
DOCUMENT RESUME

ED 341 557 SE 052 485

AUTHOR Greenwell, Raymond N.
TITLE Problem Solving via Pascal, with Data Structures.

Dissemination Packet--Summer 1989: Booklet #4.

INSTITUTION Hofstra Univ , Hempstead, NY. Dept. of Mathematics.;
Hofstra Univ., Hempstead, NY. School of Secondary
Education.

SPONS AGENCY National Science Foundation, Washington, D.C.

PUB DATE 89
CONTRACT TE18550088,8741127
NOTE 52p.; For related documents, see SE 052 482-490.

PUB TYPE Guides - Classroom Use - Teaching Guides (For
Teacher) (052) -- Computer Programs (101)
Tests/Evaluation Instruments (160)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS *Computer Assisted Instruction; *Computer Software

Evaluation; Higher Education; High Schools;
*Inservice Teacher Education; *Mathematics Education;
*Mathematics Teachers; Program Descriptions;
Secondary School Mathematics; Secondary School
Teachers; Teacher Education Programs; Teacher
Workshops

IDENTIFIERS *Hofstra University NY; *PASCAL Programing
Language

ABSTRACT
This booklet is the fourth in a series of nine from

the Teacher Training Institute at Hofstra University (New York) and
provides descriptive information about the introductory course in
Pascal programing with emphasis on the solving of problems found in
the advanced-placement computer science curriculum of secondary
school mathematics. Included in this booklet are: (1) the

instructor's evaluation of the behavioral aspects and affective
observations gleaned from his 3 years of participation in this
program, as well as proposals for program improvement; (2) a short
appraisal of the program and comments from one participant; (3) the

course outlines for each year; (4) a sampler of homework assignments,
class notes, and computer programs used in the courses; and (5) the
examinations used in the courses with some handwritten solutions. An
extensive sample of the instructor's and the participants' course
project solutions using Pasca:1 programs can be found in booklet #5 in

this series (SE 052 486). (JJK)

Reproductions supplied by EDRE are the best that can be made

from the original document.
****1.:************************f********************x********************

rz

HOFSTRA UIIIVERSITY

TEACHER TRAIIIMG HISTITUTE

Department of Mathematics and School of Secondary Education

Hofstra University

Hempstead, NY 11550

DISSEMMATI011 PACKET SUMMER 1989

Booklet *4

RAYMOND N. GREENWELL

PROBLEM SOLVING VIA PASCAL, WITH DATA STRUCTURES

NSF Grant * TE18550088, 8741127

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

XThis document has been reproduced as
received from the person or organization
originating it
Minor changes have been made to improve
reproduction Quality

Points of vie* or Opinions stated in this docu
merit do not necessarily represent official
OEM position or policy 2

imtmv even eni r

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Raymond Greenwell

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

TTI #4

This booklet is the fourth in a NerieS of nine booklets

vhich constitute the Hofstra University Teacher Training

Institute (TTI) packet. The Institute vas a National Science

Foundation supported three-year program for exemplary secondary

school mathematics teachers. Its purpose vas to broaden and

update the backgrounds its participants vith courses and special

events and to train and support them in preparing and delivering

dissemination activities among their peers so that the

Institute's effects would be multiplied.

This racket of booklets describes the goals, development,

structure, content, successes and failures of the Institute. He

expect it to be of interest and use to mathematics educators

preparing their ovn teacher training programs and to teachers

and students of mathematics exploring the many content areas

described.

"Problem Solving via Pascal" vas an introductory course in

Pascal programming, with an emphasis on solving problems related

to the high school mathematics curriculum. "Problem Solving via

Pascal Data Structures" vas a follovup course covering those

topics in the Advanced Placement Computer Science curriculum not

discussed in the first course.

This booklet gives the syllabi and exams for both Pascal

courses along with a complete set of class handouts. Also

included are the instructor's evaluation of the course and a

3

partiCipant'a comments.

Report on the Teacher Training institute
Math 287: Problem Solving Through Pascal

and
Math 299A: Problem Solving Using Pascal Data Structures

Booklet

Raymond N. Greenwell
Department of Mathematics

Hofstra University
Hempstead, NY 11550

copyright (c) 1989 Raymond N. Greenwell
All rights reserved, except that permission will be granted to make a limited
number of copies for noncommercial educational purposes, upon written
request, provided that this copyright notice shall appear on all such copies.

