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ABSTRACT

Three criticisms A overreliance on rilsIgts from statistical

significance tests are noted. It is sugsj., ul (a) that statistical

significance tests are often tautological b) that some uses can

involve comparisons that are not completel ..ensible; and (c) that

using statistical significance tests to evaluate both

methodological assumptions (e.g., the homogeneity of variance or of

regression assumptions) and substantive hypotheses creates

inescapable dilemmas. Three strategies for augmenting statistical

significance testing are elaborated. First, a review of effect

sizes is presented. Second, a method for evaluating statistical

significance in a sample size context is discussed. Finally,

strategies for empirically evaluating whether results will

replicate are reviewed, with an emphasis on explaining one

computer-intensive resampling strategy that is often called the

bootstrap. It is inconsistent to use sample results to estimate

population values, but to be unwilling to consult the sample to

estimate the variability and shape of samples drawn from the

population.
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The use of statistical significance testing as part of the

interpretation of empirical research results has historically

generated considerable debate (Carver, 1978; Huberty, 1987;

Morrison & Henkel, 1970; Thompson, 1969c). A series of articles on

the limits of statistical significance testing has even appeared on

a seemingly periodic basis in recent editions of the American

Psychologist (Cohen, 1990; Kupfersmid, 1988; Rosnow & Rosenthal,

1989; Rosenthal, 1991). The purposes of this paper are to elaborate

three criticisms of overreliance on statistical significance

testing, and to discuss three alternatives that may.be useful to

augment the evaluation of significance testing.

Three Criticisms of Statistical Significance Testing

Three of the various possible criticisms of conventional uses

of statistical significance testing will he noted here. The first

has generally not been explicated so directly, and the second two

are essentially unrecognized by most researchers.

1. Statistical Significance Testing can be_Tautological

Even some widely respected authors of prominent methodology

textbooks at times take internally inconsistent positions with

respect to the rol . that statistical significance testing should

play in analysis (see book reviews by Thompson, 1987a, 1988d). And

some dissertation authors may be disproportionately susceptible to

excessive awe for significance tests (LaGaccia, 1991; Thompson,

1988b). But researchers who have had the experience of working with

large samples (cf. Kaiser, 1976) soon realize that virtually all

null hypotheses will be rejected at some sample size, since "the
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null hypothesis of no difference is almost never exactly true in

the population" (Thompson, 1987b, p. 14). As Meehl (1978, p. 822)

notes, "As I believe is generally recognized by statisticians today

and by thoughtful social scientists, the null hypothesis, taken

literally, is always false." Thus Hays (1981, p. 293) argues that

"virtually any study can be made to show significant results if one

uses enough subjects." Many researchers possess this insight', but

somehow do not integrate this knowledge into their paradigms for

conceptualizing or conducting research. Thus, the insight too

rarely impacts actual practice.

A concrete heuristic example may serve to emphasize the impact

that sample size can have on the outcomes of statistical

significance tests. Presume that a researcher was working in a

large school district, and analyzed data involving the district's

200,000 students. If the researcher decided to compare the mean IQ

scores ( R = 100.15, SD = 15) of 12,000 students located in one zip

code with the mean IQ = 99.85, SD = 15) of the 188,000 remaining

students residing in other zip codes, it would be decided that the

two means differ to a statistically significant degree (kmx:= 2.12

> Zcm.r= 1.96, p<.05). The less thoughtful researcher might suggest

to school board members that special schools for gifted students

should be erected in the zip code of the 12,000 students, since

they are "significantly" brighter than their compatriots.

Alternatively, the more thoughtful researcher in such a

situation would note that the stanCardized difference in these two

means (.3/15 = 0.02) is trivial. The difference in the means (.3 =
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one-third of one IQ point) is also substantially smaller than even

just one standard error fused to construct a confidence interval

capturing only 68% of the "true" scores, assuming measurement error

is normally distributed) of an IQ measure witn a reliability

coefficient of 0.92, i.e., SEM = SD*((l-r)**.5) m 4.24. Such a

thoughtful researcher would be reticent to extrapolate policy

recommendations from every statistically significant result.

Although statistical significance is a function of at least

seven interrelated features of a study (Schneider & Darcy, 1984),

sample size is a basic influence on significance. To some extent

significance tests evaluate the size of the researcher's sample--

most researchers already know prior to conducting significance

tests whether the sample in hand is large or small, so these

outcomes do not always yield understanding that would be lost

absent a significance test. As Thompson (in press-b) notes:

Statistical significance testing can involve a

tautological logic in which tired researchers,

having collected data from hundreds of subjects,

then conduct a statistical test to evaluate whether

there were a lot of subjects, which the researchers

already know, because'they collected the data and

know they're tired. This tautology has created

considerable damage as regards the cumulation of

knowledge...

