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Abstract

1n this paper algorithms are desc-ibed for obtaining the
maximum likelihood estimates of the parameters in log-linear
models. Modified versions of the iterative proportional
fitting and Newton-Raphson aljorithms are described that work
on the minimal sufficient statistics rather than on the usual
counts in the full contingency table. This is desirable if
the contingency table becomes too large to store. Special
attention is given to log-linear IRT models that are used for
the analysis of educational and psychological test data. To
calculate the necessary expected sufficient statistics and
other marginal sums of the table, a method is described that
avoids summing large numbers of elementary cell frequencies
by writing them out in terms of multiplicative model
parameters and applying the distributive law of
multiplication over summation. These algorithms are used in
the computer program LOGIMO. The modified algorithms are

illustrated with sinulated data.
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Comput ing Maximum Likelihood Estimates of
Loglinear Mcdels from Marginal Sums
with Special Attention to

Loqglinear Item Response Theory

Purpose

Log-1linear models are used increasingly to analyze
psychological and educational tests {Cressie & Holland, 1983:
Duncan, 1984; Kelderman, 1984, 1989; Tijur, 1982). Current
computer prcgrams such as GLIM (Baker & Nelder, 1978), ECTA
{Goodman & Fay, 1974) and SPSS LOGLINEAR (SPSS, 1988) for
analysis of log-linear models have limited vur-lity when used
with models of the size and complexity required in some _est
and applications to test and item analysis. The computer
program LOGIMO is especially designed for this situation. In
this paper the algorithms used in LOGIMO are described. The
algorithms are useful for the analysis of both ordinary log-
linear models and log-linear IRT models. For & discussion of
applications of log-linear IRT models che reader is referred
to Duncan (1984), Duncan and Stenbeck (1987) and {Kelderman
(1984, 1989%a, 1989, 1991)

In this paper three log-linear models are used to
describe the algorithms, one ordinary log-linear model and
two lo0g-linear IRT models. To keep exposition simple, we
assume that each test has four items. Needless to say. the

results are valid also fcr larger numbers of items.

~J
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Let there be a sample of N subjects with responses i, j,
k and 1 on four variables. The i, 3, k and 1 are realizations
of random variables with joint probability Pi4x1- Consider

the following examples of parametric models for Pi4x1-

Example 1
The first model is an ordinary log-linear model (see
e.g. Agresti, 1984) describing interactions between

consecutive variables:

Piikl = 2i3P3xCxk1- (1

i=1, ..., 1;3=1, ..., d;: k=1, ..., K; 1 =1, ..., L,
where aj4, bjx, Cx] are parameters to be estimated. Even
though this simple multiplicative parameterization is not
identifiable, it is useful for illustrating the first
algorithm described !n the next section. An identifiable log-
linear formulation of the model with main and interaction

effect terms will be presented later.

Example 2

Let i, 3, kX, 1 = 0, 1 now be dichotomous item responses
and let m =i + j + k + 1, the simple sum of item scores, be
a new variable. Several authors (e.g. Cressie & Holland,

1983; Kelderman, 1984) have shown that the model

Pi4kim = @iPjcxdien (2)
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is equivalent to the dichotomous Rasch (1960/1980) model.
This is readily seen by conditioning on the sum score, which
yields the familiar formulation of the conditional R-sch

‘model (Rasch, 1980, p.177):

pijkllm = aibjckdl / i: r E f aibjckdl.
i+3+k+lem

The parameters in (2) are multiplicative main effect
parameters describing the effect of the variables. The usual
additive Rasch-item-difficulty parameters can be obtained
from them as {(log ag - log aj), (log bg - log b;), etc. They
are unique up to an additive constant. Let us note that the
variable m in pj4, 1y is redundant because it depends
completely on i, j, kX, and 1. Now consider a two-dimensional

log-linear IRT model.