Table of Contents

A. Instructor's Evaluations

B. A Participant's Comments

C. Syllabi

D. A Sampler of Handouts: Exercises, Notes and
Programs

E. Exams (some with handwritten solutionsl

Booklet #5 contains a sampler of instructor and
participant project solutions.

Report on the Teacher Training Institute
Math 287: Problem Solving Through Pascal

by

Raymond N. Greerwell
Associate Professor

Department of Mathematics

Mathematics 287 (Problem Solving Through Pascal) was offered in Fall of
1987 as part of the first round of the Teacher Training Institute. The class
met every Thursday afternoon from 4:20 to 6:45, with a break of about 15
minutes. The course was successful in many of its objectives, but there
were also problems.

The success of the class could be measured partly through comparing the
pre- and post-test scores. Professor Esin Kaya of the Hofstra University
Department of Education can give the exact figures, but I can state in general
terms that most of the participants got most of the questions wrong on the
pre-test, while almost everyone achieved a perfect score on the post-test.
They clearly learned a lot.

More information was obtained from the evaluations the participants
filled out, as well aL comments they made informally. Many of the
participants were delighted with the course. They learned things they
wanted to learns made new professional contacts, and became better
equipped to teach some of the courses they were teaching. On the other hand,
many of the participants were unhappy with the course. They found the
material too difficult and the assignments too demanding of their time. For
them, the course was a grueling experience. I wfl! address some or the
reasons why, in my opinion, this occurred.

One of the first problems is that the program in general, and my course in
particular, was not planned well enough. This was not necessarily the fault
of the planners; the problem was that we hadn't done this before and could
not know exactly how things would work out. In the original plan, all
participants in the course would be able to write simple Pascal programs
with output on paper by the end of the summer. This was to occur either
through their prior experience, through work done in one of the summer
courses, or through working outside the class during the summer. When we
met in the fall, I intended to continue from where the prior training left off.
Unfortunately, I discovered In our Initial fall meeting that many of the
participants knew nothing of Pascal or of how to write a program. The
summer had been too busy for them to learn anything beyond what was

required for their summer courses in the Institute. Further, some of those
who had credentials indicating they could program, in fact, could not. This
was often because their background was shallow. They may have taken some
computer courses, but if insufficient work was demanded in those courses,
the material never stayed with them. Thus my expectations and theirs were
at odds on the first day. I spent time backtracking, trying to bring them up
to where they should be, but a few never quite got over the feeling that I was
expecting them to do something that was, in their eyes, impossible.

These feelings were further aggravated by my expectations that, since
this was a select group 61 high school mathematics teachers, they should be
better at solving problems than the typical group of undergraduates. What I
discovered as the semester went on is that, althrough they may be considered
good teachers, some were poor students. This was often because their
background was weaker than it appeared at first. Some of them had degrees
in mathematics education in which they did very little serious mathematics.
For example, when I gave a problem that required knowledge of trigonometry,
I assumed this was a topic all high school teachers knew very well. I was
wrong. It came as a shock to me that some high school teachers know less
about trigonometry that what I expect my freshman calculus students to
know. For other participants, it seemed that the pace of a college course
was ton east. After years of teaching high school, some were used to slow
going, ith lots of review, and not rnch expected outside of class. I tried to
remind them that college is not like that, but they pointed out that college
students don't have families to take care of and fulltime jobs as teachers.
Since all of us teaching in the program had been telling the participants what
an honor it was for them to be here and what wondeilul teachers they were,
they were not ready to be told that their performance as students was
inadequate.

As a result, even some of those who learned a lot from the course and did
good work felt sour about the experience. On the other hand, some of the
truly excellent teachers enjoyed the experience and felt apologetic about the
complaints and bad attitudes of their fellow teachers. Despite the
successes, it was not an enjoyable course for many of the participants and
myself alike.

Changes made In Round Two

In round two of the Teacher Training Institute, I taught Math 287 three
afternoons a week for two hours an afternoon during the five-week summer
session, plus once a month during the fall. Although the participants seemed

less qualified on paper, their performance and attitude was superior to those
of the round one participants. I judged it to be a far greater success than the
round one course. This is due to changes made to overcome the mistakes of
round one.

First, a pre-course was held the last week of June to introduce the
novices to writing short programs in Pascal and getting the results on paper.
This only required four sessions of three hours each, but when the regular
course started, I knew that everyone had at least a minimum background.
This allowed me to teach the course at a satisfactory level, without boring
the experienced or terrifying the beginners.

