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Knowledge 1

As part of a larger study regarding an ideal
curriculum in five subject matter domains for the elementary school,

the views of seven experts in mathematics education were summarized

and contrasted. Four experts were nationally and internationally

known professors and researchers, and three were elementary school

teachers selected by researchers familiar with their teaching and

known for their ability to promote Lathematical understanding in

children. These experts were asked to treat the topic of mathematics

education comprehensively by addressing issues of curriculum (goals

and objective, selection and organization of content), materials and

instruCtion (presentation of input to students, teacher-student
discourse, activities and assignments), evaluation of student
learning (formal and informal assessment of student progress toward
key goals before, during, and after instruction), and teacher

education (subject matter knowledge, professional development). The

views of the experts are summarized one at a time, under the

categories of: (1) General Approach to Mathematics Learning in

School; (2) Learning i.nd Teaching; and (3) Approaches to Curriculum.

The overall summary indicated that all the experts were dissatisfied

with prevailing vathematics curricula and teaching practice in
elementary school with its over emphasis on learning isolated
computational skills. Other areas of agreement and disagreement are
contrasted, and these comparisons are considered with reference to

their implications for ideal mathematics programs. Readers are
cautioned that the call for change may be based on multiple, and
possibly incompatible, assumptions. (14 references) (MDH)
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Abstract

This report summarizes and contrasts the views of seven experts in mathematics

education. Four of these experts are nationally and internationally known

professors and researchers, and three are elementary school teachers selected

by researchers familiar with their teaching and known for their ability to

promote mathematical understanding in youngsters. These experts were asked to

treat the topic of mathematics education comprehensively by addressing issues

of curriculum (goals and objectives, selection and organization of content),

materials and instruction (presentation of input to students, teacher-student

discourse, activities and assignments), evaluation of student learning (formal

and informal assessment of student progress toward key goals.before, during,

and after instruction), and teacher education (subject matter knowledge,

professional development). The experts addressed these issues in the context

of ideal programs, as outlined in their responses to a set of questions about

what ideal curriculum, instruction, and evaluation practices in elementa-y

mathematics programs might look like, and more typical current practice, as

outlined In their responses to questions calling for critique of one of the

most widely adopted mathematics curriculum series. This report summarizes the

positions expressed by each of the Seven xperts taken one at a time, then

contrasts areas of agreement and disagreement across the more general

university researcher-teacher practitioner division. These comparisons are

considered with reference to their implications for ideal mathematics programs.



EXPERTS' V/EWS ON THE ELEMENTARY MATHEMATICS CURRICULUM:
VISIONS OF THE IDEAL AND CRITIQUE OF CURRENT PRACTICE

Richard S. Prawat, Ralph T. Putnam, and James W. Reineke1

This paper compares the views of two sets of experts--researchers and

teachersregarding ideal curriculum for elementary school mathematics. It

represents part of a larger study involving similar analyses in five subject

matter domains. The research was conducted at the Center for the Learning and

Teaching of Elementary Subjects at Michigan State University, whose mission is

to focus on issues surrounding the teaching of elementary subjects in ways that

promote students' understanding of their content, ability to think about it

critically and creatively, and ability to apply it in problem-solving and

decision-making contexts. Review and synthesis of the literature on this

topic, both as it applies to subject-matter teaching in general (Prawat, 1989),

and as it applies to the teaching of mathematics in particular (Putnam,

Lampert, & Peterson, 1990), identified the following as features of ideal

elementary curriculum and instruction in various subjects: (a) the curriculum

balances breadth with depth by addressing limited content and developing it

sufficiently to foster conceptual understanding; content is organized around a

limited number of power ideas (basic understandings and principles rooted); (b)

teaching emphasizes the relationships or connections between these ideas

(integrated learning); (c) students regularly get opportunities to actively

process information and construct meaning, and (d) instruction fosters problem

solving and higher order thinking skills in the context of knowledge

1
Richard S. Prawat, professor and chair of the Department of Counseling,

Educational Psychology and Special Education, and Ralph T. Putnam, associate
professor in CEPSE, are both senior researchers with the Center for the
Learning and Teaching of Elementary Subjects. James W. Reineke, doctoral
student in CEPSE, is a research assistant in the Center.



application, relying on real-world situations for this purpose. The experts

interviewed for this study were asked to critique, qualify, and extend these

ideas about ideal mathematics curriculum and instruction.

To ensure a range of comment on mathematics curriculum, we recruited four

internationally known university experts who represent different, contending

views of teaching and learning in mathematics education, and three expert

teachers who appeared similarly diverse in their views about and approaches to

the teaching of elementary school mathematics. University researchers were

selected because of their scholarly contributions and their familiarity with

elementary school classroom and curriculum issues. They represented a broad

range of views on curriculum within the mathematics education research

community. Teachers were selected from among nominees suggested to us by

leading university-based scholars (including those who were being asked to

participate in the study). Scholars were asked to nominate teachers who were

outstanding at promoting understanding of mathematics, including its higher

level thinking and problem-solving aspects. These teachers were then

interviewed by phone to develop more information about their teaching goals and

methods. After stratifying to ensure balance between the primary and later

elementary grades, we invited the teachers who seemed most Impressive in their

phone interviews to participate in the study.

%ta were developed from two sources. The first was a detailed, written

document in which experts were asked to (a) critique and add to our list of key

features of ideal curriculum (see above); (b) indicate how they would address

three representative and Important goals in mathematics (for this part and the

remaining part of the exercise, they were to pretend that they were acting as



consultants assisting the staff of a local school); (c) list important

understandings or generalizations related to each goal; and (d) develop a

scenario for teLching one of the understandings at each of two grade levels

(second and fifth). In addition to written comments, interviews were conducted

with each expert. These interviews not only allowed us to further probe

experts views regarding "ideal" curricula, but also afforded opportunities for

us to solicit their opinions regarding a widely used current textbook series in

mathematics. This material, along with a set of framing questions, had been

sent to each of the experts approximately one month prior to the on-campus

interviews.

Analyses of the experts' written and interview resptatses began with

transcription of all tape recorded interviews. The three researchers working

on this project independently read all the material, focusing first on each

informant's views about ideal curriculum, and then on views about the widely

used textbook series. Nstai/ed notes were taken and summaries prepared on each

expert's views prior to interpretations. The descriptions of experts' opinions

that follow thus reflect a shared understanding of what each expert said about

ideal and actual curricula.

Summary of Individual Panelists' Positions

All of our experts were dissatisfied with prevailing mathematics curricula

and teaching practice. All agreed there is currently too much emphasis in

elementary school on learning isolated computational skills. All agreed that

major changes need to be made to help students learn mathematics with meaning

or understanding. In short, all of our experts were in agreement with at least

the broad goals expressed in the current reform movement, as expressed in the

National Council of Teachers of Mathematics (NCTM) Curriculum Standards (1989)
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and National Research Council's Everybody Counts (1989). Beyond this broad

agreement, however, our experts had distinctly different views about

mathematics curriculum, teaching, and learning at the elementary school level.

Althou n all agreed that students need more problem solving and developing of

understanding or meaning than they are currently getting, their perspectives on

what aspects of mathematics should be learned and how that learning can best be

facilitated varied widely.

Our university experts ranged from a person who considers himself a radical

constructivist (P3) and argues that curriculum can only grow out of actual

pedagogical encounters between teachers and students and can, therefore, never

be specified in advance, to a person who argues that it sho.ld be the

responsibility of curriculum developers and educational researchers to

meticulously design embodiments for representing powerful mathematical concepts

(P1), to a person who argues that all mathematics learning in the elementary

school should be firmly grounded in problem-solving situations (P4).

This section of the report focuses on summarizing and comparing each of the

panelists' positions, starting with the professors (P) and proceeding to the

teachers (T).

giatEAL212

P1 argued that school is the place where children should learn the

disciplinary knowledge that our society values, not the mor general or

informal knowledge that they will learn anyway by participating in other, out-

of-school settings (e.g., home, work). Mathematics is viewed am a powerful

mental tool--but because it is ssentially a formal languag in our culture (as

opposed to a natural language), we have to think carefully about how to help

4 9



students acquire it. Like our other experts, P1 emphasizes that the primary

goal of school mathematics is to foster conceptual understanding in students.

P1 thinks of this understanding as involving two important elements: First Is

having an understanding of the semantics of the formal language of

mathematics--having mental images of various mathematical constructs. Second

is having in place a control system which allows individuals to reflect on

their actions. This reflection is important for developing the mental images

in the first place and for thinking about how these understandings should be

applied in various situations. P1 stated, "I think for understanding we need

two things. We need first what you call the semantic basis . . . (and a)

control system, which is a mental looking, you come back to that to look from a

reflection, reflective abstraction."

Sowder (1989) has drawn some distinctions recently in mathematics that are

helpful in understanding Pl's approach to mathematics. She argues that there

are three different variations on the "constructivist" position in math. The

first, she says, centers on the notion of "doing" mathematics. The key issue

here is the extent to which students are involved in actually constructing

mathematics: abstracting, inventing, providing, and applying. The second

position, and she lists Pl's approach as one of the xemplars of this

perspective, is said to involve "cognitive modeling." The focus here is on

providing models that allow tudents to construct the appropriate

representations for important ideas and procedures in mathematics. The third

perspective is a social constructivist one.

Interestingly enough, P1 recognized a similar distinction in a recent

article laying out her position. She argued that there are two "opposing"

approaches to the teaching of mathematics at the elementary level. The first,

the "structural" approach, favors the presentation of carefully constructed



mathematical representations that serve to bridge the gap between the physical

experience reified by advocates of the second, "natural-environment," approach

and the mathematical formalisms that lie at the heart of the discipline. The

goal of instruction, according to Pl, is to find alternative, "instructionally

more efficient," representations that allow direct access to the formal

knowledge that we eventually want students to acquire. Her major criticism of

the so-called natural-environment approach is that, while it accounts for the

genesis of knowledge, it does not account for its structure. P1 emphasized the

importance of the structure aspect, perhaps at the xpense of the genesis--the

personal construction--aspect important to radical constructivists like P3 (see

below). P1 seems particularly concerned about the use of ordinary language in

the natural-environmental approach.

From an epistemological perspective, P1's approach resembles what Cobb

(1989) terms "empiricist-oriented" constructivism. According to this view,

students must actively construct knowledge--they cannot just passively ingest

it from the outside. However, the knowledge constructed resides independently

in the objects in the physical world. Ultimately, according to the

empiricist-oriented approach, one can justify mathematical assertions (e.g.,

that 3 + 5 = 8) by reference to real world objects or events. This type of

mathematical verification is particularly Important for novices (i..,

children). They are incapable of the formal, deductive reasoning that is used

in higher mathematics. Therefore, teachers should provide them with an

external reality agallst which they can check their knowledge. Examples play a

key pedagogical role in this regard.

6



Teachina

As indicated, for Pl, learning mathematics is a matter of coming to know

the formal language of mathematics. She 6Ants students to acquire or construct

mental "Images" of mathematical abstractions that can form the semantic basis

for this formal language. Students do not invent mathematics; rather, they

construct their own understanding through reflection on their actions, in thls

case within carefully structured learninajwstems.

P1 explained what she meant by the term learning system. A learning system

is comprised of two components: (a) a knowledge component, which includes the

new mathematical relationships and language the student will learn; and (b) an

exemplification component, which pertains to the representations to be used In

presenting the knowledge component. The knowledge component of this system

results from the expert's, in tnis case the curriculum developer's, kncwledge

of the discipline of mathematics. Ideally, the identification of certain

"units" of knowledge follows from the careful analysis of an entire knowledge

domain. These units appear to be built around "big ideas" that encompass a

number of specific concepts and prncedures. P1 bulieves that "a unit of

knowledge should represent a portion of knowledge that `stands alone,' that

cannot be further dissected without losing its essential concepts." She cites

as an example the notion of "additive relation," at the heart of which is the

part-whole scheme underlying addition and subtraction in natural numbers.