Example 3

The most cowplicated model considered here contains two
variables that depend on item responses. To define these
variables, two weights are assigned to each response. These
weights or category coefficients are positive integers
denoted by vy (i) and wy(i), va(3) and wp(3), vi3(k) and w3 (k},
vg{l) and wg(l) for items i, 3, kX, and 1 respectively. New

variables may now be defined as the simple sums of weights
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meE vy(i) + va(d) + va(k) + va(l),
and 3

t ®owy(i) + wo(3) + w3(k) + wa(l),

for i =1, ..., 1; 94 =1, ..., J; k=1, ..., K;
1 -1, ..., L. A two-dimensional log-linear IRT model can nocw

be written as:

Pijklmt = ajbjcxdieme- (4)

Kelderman (1989) showed that, for suitable choice of category
coefficients, (4) defines a class of IRT models that includes
the partial credit model (Masters, 1382), the
multidimensional Rasch (Andersen, 1973; Rasch, 1961) model,
and other interesting IRT models. It is easy to see that
Model 4 can be expanded to include more items, more weight-
sum variables and/or interaction terms as in Example 1.
Problems are lixely to arise with the usual algorithms
for maximum likelihood estimation of parameters in log-linear
models if the number of items or weight-sum variables is
large. Most of the currently available algorithms require the
storage of the tables of observed and expected counts
(1£54x1) and {Fj4x1) = (N Py4k1}, respectively). These tables
can become extremely large if the number of items is not
small. For example, if there are twelve four-response items,

each table will consist of 17 million cells.

()
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The algorithms described below avoid this problem by
comput ing the parameters directly from certain marginal sums
of the contingency table. The next section describes two such
algorithms: a modified version of the iterative proportional
fitting algorithm, and a version of the Newton-Raphsan
algorithm. Furthermore, an efficient method to calculate the
expected marginal sums is described at the end of the next
section. In the applications section, the computational
efficiency of this method is assessed, and the modified IPF

algorithm is applied to a set of simulated data.

Description

1f it is assumed that the subjects respond independently of
one another, the frequencies {fj4x1) have a multinomial
distribution with index N and probabilities {pj4x}1}. “he
likelihood of the models for sample data ir

£
nnnnn (Pijkl)fjkl
i3

where h is a function o the data only. The variables m and t
are omitted in the above expression. Taking the derivatives
of the log likelihood with respect to the parameters and
setting them equal to zero, will yield the maximum likelihood
equations (see Haberman, 1979, p.448). For the model in

Example 1 the maximum likelihood equations become

ERIC 11




Marginal Sums

5

fij++ - Fij+¢ = 0, ; i i; ' 3:
- 4 1 .
f+jk+ - F+jk+ = 0, 2 i i' v g: (5)
fosxl ~ Faax1l = 0, § = i' X i;
’ ’

where a plus sign replacing an index denotes summation over
that index (e.g.Fj4+4 = § ¥ Fi4x1) - The marginal sums
(54440, 1£49k41 and {f,4x)} are minimal sufficient
statistics for the parameters (ajg4), (byxl, and {cg))
respectively. Generally, in log-~linear model analysis, the
sufficient statistics associated with par ieters are the
marginal sums with the same indices as the corresponding
parameters. Furthermore, the lixelihood equations are
obtained by setting the observed sufficient statistics equal
to the corresponding expected values under the model. Thus,
for Model 2, the likelihood equations are obtained by setting
the marginal sums {(£i4444), (fa3aa)s (Laakeel)s {f44414) and
{f4¢+.4m!) €equal to the corresponding expected values (Fi,444):
(F+j++)r {Foaxeelr {Fassrs) and {Fupaunl.

Solving the Equations (5) for the parameters yields the
maximum likelihood estimates of the parameters. TheSe
equations can not be solved directly, but numerical
algorithms are available for . heir solution (e.g. Baker &

Nelder, 1978, Goodman & Fay, 1974)
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I Prop Fit

In iterative proportional fitting (IPF, Deming &
Stephan, 1940), the expected cell counts ‘Fijkl) are
proportionally adjusted to fit the set of marginal sums
obtained from the sample. In this section we describe a
modified IPF algorithm to adjust pzrameter estimates rather
thin expected cell frequencies. This modification alleviates
b ;th storage requirements and computational complexity
because test-data models usually have much less parameters
than expected frequencies.