2. Statistical _Significance Testing can Invoke Somewhat
Nonsensical Comparisons

Researchers are frequently encouraged to employ statistical
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significance tests in a linear or hierarchical sequence. For

example, Keppel and Zedeck (1989) recommend that factorial ANOVAs

should be conducted by testing and interpreting highest-order

interaction effects, prior to evaluating main effects. But the

different hypotheses in ANOVA can each involve different

distributions of the sample size across different means, and

consequently different power against Type II error. As Thompson

(1991b, p. 503) notes:

For example, in a 6 x 4 x 2 design with three

subjects per cell, the omnibus three-way interaction

involves 48 means each calculated over three

subjects, while at the other extreme the C-way main

effect involves two means each calculated over 72

subjects. Given differential power to detect various

effects (which led to the recognition in the

literature of Type IV error), the hierarchical

approach guided exclusively by statistical tests

conducted at a fixed alpha amounts to comparing

apples and oranges.

3. Sole Reliance on Statistical Significance Testing Creates
Inescapable DileMmas for Researchers

Researchers who place an inordinate emphasis on statistical

significance tests also often confront an inescapable dilemma,

though most researchers do not recognize (or prefer to ignore) this

dilemma. All statistical significance tests invoke certain

assumptions. For example, ANOVA requires pooling the variances of

the dependent variable across the cells of the design during the
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calculation of the mean square used in the denominator of the

fixed-effects Z-test. This pooling is legitimate if and only if the

variances of the dependent variable scores in all the cells are

essentially equal. This is the well known "homogeneity (i.e.,

equality) of variance" assumption.

Similarly, as Thompson (in press-a) notes, ANCOVA is a three-

stage analysis in which (a) regression weights for the covariate

are derived completely ignoring group or cell membership of the

subjects, (b) predicted dependent variable scores (Y) are computed

using the weights, and are then subtracted from the actual

dependent variable scores (Y) of the subjects to yield an "e" score

("eim = Yi - id for each ith subject, and then (c) an ANOVA is

conducted using the "e" scores as the dependent variable in place

of the Y scores. As Loftin and Madison (1991) explain in some

detail, this process is legitimate if and only if the regression

equations for predicting Y with the covariate(s) are essentially

the same, i.e., the "homogeneity of regression" assumption is met.

Because a single regression equation, a single equation that is

calculated completely ignoring group membership, is employed to

statistically adjust the Y scores, this single equation can only

reasonably be used if the equations for the different groups or

cells are reasonably comparable, otherwise use of a "pooled"

regression equation would be inappropriate.

Many researchers use statistical significance testing to

evaluate both their preliminary me;:hodological assumption

hypotheses (e.g., the ANOVA homogeneity of variance assumption, the
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ANCOVA homogeneity of regression assumption) and their substantive

hypotheses (e.g., the mean dependent variable score of the

treatment group equals that of the control group). These

researchers hope to mt reject the null hypotheses involving

methodological assumptions (e.g., they want the dependent variable

variances in the cells to all be equal), while they typically hope

to reject their substantive hypotheses. But as Thompson (1991b, p.

504) notes, this creates a dilemma, since

the same large sample size that yields power against

Type II error in testing the substantive hypotheses

of interest in ANCOVA [or ANOVA or the t7test] is

also going to tend to yield statistically

significant effects for the preliminary homogeneity

of regression [or of variance] test.

Some researchers attempt to escape this dilemma by presuming

that their methods are robust to the violation of their

assumptions. This does not generally appear to be the case with

respect to ANCOVA (Keppel & Zedeck, 1989). And the longstanding

view that ANOVA was robust to the violation of the homogeneity of

variance assumption has recently been called into some question,

thanks to more sophisticated Monte Carlo studies conducted with

more complicated designs, and with more simulation samples (e.g.,

Rogan & Keselman, 1977; Tomarkin & Serlin, 1986; Wilcox, Charlin &

Thompson, 1986).

lb es SuP e e

None of this is to argue here that statistical significance

6

9



testing should be abandoned. It is useful to have some estimate,

albeit a limited one, regarding the probability of a sample result,

assuming that the sample came from a population in which the null

was true.

But it is suggested that statistical significance testing has

somewhat limited utility, and that greater attention should be

focused on alternative analyses that are more central to the

purposes of science, i.e., the accumulation of knowledge. Over the

years various alternatives that might serve as substitutes for or

augmentations of statistical significance tests have been proposed.