In designing the learning syetems that will form the curriculum, it is

important to design examples around features that students will understand

(e.g., the color and length of Cuiseneir rods are assumed to be features of

objects that students will already be able to attend to and discriminate

among). This is the type of knowledge upon which students will build their

understanding of the abstract mathematical ystem. Thvs, the attributes of

12
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the materials used in the examples need to be familiar, but the concepts being

presented need not be familiar to the students.

During the interview, P1 responded to the charge that she was deciding, a

priori, what to teach students; ignoring, for the Most part, aleir own prior

knowledge. She replied, "I am declaring that they are coming to school to

learn formal knowledge. . . . Schools were designed to make short cuts to

learning formal knowledge." She said she agrees that children construct their

own knowledge. However, this does not mean that they are free to define what

that knowledge La.

P1 pointed out that there are two sides to taking into account previous

experience: On the one hand, it is important for teachers to build on

students' informal knowledge; on the other, it is equally Important to know

where previous experience does mt coincide with the formal system.

"otherwise," she indicated, "we would not need the formal system. . . . We need

the formal because there is soma limitation to the informal and we want to give

additional tools." Intuitive understanding is not always reliable. P1 cited

an example of an addition problem that might be treated as a subtraction

problem if the child relies on just his knowledge of language: "I lost five

marbles in the morning and three in the afternoon. How many did I lose

altogether?" If the child focuses on the word lost, he or she might

incorrectly subtract to solve the problem.

According to P1, it i. also important to avoid having students develop

ideas that will conflict with mathematics they will learn later. One common

example of this kind of interference occurs in the teaching of multiplication

as repeated addition, which interferes wIth students' later understanding of

"true" multiplicative relationships. P1 argues that we should highlight the

differences between multiplication and addition when first teaching them,
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rather then trying to make them seem like the same thing to avoid this kind of

later confusion.

P1 views ,he kinds of multiplication problems that children commonly deal

with in school as part of a broader multiplicative conceptual field which

includes concepts of ratio, vector space, and so forth. According to Vergnaud

(1983), whose theoretical views about multiplicative structure P1 endorses,

every multiplicative relation is a "four-place relation" ,:onsisting of two

basic dimensions (e.g., tables and legs) and a mapping function that maintains

a constant ratio between the dimensions (e.g., 1 table: 4 legs; 3 tables: 12

legs). Because of the importance of the four-place relation concept, P1

believes that it is important to teach students how to derive the mapping rule

in multiplication problems.

ARPEpaches to Curriculum

P1 felt that while we know a great deal about mathematics learning, we do not

currently know enough to construct an ideal curriculum. We do know enough,

however, to build better curricula. P1 listed a number of understandings or

generalizations that should be used as a basis fur developing a good

mathematics curriculum:

1. Conceptual understanding: having mental images to serve as a
semantic basis for the formal mathematical system

2. Syntax: knowmg the symbols of mathematics and how they fit
together, inc-uding procedures and algorithms

3. Multiple representations

4. A coherent system: rlationships among learned concepts and
the entire system of mathematics (e.g., laws of the order of
operation)

5. Uniqueness: what makes each concept and operation different
from others (e.g., multiplication not as repeated addition)

9
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6. Extending the number sets: making connections between early
learning of mathematics and various number sets (natural,
integers, rational, tc.) so that it will not be necessary to
undo early learning

7. Applications: teaching that concepts and operations are
applicable in a wide variety of situations--application should
be taught explicitly, not just generalized from the
mathematical ideas

8. Rigor, xamination, and control: mathematics as a system
always subject to examination, either by formal methods or by
modeling.and estimating

9. Creativity and self invention: never teach mathematics an
closed, ready-made

10. The beauty of mathematics: encourage by posing open
questions, investigating, and so forth

To summarize, in P1's approach, the teacher or curriculum developer begins

with an explicit statement about the specific mathematical ideas students

should learn; she emphasizes that one must pick a big enough "unit" to foster

the learning of a coherent system. One then carefully designs an xample to

represent the mathematical ideas. The goal is for the example to be isomorphic

enough with the mathematical ideas that students can use it to verify their

ideas and discover new mathematical relationships. Thus, using manipulatives

merely as illustrations of mathematical ideas is not enough.

It is equally undesirable to use whatever happens to be handy because the

relationship between the example and the mathematical idea, as well as the

language to be used in talking about the example, must be carefully worked out

ahead of time.. Examples serve as a sort of temporary referent for the

mathematical symbols (mathematical language) being learned, but the goal is for

the student to build a cognitive representation of the mathematical

abstractions. Once the mathematical language and the abstractions underlying

them are learned, students learn to wjay the mathematics they have learned to

10
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a variety of situations. Pl's argument here is that you first build an

understanding of the mathematics itself, which has relatively unambiguous

meanings, then you learn how to use this tool you have acquired to apply to a

variety of situations.

P2: Summary of Approach

P2's approach to school mathematics is similar in many ways to that of Pl.

As with Pl, the goal in education is to equip students with the powerful symbol

systems and procedures of mathematics. This formal knowledge is an important

tool for construction in our culture, the mastery of which empowers students.

The symbols and procedures themselves serve as the starting point and meanings

attach to them. The process of attaching meaning cannot be left to chance:

the teacher must exercise great care in structuring educational experiences for

youngsters. As P2 put it, "Students cannot invent procedures or invent

anything in the abstract." If they are to master "complex cultural

inventions," they "have to be provided with experiences (that enable them) to

construct meanings."

Much of what P2 focused on was learning the algorithms for multidigit

operations (+, x) and the accompanying place-value concepts. Her primary goal

was for students to learn the procedures with some meaning attached to the

symbols. This may represnt the focus of P2's research, which has recently

dealt with multi-digit algorithms antplace-value issues and how to teach them

more efficiently.

InehinsLiatiimuning

Like Pl, P2 starts with the mathematical concepts or procedures she wants

students to learn and then devises powerful embodiments to help them learn. P2

11



approaches it primarily, however, by arguing that the goal is for students to

acquire or construct meanings for the mathematical symbols.

what I think should be common across all elementary grade levels is
a teaching approach that emphasizes the development of meaning for
mathematical symbols and the building up of later mathematical
concepts from arlier ons . This approach requires using some
concrete materials or concerns situations that embodies in asily
grasped ways the mathematical structure of the topic being taught.
(Written response, p. 8)

According to P2, concrete or physical representations are the key to

developing mathematical understanding in children. Once acquired, children can

use these representations to determine for themselves if they are operating

correctly on mathematical symbolsassuming, of course, that the material has

been carefully linked to both symbols and procedures. This involves

"re-presenting" the representations to oneself.

P2 has definite ideas about which physical representations or embodiments

work best in teaching multidigit addition and subtraction. She favors the use

of base-ten blocks to represent the English named-value system, along with the

use of cardboard digit cards (i.e. , large calculating sheets divided into

columns headed by place value descriptors--ones, tens, hundreds, thousands) to

represent base-ten positions. These representations provide the opportunity

for children to construct meanings in ways that are consistent with the

mathematical features of multidigit addition and subtraction. The

represntations direct student attention to the crucial meanings associated

with these operations. As P2 explains, the embodiments enable children to

"understand features of both of these systems and connect these features to

each other."

P2 believes that the base-ten embodiments help teach both the concepts and

procedures associated with multidigit addition and subtraction. In fact, P2

considers these two lements of undrstanding intertwined. "At least as much

12



place value knowledge seems.to depend upon multidigit addition and subtraction

knowledge as vice versa," she concludes. P2 is leery of arguments that suggest

that work on place value should precede meaningful learning of multidigit

addition and subtraction. It is the "coordinated work" on bothusing a size

measure named-value (multibase blocks) and a positional base-ten embodiment

(digit cards)--that leads to the desired effect. Like Pl, P2 does not argue

for her particular representations because they map onto children's "natural"

understandings. Quite the contrary. The representations she favors "do not

for almost all children arise out of children's unitary ways of thinking about

number [i.e., as single collections of things)."

As the above suggests, P2 does take into account developmental factors in

thinking about school mathematics. She suggests that multidigit addition and

subtraction be introduced at the second-grade level; the conceptual bases for

this understanding are "well within the capacity of most second graders." The

relationship between the students' intuitive knowledge and the form and

knowledge they must acquire in school is complex; however, P2 emphasizes that

students do bring important prior knowledge to mathematics, some of it very

helpful and some much less so. As an example of helpful prior knowledge, P2

cites the extensive knowledge children apparently develop on their own about

single digit numbers--both in terms of what the symbols stand for and what it

means to operate on those symbols. Talking about operations (+, x), P2

states,

/ think that all those situations are out there in the real world
and kids have experienced them. They've experienced addition,
subtraction, multiplication, and division of small number
situations, and all you have to do is bring these into the

classrooms. . . . So / think that what you do about providing
meaning to those basic operational symbols oi.. small whole numbers

is bring in a bunch of these situations.

13
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This extensive intuitive knowledge of small numbers Is a double-edged

sword, however, in that it may interfere with other, more advanced knowledge

that students need to acquire: specifically, knowledge about multidigit

numbers. As P2 pointed out, students "enter school with this one powerful

representation of numbers [a unitary count sequence representation]. Starting

with multidigit numbers," P2 added,

I think we're in the position that we're in with respect to lots of
mathematics and that is that culture in general doesn't support
that learning; therefore, the schools have to do it. So I think
you really have to provide exneriences from which students can
construct a representation ot mi.. idigit numbers.

P2 elaborated on why she felt our culture doesn't support the learning of

this more formal mathematical knowledge. The tendency of children in

English-speaking cultures to construe numbers between 10 and 19 in unitary

terms may be due to the fact that the corresponding English number words

(unlike their Chinese-based counterparts) do not directly name the ten and one

values. The arbitrary terms "eleven" and "twelve," for example, do not

indicate their composition as "ten and one" or "ten and two." Further masking

occurs with the later number words; "thirteen" confuses the situation by

pronouncing "three" in an irregular way and putting the modified word for ten

(i.e., "teen") after the three instead of before it.

One Implication of students coming to view these two-digit numbers in

unitary terms is that the students collapse count and cardinal meanings for

these numbers--regarding even fairly large collections of objects as unitary

entities. P2 argues that this, and the practice of doling out one more place

in each successive grade (two digits in second grade, three digits in third

grade) accounts for the delay experienced by young children in this culture in

coming to terms with our place-value system: "The use of this unitary

representation becomes highly automatized in U.S. first and second graders,

I 9
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and it interferes with their construction and use of adequate representations

for multidigit numbers."

P2 also blames our educational system for adding to the language problems

that already exist with regard to multidigit numbers. Her research suggests

that it makes more sense to start with four-digit numbers than two-digit in

teaching place-value concepts and addition and subtraction procedures. (Note:

She tends to talk about the procedural and conceptual knowledge as a whole.)

The immediate or nondelayed use of four-digit numbers, P2 argues, results from

the need on the part of children to see multidigit numbers of several places

in order to understand the nature of this sort of number. Part of the

argument for beginning with four-digit numbers is a repeated-practice

argument: children are exposed to more examples of the underlying tens

structure with these numbers.