Second, by running the course through the summer and the fall, the
participants had more time to get their programs working. Computer
programming takes time, and the first round participants often couldn't find
the time between one week and the next to get on the computer. Spreading
the programs out made all the difference in the world. Not only did almost
all participants get their programs working on time, but many found time to
add extra credit features to their programs. In addition, the programming
assignments in round two were harder, requiring more thought and time.

Third, my attitude had changed. I now knew what I was working with, and
I came down a lot harder on what I expected. I did not present the course as
an honor just for them to be there; I told them from the beginning that
programming takes time, and that they should plan their schedules
accordingly. When I got to the part where I wanted to use trigonometry, I
told them that all high school teachers should know this material, but some
may not, so I would spend a short time reviewing It. Those for whom this
review was insufficient would reed to spend time outside of class, not only
because it was going to be on the test, but because they had no business
being high school math teachers if they didn't know trigonometry. That
worked. One teacher borrowed a precalculus text from me; others dug up
their high school math texts. And they did learn trigonometry.

Fourth, I had a much clearer conception of the course. In round one, my
plan to integrate mathematical problem solving with learning Pascal started
out somewhat vague and evolved over time. In round two, I taught a more
traditional introduction to computer science, much like the first part of AP.
course in computer science.

The results of the class Impressed me. In fact, I have only once or twice
before taught a class whose performance was as superb as the performance

of these teachrs. The class was a joy to teach. And although the
participants still found the class difficult and challenging, they enjoyed the
experience of learning.

One problem arose in the fall, when the teachers only saw me once a
month. Many felt they forgot a lot in between sessions and had a hard time
getting back into the swing of things. This problem was most acute at the
final examination in December, when many teachers felt they did poorly
because it had been so long since they had been immersed in the material.
Nevertheless, their scores on the final exam were not as bad as they had
expected. The class average was a respectable 76%. The teachers'
perception of having forgotton most of what they learned did not seem born
out by their performance.

The Coda: Math 299A

In summer of 1988, I taught "Problem Solving Using Pascal Data
Structures," which was intended as a follow-up course to Math 287. My goal
was to familiarize the teachers with the topics in the A.P. Computer Science
Curriculum which I had not covered in Math 287: pointers, linked lists,
queues, searching, and sorting. The course also included trees and stacks:
which I had discussed briefly in the first round of Math 287. I wasn't
bothered by this small amount of overlap, especially since only one of the
teachers in the course had taken Math 287 in round one. The rest were from
round two, except for two teachers new to the program.

The COW:2 met for eleven two hour sessions over four weeks. This is not
really enough time to do data structures in depth, so the course deliberately
was superficial. Also, with only three weekends, there was less time
outside of class to work on projects. As a result, only two-thirds of the
class had completed all the projects by the time of the final exam. And
although the post-test scores showed a great improvement over the pre-test
scores, the class average for the final exam was only 683. Given the
constraints, and the fact that many of the participants were taking a second
class over the four weeks, this may be as good as can be expected.

Proposal for a third round:

There is still a need for high school teachers to know more about problem
solving and using the language Pascal. Before running the program again,
however, I would change several features that I see as problems.

First, the program as it currently exists is difficult enough to deter many
who could benefit from it. Some teachers are unwilling or unable to rake a
commitment for a summer plus an academic year. Even those who may
consider participating for the summer alone may not be prepared to take two
intensive courses over five weeks. With one course in the morning and orc, ,n
the afternoon, they are left with little time to enjoy and explore the
material, to say nothing of living a normal life.

Second, many high school teachers need to work durMg the summer and
can't afford to enroll in a program which provides no financial remuneration.

Thus, I propose a program consisting of two summers. In the first
summer, participants would take Math 287 alone for five weeks. The course
would meet four mornings a week, leaving the afternoons free to work on
solving problems and working on programs. The following summer the
participants would take a more complete and thorough version of Math 299A.
Participants who finish the two courses would be prepared to teach the AP.
Computer Science curriculum. Some participants may choose to stop after
the first course, but other participants with stronger backgrounds in Pascal
may choose to omit the first course and take only the second.

In between the two summers, the participants would complete a project
at their own school. Typical projects would be teaching a Pascal course
which they hadn't taught before, bringing new ideas, concepts, and activities
into a Pascal course they had taught before, or training other teachers at
their schools about what they learned in the course.