Let us consider regular IPF. Denoting the expected

counts before the adjustment as (F{%if’) and after

adjustment as (ngﬁf)), start the computational procedure
by setting all ngi?) = 1. In IPF, the maximum likelihood

estimates {Fj4x1} under Model 1 are obtained by repeated

application of the adjustments

2 {new) ~(cld)

_ a{cld
Fiskl = Fijkl (fijes / Figes?)
~ {new) 2 {old) 2{old)
Fiqk1 = Fi3kl (fegke 7 Fejke)
~ (new) _ 2(old) ~(0ld)
Fijkl = Fijki (feexl / Faskl)
each for i =1, ..., 1I; 3 =1, ..., J; k=1, ..., K;

1=1, ..., L, until convergence is achieved. The algorithm
will always converge to a solution satisfying Equations 5.
The application of IPF to other models, such as those given
in Example 2 and 3, is straightforward.

To adjust parameter estimates rather than expected cell




Marginal Sums

9

frequencies, let us first express Fyq4x) in terms of

parameters. For the first update, this becomes

(o]

{ {old)
Ck1

ne new) _ (new) (old), (old) 1d)
N a{3® piR oxf N ajy bR (f14+4/Fiq3s")

Because the same adjustment (fij++/F§gig)) is made for all

values of k and 1, it suffices t.o change the parameter aj4
only. The remaining parameters bjk and cx; can be treated as

new) _(new) old)
Cx1 = ng ¢

censtants so that bék é?%d) Therefore, we

have

(old)

'(neW)z (fij#¢/Fij"+ )' i = 1, o ey 1;

{old)

Similarly for the other updates, we have

{old)

b%gew)= b§§ld)(f+jk+/F,jk* Y, o 4=1, ..., I,
k = 1' vy Kr
and
ck“i‘ew)= cégld) (f**“kl/f‘ig)l(?))l k=1, ..., K,

1=1, ..., L.

Within the modified IPF algorithm, only IJ + JK + KL

parameters have to be adjusted in one cycle. Compared to the

14
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3(IJKL) cell frequencies in ordinary IPF, there is a
considerable reduction in computational complexity with the

modified IPF. We will look at this reduction much more

closely in the section on applications.

The IPF algorithm works with indeterminate parameters. A
unique solution of the log-linear version of Model 1 with

main and interaction effect parameters can be obtained by the

following reparameterization.

B = log ayy + log byk * log cky,

a; = log ajgy - log a1y

Bj = log a4y - log arg + log b4k - log bgx

¥ = log byx - log by + log cxp - log cki

8; = log ck1 - log ey

(@f) 34 = log ayy - log ayy - log ajy + log ajyg
(BY) yx = log bjx - log bgy - log by + log bgk

(¥6) 1 = log cx) - log cx1 - 1og cxy + 1og cky

where a;, B3, v and 5, are main effect parameters and
(@B 4, (B 4 and (9) ), interaction effect parameters.
It is easy to verify that the model (i{.e. {Pijkl)’ would

remain invar.ant under this reparameterization. That is:

log ajqbykCxl = B + @4 + Byt 7 + 8y
+ @By + By g + B (6)

and that the constraints
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ay = By =1 =81 = (0f)gy = (af)y,
= B4k = BVgx = Wgy = Wixp = 0 (7

are satisfied.

This parameterization contrasts the effect of each
category with the last. Bock (1975, p.239) refers to this as
the ’simple contrast’. Other parameterizations such as
deviation contrasts, where the effect of each category is
contrasted with the mean effect, can be obtained by similar

transformations.