P2 appears to stress the role of story problems more in the teaching of

multiplication than in addition and subtraction, possibly because

multiplication maps on to a more complex set of real-world situations than

does addition/subtraction. Regardless, she does advocate the use of story

problems in teaching the three different interpretations of the times symbol:

(a) array (rows and columns); (b) repeated addition (x groups of y); and (c)

combinations, derived from combinations of the first two. As P2 puts it,

"These meanings need to be introduced through specific examples, and

computational work on multiplication needs to be continuously linked to these

meanings via student-generated stories and teacher- and text-generated

situations." This does not mean that P2 favors teaching multiplication solely

through a problem-solving approach, however. As with multidigit addition and

subtraction, she believes that physical representations must shoulder much of

the burden.
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One difference in P2's approach to th teaching of the two types of

multidigit operations (multiplication versus addition/subtraction) is worth

noting. As with addition/subtraction, P2 apparently has settled on one

multipurpose representation. However, this particular way of illustrating

multiplication--as an array--does not adequately capture the procedural aspect

of the operation. In this sense, it differs from the representation used for

multidigit addition and subtraction. Because cf this deficiency, P2 suggests

that array representation be used in conjunction with a procedural route: the

copy algorithm. In the copy algorithm, the multiplier is decomposed (i.e., 14

x 123 is treated as four 123s plus ten 123s). Students need only understand

place value, shift rules (i.e., the idea that multiplying by 10 shifts each

digit in the number one place to the left), and addition to use this algorithm

successfully. P2 assumes that students will detect the procedural pattern

(the process of repeated addition), which is a key aspect of multiplication,

if they practice enough with the copy algorithm. This fa consistent with her

notion that procedural knowledge (i.e., knowing how to use the copy algorithm)

contribut9s to conceptual knowledge and vice versa.

As indicated, P2 believes that a powerful concrete representation should

be used in conjunction with the copy algorithm if students are to fully

understand what is involved in multidigit multiplication. She suggests using

base-ten blocks for this purpose, supplemented with Some larger cardboard

pieces. An array model can illustrate what is happening. For xample, when

one multiples 123 by 214, one can illustrate with the concrete materials the

fact that one has 214 sets of 123--arrived at by constructing four sets of 123

(one flat, two longs, three units), then taking one set of 123 10 times and

then 200 times. This representation provides a semantic base for

understanding the copy algorithm.



P2 alsObelieves that the repeated addition approach to multidigit

multiplication generalizes to the multiplication of negative numbers. An

example may be helpful here: If a equals the size of a particular debt ($3,

$4, $5), and b equals the number of such debts that are taken away (these are

both negative numbers), the various combinations can be organized as ordered

pairs and arrayed in a matrix. It is comparable to repeated addition in that

it involves adding "b" number of things "a" number of times. Repeated

addition can also be used in the multiplication of decimals. Here an array

model is used to convey the sense that .1 x 3 is comparable to 2 x 3; the

latter means 2 sets of 3 things; in a comparable way, the former simply means

one-tenth of 3 or three-tenths.

In all the above examples, an array representation nicely captures the

semantics of what is going on during multiplication.

Approaches to Curriculum

P2, in contrast to Pl, apparently thinks about school mathematics in a

topical as opposed to a more conceptual or ideational way. In thA sense, she

packages the material in a fairly traditional way. Her instructional

treatment of mathematical content represents a marked departure from what one

would normally find in classrooms, however. There is a fair amount of

integration across conceptual and procedural boundaries. Place value, for

instance, is taught in rile context of multidigit addition and subtraction.

Similarly, traditional multiplication situations are used to teach the

different types of multiplication (repeated addition, array or area, and

combinations). This is in keeping with P2's view that conceptual and

procedural knowledge interact and are mutually reinforcing. (Pl's approach to

curriculum, by contrast, is more conceptual than any of the other experts.)
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Whereas P1 highlights the Importance of a unitary multiplicative

structure, P2 appears satisfied with a less ambitious agenda: Simply getting

across to youngsters the notion that the times eymbol has multiple meanings--

array or area, repeated addition, and combinations. All three meanings relate

to each other and to counting and can be represented with base ten blocks.

For example, an array can be construed as consisting of groupe if you focus on

each of the columns.

P2 aLso expressed strong views about the negative effects of the so-called

"spiral curriculum"; the low level of mathematical achievement in this

country, she believes, partly attributes to the spiralling (or repeating) of

substantial amounts of material from one year to the next. Instead of

continually circling back on concepts, across the school year and even from

one year to the next, topics should be presented thoroughly at one time and

expanded upon immediately following the initial presentation. P2 argues that

well-developed conceptual understandings will resolve the need for repeated

instruction over the years. Curriculum developers need to pick a few key

concepts for each grade level. These topics ehould be taught together in an

integrated iashion.

The problem with a spiral curriculum, according to P2, is that no one

feels responsible for making sure students get gr,od grounding in each

representation system or topic. P2's concern that the teachers commit to

teaching certain things at certain grades is influenced by her background in

developmental psychology--specifically, her exposure to Piagetian type

readiness concepts. Thus, P2 argued, students at the early elementary level

are not ready for ratio interpretations of multiplication or rational numbers

because they have not yet reached the formal stage of operations. P2 believes

that there is no point in teaching things until students are ready, but she



also believes that content that is appropriate can be taught in a mote

concentrated way. Thus, she advocates teaching more of what kids are ready

for at the early grade levels.

P2's views regarding the constructivist nature of learning are similar to

Pl's. Teachers must play an active role in helping students construct

mathematically "correct" meaning. It is important to choose powerful and

simple representations that will allow the child to do this. P2 believes it

is unfair to expect childten to come up with these representations on their

own. As she commented during the interview, "Students are goirg to construct

their meanings based on their experiences. They're going to construct some

sort of meanings about some sort of things because they're living organisms.

The issue really is what kind of experiences you provide." She went on to

say,

If you have a shot at helping kids build a new, more powerful,
simpler representation of some mathematical domain, then I think
you're being a lot more humane and helpful to (children) to enable

them to do it. . . . I think it's cheating them to not provide them
with the opportunity to build this other representation.

P2's constructivism contrasts sharply with P3's much more radiced version.

P3: General Approael

Kilpatrick (1987), commenting on the idea that mathematical knowledge is

constructed by individuals, states flatly that "no mathematics educator alive

and writing today claims to believe otherwise" (p. 7). Within the mathematics

community, however, disagreement over the nature of what is constructed has

created different types of constructivism. Two principles have been

identified as the hallmarks of the sort of radical constructivism embraced by

P3: (a) the learner actively constructs knowledge, s/he does not passively

receive it from the environment; and (b) coming to know is an adaptive process
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that organizes one's experiential world--learners do not discover an

independent, preexisting world outside the mind of the knower.

Radical constructivists, such as P3, claim adherence to a Pigetian theory

of knowledge acquisition. In this view, the learner, through interaction with

different environments, constructs his/her own representations of reality;

learning is provoked by situations--but knowledge is an individual

construction. This set of epistemological commitments is apparent in P3's

responses to the curriculum study questions and in the transcripts of the

interviews with him. P3 argues that teachers must recognize and respect the

"mathematics of children," rather than specifying in advance the "adult"

conceptions students are to acquire. P3 also believes that "learning does not

happen unless there is a situation in which learning takes place." The

situation described by P3 has two important characteristics. First, it

contains a rich set of logical mathematical experiences that learners can

immerse themselves in, both physically and mentally. Second, the situation

must provide for social interaction relating to the logical mathematical

activity. The teacher bears an important responsibility in optimizing both

the experience and the interaction that turns the experience into knowledge.

As P3 summarized it during the interview, "The teacher is everything."

Epistemologically, P3 represents an interesting contrast with P1 and P2.

P3 is critical of their emphasis on representation in the acquisition of

mathematical knowledge, arguing that this is an iconic conception of

knowledge, requiring a match between what is represented and the individual's

cognitive structure. Radical constructivists adhere to a view of knowledge

that is based on activity, not likeness or representation. Knowledge results

from attempts to build cognitive structures that work. This lust point is a

bit tricky, however.
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(Note: Radical constructivists are well aware that people are constrained

in what they are able to achieve cognitively by their prior achievements and

experiences. "The child cannot conceive of the task, the way to sol v. it, and

the solution in terms other than those that are available at the particular

point in the child's conceptual development" (Van Glasersfeld, 1987, p. 325).

But while this imposes limits on what the person is able to accomplish, it

does not prevent the individual from coming up with more workable or viable

ways of organizing his/her experience. The test of whether or not a new

organization is more or less viable is not some external consequence. Rather,

it is the internal, reflective awareness of how neatly things fit together.

As Van Glasersfeld argues, the reward comes from the "successful, deliberate

imposition of an order" that is "inherent" in the individual's "way of

organizing." "Logical or mathematical necessity does not reside in any

independent world--to see it and gain satisfaction from it, one must reflect

on one's own constructs and the way in which one has put them together" [p.

330]).

P3 resonates with this pragmatic view in talking about mathematics. He

writes in his Part II reeponses, "In my approach, learning is construed as the

adaptation of current schemes in problematic situations to resolve

perturbations that arise as a result of social interaction or the interaction

of a child with a mathematical situation." P3 emphasizes the importance of

the child's own activity, arguing that, "One cannot transport conceptual

structures from one person's head to another through language, actions, or any

other source of perceptual signals." This perspective obviously colors his

view of teaching and learning.
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Tmsjin,g_tc;_Ltta_toing

Because P3 sees mathematics instruction not as the transmission or

imposition of a particular curriculum, but as the facilitating of the

individual child's attempts to construct mathemtical meanings, the teacher

plays a critical role. For P3, the teacher is essentially an extension of the

role he plays as a researcher. Like the constructivist researcher, the

teacher's task is to build a model of how a particular student is making sense

mathematically, and then to perturb the syetem by posing questions or new

situations that will help the student confront the limitations in his/her

thinking. Teaching is thus as much about finding out and understanding what

students know and how they are thinking as it is about directly helping them

learn. What seems less clear in P3's approach is how this relationship

between individual teacher and individual learner might play out in the social

setting of the classroom.

Although P3 emphasizes the importance of social interaction in the

individual's construction of mathematical meaning, he only outlines the

desirable interplay between students and teachers in the educational setting.

Essentially, what is required on the teacher's part is an extreme sensitivity

to the child's own efforts after meaning. There Is a paradox associated with

this approach, however. "The teacher has to be sensitive to the mathematical

reasoning of children and encourage it in every possible way. But he or ehe

should not demand that the child reason in predetermined, fixed ways,

especially when there are alternative ways that are just as good." P3 wants

teachers to appreciate how children might reason their way through subtraction

problems and what sorts of responses are indicative of more advanced

understanding (thus there is both a descriptive and normative element);

however, training children to reason in these ways Is counterproductive. The
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reasoning is valid only if it is an outgrowth of the child's own constructive

activity.

P3 applies his perspective to the issue raised in the framing questions

(see Appendix A) relating to how one might help students gain a conceptual

understanding of multiplication. Like Pl, P3 was interested in students

understanding the deep structure of multiplication. He also saw

multiplication as a four-place relation. He uses the example of pennies per

pound. The key is to "transform units from one rank to another." The child

can do this when s/he can reason using measurement composite units. This

means the child "can take a number word [e.g., six) as referring to a

partitioned number sequence." Thus, the child understands that six times

three refers to a number sequence which involves units of three taken six

times in succession. Prior to this, children can construct hypothetical

groups (e.g., threes), but they must use this partitioning scheme on objects

to solve multiplicative problems. P3 provided the example of a child who, in

determining how many blocks there were in nine rows, each of which con.isted

of three blocks, had to actually count the rows, saying, "One is three, two is

six . . ." "Nine" did not refer to the blocks being already partitioned into

groups of three. There are two stages before this stage; in the one

immediately prior, the child has to actually count out the composite units

first before they can be counted. Thus, P3's approach bears some relationship

to Pl's. They agree on what sort of understanding mediates one's abiJ.ity.