For example, Serlin and Lapsley (1985) advocated placing an

emphasis on confidence intervals, Bayesian approaches have been

encouraged by others (e.g., Good, 1981), and somewhat less serious

proposals have been presented by some (Salzman, 1989).

Three alternatives will be elaborated. Each is offered as an

independent alternative to augment statistical significance

testing, though all three could be used hy a researcher conducting

a given study. The first alternative has been discussed by various

researchers, but is presented here in a more conceptual manner. The

second alternative has been suggested in my previous work. The

third alternative is more widely known by mathematical

statisticians than by behavioral researchers.

1. Sizes

Statistical significance tests do not inform the researcher

regarding the importance of results. Statistical significance tests

evaluate the probability of an actual result, assuming that the

7
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sample data come from a population in which the null hypothesis is

exactly true. But an improbable result is not necessarily an

important result, as Shaver (1985, p. 58) illustrates in his

hypothetical dialogue between two teachers:

Chris: ...I set the level of significance at .05, as my

advisor suggested. So a difference that large would

occur by chance less than five times 'in a hundred if

the groups weren't really different. An unlikely

occurrence like that surely must be important.

Jean: Wait a minute, Chris. Remember the other day when you

went into the office to call home? Just as you

completed dialing the number, your little boy picked up

the phone to call someone. So you were connected and

talking to one another without the phone ever

ringing... Well, that must have been a truly important

occurrence then?

Statistics can be employed to evaluate the probability of an event.

But importance is a question of human values, and math cannot be

employed as an escape (a la Rogers' Escape _from_lrg from the

existential human responsibility for making value judgments. Like

it or not, empirical science in inescapably a subjective business.

Many effect size estimates (e.g., Hays, 1981; Tatsuokal 1973;

Wherry, 1931) are available for researchers who wish to inform

subjective judgment regarding rgamit_aluurtang.g. The simplest

effect sizes are analogous to the coefficient of determination (r2) .

For example, in analysis of variance the sum of squares (SOS) for

8
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an effect can be divided by the SOS total to compute the

correlation ratio (also called eta squared). Such statistics inform

the researcher regarding what proportion of variance in the

dependent variable(s) is explained by a given predictor. The

related effect size in regression is the R2statistic calculated by

dividing the SOSREGREssmi by the SOS for the Y scores, i.e. SOSTOTAL

The simplest effect sizes are based on the data in hand and

sample size and degrees of freedom are not considered as part of

the calculations. However, all classical parametric methods are

correlational (Knapp, 1978; Thompson, 1988a, 1991a) and do

capitalize on sampling error as one part of their least squares

analyses. This realization suggests that there are three major

classes of effect size estimates: (a) biased overestimates, such as

eta squared and R2, (b) estimates that correct for positive bias in

developing expectations for the likely effect size in the

population, e.g., Hays' omega squared (see Maxwell, Camp & Arvey,

1981; Rosnow & Rosenthal, 1988), and (c) estinates employing

corrections for the positive bias that also results when using

least squares methods to estimate effect sizes likely to be

realized in future samples from the population (Herzberg, 1969).

From one perspective it might be argued (and has by somesee

Stevens, 1986) that estimates in the last class are the most

relevant, since in practice scientists extrapulate expectations

from previous studies with samples and hope their results will be

replicated in future studies with samples.

Positive bias, and consequently the related statistical

9
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corrections frr bias, both tend to be larger as either effect sizes

or sample sizes (especially relative to the number of variables)

become smaller, as illustrated by Thompson (1990). Thus, with a

very large effect size or a large sample size, it will matter less

which, if any, corrections the researcher applies in estimating

effect sizes (cf. Carter, 1979; Pedhazur, 1982, p. 148).

Indeed, for various sample sizes ranging from 10 to 320, for

uncorrected R2 effect sizes ranging from 1% to 90%, and for numbers

of predictor variables ranging from one to 10, uncorrected R2 values

and values corrected for shrinkage in estimating the population

effect size (e.g., Olkin & Pratt, 1958; Wherry, 1931) have a

product-moment correlation of about .90, while uncorrected R2

values and values corrected for shrinkage in estimating future

sample effect sizes (e.g., Herzberg, 1969; Lord, 1950) have a

product-moment correlation of about .98. With respect to their

sizes, though the estimates tend to be very highly correlated

across designs, for a given design the uncorrected estimate is

always largest, while the corrected estimate of future sample

values tends to be smallest (Fisk, 1991).

Rosenthal's (1991, p. 1086) statement about one collection of

effect size estimates is true beyond even the context of his

discussion: "There is no right answer to the question of which of

these indices is best or most useful under all conditions." All

effect size estimates have some limits, and like all statistics

must be interpreted reflectively (McGraw, 1991).