A _Newton-Raphson Algorithm

The well-known Newton-Raphson algorithm is based on a
second order Taylor expansion of the log-likelihood function
(Andersen, 1980, p. 47:; Adby & Dempster, 1974, p. 65). The
algs.ithm iteratively computes the log-linear parameters
using the gradient and the Hessian matrix, which can be
written as functions of the marginal sums. Before discussing
the Newton-Raphson (N-R) update, let us first introduce the
matrix formulation of the log-linear formulation given in (6)

for Model 1:

log Py4xl = B + &y + Bj + Y + 8
+ (uﬂ)ij + (D'{)jk + (W)

16
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Wwithout loss of generality, let us assume that I =J =K = L
= 2. Unlike IPF, the N-R algorithm requires the parameters to
be identified. Therefore we impose the constraints given in
(7). Let p = (P1111r P2111¢ ---+ P2222)' be the vector of
cell probabilities, and let§ = (4, a3, By, 7. 8,, (o)1,
(By) 17, (¥)311)’ be the vector of parameters to be estimated.

The matrix version of the model can be written as

log p = D&,

where D is the design matrix with ones and zero’s in the
appropriate places and log means the elementwise logarithm
operator. Letting £ = (fi111. f2111+ ---+ £2222) and A =
diag(p), the gradient vector and the Hessian matrix can be

expressed as

0 log L
g:.___:.D'f—D'pN
d &
and
9% log L
H= ———— =N[D'AD - (D'P) (D'P)'] ,
d&o& e
respectively.
These can alsr be expressed in terms of marginal sums
since

17
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D' = (fy4400 Soq4er fovt1er Tounrr 17440 f41140 f4411),

D'P = (P1444s Pole+r Putler Pistls Plle+rs P+114+4r P+s+11)y

and

Pl14+44 P11+4+ Ple1+ Pl441 Pl1++ P111+ P1+11
P11++ P+l++ Pe11+ Pe141 Pl1++ P4114¢ Pi111
D'AD = Pl1+41+4 P411+ P41+ Pss11 P111+ P+l1+ Pa+ld (8)
P1441 P+1+41 Ps+11 Pe4+41 P11+1 Pe111 Pe+11
P11++ Pl1++ P111+ P11+41 P11++ P111+ P1111
P111+ P+11+ P+11+ P+111 P111+ P+11+ P+111
P1+411 P+111 P++11 P++11 P1111 P4111 P++11

The N-R algorithm repeatedly adjusts the parameters . Let
§(old) ang g(neW) pe the parameter vectors before and after
adjustment and let gf{old) g(new) 54 glold) ginew) po the
gradient and Hessian computed from them. The maximum
likelihood estimates of { are obtained by repeated

application of

g(neu) = g(old) + A,

where A is the solution of the linear system:

glold) 4 - glold)
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Usually the update 8 is computed by pre-multiplication of
system the by the inverse of gl(old)  pyt it is more efficient
to solve the system directly for A (Dongarra et al, 1979;
Holland & Thayer, 1987). Gill, Murray and Wright (1991)
describe fast methods for solving systems of linear
equations. The Newton Raphson algorithm converges much more
rapidly to the maximum likelihood solution than the IPF
algorithm but requires starting values that are close to the
final solution. Also B requires the marginal sums given in
(8), which are not necessary for the modified IPF algorithm.

The most important feature of the above modifications of
the 1PF and N-R algorithms is that in neither case is it
necessary to set up the full contingency table. Marginal sums
alone are sufficient. Although this reduces storage,
requirements it does not relieve us of the comput ational
burden of summing over the cells of the full table, which is
probably the reason why the above N-R procedure is never used
in existing programs for log-linear analysis. A novel element
in the application of the N-R algorithm and modified IPF, is
that the marginal sums are computed in an efficient way

described in the next section.

Efficient Computation of Marginal Sums
The obvious way to compu’.e (Fij*+} is to sum over the

cells

Fij++ = N f f Pijk1 = N f f a34P4kCx1 (9)
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i=1, ..., 1, 3=1, ..., J, where the last term is used to
avoid storage of the full table.