P3, however, rejects Pl's claim that this understanding can be directly

taught, using carefully designed examples. P3 believes that knowledge about

the four-place relation is arrived at slowly, following a sequence of stages

in which the child progressively elaborates his/her understanding of number.

23



ApproactstoCt_u_sjct_aun

Of all our experts, P3 seemed the most uncomfortable with the notion of an

ideal curriculum. He was explicit in his opposition to the idea that one can

specify in advance what it is that children should learn. He characterized

the traditional approach to curriculum as Platonic, meaning that it assumes

there is a world of mathematical objects that exist independently of the

thinking individual. P3 places his emphasis on coming to understand and

accept the "mathematics of children--their ways of making mathematical sense

of their experiences."

The problem in attempting to specify the understandings one might attain

as a result of a mathematics
program, according to P3, is being clear about

whose understanding is being discussed. As P3 put it, "It is very difficult

for me to think like a child thinks." He cited as an example the notion of

subtraction being the inverse of addition. While he can talk about what this

understanding entails for him as an adult mathematician, he feels that he is

on much shakier ground in specifying what it might mean for a child: "What

might subtraction as the inversion of addition mean for a child who

successfully carries out the inversion? The question of what a child has to

do to construct the operation is even more difficult to assess." It is hard

to decenter and construct an understanding of what inversion might involve as

seen through the eyes of a youngster. Furthermore, any statement an adult

might come up with to describe the child's reasoning would be "nothing more

than a model--a simplified version" of how a child might actually think. The

problem with presenting teachers with models of this sort, however, is that

they get reified. We should learn to value and appreciate the mathematics of

children and not try to force everyone to think the same way.
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In P3's approach, the teacher is assumed to have more powerful

mathematical knowledge and to be able to use this knowledge to help guide and

shape the student toward more powerful mathematical constructions. This could

be a problematic set of assumptions. Many elementary school teachers may not

have sufficient knowledge of mathematics to help students construct meaning in

that subject. This issue was pursued during the interview. When posed with

the problem of assuming that "you're a 20-year-old elementary teacher who has

minimal math background," P3 replied, "I have the confidence that our

negotiations would be credible. I don't think the mathematics that we're

going to negotiate--that anybody would say that it would be outside of the

normal mathematics."

For P3 curriculum is created through the interaction of teachers and

students in classrooms; it cannot be written by others and imposed. He argues

that the notion of idetk2urricall should be replaced with what he calls

abstracted curricula. These are models abstracted from the ongoing teaching

and learning of particular mathematical topics, rather than curricula that are

determined a priori. They contain descriptions of conceptions students are

likely to have, mathematical strategies tley are likely to use, and problem

situations that are likely to be useful nelping students construct more

powerful mathematical knowledge. These abstracted curricula would evolve and

remain fluid, providing teachers with resources for working with individual

children, but never prescribing a particular set of learning goals or

activities. In discussing abstracted curricula, P3 used the plural curricula

rather than the singular curriculum "to emphasize diversity and variability

rather than homogeneity and constancy in educational practice in mathematics."

This reinforces the notion that he is reluctant to specify any particular

mathematical learning goals for students through curri'llum.
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The final set of observations relevant to P3's approach to curriculum

concerns his views about problem solving. This was an issue that was not

mentioned much during the interview. Perhaps its importance is assumed in the

radical constructivist approach. In one sense, problem solving is a central

part of what it means to learn mathematics. Thus, P3 emphasizes that children

construct mathematical meanings for themselves by dealing with problems that

they have made for themselves in situations encountered or set up by teac%ars.

However, and this is worth noting, P3 never really deals with problem solving

as the Application of mathematical knowledge or tools to serve their ends--for

example, to use mathematics to solve problems encountered in other subject

areas or in the real world. Thus he seems to view problem solving as the

means to learning mathematics, not as a goal of that learning.

E4LLSSUMUll_ARRES2Agh

P4 talked about the task of schooling as enculturation--coming to know the

culturally and historically accepted problem situations and ways of applying

mathematical language (symbols, signs, and rules) that constitute mathematics.

Of all our experts, P4 wam the most explicit about criticizing the status quo

of traditional mathematics teaching and curriculum and offering an alternative

vision. Much of the language he used to describe what mathematics education

should be like was formulated in contrast to what it currently IA like (i.e.,

algorithmic and abstract).

In terms of the goals of mathematics education, P4 contrasted the existing

curriculum's emphasis on the "record of knowledg" with an alternative view of

knowledge that entails the doing of mathematics. Although students clearly

need to learn the symbols, facts, and procedures of mathematics, it is

critical that they learn these in the context of purposeful problem solving.

fl11
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The ultimate goal is to give students the opportunity to develop mathematical

Power or mathematical literAcv, not just collections of inert knowledge.

Problem solving plays a key role in P4's thinking about mathematics. This

is not unusual for a mathematics educator. Unlike some of our other experts,

however, P4 considered this activity to be an integral part of the curriculum.

According to Stanic and Kilpatrick (1988), three general themes characterize

the role of problem solving in the school curriculum. Two themesproblem

solving as skill and problem solving ao art--are less relevant to this section

of the paper than the third--problem solving as context. Another way to

describe this third approach is to say that problem situations serve as the

vehicle or the mechanism for teaching concepts or skills. This stance toward

problem solving pervades P4's approach to mathematics. In his Part 1

response, for instance, P4 talked about how, by grade five, children "should

be dealing with a variety of problem situations."

P4 sees the development of conceptual understanding--at least as it

relates to computation--ae being intertwined with mathematical sense making

(i.e., exploring, discussing, and testing mathematical ideas) and mathematical

problem solving. "My definition of multiplication," he wrote, "includes all

three and more." He elaborates, "Multiplication begins with the assumption

that there exists a set of problem situations in which the implied

relationehips between the magnitudes expressed in the situation can be

represented by a multiplicative expression."

P4 appears to emphasize the processes involved in doing mathematics--

problem solving, communicating, making connectione, seeing patterns, and so

forth--in order to sharpen the contrast with the existing curriculum's

overemphasis on what he calls the record of knowledge. It is also clear,

however, that P4 thinks that there are important mathematical ideas to be



learned. He is harshly critical of the traditional practice of describing

these ideas as collections of discrete instructional objectives, arguing that

this fragments the curriculum and prevents students from seeing how the

knowledge fits together as a whole. P4 prefers to identify a few key topics

or domains that are important for students to learn, describing these as

richly interconnected networks of formal mathematical symbols and procedures,

concepts, and situations described by the mathematical symbols (after

Vergnaud's (1983) conceptual fields). Mathematics education should be about

helping students construct these rich knowledge structures through the process

of actively solving a variety of problems.

P4's brand of constructivism appears to lie near the midpoint of a

hypothetical continuum--marked at one end by P3's view of the child

bootstrapping his or her way toward greater
understanding and, at the other,

by Pl's view of the child as consumer of carefully crafted and presented

external representations. Another way to put it is to say that there are

elements of both internal And external structuring in P4's approach to

mathematics. For example, P4 argues that the child has "a natural capacity"

for visual imagery; through this mechanism, external situations can become

linked in the child's mind with mAro-al constructions. External, "situational

knowledge" is an absolutely essential olement of one's understanding in the

mathematical domain. This contextual information is what gives meaning to

what would otherwise be abstract concepts and procedures. Eventually, when

mathematical concepts and procedures are experienced in enough different

contexts, they become divorced from any one context and thus become

generalized knowledge. This is a popular view in the literature on

educational transfer. P4 stresses that there are motivational advantages to
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the use of problew situations as well: "Situations create an investigative

spirit, and a questioning, challenging frame of mind."

To summarize, P4 believes that the ultimate goal in school mathematics is

to foster connections between mathematical concepts and procedures and the

real world.

Learning and Teaching

According to P4, mathem& Ical symbols and rules are best learned by

solving problems. Mathematical language is a tool for representing

situations. Thus, representing real-world situations is of the highest

priority in mathematics instruction. More abstract, physical representations

like counters and geoboards should be introduced after students have

experienced the real thing. P4's vision of the mathematics curriculum is best

defined by example. In the one that was sketched out during the interview,

the instruction was, predictably, problem focused: A fifth-grade class views

a videotape of the 100-meter dash at the Olympics. Their task is to count the

number of steps, estimate the length of tha steps, average the time per step

for the winner--comparing this with similar data on the second and third place

finishers. P4 explained that one of the advantages of the problem-focused

approach is that students can come to see mathematics as a tool for

representing situations: "They will see mathematics as a process of

abstracting qvantitative relations and spatial forms from the real world of

practical problems." Mathematical ideas are associated in the mind with

situations one has encountered in the past.

The objective of the mathematics reform effort, according to P4, is "to

develop a collection of activities that should both interest students and give

them an opportunity to develop 'mathematical power.'" P4 does insist that it
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is insufficient to simply develop a collection of interesting activities--it

must be a "program of activities from which knowledge or ekill can be

developed"; activity must be sequenced in a planned way for this to occur. As

P4 puts it, "The knowledge gained must lead somewherol." Problele provide an

important context for later learning, however. "When information is presented

in a familiar contextual setting [like the Olympics], the transitions and the

concepts and procedures are likely to be remembered."

P4 emphasizes the importance of the discourse process in mathematics

teaching and learning. Communication and reasoning are seen as key elements

in his activity-oriented approach. He argues that different content domains

in mathematics are like the "petale of a flower"; at the center, and thus

assigned a key role, are the interconnected processes of "problem-solving,

communication, and reasoning." As this model suggests, P4 believes that

students should play an active role in the learning process:

(They] should constantly extend the structure of the mathematics
that they know by having to maks, test, and validate conjectures.
As long as students are making the conjectures, their mathematical
knowledge will always be restructured, consciously or
unconsciously, because conjecture cannot be created from nothing.

The University Perspective: A Summing Up

It might be helpful at this point, before looking at teachers' responses

to our questions about the ideal curriculum, to summarize some of the areas of

agreement and disagreement among the university-based mathematics education

experts.

P1 starts with a focus on formal mathematics. Mathematics is viewed as a

powerful mental tool in our culture--a highly formalized language used to

represent aspects of the world and to manipulate ideas. School is the place

where children should learn and understand this formal language of
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mathematics, with understanding meaning essentially having cognitive images of

the abstract mathematical constructs to which various mathematical symbols

refer. It is important that these cognitive representations closely map onto

the formal mathematical system, rather than being highly idiosyncratic, either

for individuals or to particular situations. Thus, students should acquire a

cognitive representation of addition that transcends the many particular

meanings addition might take on in particular contexts (e.g., joining

collections of objects, counting on). The focus for Pl, then, is on equipping

students with particular ways oi thinking about mathematical constructs; once

internalized, these then become powerful conceptual tools.

Like Pl, P2 wants students to acquire meanings for various mathematical

symbols. But whereas P1 emphasizes the importance wf a single unifying

representation for a particular domain (e.g., addition and subtraction), P2 is

more comfortable with multiple meanings with a focus on links among the formal

symbol system, conceptual understanding, and computational procedures.

tor P3, the mathematical thinking of the individual student is the

starting point for thinking about the nature of mathematical knowledge. For

P3, who labels himself a radical constructivist, mathematics is better viewed

as part of an individual's abk:*racted experience, acquired more from

interacting with the world than through formal instruction. Because it is

impossible for one person to fully know what another is experiencing, we

should try not to impose our adult mathematical concepts on children in

school. As educators, we should be more accepting of the children's

mathematics--their ways of making mathematical eense of their experiences.