The biggest objections to using effect sizes occur with

10
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respect to the use of effect sizes in certain applications in the

ANOVA family. The case for interpreting effect sizes via r2 analogs

is that (a) these effect sizes are in a metric that allows direct

comparison of values across different hypotheses or different

studies (unlike r, for example, whc.re r = 1.0 is not twice the size

of r = 0.5) and (b) they indicate how much of the area (measured in

squared units, just like carpet or floor tile) of the dependent

variable in univariate studies, expressed again in squared units as

the sum-of-squares (SOS), is explained by a given combination of

independent or predictor variables.

However, in ANOVA applications these effect sizes are most

useful when the levels in the ways or factors axe (a) all the

levels that make up the ways (e.g., male vs female for the way,

gender) or (b) a random or representative selection of the levels

in the full universe of levels that defines given ways (e.g., 5 vs

8 vs 33 minutes of computer instruction randomly selected from all

possible intervention times available in a 55minute class period).

The latter case represents what are termed "random effects" (Glass

& Hopkins, 1984, Chapter 19), and though some researchers are only

familiar with "fixed effects" models, the use of random effects

models in ANOVA work has been strongly advocated by some

researchers (Clark, 1973, 1976; Wike & Church, 1976).

Some researchers (e.g., Glass & Hakstian, 1969) suggest that

effect sizes such as omega squared are not useful unless the levels

in ANOVA ways are all the possible levels of ways or are a

representative sample of them. However, even in other cases I

11

14



believe effect size estimates are useful, as long as one remembers

that (a) these effect sizes tell the researcher how much dependent

variable variance (SOS) the differences in a given collection of

levels explain, but that (b) these effects might change if a

different collection of levels was used. The fact that a statistic

has some limits under certain circumstances does not mean that the

statistic must be completely abandoned, especially since all

statistics have limits.

Cohen's (1988) perusal of published research suggests that a

correlation ratio of around 25% (=.5) should be considered large

in terms of typical findings across disciplines. The empirical

meta-analytic work of Glass (1979, p. 13) and others (Olejnik,

1984, p. 43) has also led to similar conclusions regarding typical

effect sizes. Although it is sometimes useful to know what effect

sizes are typical in social sL:ence generally and in certain areas

of inquiry more particularly, the importance of an effect size

ultimately depends upon the particular context of a specific study,

and on an individual researcher's personal value system, rather

than on typicality. For example, an effect size of 3% in an

intervention study involving a vaccine for AIDS would be deemed

valuable by researchers (a) who value human life greatly, and (b)

who believe that most AIDS intervention studies have to date

yielded 0% effect sizes, even though (c) interventions in social

science generally may yield effects as large as 25%.

2. Evaluating Results in a Samale Size Context

A second strategy for augmenting interpretation of statistical

12



significance tests involves evaluating significance test results in

a sample size contcxt. The researcher can estimate roughly at what

smaller sample size a statistically significant fixed effect size

would no longer be significant, or conversely, at what larger

sample size a nonsignificant result would become statistically

significant (Thompson, 1989a).

Table 1 illustrates this application. The table presents

significance tests associated with varying sample sizes and what

are large (33.0%) effect sizes at least with respect to their

typicality (Cohen, 1988; Glass, 1979; Olejnik, 1984). The table can

be viewed as presenting results for either a multiple regression

analysis involving two predictor variables (in which case the "r2"

effect size would be called the squared multiple correlation

coefficient, R2) or an analysis of variance involving an omnibus

test of differences in three means in a one-way design (in which

case the "r2" effect size would be called the correlation ratio or

eta squared).

INSERT TABLE I ABOUT HERE.

The table presents results for fixed effect sizes but

increasing sample sizes (4, 13, 23, or 33). For the 33.0% effect

size reported in Table 1, the result becomes statistically

significant when there are somewhere between 13 and 23 subjects in

the analysis.

The researcher who does not genuinely understand statistical

significance would differentially interpret the effect size of

13
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33.0% when there were 13 versus 23 subjects in the analysis. Yet

the effect sizes within the tAble are fixed. Empirical studies of

scholarly practice indicate that superficial understanding of

significance testing has actually led to serious distortions such

as researchers interpreting statistically significant results

involving small effect sizes while ignoring nonsignificant results

involving large effect sizes (Craig, Eison & Metze, 1976)!

Since sample effect sizes are positively biased partly as a

function of sample size (with more bias in smaller samples), a more

elegant approach would invoke corrections for the effect size

estimates for the various sample sizes as part of this logic.