During each of the two summers, the teachers would receive a stipend to
help replace lost earning3.

Student Commentary on the Teacher Training Institute
Math 287: Probl em Sol v i ng Through Pascal
Math 299A: Coda (Pascal Data Structures)

After reviewing Dr. Raymend Greenwell's report on the
three courses he offered in Pascal for the Teacher Training
Institute, I feel the need to identify myself before I add
any further comments. I was a Cycle II participant as well
as a student in the summer coda program. I had a "mild"
background in Pascal before entering any of Dr, Greenwell's
courses, having taken a graduate level introductory course
in Pascal and having taught a one-half semem-ter course in

Pascal in the high school.

The underlying concerns I feel Dr. Greenwell expressed,
namely that the teacher participants did not have a strong
enough mathematics background and that there was a great
feeling of being overwhelmed are correct. However, these
need to be addressed (defended?) separately. Several of the
Cycle II participants were indeed Junior High teachers or
even not directly in a classroom setting. When you spend
many years doing rememdial work of this nature or do not use
the more advanced concepts, they are not at your finger-
tips. Mathematics is somewhat like a language that gets
rusty when not used. Granted too, there were some
participants whose mathematical background truly was
lacking, but these people should have been screened by the
directors of the program and perhaps be encouraged not to
take this course if its goals were so high. I always feel
however, that you cannot please all of the people all of the
time.

The feeling of being overwhelmed was, I think more of a
concern. Naturally those who were struggling mathematically
would be struggling with the programming assignments too as
the two are so inter-related. However, those of us who were
"mathematically sound" often needed more hours than were in

the day to keep up with the reading and programming
assignments. Of course there were exams also to be
considered. Most of us were simultaneously taking other
courses, not to mention that during the summer there are
family obligations and during the school year there are
teaching responsibilities which could not be pushed aside.
(I often found myself working through until 2 a.m. on the
assignments!)

Despite all of the hours of hard work, I feel the
courses I participated ir were highly successful and perhaps
Dr. Greenwell was too hard on himself in his commentary. We
learned, we grumbled, but we grew in our Pascal abilities.
If I were asked to assess the courses, I would rate them as
highly succesful....the measure of success depending on the
individual's input, seriousness of purpose and his/her
desire to achieve.

Respectfully submitted by
Irene Ober

April 131 1989
1 2

Mathematics 287: Problem Solving Through Pascal
Fall 1986
100 South hall, Thursday 4:20-6:45
Instructor. Dr. Raymond Greenwell
Office: 104 South Hell, 560-5573
TeAs: Now to Solve it by Computer R. G. Dromey

Pascal forPrograinmers, Lecarme and Nebut
&lir Own rovorite Pascal Tex t , by Hu !lever

There will be five computer assignments, worth 40 points each, plus one

or two other non-computer exercises or short computer projects. There
will also be a midterm and a final exam, both worth roughly 130 points.

Schedule

Sept. 11 Preliminaries
Sept. 18 How to write a program
Sept. 25 1 dimensional arrays
(43; . 2 Procksdures, functAns, end puroaleitlis
Oct. 9 2 dimensional arrays and Boolean variables
Oct. 16 Mathematical induction
Oct. 23 Records
Oct. 30 Midterm exam
NOY. 6 Stacks
Nov. 13 Infix, prefix, and postfix notation; sets
Nov. 20 Recursion
Dec. 4 Special session--to be announced
Dec. 11 Review
Dec. 18 Fhtel exam

Mathematics 287: Problem Solving Through Pascal
Summer-Fall 1987
100 South Hall
Instructor: Dr. Raymond Creenwell
Of f ice: 104 South Hall, 560-5573
Texts: ON Face (2nd ed), Doug Cooper and 111.thael Clancy

There will be roughly six computer assignments. WJrth 30 points each, as
well as a midterm end a final exam, both worth roughly 130 points.

Schedule

pillin_itarys_cmg(for those who neggii),:.
Chap. I & 2 Simple prolrams, constants, variables, reading and writing,

arithmetic expressions, stolidard functions, getting copies
of programs and output on paper.

,Surnmer Sestg_
Week 1

Week 2

Week 3

Week 4

We.ck 5

Chap. 3 & procedures, functions, ler statement.
Chap. 5 & 6. case and if statments.
Chap. 7 & 8: VA to loops, recursion, text procesing.
Chap. 9 & 10: Ordinal types, MIDTERM.
Chap. 11 & 12: 6r-ratis and records.