This knowledge is just as valid as those of adults and mathematicians. In

summary, P3 believes that the goal of mathematics instruction is to help

children build upon and extend their own personal mathematical meanings.
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For P4, knowledge of mathematics is tightly linked to the problem

situations in which it is used and acquired. Like P1 and P2, he regards

mathematics as powerful tools developed by society, but he places as much

emphasis on the culturally agreed upon problem situations and ways of thinking

about them as on the agreed-upon meanings to be given to the formal symbols of

mathematics. P4 also emphasizes, in addition to learning the concepts and

procedures of mathematics (which he terms the written record of mathematics)

the importance of students coming to think like mathematicians, being able to

engage in mathematical conjecturing and argument, because these are also

critical aspects of what it means to know mathematics. Teachers should

encourage students to explain how they know something and to try to convince

others that their arguments are valid--skills which are "fundamental to the

notion of proof."

In the next section of this report, the focus will be on our teacher

experts' views regarding the ideal elementary school mathematics curriculum.

Tl's General Approach

T1 is a teacher u:lth an unusual amount of experience in mathematics. She

has 14 years of teaching under her belt, both at the junior high and

elementary level. Shortly after bc.,.:nning to teach, she completed work on a

master's degree in special educati She started a learning disabilities

clinic in reading and mathematics--.. this led to her developing a greater

interest in different approaches to the teaching of both of these subjects.

She went to a number of mathematical conferences and in that way got drawn

into the statewide network of mathematics educators. She served on the

committee that drew up the K-8 curriculum guidelines in mathematics for the

state of California. She was also involved at the state level in reviewing
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elementary math textbooks to determine if they were consistent with the new,

conceptually oriented math framework developed at the state level. These

efforts were aimed at improving the cr y of mathematics education in

California. _early Tl's thinking about mathematics education and the "ideal

curriculum" in mathematics is closely aligned with the work of these groups.

Tl wants stuuents to become fluent users of the powerful tools of

mathematics. Like the university-based experts, she views mathematics as "a

tool to organize information and make decisions about real problems." She

believes that thinking, problem solving, and sense making should permeate the

elementary school curriculum, including mathematics. Tl emphasized that the

important skills and concepts in mathematics are not limited to those

involving number--the ubiquitous arithmetic skills and procedures that have

pervaded elementary mathematics curriculum. Children should learn concepts

and skills from all strands of mathematics, with key understandings being

interwoven in rich mathematical activities, rather than being taught as

discrete concepts or subskills.

Tl also feels that it is important that students enjoy working with

mathematics, that they experience mathematics as playful and interesting.

This is important, in part, so that students will not opt out of pursuing more

mathematics later in school because they erroneously find it boring or

frustrating.

1.1.12h/na and Learning

T1 writes that she "views learning from an information processing or

constructivist perspective." Tl clearly does represent a cognitive-

psychological perspective in her written comments and her interview. In both

places ehe takes issue with the traditional view of the teacher as "dispenser
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of knowledge." Both the teacher and student must play active roles in the

instructional process. Students bear a special responsibility for "making

sense of situations, procedures, key understandings." This view of the role

of teacher and student is consistent with emerging constructivist thinking.

Like most constructivists, T1 discards the notion that learning is

hierarchical--that "if a child acquires the requisite set of eubskills, this

will lead to the acquisition of general concepts." She favors, instead, a

view that emphasizes connections between different pieces of information. T1

rejects the notion that skills and facts are unimportant in such teaching.

However, they 'o not constitute the basis for all later learning the way we

once thought they did. Skills and concepts (such as knowing basic facts,

computational algorithms) should help students become "critical thinkers and

users and doers of mathematics." Tl adds, "Skills and number facts need to

come AT THE END of a sequence of instruction (or learning opportunities)

perhaps over several years, not be the substance of the entire learning every

time a 'topic' io covered every year." In her own teaching, Tl strives to

ensure that no child leaves her classroom "without being made to think and

reason during the day."

Tl believes that students learn important mathematics by their personal

efforts at sense making and problem solving, although, as indicated, she also

believes the teacher plays an important role. The teacher is responsible for

engaging students in mathematically rich activities within which they can

solve problems and search for patterns, making connections to mathematical

knowledge that they already have. (This seems to be what PI calls the

"natural-environmental" approach in which students are expected to abstract

their mathematical understandings from dealing with rich problem situations

and a variety of representations of the same mathematical constructs.) Her

Ci
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goal is for students to construct mental Lmages and symbols, which become

powerful mathematical tools to be used in a variety of situations.

It is of prime importance to T1 that students understand the mathematics

they are learning. She emphasizes that it must connect in meaningful ways to

what they already know:

If there's not some sort of an interaction . . . between the child
and the mathematics, if there's not something that connects for a
child then they're merely going through empty exercisee to please
teachers and I question how much they're able to take in.

T1 never wants a child carrying out a symbolic procedure, like the addition

algorithm, without first having established meanings for what is being done.

Thus, when working to help students learn a particular topic or set of ideas,

T1 feels it important always to start with concrAte activities. As students

solve problems within this concrete environment, they begin to see patterns and

connections and to repreeent these in various ways. This is what T1 calls the

connecting level of activity. Finally students begin to use and learn about

the traditional symbols and procedures for manipulating them--the evmbolic

level. Tl argues that learning virtually always proceeds best when done

through these levels: concrete-connecting-symbolic. This is true whether the

learner is a child or an adult; it is almost always helpful to begin to

understand an idea by working with some kind of concrete representation oi it.

(Note: It wasn't clear from the interview just what the criteria are for

something to be labelled as concrete--whether this term refers to actual

physical objects that a child can touch and move, or if it can also refer to

some context or situation that is real an. %miller to the child.)

While arguing thu Lmportance of the levels talked about above, Tl

emphasized that they are not always pursued in a lock-step linear fashion.

Rather, one can productively move back and forth among the concrete,
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connecting, and symbolic:

It's a sequence that I always kind of have in my head. . . . I want
to get ultimately to the symbolic. But maybe once we get to the
symbolic, we dip back down to the concrete to help us with
understanding.

T1 is quite opposed to thinking of mathematical knowledge as hierarchical or as

decomposable into many discrete learning objectives. She emphasizes the rich

interconnections among various mathematical ideas. For example, in thinking

about multiplication, she emphasized the importance of connecting ideas of

place value, multiplication as grouping, and multiplication as area (which is

connected to geometry). She also doesn't think of "thinking skills" or

"problem-solving strategies" as being higher order skills that are to be

learned after students acquire more basic knowledge. She criticizes textbooks

and teachers who approa-Al the teaching of problem solving either by teaching

specific strategies such as "guess and check" or "make a table or graph" as

separate skills that can be applied in a recipe-like fashion to solving

problems. Rather than thinking of problem solving as a matter of applying

basic skills and knowledge already acquired to new situations, she thinks that

children should learn about various operations and numerical relationships

through the process of solving problems. This problem solving should take

place in mathematically rich settings so that different students can come to

different understandings within it. She is opposed to the idea of using

problem settings in which the teacher has in mind one right answer.

Approaches to Currieglum

Tl comes at the issue of mathematics curricula from a constructivist

perspective. She seems to have a good grasp (Jf what this entails. In her

written comments, she emphasized that her approach to ideal curricula is not

4
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"narrow and linear," involving "discrete pieces of mathematics to be learned,"

but rather can be defined as "fluid and interactive with the children for whom

it is designed.'' She argued that curriculum in mathematics should represent a

"vision of an environment committed to providing children with experiences

which allow them to construct their meaning from materiale, questiono, tasks,

and interaction--to solve problems which are complex and filled with key

understandings from several different strands of mathematic6." Problem solving

should be a vehicle by which concepts and skills are presented "in contexts

which engaae students actively in their own learning."

To our statement about the depth versus breadth issue, Tl also added a

developmental component: Some ideas are more powerful than others and thus are

deserving of more in-depth treatment; however, children differ to some extent

in their developmental readiness for certain of these ideas. This needs to be

factored into the decision about which ideas to stress when. She uses place

value as an example, suggesting that we might delay intensive experience of

these concepts until children are in second or thirel grade, emphasizimg instead

measurement, pattern, and geometry before that time.

Tl also had trouble (as do some of the other conetructivists) with the

notion of "ordering or organizing" the key understandings; she said this "makes

it sound as though the teacher holds the power for making understanding happen

in children by the proper sequencing of key ideas." The representative goal of

"developing a conceptual understanding of computation (multiplication)" is

equally pt.oblematic for her. She felt that this puts too much emphasis on

undelLtanding computation so one can become facile at it. She pointed out that

there is a difference between knowledge of an algorithm and understanding the

concepts that underlie the algorithm; she would prefer tn stress the ideas

behind the computation (e.g., area concept of multiplication).

/4
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T1 listed a cluster of 11 key understandings from the California

Mathematics Model Curriculum Guide (California State Department of Education,

1987), including concepts from the strands of number geometry, patterns, and

algebra. T1 believes that students should deal with multiplicatikm in a

variety of problem settings and from a variety of perspectives, gradually

coming to make general abstractions or, in her words, "developing a cognitive

structure about multiplication." T1 talked about three big ideas that were

important for students to develop through this searching for patterns in

multiplication. First is place value, a notion which she considers "a key

issue in children's developing an understanding of abstract number concepts."

In her written response, T1 listed the following description of the key

understanding of place value from the Model Curriculum Guide:

Any number can be described in terms of how many of each groupthere are in a series of groups. Each group in the series is a
fixed multiple of the next smaller group. (p.19)

As she discussed place value, T1 emphasized the first part of this

description, the idea that place value requires counting groups as single

objects. The other two big ideas that Tl emphasized in discussing

multiplication were viewing multiplication as grouping and multiplication as

area. She considers it important for students to come to understand both of

these views of multiplication, one coming from the strand on number and the

other from the strand of geometry. According to Tl, these two views are

connected to a superordinate concept, the idea that "the same patterns can

emerge from a variety of settings."

T1 also expressed strong views about not introducing multiplication facts

too early in the elementary school curriculum. T1 felt that this was a

mischievous practice in two ways: First, it creates the impression that

learning the multiplication facts is the same as developing a cognitive
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structure about multiplication; second, it detracts from the real task in the

early grades--that of developing a deep understanding of place value.

T1'8 .pproach to teaching the two different views of multiplication appear

consistent with her constructivist philosophy. The groups concept of

multiplication is developed over time by having children work together to

generate lists of things (i.e., eyes, feet) that come in groups. Children also

learn to represent groups by means of squares of construction paper. This seems

comparable to what P1 does with the Dienes blocks. A similar lesson is

described at the fifth-grade level to develop the area concept of

multiplication. Students are given different numbers of multilink cubes, for

example, and asked to make all the rectangles possible for each number.

T2's General Approach

T2 was the only middle school teacher we interviewed (she had been an

elementary teacher). Consequently, she brought a somewhat different

orientation to the task. For example, she argued that we need to raise the

ability level in elementary schools so students can have three productive years

in middle school. As with some other expert teachers we interviewed, Tl's

discussion centered on pedagogical issues, assuming that the content would be

determined by the curriculum that is presented to teachers.

T2 had several opportunities to re-examine pedagogical issues in

mathematics. She was involved in a study conducted at the Educational

Technology Center in Cambridge, Massachusets. One finding of this study,

according to T2, was that students often appeared to know mathematical

algorithms, but were unable to apply them in situations where it wasn't clear

which algorithm should be used. This work clearly has influenced T2's

thinking. More recently, T2 has been associated with te Regional Math Network

39



at Harvard. She was involved in a curriculum development project at the junior

high school level with this organization.