Statistically simpler corrections (e.g., Wherry, 1931) might be

employed, or more accurate but more computationally complicated

corrections (e.g., Browne, 1975) might be used. Cattin (1980),

Mitchell and Klimoski (1986), and Schmitt (1982) review some of the

choices.

However, the purpose of this approach is not to identify the

exact results that would occur with a different sample size,

assuming exactly the same effect size. Rather, the approach focuses

on establishing a general ballpark for interpreting statistical

significance tests in a sample size context. Thus, the analysis

should not be overinterpreted, any more than the results of

conventional statistical significance testing should be

overinterpreted.

3. interpretina Results Based on Likelihood of Replication

A third strategy emphasizes interpretation based on the

14
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estimated likelihood that results will replicate. This emphasis is

compatil)le with the basic purpose of science: isolating conclusions

that replicate under stated conditions. Notwithstanding some

misconceptions to the contrary, statistical significance tests do

not evaluate the probability that results will generalize (Carver,

1978).

The ultimate test of replicability is an actual replication

study, but it is not always convenient to conduct a replication

prior to interpreting results. Three general strategies provide the

next best evaluation of replicability. But since all three

strategies are typically based on a single sample of subjects in

which the subjects usually have much in common (e.g., point in time

of measurement, geographic origin) relative to what they would have

in common with a separate sample, the three methods all yield

somewhat inflated estimates of replicability. Because inflated

estimates of replicability provide a better estimate of

replicability than no estimate at all (i.e., statistical

significance testing), these procedures can still be useful in

focusing on the sine qua non of science.

The first two methods both involve splitting the sample into

two or more subsamples, and then empirically comparing results

across sample splits. The first method is cross-validation, and

typically involves splitting the sample into two roughly equally-

sized groups (Huck, Cormier & Bounds, 1974, pp. 159-160). Thompson

(1989c) provides step-by-step illustrations of this approach.

The second approach invokes the jackknife methods elaborated

15
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by Tukey and his colleagues (cf. Crask & Perreault, 1977). This

approach involves conducting separate analyses with various groups

of subjects each deleted from the analysis (usually each nuoppaD

1) one time and conducting all possible ji analyses under these

conditions (if 11DROppED = 1, k = n) in addition to an analysis in

which no subjects are dropped. Daniel (1989) provides a tutorial on

this method.

But a particularly powerful strategy for evaluating result

replicability invokes the bootstrap methods developed by Efron and

his colleagues (cf. Diaconis & Efron, 1983; Efron, 1979; Lunneborg,

1990). Conceptually, these methods involve copying the data set

over again and again many many times into an infinitely large

"mega" data set. Then hundreds or thousands of different samples

are drawn from the "mega" file, and results are computed separately

for each sample and then averaged.

The method is powerful because the analysis considers so many

configurations of subjects (including configurations in which a

subject may be represented several times or not at all) and informs

theresearcher regarding the extent to which results generalize

across different types of subjects. Lunneborg (1987) has offered

some excellent computer programs that automate this logic for

univariate applications; Thompson (1988c) provides similar software

for multivariate applications. Recently, user-friendly PC bootstrap

software has become available from publishers around the world.2

Table 2 presents a small data set that can be used to

illustrate both conventional and bootstrap estimation. The table

16
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presents Z score values from each of 11 subjects on two variable3.

The data set is unrealistically small for actual bootstrap

applications, but has heuristic value and is sufficiently

manageable in size to al.uow interested readers to replicate the

results reported here.

INSERT TABLE 2 ABOUT HERE.

All statistical tests invoke four estimates. The first is a

single statistic estimating a single population parameter

calculated from the sample data in hand. The remaining three

estimates are calculated ngt from the data in hand, but rather from

entirely different data (called the sampling distribution)

conceptually involving multiple repeated samplings of the parameter

estimate from a population. These four estimates are: (a) the

single parameter estimate (e.g., R, r) derived from a sample

believed to be representative of a population; (b) the second

moment about the mean of pultiple estimates of the parameter of

interest (i.e., the standard deviation (SD) of the repeated sampled

estimates, called the standard error (SEE) of the estimated

statistic); (c) the third moment about the mean of multiDle

estimates of the parameter (i.e., the coefficient of skewnessE);

and (d) the fourth moment about the mean of multiple estimates of

the parameter (i.e., the coefficient of kurtosisE).

Many researchers recognize the use of the first two statistics

in their statistical analyses. Thus, researchers using LISREL and

EQS analyses routinely pay more attention to parameter estimates

17
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that are greater than the individual standard errors of given

estimates. As Rerlinger (1986, chapter 12) explains in some detail,

test statistica also invoke the ratio of a parameter estimate to

the SEE. For example, researchers often use a t-test to evaluate

the null hypothesis that a mean equals zero. For a sample of size

no the SD of infinitely many samples of size n from a population in

which the mean is zero (i.e., SE0 would be approximately

SDx/(n**.5). The test statistic, tcumATED, for this research

situation is calculated as the ratio of Ft / (SDx/(n**.5)).