Chap. 13, 14, & (with a little luck) 15
Files, sets, and (here's the luck pvt) pointers.

Mathematics 299A: Problem Solving via Pascal Data Structures
Summer 1988
100 South Hall

instructor: Dr. Raymond 6reenwell
Office: 104 South Hall, 560-5573
Text Pasco/Plus Data Structures, Algorithms, and Adenced Programming

(2nd ed.) by Nell Dale and Susan Lilly

The prerequisite for this course is a knowledge. of Pascal through arrays,
records, procedures, and recursion. The course covers the part of the AP
Computer Science curriculum commonly referred to as "data structures." The
grade will be based on roughly four computer assignments and a final exam.

Independent reading:
Chap. 1: Programming Tools

Chap. 2: Verifying, Debugging, and Testing (Don't worry about the details of
the application on pp. 67-83).

July 5
July 7
July 11
July 12
July 14
July 18
July 19
July 21
July 25
July 26
July 28

Tentative Schedule

Chap. 3: Data Design
Chap. 4: Stacks
Chap. 5: FIFO Lueues
Chap. 6: Linked Lists
Chap. 6 (continued)
Chap. 7: More Linked Lists
Chap. 9: Binary Search Trees
Chap. 10: Binary Expression Trees, Heaps, and Graphs
Chap. 11: Sorting
Chap. 12: Searching
Final Exam

SQUARE-SERVICE CORKIRAT ION

Service: To compute n2 for the customer's non-negative integer n.

Job specification to employee:
1) Get a number from your boss and name it x.
2) If x is 0, then wake up your boss, return the value of x to him or her, and

stop.
3) If x is not 0, then hire an assistant and give him or her a copy of the

x - 1.
4) Go to sleep until your assistant wakes you up.
5) When your assistant wakes you up, get the number he or she returns to

you, name it y, and fire him or her.
6) Compute y + x x 1, wake up your boss, give him or her a copy of this

number, and stop.

FIBONACCI SERVICE CORPORATION

Service: To compute the Fibonacci number F(x) for the customer's
non-negative integer x, where

ifx=0orx..:1
F(x)

F(x 1) + F(x 2) if x > 1.

Job specification to employee:
1) Get a number x from your boss.
2) If x is less than 2, then return 1 to your boss and stop.
3) Otherwise hire two assistants, and give one assistant a copy of the

number x and the other assistant a copy of the number x - 2.
4) Take a nap while your assistants are working.
5) When your assistants wake you, get a number, y, from assistant one, and a

number, 2, from assistant two. Fire your assistants.
6) Compute y z, wake your boss, and give him or her a copy of thi 3 result.

Then stop.

Exercises for recursion:
1) Write a job specification for the NFACTR Service Corporation, which

computes nl.

2) Euclid's algorithm fur finding the greatest common divisor of two integers
is defined by:

GCD(n, m) if n m
6CD(m, n) ifn=0

GCD(n, m mod n) otherwise
where m mod n is the remainder when m is divided by n. Write a Pascal
program to calculate GCD(m, n), and then trace through the program to find
GCD(6, 20) and GCD(60, 105). Use the built-in Pascal function mod.

3) Ackerman's function is defined recursively on the nonnegative integers as
follows:

n)

=F+ 1 if m =
(m - 1, 1) ifmx 0,n=0

A(m - 1, grn, n 1)) if m x 0, n
Write a Pascal program to calculate A(m, n) and trace through it to show
thet. A(2, 2) = 7.

Math 287 Programming Project 1
Grade Point Average

due

Grades at Hofstra University are awarded on the following basis: A = 4.0,
O = 3.0,C = 2.0, D = 1.0, and F = 0.0. Letter grades can also be modified with
+(plus 0.3 point) or - (minus 0.3 point).. For motile, A- counts as 3.7
points, and 13+ is 3.3 points. There is nol4+. If a professor gives such a
grade, It Only counts es 40 points. Similarly, en F. or F- is worth 0.0 points,
and a D- is worth 1.0 points.

Write a program that computes a grade-point average based on as many
letter grades as the user wants to enter. Your program should:
a) explain what's going to happen, and ask the user how many grades will be
entered;
b) compute the number of gratis points corresponding to each letter grade
entered (one per line), and keep a miming total of the grade points;
c) print the users grade paint averagethe total divided by the number of
grades entered.