T2 mentioned that she entered the field of education 1,:te and became a

mathematics teacher by accident. Her training was in bilingual education, but

she had trouble finding a job in that area. The first position offered her was

in middle school. She was concerned that her mathematical knowledge was

limited and began an independent study of the discipline to prepare herself for

the upcoming year. T2 spoke at length about reading different textbooks to

develop her own knowledge of what she was to teach. Throughout this

discussion, T2 stated that she, personally, needed to know the "why" of the

mathematics--the "how" wasn't good enough. This need to know why has

influenced her instructional approach in mathematics.

What T2 wants for her students can be summarized in terms of three major

goals. First, she wants to empower students mathemAically so that mathematics

becomes "a pump, not a filter." This is especially true for the low SES and

minority students with which she works. For T2, learning mathematics is, in

part, a political issue. It is an important means for minority students to

advance. T2's second goal is for student" to see mathematics as useful--that

they know when and how to apply mathematical skills in a variety of situations.

In other words, students need to connect their mathematAcs knowledge with

real-world and scientific situatione. Finally, T2 wants to communicate a sense

of wonder and curiosity to her students through her own attempts to learn and

understand. "If I'm curious about sa*uff and I wonder about stuff, I assume

that some kids might also. . . I don't want them to absorb a rule and just

assume it has to be because I said so and not think about it at all."
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The importance of sense making is at the core of T2's views about teaching

and learning. This teacher strongly believes that it is important for students

to conceptually understand what they are learning. She wants students to know

why they invert the second fraction when dividing fractions, for example. She

argues that the "why" should be presented even when the students don't care to

know. T2 does not expect that all students will develop conceptual

understanding at the same time. She commented that she tells students, "'I

know some of you won't understand this, but walk through it. If it's going to

confuse you a lot, forget that I brought it up. For those of you who do get

it, that's fine. You'll see it again next year and the year after. One of

these years it will click.'" Like many of the teachers in the overall

curriculum project, T2 takes an individual differences approach.

T2 is clear about her ultimate goal, which is to have students understand

mathematics well enough to be able to transfer the knowledge from one situation

to another without each aew situation being taught. To this end, she speaks of

making connections between mathematical concepts. However, she argues that the

teacher needs to make these connections if the students can or will not do it

on their own. Giving students answers such ao "You need it to become an

architect" aren't enough. You need to know how and why architects use

mathematics in their work. She argues that problem solving should be employed

as the means of providing the "why" of mathematics. Because of this concern,

she is leery of the NCTM standards being enforced in all school districts.

Changing teachers' conception of mathematics and the way they teach will not be

enough without changing the students', and perhaps their parents', views of why

mathematics needs to be learned. "Knowing that you need to pass Algebra I is

not enough, you need to know why you need to pass Algebra I."



As indicated, as far as T2 is concerned,
"connectJ.ons" are the key to

conceptual understanding and to having knowledge that can be used and

transferred. "The more connections they can make, the longer they'll remember

and be able to apply it. I want them to be ab:o to uneerstand it sufficiently

so that they can then apply it or use it and transfer that knowledge without it

having to be another taught thing that they may segment." An important site

for developing these connections is rich interdisciplinary problem contexts in

which students can explore a variety of mathematical ideas. Two examples of

such contexts that T2 discussed were the Voyage of the Mimi (1985) multimedia

materials and a unit on the solar system that she and a collaborative group of

teachers developed. These are settings that extend across weeks or months of

instruction, and within which a wide variety of mathematical problems can be

posed and solved.

T2's involvement with the Mimi project took place nearly four years ago.

At that time, she was teaching a sixth-grade class and decided to team up with

a teacher who taught a second-third combination class. The Mimi project lasted

approximately two months. Students were organized into "crews," with three

sixth graders and two second-third graders on each crew. The classes met three

times a week. Students were involved in solving real-world problems--reading

charts, calculating distances. At the end of this project, T2 indicated,

students were asked to waluate it as a learning experience. She was struck by

one student's comments: "One of my best math students, straight A's all the

way through sixth grade said, 'I always knew, because I was told that one half

of an apple and one half of an apple equalled one apple, but I never was sure

of that because to me it looked like two halves of an apple. Now I understand

better.'" This quote is important because it nicely captures T2's views about
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the advantages of a problem-solving curriculum: When students deal with

real-world type problems, the mathematics is made less abstract, more concrete.

The sort of rich problem-solving contexts discussed above play key roles in

this ideal curriculum. They serve at least three important functions:

1. They serve as sites for making the all-important connections between

mathematical ideas and skills and the contexts of their use. Through

these rich problem settings, students come to know when and how
various mathematical procedures and concepts can be used. They also

make connection between various abstract numbers and real-world
settings; for example, getting a sense for the magnitude of different

numbers.

2. They play an important role in motivating students to think about and

learn mathematics. These rich, interesting contexts help students
realize that mathematics is useful and relevant.

3. The problem contexts serve as a source for representing important
mathematical concepts that need to be taught (e.g., the Red-Line
Subway in Boston as a representation for thinking about integers). T2

is always on the look out for problem settings that will lend
themselves to exploring a variety of mathematical id2as.

A variety of problem settings and approaches to problem solving also allow the

teacher to address individual differences in students. T2's concern about

individual differences reflects her belief that individual learners have

different learning styles (e.g., auditory, visual) and are motivated by

different things.

Aeproaches to Cutgigmiam

T2 is a lot like T3 (see below) in her firm commitment to a problem-solving

approach to the teaching of mathematics. She describes her goal as being one

of helping students develop problem-eolving thinking skills. She believes that

there are certain strategies that one can use during problem solving, and this

may be what she has in mind when she talks about thinking skills. She provides

several examples of these strategies: drawing solutions, using diagrams,

visualizing, showing visually how the solutions came about. In addition to
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these problem representation strategies, T2 wants students to be able to use

other tools, such as partitions, defined as the breaking down of numbers into

more basic elements that can be more easily operated on (e.g., 31 x 2 = 30 x 2

4. 2 x 1), and other "mental-math short cuts." These specific tools are also

taught with the aim of getting students to be better at problem solving.

T2 distinguishes between what she calls problem-solving and textbook word

problems. The latter, she believes, are solved algorithmically:

If the kid is smart enough, he knows that these two pages deal with
multiplication, and chances are that if you try multiplication on all
these word problems you're going to get ahead and you're going to scorehigh. It doesn't really require the kid to think about, What's this
problem about? and What should I use? What tools should I pull out forthis? Why should I use addition or multiplication or division orwhatever?

Often, students are taught to solve word problems by searching for a Key word

that indicates which operation to use. Word problems are opportunities to

practice certain operations--but that is not what she means by "problem

solving."

As indicated, T2 emphasizes the motivational and social aspects of problem

solving in her definition: The problems students attempt to solve should be

personally meaningful and lend themselves to more than one approach. This

latter criterion provides a rationale for letting students work in groups. she

believes that students can learn from one another: "Part of what helps them

focus on areas is other kids' conversation. . . . Someone else's question may

trigger something." If the problems can only be solved in one way, however,

"then there really isn't a whole lot you have to talk about other than what did

you get." T2 facilitates conversation about math by structuring the small

groups--asking students to share their solution strategies, to evaluate the

strengths and weaknesses of each, to generate a certain number of different

approaches. The key to all of this, according to T2, is for the teacher to

44
4



exercise care in the selection of problems: "You have to be careful how you

choose the problems," she says. "I have ,o be careful always that I don't

make up problems that will be contradictory in results somewhere, or that

become too difficult, or that will have in it something that I don't see that

can lead to that one right answer only." She regards this as a major problem

in this approach: "It's not always easy. I would like very much to have a lot

of time to just look at materials . . . to find a place where there is a whole

lot of stuff that you can look at that is geared to different kinds of

concepts."

T3'sGerp.roa_ch .

T3 writes that her ideal mathematics curriculum would be interdisci-

plinary; that is, it would show how mathematics applies to different situations

both in and out of school. The curriculum also should be relevant; that is,

there should be a need for this knowledge in arenas other than the classroom.

Finally, the curriculum must take into account the developmental stage of the

learner. This last point apparently reflects T3's background in early

childhood education. Her position on mathematics education, and perhaps

education in general, is based on a strong developmental component, more so

than the other teachers we interviewed. T3 talked about the developmental

level of students and their capabilities at each of the different levels. In

the interview, for example, she mentioned that if students "can't conserve,

there's not a lot of point. Sometimes you're wasting your time trying to teach

until you get through some of those things." In her written contribution, 13

argued that teachers must begin to employ "developmental processes that cater

to the needs of individual children."
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T3 wants kids to view mathematics as fun and easy and to realize that it is

useful and relevant to their out-of-school lives, now and in the future. T3

designs her classroom activities to capitalize on familiar contexts and she

creates activities in which students can see the applicability and

inter-relatedness of what they are learning. In particular, she has had her

third-grade students create a small town in their classroom--a town which they

design, build, and participate in throughout the school year. These activities

become the site for important learning experiences in social studies,

mathematics, art, science, and language arts.

Teaching and Learning

T3's pedagogical approach to mathematics is best illustrated by describing

her "classroom city" project, which she has done on three occasions with her

third-grade classes. In this project, students take responsibility for

designing and building 2 minicity. Typically, this city consists of five to

six wooden structures (e.g., post office, city hall, fire and police station,

bank). Students wind up with various jobs in the city. T3 uses this simulated

situation to introduce a number of mathematical problems. For example,

students must punch in before going to work; a time clock borrowed from the

office is used for this purpose. Because salaries are based on the amount of

time worked, this becomes an opportunity for students to figure out the number

of minutes between two points in time; they also must use their multiplication

skills to calculate the amount of money each employee has earned based upon the

number of minutes worked (they are "paid" 3 to 5 cents per minute). As she

indicated in her written response to Part 1, a number of measurement concepts

are taught in conjunction with the actual building of the city; students are

expected to uiake scale drawings of the classroom prior to designing the city,
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for example. T3 also mentioned balancing one's check book and making change as

other real-world occasions for students to use math skills.

Not surprisingly, given this commitment to situated, authentic learning, T3

also was a strong advocate for interdisciplinary learning. She believes that

children need to be aware of how mathematics impacts on science, social

studies, music, art, and so forth. This, and her insistence on relevance,

defined as understanding how content can be used in the real world, helps to

explain her unique problem-solving approach to instruction. She combined two

of our criteria for ideal curriculum when she commented, "The opportunities for

students to actively process information and construct meaning should include

this interdisciplinary approach with relevant and interesting content presented

at an appropriate level of difficulty." This statement obviously provides the

pedagogical justification for her classroom city approach to instruction.

Tl's commitment to a real-world approach to teaching and learning extends

to the types of objects she uses when introducing mathematical content. For

example, she uses money (dollars, dimes, and pennies) rather than base-10

blocks to introduce regrouping in subtraction (especially with lower

socio-economic status kids) because "they can understand it with the money

where they can't with the blocks. The blocks have no relevance for them but

money has relevance for them."

Pedagogically, T3 appears similar to T2 in her approach to mathematics.

