .33 .33

2c Strategic Error .01 .01 .98

2c Tactical Error .33 .33 .33

2c Computational Error .33 .33 .33

(continual)

4 4



Table 7, continued

Conditional Probabilities of Item 17 Choice given Item Strategies and Procedural Analysis

Pmcedu MCC
Strate3 Anal sis

3a Success .00 1.00 .00
3a Strategic Error .33 .33 .33
3a Tactical Error .80 .00 .20
3a Computational Error .50 .00 .50
3b Success .00 1.00 .00
3b Strategic Error .33 .33 .33
3b Tactical Error .50 .00 .50
3b Computational Error .38 .00 .62
3c Success .00 1.00 .00
3c Strategic Error .33 .33 .33
3c Tactical Error .90 .00 .10
3c Corn utational Error .70 .00 .30

4 5



p(X1,X2,X3,0) = p(01X3,X2,X1) P(X3IX2,X1) P(X2IX1) 1)(X 1)

p(X1,X2,X3,0) = p(X218) p(X310) p(d)

Figure 1

Graphical Representations in the IRT Example



Which mixture will be more juicy A, B, or both the same?

A

v

(2,1)

Figure 2

A Sample Juice-Mixing Task

(3,4)



Item 3

Mixture A

(2,1)

(2,6)

NB
Item 8

Item 17

(3,5)

OCIOEM

Figure 3

(2,3)ii

Three Juice-Mixing Tasks
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