Assume that every letter grade is followed by a '+', a '-', or a space. Be sure
to deal with the special cases such as A+ or F-.

You are to turn in:
a) a listing of your program, with proper comments, meaningful variable
names, nice indentation, etc.
b) The output for the following sets of data:

1) 3 grades: A, 6-, A-
il) 4 grades: A+, 6+, C, F.
111) 4 grades: 0-, 8+, 13,

Write the program in stages. First write a function that converts the
letter grade into a numerical grade. Put thtl function into a short program

. that inputs a single letter grade and then uses the function to print the
numerical value.

Once you have this working, cznplete the main program so it will enter es
many grades as the user desire?, and computes the grade point average.

For the experienced programmers:
The program as described counts all grades equally. Modify the program

so that it asks hew many credits each grade is worth and uses this in
computing the grade point average.

Do some error checking. Modify the program so that grades such as Ea
will not be accepted. Modify it so the letter grade will be counted whether it
is entered upper case or lower case.

Allow the user to type a single letter, such as A, without being required
to type a blank following the letter.

You can probably think of some other improvements. Go Mud Be sue to
note on your program end/or output what you have accomplished.

1 s

Math 287 Project 3 due

Extended precision arithmetic

For this project you are to write a program that performs as a
calculator with an arbitrarily large number of digits of accuracy. The
basic project need only do integer addition up to 100 digits, but there is
far more to do for the adventuresome.

The program should allow you to enter the first term, digit by digit,
followed by a '+', followed by the second term, followed by an '='. It should
then print out the correct result. The program should allow you to
continue doing this until you type 'q'.

Run the progran with the following computations:
1) 387426865+67'1:
2) 678+387426P4=
3) 94327068518+12305678944
4) 9999+11=
The first operation verifies that your program can add a small number to a
large number. The second verifies that the small number can be added
first. The third verifies that two large numbers can hied, with the
result having a greater number of digits than either term. The fourth
verifies that, after adding large numbers, tree program can go back to
adding small numbers.

The program should be reasonably efficient so that it only adds nonzero
digits. In other words, it should not add up 100 digits when your numbers
are only 2 digits long.

Extra features for the experienced to try:
Allow your program to enter an arbitrary number of terms before

adding, such as 55+76+345=.
Allow your program to continue adding terms to the previous sum, as a

calculator actually does. In other words, after entering 75+32; you can
then enter +45= and see the result 152.

Allow other operations, such as subtraction, multiplication, division,
and exponentiation. The easiest way to do this is with the operators
evaluated from left to right. A more sophisticated approach uses the
algebraic hierarchy of operations. Or even parentheses.

Allow real arithmetic.

Math 287 Project 5 due Nov. 5, 1987
Permutations

For this project you are to write a program which asks the user for a
positive integer N and then generates all permutations of the first N
letters of the alphabet. For example, if the user enters 3, the program
should print ABC

ACB

BAC

BCA

CAB

CBA

The program should also count the number of permutations generated (6 in
this case). You know that the answer in general is NI, but don't write a
factorial function; have your program count the permutations as they are
generated, so you can verify that all permutations were counted.

Your program must iise recursion to generate the permutations. This is
a natural method of sc.ution. After all, it is easy to generate the
permutations of one letter. Further, if you want to generate the
permutations of N letters, you can take each letter in turn and "hire an
assistanr to generate all permutations of the remaining N-1 letters. The
permutations must be printed in alphabetical order, which they will be
automatically if your program is written in an orderly way.

As often happens with recursion, the final program should be fairly
short. In fact, my program was shorter than any of my programs for the
previous four projects. On the other hand, the amount of thought per line
for a recursive program is often very high.

Turn in a listing of your program along with the output for N = 1, 2, 3,
4, and 5.

Extra credit options:
I can't think of any. Got any ideas?

D-6

NOTES TO ACCOMPANY THE FILM 'SORTING OUT SORTING'

INSERTION: NEW ELEMENT PLACED INTO ORDERED DATA

LINEAR INSERTION
SORT THE FIRST TWO ITEMS. EACH ITEM AFTER THAT IS SORTED INTO
PRE-ORDERED LIST SEQUENTIALLY. ORDER a(14^2).