She values the use of situations from which the students can gain mathematical

knowledge. Like T2, she views the teacher's role as one of presenting ways in

which school mathematics can be used in different situations. Like T2, she

draws on a fairly traditionally defined knowledge base in designing these

experiences. For example, during her presentation of multiplication as

repeated addition, she mentioned that she embodies the operation through the



use of objects and cups (e.g., 8 cups with 3 objects in each would be written

3+3+3+3+3+3+3+3, or 3 eight times). She also mentiono presenting

multiplication as an array of items. While she .ases both discrete (cups and

objects) and array representations of multiplication, she talks about it mainly

in terms of repeated addition. The ultimate goal for the students is to learn

the traditional multiplication "super shrtcut."

T3 stressed that she trier to focus on what multiplication is. rather than

how it is done. She uses a careful sequence of activities to help students

understand not only the concepts (e.g., the notion of set, the commutative

property of number), but also the language involved in multiplication. She

might begin, she indicated, by giving students a niAmber of counters and asking

how many groups they could make with the same number in each group. She

explained, "1 would try to lead the children to see when you have equal numbers

in groups, you can say 4+4+4+4 . . . is 4 six times. I would use the verbal

sentence 'four times six equals 24,' but I would not use the written '4 x 6 =

24' at this point."

Like many teachers, T3's approach to mathematics represents an interesting

blend of the innovative and the tried and true. Thus, although she emphasizes

the importance of students knowing the meaning of mathematical operations, and

having ample opportunities to apply the ideas (especially in the context of the

town), T3 also considers it important for students to master their basic facts.

she does drills ("mad minutes") throughout the year, insisting that students

learn to recall facts without relying on counting.

6.12P-14.12191L-t9SILEXASILIAM

T3 appeared to buy into all our criteria for ideal curriculum, although she

indicated that she had trouble understanding what we meant by "emphasizing the
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relationship between powerful ideas . . . so as to produce knowledge structures

that are differentiated yet cohesive." She particularly agreed with our notIon

of fostering problem solving in the context of knowledge application. As

indicated, this is consistent with her real-world problem-solving orientation

to the teaching of content. Her enthusiasm for this sort of aoproach appears

to be based, in large part, on her belief that it is motivating and enjoyable

for students to participate in activities like those related to the classroom

city. One of the most important goals in mathematics, according to T3, is that

students come to view that subject as fun and easy, something they can succeed

at. The focus for T3--and for T2 as well--is broader than that presented by

the university-based experts. T3 takes into account youngsters' affective as

well as cognitive needs. For her, the problem in mathematics teaching relates

more to how the content is typically presented thein to what it is that tie are

asking children to learn. Teachers simply need to be more sensitive to the

developmental needs of students. An important part of this sensitivity is

knowing when students are most receptive to new learning. T3 described these

situations as "teachable moments." T3 commented, "Teachable moments--I guess

maybe that's the kind of word for it. Things first happen that enable you to

deal with issues and with objectives and things in a natural kind of way that I

think makes a lot more sense to the kids than the work in the books sometimes."

This, "natural kind" of learning is much more likely to happen in an

activity-oriented classroom according to T3.

The teacher experts appeared to be lens explicit than the university

experts about how mathematical knowledge should be thought of for elementary
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school. This is not surprising, since their task in teaching is to deal with

teaching particular content to students, rather than thinking in the abstract

about the nature of mathematics curriculum and learning. Of the teachers, Tl

was the most explicit about how knowing mathematics should be conceived for

thinking about elementary curriculum and teaching, arguing, like P4, that

mathematics should be thought of as "a tool to organize information and make

decisions about real problems." T2 and T3 emphasized the importance of

students having opportunities to connect mathematical knowledge to its uses in

real-world settings by engaging students in rich interdisciplinary settings.

overall, the teachers were much more explicit than the professors about the

goal of developing positive attitudes toward mathematics. For example, T1

commented,

Most first graders and kindergartners love mathematics--they love
school. Most fourth graders say they hate mathematics. I worry that
there is an affective part of evev.thing we do, whether it's reading
cr mathematics. If somehow as a teacher I don't convey a love of
literature, a love of books, then no matter what skills I
teach--skills are important--if that affective part is not there,
they're never going to do it. In mathematics, if there's not an
affective part, many of those children are going to self-select out
of advanced math and science courses.

Tl went on to describe one memorable lesson she had conducted in

mathematics. The class was engaged in problem solving using pattern blocks,

ana students became so involved in the task that they wanted to give up recess.

She commented further,

I'm on the floor with the pattern blocks, and all of a sudden it hit
me. My fifth graders had voluntarily given up P.E. for mathematics!
And I had accepted it as a normal course of events. . . . Now, it may
never happen in my ntire teaching experience again, but I thought,
Isn't that nice--that on at least one occasion the level of
involvement was so intense, they were so interested in what they were
doing, they were willing to make that commitment.

This concern for the affective or noncognitive aspects of teaching comes as

no surprise (Prawat, 1985); it may reflect the fact that the teacher experts
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approach curriculum planning more with the whole child in mind. The

university-based experts, in contrast, are more caught up in the

knowledge-related debates within their subject matter communities. These

debates--like whether or not teachers should introduce alternative number bases

to students--might seem esoteric to many practitioners.

Overall Summary

All of our experts were dissatisfied with prevailing mathematics curricula

and teaching practice. All agreed there is currently too much emphasis in

elementary school on learning isolated computational skills. All agreed that

major changes need to be made to help students learn mathematics with meaning

or understanding. so all agreed with at least the broad goals expressed in the

current reform movement, as expressed in the NCTM cursjociarc_ (1989)

and National Research Council's Emerzbody Counts (1989).

But beyond this broad agreement our experts had highly variable views on

what mathematics curriculum and teaching in the elementary school should be

like. Although all agreed that students need more problem solving and

developing of understanding or meaning than they are currently getting, their

perspectives on what aspects of mathematics should be learned and how that

learning can best be facilitated varied widely.

Our university experts ranged from a person who considers himself a radical

constructivist and argues that curriculum can only grow out of actual

pedagogical encounters between teachers and students and therefore can never be

specified in advance, to a person who argues that it should be the

respcnsibility of curriculum developers and educational researchers to

meticulously design embodiments for representing powerful mathematical

concepts, to a person who argues that all mathematics learning in the



elementary school should be firmly grounded in problem-solving situations. How

do we account for these different views on curriculum? The scholars and the

teachers we talked with differ in a lot of ways. In the remainder of this

paper, we use three key features of their perspectives to characterize their

positions: (a) their beliefs about the nature of mathematical knowledge and

what should be learned in elementary school, (b) their beliefs about how

mathematics is or should be learned--their views on teaching and learning, and

(c) how their beliefs about mathematical knowledge and about teaching the

learning come together in their views on the role curriculum should they play

in elementary school classrooms.

lat"n------------.---4-latc-4-1-1-9-1---g---L-r--11"The"ureci"(wedeoemet_e_esy School

All of our experts, both from the university and the classroom, firmly

believed that mathematics entails more than the isolated computational

procedures that dominated current school curriculum and practice. All thought

mathematics instruction should focus on helping children establish meaning or

understanding of mathematics. But they held different views on what it means

to know mathematics and what mathematics students should be learning in

elementary schools.

Three aspects of mathematical knowledge are useful in characterizing the

views of the expezts. In describing the nature of the kind of mathematical

knowledge we want students to acquire in elementary schools, the experts

considered important to varying degrees (.) the formal symbol systems of

mathematics and their underlying meanings or semantics, (b) the mathematical

understandings (sometimes informal understandings acquired in out-of-school

settings) of the individual, and (c) the varioua settings in which mathematics

is useful for solving problems. If asked, each of the experts would argue that

r7-7
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all three of these are important to consider in thinking about what mathematics

elementary school children should learn. But the experts highlighted these

aspects to varying degrees. what was figure to one expert was ground for

another.

Learnin as Active Constructio o Knowled e

Virtually all of our mathematics experts, the teachers a well as the

university-based researchers, espoused some version of a constructivist view of

learning. They all emphasized the fact that learners had to be actively

involved in the process of meaning making if significant learning is to take

place; they also appreciated the need for the teacher to attend carefully to

what students are saying and doing in mathematics. Beyond this broad level of

agreement, however, the experts had dramatically different views about the

learning process and how to facilitate it through teaching or instruction.

Not surprisingly, our university-based experts were the most explicit in

support of the notion that the learner must be actively involved in the

learning process. P3, who considers himself a radical constructivist, placed

the most emphasis on the active involvement of the child in the construction of

meaning, arguing that

The teacher has to understand that it's no*: possible just to tell the

child mathematics; the child has to be actively involved in the
learning of mathematics--the activity of the child is critical. . . .

One cannot transport conceptual structures from one person's head to

another through language, actions, or any source of perceptual

signals.

Even Pl, who placed so much emphasis on students coming to understand the

accepted semantics of the formal language of mathematics, insisted that

learning is ultimately a constructive process of reflection by the individual:

You can't teach for understanding; it is something that happens to

the students. You can supply the condition, but it's up to the
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students. . . . So I don't think that we can take a general
explanation, tell it to a child and he understands it. From that
point of view I am a constructivist. Knowledge is something that onehas to construct himself. . . . It's up to him to use the
environment. I cannot reflect instead of him.

Our teacher experts also appeared to be committed to constructivist views

of learning, although only T1 was very explicit in this regard. She

emphasized that her ideal curriculum would provide students with experiences

that allow them to construct their own mathematical meanings:

The emphasis needs to be on students actively processing information
and constructing meaning. All instruction should support thisgoal. . . . Student's thinking and reasoning are the critical
attribute, not an add-on to facilitate concept development.

Tl contrasted her approach to curriculum with a nonconstructivist view, which

she characterized as "narrow and linear," involving "discrete pieces of

mathematics to be learned." T11 who had been active in the mathematics reform

movement in California, favored curriculum that w..e "fluid and interactive with

the children for whom it is designed." Clearly, her vision of mathematics was

informed by constructivist notions of teaching and learning.

Although these views were made less explicit by the other two teachers,

elements of constructivist thinking were evident in the language they used to

rationalize particular approaches to the teaching of mathematics. T3, for

example, favored a cross-disciplinary, problem-solving approach to mathematics,

having children design a city in her classroom each year, complete with wooden

structures representing stores and municipal buildings. Tasks associated with

the construction and operation of this city became occasions for integrating

the teaching of mathematics with subjects like social studies and science. T3

used constructivist language in talking about how important it was for each new

group of students to begin anew:

Many teachers and parents have asked why I don't leave the city up forthe next class. I believe much of the value of the project would be
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lost if this was done. The students would not feel it was their

city, and the lack of investment would seriously undermine the

success of the city.

T2 also highlighted the importance of getting students actively involved in

their own learning. Like T3, she stressed the importance of connecting

mathematics with the natural environment. This more concrete understanding is

constructed by students in the process of their dealing with real-world

problems.

Thus, across our seven experts was widespread support for the general

constructivist notion that students must fashion their own understanding in

mathematics. But beyond this general agreement, the experts had quite

different views about the constructive nature of the learning process and the

role of the teacher in helping students construct their understandings of

mathematics.

At one extreme among our experts was P3, for whom mathematical knowledge is

the personal meanings the individual learner is able to construct. For P3,

"learning is construed as consisting in the adaptation of current schemes in

problematic situations to resolve perturbations that arise as a result of

social interaction or the interaction of a child with a mathematical

situation." The teacher plays a key role in the learning process, not by

presenting or modeling particular mathematical ideas, but by providing the

perturbations to help the child structure and interpret problematic situations.

Like the constructivist researcher, the teacher's task is to build a model of

how a particular student is making sense mathematically, and then to gently

prod the student into new ways of thinking by posing questions or new

situations will help the student confront limitations in his or her

thinking. Through experience, the teacher will develop a personal theory of

"children's mathematics." This theory, rather than the discipline of
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mathematics, guides in assisting the teacher in predicting the direction the

student's thinking will go and deciding what to do next, instructionally.