The use of the third and fourth statistics is not so explicit.

But when we evaluate the probability of our sample result, n,.-%.ALCUIATED

given an assumption that the niAll is true, we usually compare our

result against the a (or the a/21 percentile of the test statistic,

and the skewness and the kurtosis of this sampling distribution are

part of what dictates what will be the value the a%ile of the test

distribution. Of course, conventional confidence intervals employ

exactly the same elements as statistical significance testing, and

do make the use of all four estimates explicitly obvious (Glass &

Hopkins, 1984, section 11.7).

Table 3 presents the calculated sample statistic, r = +.560,

for the Table 2 data, and this same result expressed using Fisher's

r-to-Z transform. Table 3 also presents calculated SEzr (.354),

calculated assuming both that population value of Zr is zero, and

that the sampling error is normally distributed (skewness and

kurtosis both equal 0) about Zr. Given these assumptions31 we can

infer that roughly 95% of the samples from the population will fall

18
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between Z, = -.061 ( c = -.060) and Z, = +1.325 ( r = +.868).

INSERT TABLE 3 ABOUT HERE.

Because the 954 confidence interval subsumes 0, the x: of +.560

is not deemed statistically significant.4 The use of the 97.54ile

from the Z distribution, 1.96, in the confidence interval

calculations is where both skewness and kurtosis coefficients are

invoked, for the 97.5%ile of Z scores will be 1.96 only if skewness

and kurtosis are both zero.

However, it is contradictory to be willing to use the sample

to derive our (a) parameter estimate, and to be unwilling to.let

the sample offer similar insight regarding the (b) SE of our

estimate, and regarding the (c) skewness and (d) kurtosis of

sampled estimates. One way explore our data regarding the latter

three estimates is to conduct a bootstrap analysis, i.e., we

momentarily treat our sample data as if it constituted the

population and we draw numerous (usually at least a thousand)

random samples from the sample to infer what the sampling

distribution looks like. To mimic randomly sampling our data with

n subjects from the population, we do all our "resampling" from our

mock population by drawing random samples with replacement from our

data in hand, and to honor our research situation each resample is

drawn to also have exactly size n.

The Table 2 data can be used to illustrate this application

and its potential benefits. These estimates were developed using

the software available from Lunneborg (1987), and were based on
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1,000 samples with replacement. As reported in Table 3, the

standard deviation of the 1,000 estimates of r was .173--this is

the empirical estimate of SE0 and is considerably smaller than the

estimate of the SE (SEir = .354, SE, = .339) derived based on

assumptions. The bootstrap results were also useful in alerting the

researcher to the fact that the sampling distribution may net be

normal, e.g., the distribution may be negatively skewed.

The bootstrap approach can be employed to yield a variety of

confidence intervals, which vary as a function of the assumptions

they make about the sampling distribution. The three estimates

calculated by the Lunneborg (1987) program for the Table 2 data are

reported in Table 3. The "bias corrected" estimate makes the fewest

assumptions regarding the sampling distribution (Lunneborg, 1987,

p. 54), that is, relies most upon the empirical findings from

resampling. since none of the confidence intervals subsume zero,

the bootstrap results employing an empirically estimated sampling

distribution, unlike the conventional approach, yields a

statistically significant result.

Of course, bootstrap and other methods that focus on the

invariance or the generalizability of results are no more magical

than is classical statistical significance testing itself. No

analytic methods can magically take us beyond the limits of our

data. We use methods to explore data in various ways, not to make

data more than they can be.

Discussion

The conflict between the quantitative and qualitative research
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paradigms (Thompson, 1989b) has helped researchers in both schools

recognize and acknowledge that the researcher is inherently "caught

up in the web of circumstances under study; he [sic] cannot escape

his role as an actor in society" (Piel, 1978, p. 9). Researchers

ought to abandon any illusion "that it is adherence to a series of

established procedures which prevent the self from disrupting or

distorting this 'journey of the facts" (Smith, 1983, p. 10). But

moving some researchers in this direction may be a difficult

proposition, given

that one of the hardest tasks statisticians face is

persuading investigators to look at their data. This

is a situation that is not likely to soften, given

the epidemic rise in the number of p-value software

statisticians. (Bartko, 1991, p. 1089)

More researchers need to recognize the limits of statistical

significance tests, and ought to augment these analyses.