Suprose that I = J = K = L = 10, then (9) involves
2(IJKL) + 1 = 20,001 multiplications and IJ(KL -~ 1) = 9900
summations. This number of computations can be reduced by
rewriting (9), using the distributive law of multiplication

over summation, as

Fijss = N 2335 Ebjk }I:'Ckl'

i=1 ..., 1, =1, ..., J3.This requires only 1 + IJ + K =
111 multiplications and J(K-1) + K(L-1) = 180 summations.
This is obviously a considerable reduction in the number of
computaticrns needed.

We will refer to this method of computing the expected
margiral sums as the marginalization-by-variable (MBV)
method, because summations for one variable (at a time) are
done only over parameters that depend on that variable.
Multiplication with parameters that do not depend on that
variable is postponed until after the summation.

The MBV method becomes more complicated if the model
contains weight-sum variables, because they are dependent on
item responses {e.g. Example 3). In that example, the values
that a summation in the MBV method can take, may depend on
the value of other summation variables. For example, the

computation Of F,,4sq in Model 2, can be written as
/

.

U
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p D aibjckdlem
k1

The summations over i, j, k and 1 may only be performed for
those patterns for which i + J ¢+ kx + 1 = m. To see what this
means for each separate summation let us rewrite 1 + 3 + k +

1 = m into the equivalent form

mlsi*jl
m23m1+k,

m = mp + 1,

where m; and mp are partial sum scores.

Let L mean the summation over the values of x and
X
X4ymz

y for which x + y = z; the MBV method for computing Pisssm

then becomes

Fessam = N eg T dy L cx (X bjai)) (10
mo, 1; my, K/ i, 3
my+l=m my+k=my i+j=my

In the above equation, aj; and bj are first multiplied for all
i=0,1and J =0, 1. The products for which i + 3 =my are
summed, which gives a separate sum for each my(= 0, 1, 2).
Each sum is then multiplied with each of the cx (k = 0, 1)
parameters. Again, these products are summed if m; + k = mop.

This yields a sum for each my (=0, 1, 2, 3). Finally, this
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process of multiplication and summation is repeated one more
time to obtain Fi,,sqm- In this way, the marginal sums are
computed efficiently while, at the same time, avoiding
summation over logically impossible combinations of variable
values.

In a similar manner, the marginal sums for the model in
Example 3 can also be computed. First, rewrite the weight-

sums given in (3) as

m1=v1(i)+v2(j), m2=m1*V3(k), m=m2+v4(l)
(11)

tlﬂwl(i)ﬂdz(j), to=tytw3y(k); t=to+wy(l)

Under these constraints, the marginal sum P,s+s.mt Can be

computed as

Fesosmt = Negme Zd;  (Ecg (EDbyag)).
l'mz’tz k,m1,t1 i’j

Again each summation can be performed separately if the
constraints in (11) are respected. Obviously, the same method
can be applied to calculate the other expected marginal sums
such as (Fjseesels {F+j++++}, etc. Consequently, the MBY
method can supply all marginal sums needed in the modified
IPF or N-R algorithm.

The modified IPF algorithm using the MBV method to
compute expected marginal sums, is implemented in the

computer program called LOGIMO {LOGlinear IRT MQdeling,

o
€S
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Kelderman & Steen, 1988). LOGIMO is a Pascal program that

estimates log-linear models with main and interaction effect
parameters of item response, backgrounu variables and one or
more weight-sum variables as shown in Example 3. The weights
are integer valued and must be specified by the user. In the
next section we present the application of the modified IPF

and N-R algorithm.

Application

The complexity of computing the parameters of log-linear
models is substantially reduced by using modified IPF and N-R
algorithms based on marginal sums that can be computed
efficiently by the MBV method. In this section we will
examine the computational complexity as a function of the
number of variables in the model. We will first look at the
increase in computational complexity with the MBV algorithm
and then at the full algorithm.