In sharp contrast to P3's radical constructivist perspective is Pl, who as

we saw earlier also believes that students' understanding is ultimately a

result of their reflections on their own actions. P1 argued strongly for the

position that by carefully structuring the environment with which the child

interacts, one can greatly facilitate and shape the kinds of understandings the

child constructs. To help students construct the desired understanding of the

semantics of formal ideas--usually involving a concrete manipulative such as

Cuisenaire rods, also with a carefully specified set of rules for acting on the

objects. This carefully designed example serves as a sort of temporary

referent for the mathematical symbols being learned, but the goal is for the

student to build a cognitive representation of the mathematical abstraction. A

good example is not merely an illuetration of a mathematical idea, but is

isomorphic enough with th2 mathematics that the students can use it to verify

their ideas and discover new mathematical relationships. It is the students'

reflection on their actions within this carefully designed system that leads

to their construction of appropriate mathematical understandings.

Much of the difference betw,.,en P3's and Pl's views of the constructive

nature of learning mathematics, as well as those of our other experts, is

captured by the extent to which they regard learning as an internalization

process (Cobb, 1989). Cobb argues that the internalization view of learning

underlies much of the work on instructional representations. According to this

view, which he characterizes as environmentally driven, mathematical

relationships are internalized from concrete materials, such as base ten

blocks, pictures, diaurams, or other exemplifications. The images associated

with this concrete material serve as the semantic basis for more formal
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ma:hematical language and relationships. Cobb contrasts the internalization

view with one that places more of a premium on the socially mediated

construction of meaning. Thug, some theorists believe that the meaning of

instructional materials must be negotiated by the teacher and the students.

According to this second view, which representa a more radical or extreme form

of constructivism, mathematical meaning emerges from a dialectical process that

is both individual and social.

Our experts fell along a continuum between these two views of learning

roughly as shown in the figure below, with most of our experts leaning toward

an internalization new of learning, described most explicitly by Pl.

Socially mediated
construction of

meaning

P3

Internalization
of understandings

P4 Tl T3 T2 P2 P1

P2, like Pl, argued that students should be provided with carefully

designed examples, or embodiments, to help them acquire or construct particular

meanings for mathematical symbols:

What I think should be common across all elementary grade levels is a
teaching approach that emphasizes the development of meaning for
mathematical symbols and the building up of later mathematical

concepts from earlier ones. . . . This approach requires using some
concrete materials or a concrete situation that embodies in easily
grasped ways the mathematical structure of the topic being taught.

But where as P1 emphasized the importance of a single abstract representation

of a particular mathematical domain, such as addition and subtraction, P2

argued that embodiments should be used to help students build a variety of

interconnected understandings nf the domain. Thus she advocated the use of

different embodiments for different situations involving multiplication.
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T2 and T3 emphasized the use of problematic situations ways that resembled

the recommendations of the remaining universit, and teacher experts. However,

their reasons for using these situations differed from those of the other

experts. For both T2 and T3, problem situations presented opportunities to

identify "teachable moments." These moments occurred when students found

themselves in a situation where their mathematical knowledge was not vast

enough to allow them to solve the problem confronting them. Teachers, these

experts argued, are responsible for presenting to their students the

mathematics that applies in the situation. The teacher has the obligation of

helping students see when and why various mathematical procedures are useful,

and to present new mathematical ideas when appropi.iate. We placed these

teachers toward the internalization end of our figure because they seemed

implicitly to hold the belief that the mathematical ideas need to be presented

by teachers in the form of modeling or embodiments to be internalized by

students.

For P4 and Tl, students should learn mathem'Atics in the context of solving

rich and varied problems. It is through solvihg problems with the support of a

knowledgeable teacher that the students construct increasingly sophisticated

mathematical knowledge. T1 wrote in response to one of our questions, "I

believe that problem solving should be the focqe, not krmlegge_mpligaIlon_ar

skills. All skills and concepts should be approached from a prob_em-solving

context." She explicitly contrasted her perspective with the application

approach, in which students are expected to master skills and algorithms first,

only then applying them to the solving of problems. "I disagree with that

totally," she said. "I think that you have a better chance of getting children

to learn math facts or improve number sense by working on problems first and

58



seeing need for it than to drill and practice to death before they ever get

into uding it."

Similarly, P4 talked about problem settings being the site for learning

mathematics, arguing that "knowledge emerges from problems rather than the

other way around." Mathematics, according to P4, is a tool for "representing

situations." Situations serve as contexts which give meaning to the "signs,

symbols, and roles" of mathematics. Furthermore, authentic situations provide

occasions for students to think like mathematicians: "Situations create an

investigative spirit, and a questioning, challenging frame of mind." Teachers

can use problem situations to encourage students to make conjectures and engage

in mathematical arguments, trying to convince others as mathematicians do.

Because mathematics learning takes place in the context of these rich problem

settings, the interactions between teacher and students play an important role

in what mathematical understandings students take frum the situation. That is

why we placed T1 and P4 toward the left of our continuum. They are not as far

to the left as P3, however, because they both argue that the teacher (or the

curriculum) should carefully select problem situations so as to support the

development of particular mathematical understandings in students. It is

insufficient to simply develop a collection of interesting activities, P4

cautioned: "The activities must be sequenced in a program if knowledge or

skill is to be developed." T1 reinforced this view: "A lot of what I see in

problem solving," she said, "is, 'Here's another cute activity and, wow, this

is really fun.'" She contrasted this with her more planful approach: "I don't

give them random activities and then just hope that understanding happens."

As can be seen, although generally subscribing to the view that the learner

must ultimately construct his or her understandings by being actively involved

in the learning process, our experts differed considerably in the details of
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this belief and in the implications they drew from it for the role of the

teacher. The experts also differed considerably in their beliefs about the

role of individual differences among learners in the learning process.

Role of Individual Difference!

The importance placed by our experts on the active role of the individual

in the learning process suggests that attention to what individuals bring to

the learning situation--various differences among individual students--might

play an important role in the instructional process. As with their views of

the learning process described above, our experts varied considerably in the

importance they placed on individual differences and how they conceptualized

them.

Of all our experts, P1 put the least emphasis on what the indlvidual

learner brings to the instructional setting, keeping her focus more on the

mathematical ideas that students are to learn. P1 said she did believe

students' informal knowledge influenced their subsequent learning of

mathematics, but unlike most of the other experts, she stressed the differences

between this knowledge and the more formal mathematical knowledge to be learned

in school. The other experts were more inclined to want to accommodate to

students' individual differences in instruction. They viewed these differences

less as impediments to formal instruction and more as givens that must be taken

into account in one's teaching. Even here, however, they held diverse views.

Several of our experts stressed the importance of developmental differences,

citing Piagetian theory an the justification. For example, T3 speculated that

students encounter difficulties with existing curriculum in part because they

lack cognitive operations like conservation. During our interview she

mentioned that "if they can't conserve, for example, there's not a lot of



point. Sometimes you're wasting your time trying to teach until you get

through most of those things." P2 similarly argued that notions of

multiplication related to rates, ratios, and fractions are perhaps best left to

seventh and eighth grade because they are "formal operational" in nature. What

is most noticeable about these examples is the extent to which 6ome experts

tend to think of developmental differences in relatively general and fixed

ways. This is in marked contraot to P3, who also drew on Piagetian theory but

derived a different set of instructional implications from it. In fact, P3 was

quite specific about how unhelpful Piaget's general stages are for educators.

Educators who are interested in developmental issues, he stressed, would do

better to look on development as a specific art, thus focusing on change in a

circumscribed domain like mathematics or science.

One thing that was evident in the written and interview responses of our

experts was the importance teachers assigned to individual differences in

comparison to the university-based experts. It is not surpcising that

teachers, more than researchers, focus on individual studen. needs in thinking

about curriculum. In a recent survey of American teachers, Stevenson (1989)

found they assigned greater importance to the teacher's abi]aty to take

individual differences into account in teaching than to any other variable.

Asian teachers, in contrast, assigned more importance to coatent-related

factors such as the ability to explain concepts clearly.

It may be helpful to summarize some of the comments about individual

differences made by our teacher experts. One, who worried a great deal about

issues of equity and access in mathematics, talked about the negative effects

of ability grouping. "After a couple of years of being assigned to the lowest

group," she said, "those kids' expectations are not high. By the time I get

them, they know they're no good in math and they're going to fail. It's very
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difficult t,..) turn that attitude around." She went on to explain how important

it is to use fundamentally different approaches with these students; by this,

she meant more than attemptiL4 to accommodate to different learning styles:

"We may be thinking about whether they're auditory or visual, but we're not

thinking in terms of changing methodology."

The Role of_curriculum

We have seen thus far that although our seven experts share some general

assumptions about the nature of mathematical knowledge for elementary school

and about teaching and learning, they vary considerably in their beliefs and

assumptions. These varied perspectives on knowing mathematics and on learning

and teaching come together in these seven experts' views on the role the

curriculum should play in elementary school mathematics instruction. In this

section, W8 will provide brief portraits of the ideal curriculum envisioned by

each of our experts. We begin with the views of the university experts,

because they were most explicit about what the curriculum should be like, the

teachers being more likely to accept the curriculum as a given. Whereas the

university experts accepted our task of describing desirable curriculum

features, the teacher experts tended to view the curriculum as something that

is given to them by the school district. The teachers' responses to our

questions about curriculum focused on the pedagogy they currently used in the

classroom and how best to teach the ideas in the curriculum guidelines they

were given.

For P3, the radical constructivist, curriculum is created through the

interaction of teacher and child. Our goal as educators is to facilitate the

child's construction of ever more powerful and useful mathematical knowledge,

but to specify the particular mathematical concepts on children. Thus for P3,
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curriculum cannot be specified in advance, but must emerge out of the

interaction between teacher and student. From these interactions over time can

emerge what P3 calls abstracted curricula--dynamic collections of typical

meanings that children construct for particular mathematical concepts and

activities that might help teachers and students in their efforts to construct

meaning.

For P4, the curriculum should consist of series of rich problem situations,

developed around important clusters of mathematical ideas. By working in these

problem contexts with the teacher serving as "informed helper," students become

increasingly sophisticated in their capabilities for doing mathematicssolvIng

problems and making mathematical conjectures and argumentsand in their

knowledge of powerful mathematical ideas and tools.

For P2 a.:d Pl, with their focus on having students acquire accepted

meanings for the formal symbols of mathematics, the key to good curriculum Is

carefully designing embodiments and accompanying activities to represent

important mathematical ideas. These activities should be research based and

should relieve the teacher from having to choose representations for various

mathematical ideas. Along with embodiment. for teaching particular

mathematics, the curriculum should contain activities to help sttldents learn to

apply the mathematics they have learned to various problem-solving settings.

With the xception of Tl, the teachers were less explicit than the

professors about what ideal curriculum should be like. Like P4, Tl argued that

curriculum should consist primarily of problem settings organized around

important mathematical ideas. T3 and T2 tended to accept the topics of the

mathematics curriculum as given, focusing instead on how to integrate

mathematical activities with problem-solving settings involving other subject

matters.
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Final Comments

What should we make of these diverse views among experts on what elementary

mathematics curriculum would be like? The problem for curriculum developers

and teachers is that underneath a seemingly unified call for major changes in

the way mathematics is taught actually lie a number of strikingly different

assumptions and images of what good mathematics teaching should be like. We

argue that for teachers to make sense of the advice and calls for change that

bombard them, they need to realize that they may be based on multiple--and

possibly incompatible--assumptions.
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