Resistance to relying less on the 2 values from statistical

significance testing cannot be successfully rationalized on the

grounds that significance tests yield any payoff in objectivity. As

Berger and Berry (1988) argue, such a view would be an "illusion",

since "objectivity is not generally possible in statistics" (p.

165). Huberty and Morris (1988, p. 573) concur, noting that "As in

all of statistical inference, subjective judgment cannot be

avoided. Neither can reasonableness!"

The single study is inherently governed by subjective passion

(Kerlinge:, 1986, p. vii), and by ideology even as regards analytic
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choice (Cliff, 1987, p. 349). The protection for fledgling efforts

to obtain insight does not arise from lockstep adherence to a

flowchart sequence of design and analytic choices. Scientific

progress is grounded on impassioned observation (Thompson, 1989b,

p. 37). The protection against the potentially negative

consequences of these passions occur not from feigned objectivity,

but arise in the aggregate across studies from an emphasis on

replication (Neale & Liebert, 1986, p. 290).

It has not been said here that statistical significance

testing should be abandoned. Rather, it has been suggested that

statistical tests should not be overinterpreted, and that these

tests can be usefully augmented by analyses that bear more directly

upon the cumulation of knowledge.

Otherwise, obsession with statistical significance will

continue to lead to editorial practices favoring articles that

report statistically significant outcomes (Rosenthal, 1979). This

is comforting in that it creates a bias against reports of Type II

errors, since by definition statistically significant results

cannot represent Type II errors (Thompson, 1987b). But, in the

context of this bias, the greater likelihood of reporting

statistically significant results that are in fact Type I errors is

problematic, "because investigators generally cannot get their

failures to replicate published, [and so] Type I errors, once made,

are very difficult to correct" (Clark, 1976, p. 258).

Researchers who fail to obtain statistically significant

results may abandon lines of inquiry (Greenwald, 1975), perhaps
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even when such results are artifacts of insufficient power against

Type II error. Researchers who fail to obtain statistically

significant results may also decline to submit reports for

publication (Rosenthal, 1979). Finally, even when such reports are

submitted for review, such reports tend to be unfavorably received

(Atkinson, Furlong & Wampold, 1982).

The adherence to worship at the temple of statistical

significance testing, described vividly by Rosnow and Rosenthal

(1989), cannot be defended on grounds of either tradition or an

unwillingness to admit the error of past ways. social science is a

subjective business, and no analytic method can make it otherwise.

There are several anaytic strategies that can be usefully employed

to augment the results of statistical significance testing, and

these methods may be more relevant to efforts to cumulate

knowledge.
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Footnotes

1Though many researchers possess this elementary insight, not all

do. A blind referee for a respected journal reviewing a manuscript

making this point noted, "It certainly is mt the case, as the au.

contends, that with a huge enough n, the null hypothesis will

inevitably be rejected; what abouto[sic] psychokinesis, Mendelian

hypotheses for progeny, superstitions?" However, even if we admit

only an infinitesimal measurement error influence that creates a

difference in two means at the 39th place to the right of the

decimal in a population in which the two means are exactly equal

(or a population with no measurement error at all in which two

means differ only at the 39th decimal place), large enough samples

from the population will detect these differences as being

statistically significant.

2Examples of such software and the distributors of the software

include: (a) "Resampling Stats", distributed by Resampling Stats,

612 N. Jackson, Arlington, VA 22201; (b) "Statistical Calculator",

distributed by Erlbaum, 27 Palmeira Mansions, Church Road, Hove

East Sussex BN3 2FA, United Kingdom; (c) SPIDA, distributed on

behalf of its Australian author by SERC1.1107 NE 45th--Suite 520,

Seattle, WA 98105; and (d) the menu-driven program, BOJA,

distributed by iecProGAMMA, P.O. Box 841, 9700 AV Groningen, The

Netherlands.

3It is actually contradictory to calculate SEz, based on an

assumption that r = ol and to then use SEz, to calculate confidence

intervals for r # 0, unless one only wishes to test Ho: m = 0. In
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this case conceptually the CI is really being constructed around 0

(and not m), and the test is whether the point estimate, re falls

within the interval. However, in practice we usually consider this

estimation procedure to be "close enough".