In this application, we restrict our attention to the
IPF algorithm and to the simplest model with sum scores as
given in (2). This model is chosen because the number of MBV
computations is tractable and because it is equivalent to the
dichotomous Rasch model. Consequently the parameter estimates
can be compared to those of an existing algorithm for
comput ing Rasch parameters and to verify the correctness of

the algorithm.

23




Marginal Sums
19

Insert Table 1 here

In Table 1, the numbers of summations and
multiplications in the computation of F, _ 4gm of the simple
sum-score model (2) are given for five to 20 items. It can be
seen that for the MBV algorithm these numbers remain within
reasonable limits, whereas, for the case of summing over all
cells (9), these numbers increase very rapidly.

To evaluate the full IPF algorithm, test data conforming
to the Rasch model were generated for 20 items. The item
difficulties where randomly chosen from the uniform
distribution over the interval {-2,2). Latent trait values
for 10,000 cases were drawn from a uniform distribution over
the [-3,3] interval. Log-linear kasch models given in (2)
were then fitted to these data. Nine computer runs were made
for different subsets of items, where the first subset
contained the first four items, the second subset contained
the first six items etc. In Figures 1, Z, and 3, different
statistics of these runs are plotted against the number of

items in the model.

Insert Figures 1, 2 and 3 about here
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In Figure 1 the number of IPF iterations needed to
arrive at the maximum likelihood solution is plotted against
the number of items. Iterations were performed on a VAX 8750
computer until none of the parameter estimates could be
improved by more than .005. It is seen that the relationship
between the number of items and the number of iterations
needed for convergence is approximately linear.

As the number of items increases, the CPU time needed
for each of these iterations will also increase. In Figure 2,
the mean CPU time per iteration is plotted against the number
of items. It can-be seen that the CPU time increases steeply
with the number of items but stays within reasonable limits
for moderate numbers of items. In Figure 3, the total CPU
time for IPF iterations and for initializing the algorithm is
plotted against the number of {tems. Initialization time
includes data input, computing marginal sums and creating
data structures for storage. According to Figure 3, the CPU
times for initialization increases almost linearly with the
number of items and the iteration time does not increase
dramatically with the number of items in the test.

In Table 2 the real item difficulties and the estimated
item difficulties values of all 20 items are given. The item
parameter estimates were obtained by the LOGIMO program and
by the PML (Gustafsson, 1977, 1980) program. The PML program
calculates the CML estimates of the item parameters with

Andersen’s (1972) method. In both cases the first item

oo
h
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difficulty parameter was Set equal to its real value.
Furthermore, the iterations were stopped until none of the
parameter estimates could be improved by more than .0001. It
can be seen from Table 2 that both solutions are identical up
to the second decimal place, indicating that the IPF/MBV

algorithm correctly calculates maximum likelihood estimates.

Insert Table 2 here

Finally a note on the usefulness and availability of
LOGIMO. For ordinary log-linear models, provided they are not
too complicated, LOGIMO makes it possible to analyze larger
numbers of variables than with other programs. For certain
special Rasch models such as (2), dedicated pPrograms such as
RIDA (1989), and PML will generally be faster. If, however,
the user wants to define his of her own IRT model with
several dimensions and/or ucser specified category
coefficients, LOGIMO is the way to go. LOGIMO is a Pascal
program that runs VAX system running under VMS. For smaller
problems there is a PC version (386, with extended memory).
LOGIMO will bde distributed starting somewhere in the summer
of 1992 by iec PrcGAMMA, P.O.Box 841, 9700 AV Groningen, The

Netherlands (E-mail: GAMMAGRUG.NL).

Qb




Marginal Sums

22

Discussion

In this paper an efficient algorithm is described that
calculates the parameter estimates of log-linear models
including logy-linear IRT models. The c.gorithm avoids setting
up the full Item 1 x ... x Item k table by computing the
parameter estimates from the marginal -sums of the table by a
modified version of the iterative proportional fitting
algorithm or the Newton-Raphson algorithm. The computation of
expected marginal sums is done efficiently using the MBV
method.