4tior is the result statistically significant when it is evaluated

using the more powerful two-tailed I test.
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Table 1
Statistical Significance at Various Sample Sizes

for a Fixed Effect Size

Source SOS r2 df MS Fcalc Fcrit Decision
SOSexplained 331.2 33.0% 2 165.600 0.246 200.00 Not Rej
SOSunexplained 672.3 1 672.300
SOStotal 1003.5 3 334.500

SOSexplained 331.2 33.0% 2 165.600 2.463 4.10 Not Rej
SOSunexplained 672.3 10 67.230
SOStotal 1003.5 12 83.625

SOSexplained 331.2 33.0% 2 165.600 4.926 3.49 Rej
SOSunexplained 672.3 20 33.615
SOStotal 1003.5 22 45.614

SOSexplained 331.2 33.0% 2 165.600 7.390 3.32 Rej
SOSunexplained 672.3 30 22.410
SOStotal 1003.5 32 31.359

note. As sample size increases, tabled "critical f" values get
smaller. Additionally, as sample size increases, error dt gets
larger, mean square error gets smaller, and thus "calculated f"
also gets larger. Entries in bold remain fixed for the purposes of
these analyses.

Table 2
Hypothetical Data Used to Illustrate Bootstrap

Evaluation of an Estimate of r

ID I X
1 .18 .20
2 .54 1.88
3 -.49 -.76
4 .92 .42
5 .22 .32
6 .75 -.56
7 .66 1.55
8 -2.65 -1.21
9 -.51 -.66

10 .47 -.96
11 -.09 -.21
ryx .560
Zr .632

Note. Zr = 1.1513 (ln ((1 + / (1 - Irl)))
1.1513 (ln ((1 + .560) / (1 - .560)))
1.1513 (ln ( 1.560 / .440))
1.1513 (ln ( 3.541))
1.1513 (.549) = .632
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Table 3
Conventional and Bootstrap Significance Tests

for x=.560 for the Table 2 Data

Sampling Statistics/
Significance Tests

Second Moment of the Sampling
Distribution

SEv
SEr

Third Moment of the Sampling
Distribution

Coefficient of Skewness of r

Third Moment of the Sampling
Distribution

Coefficient of Kurtosis of r

Density of the
90.0%ile of
95.0%ile of
97.5%ile of

Classical Estimates Based Empirically Based
on Statistical Assumptions Bootstrap Estimates

Sampling Distribution
Zr

Zr

Zr

95% Confidence Intervals
About Zr
About r

. 354'

. 339b

. 000 (assumed)

. 000 (assumed)

1.282
1.645
1.960

(assumed)
(assumed)
(assumed)

-.061 to 1.325c
-.060 to 0.868d

.173

-.780

1.895

1.037
1.164
1.324

+.220
+.188
+.082

to +.899°
to +.868f
to +.822g

'Calculated as SEzr = 1 / ((n 3) ** .5) = 1 / ((11 - 3) ** .5) =
1 / (8 ** .5) = 1 / 2.828 = .354.

bCalculated as SEa = .354 converted back into SEr = 339 .
cCalculated as CI"s about Zr = Zr - (1.960 * SEzr) to Zr + (1.960 * SE2x)

= .632 - (1.960 * .354) to .632 + (1.960 * .354)
= .632 - .693 to .632 + .693

dThe conversion of r expressed as Fisher's Z transform back into r.
cCI"s calculated using symmetric or normal theory approach.
1C1096 calculated using percentile method.
gCI95,6 calculated using bias corrected method.
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Figure 1
Bootstrap Estimates of r Based on 1,000 Random Resamplings

Mdpt Counts Mdpt
I -.450 0 0 -.65 I 0

I -.375 1 0 -.50 I 0

I -.300 1 2 -.35 I 0

I -.225 0 1 -.20 I 0

I -.150 1 5 -.05 I* 0

I -.075 0 13 .10 I** 0

I .000 5 52 .25 I******0
I .075 5 128 .40 I******0*********

*I .150 11 220 .55 I*******0********************
***I .225 21 234 .70 I********0********************

*****I .300 39 170 .85 I*******0********1.****
**********I .375 77 91 1..00 I******0****

***************I .450 117 57 1.15 I******0
********************1 .525 163 9 1.30 I* 0

**********************1 .600 173 4 1.45 I* 0

************************I .675 189 4 1.60 I* 0

.750 112 4 1.75 I* 0

*******1 .825 59 3 1.90 I 0

**I .900 18 3 2.05 I 0

*I .975 8 0 2.20 I 0

1.050 0 0 2.35 I 0

240 200 160 120 80 40 0 0 41 80 120 160 200 240

Histogram Frequency Histogram Frequency

Note. Each asterisk represents approximately eight cases. The distribution of 1,000 bootstrap
gstimates of r is presented to the left, while the distribution of the Fisher's Z transformation
of these 1,000 estimates is presented to the right. The normal distribution of samples of Zr,
expected given the classical statistical assumptions that sampling error is distributed normally
about the estimate, is also presented in the histogram on the right.
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