The methods modified IPF and MBV methods can be seen as
generalizations of older methods for the estimation of
unidimensional Rasch models. For this case, the modified IPF
algorithm turns out to be equivalent to an algorithm proposed
by Scheiblechner (1971, see Fischer, 1974, p.247) and the MBV
method can be shown to be identical to the so called
summation algorithm for the computation of elementary
symmetric functions (Andersen, 1972). To see the latter,
normalize the parameters in the Rasch model (2) as ag = bg =
cg = dg = 1. Elementary symmetric functions can then be

computed recursively using the following type of relations

Tmla1,b1,c1,d1) = Yplaz,by,c1) + d1 Yp-1(a3.,b1,c1),

and similar relations for Ypfaj,by.cy1). ¥pn(21,b3}), etc.

2l
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It is easy to see that this summation is equivalent to the
left-most summation in (10}, and yn(a;,by,cy) and
Ym-1{a1,b1,C1) are equivalent to the second summation in
(10). Thus, the MBV method for computing marginal sums in the
Rasch model is equivalent Lo Lihe summation algorithm for
computing elementary symmetric functions. Despite this for
unidimensional Rasch models LOGIMO is genererally slower than
programs using the sum algorithm that arc dedicated to those
models. As remarked before its strenot Jies in ordinary log-
linear models and more complicated log-linear IRT merls.
LOGIMO is capable of dealing with models with
interaction terms and multiple weight-sum variables with
arbitrary weights defined by the user. In these models the
nice symmetries of the Rasch model are lost. It is an open
qguestion whether improved methods for computing elementary
symmetric functions, such as those of Formann (1986) and
Verhelst, Glas and van der Sluis (1984), depend on these
symmetries or and/or can be generalized for use with general

log-linear models.

-
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Maxginal

Number of Summing all cells MBV Method

Items
X + X +
5 192 26 40 10
6 448 57 54 15
7 1024 120 70 21
8 2304 247 88 28
9 5120 502 108 36
10 11264 1013 130 45
11 24576 2036 154 55
12 53248 4083 180 66
13 114688 8178 208 78
14 245760 163695 238 91
15 524288 32752 270 105
i6 114112 65519 304 120
17 2359296 131054 340 136
18 4980736 262125 378 153
19 10485760 524268 418 172
20 22020096 1048555 460 190
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Table 2
Real and Estimated item Difficulties for Simulated Data
AN=10,000)
Item

1 2 3 4 S
Real .858 -1.512 -0.173 -1.040 1.137
LOGIMO .858* -1.517 -0.214 ~1.069 1.161
PML .858* -1.517 -0.215 ~1.069 1.161

6 7 8 9 10
Real 1.354 1.690 0.577 -1.270 -0.155
LOGIMO 1.318 1.636 0.618 ~1.350 -0.154
PML 1.318 1.636 0.618 ~1.349 ~-0.153

11 12 13 14 15
Real 1.302 1.352 -0.823 -0.883 -1.754
LOGIMO 1.243 1.282 -0.858 0.871 -1.801
PML 1.244 1.284 -0.857 0.871 -1.801

16 17 18 19 20
Real -0.026 0.221 0.517 ~0.460 1.658
LOGIMO -0.038 0.183 0.502 -0.506 1.654
PML -0.038 0,183 90,502 ~0.507 1.653

*) The estimated parameter of the first item was set equal

to the real parameter value to fix the scale
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Figure Captions

Figure 1. Growth of the Number of IPF Iterations with the
Number of Items in Model 2.

Fiqure 2. Growth of CPU Time per Iteration with the Number of
Items in Model 2,
Eigure 3. Growth of CPU Time for Initialization and IPF

Iterations with the Number of Items in Model 2.
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