BINARY INSERTION
POSITION OF NEW ITEM IN ORDERED DATA IS FOUND THROUGH A BINARY

SEARCH (CUT DATA IN HALF TO SPEED UP THE SEARCH).
* SLOW GOING IF DATA IS PRETTY WELL SORTED ALREADY. ORDER

SHELL-METZNER SORT
WORK ON SMALL SUB-ARRAYS OF ITEMS PLACED FAR APART (TO MAXIMIZE
ADVANCEMENT TO CORRECT LOCATION). THE SORT WITHIN EACH SUBARRAY
IS BY INSERTION (COULD BE EXCHANGE OR SELECTION). SUCCESSIVE
SUBARRAYS USE ITEMS CLOSER TOGETHER (SPAN:= SPAN DIV 2, WORKS
BEST IF SUCCESSIVE SIZES ARE RELATIVELY PRIME). FINAL PASS IS
ON ADJACENT ITEMS. ORDER (,(N(LOG N)'2).

EXCHANGE: EXCHANGE PAIRS OF ITEMS UNTIL ALL ARE IN ORDER

**

BUBBLE SORT
EXCHANGE ADJACENT PAIRS TO MOVE SMALLEST TO TOP. SUCCESSIVE PASSES
MOVE SMALLEST OF REMAINING ITEMS TO EACH APPROPRIATE POSITION.

ORDER 0(N^2).

SHAKER SORT
'COCKTAIL SHAKER'. EXCHANGE PAIRS TO GET SMALLEST TO TOP THEN BRING

LARGEST TO BOTTOM ON THE RETURN. CONTINUE WITH NEXT SMALLEST, NEXT

LARGEST, ETC.
* °SMART' IT STOPS WHEN A PASS DOES NO SWAPS. ORDER ehN^2).

QUICK SORT
DEVELOPED BY HOARE. PIVOT CHOSEN AND ITEMS ARE COMPARED TO THE
PIVOT UNTIL ALL ITEMS > PIVOT AnE ON ONE SIDE AND ALL ITEMS < PIVOT
ARE ON THE OTHER SIDE. NEW PIVOTS ARE CHOSEN FOR THESE SMALLER

SETS OF ITEMS AND THE PROCESS CONTINUES RECURSIVELY. ORDER a(N(LOG N)),

21.

D-7

SELECTION: SELECT KEY ITEM AND MOVE IT INTO PLACE

STRAIGHT SELECTION
LINEAR SEARCH FOR SMALLEST ITEMr MOVE IT INTO PLACE. SEARCH FOR NEXT
SMALLESTr ETC. ORDER (,(N^2).

TREE SELECTION
PUT DATA AT BOTTOM OF A TREE. 'PROMOTE' THE SMALLER ITEM IN EACH PAIR
UNTIL SMALLEST OF ALL IS AT THE TOP. PICK OFF THE TOP ITEM AND STORE
IT IN AN ARRAY, PROMOTE THE NEXT SMALLEST TO THE TOP, PICK IT OFF AND
STORE IT, ETC. 'PETER PRINCIPLE' OF AUTOMATIC PROMOTION.
* NEEDS A GREAT DEAL OF MEMORY SPACE (ORIGINAL ARRAY, TREE, FINAL
ARRAY), ORDER (,(N(LOG N)).

/ \ / \
/ \ / \ / \ / \

HEAP SORT
DATA IS DISTRIBUTED IN A TREE. ITEMS MUST BE ARRANGED TO PLACE THE
LARGEST VALUE FROM EACH SUBTREE AT ITS TOP (A 'HEW), THE LARGEST OF
THE WHOLE TREE (*ROOT') IS THEN SWAPPED TO THE END POSITION AND THE
TREE IS RE-HEAPED.
* BETTER MEMORY USE THAN TREE SELECTION. RUNS FAST. ORDER (5(N(LOG N)).

A COMPARISON OF THE RELATIVE MERITS OF SOME SORTS USING 1000 ITEMS
**

'YPE
Of**

COMPARISONS

SWAPS OR MOVES TIME IN SECONDS
************** ***************

BUBBLE 499,479 242,428 SWAPS 3,538

LINEAR INSERTION 25,870 243,421 MOVES 2060r

BINARY INSERTION 11,496 243,623 MOVES 1,045

SHELL-METZNER 14,160 6,711 SWAPS 100

QUICK SORT 13,444 2,639 SWAPS 47

22

D-8

program showfunctions (input, output);
(demonstrates some funtions from sections 3.1, 3.2,3.3, and 3.7 of)
("How to Solve it by Computer" by R.G. Dromey)

function sqroot (a : real) : real;
(find the square root of a)

const
error = 1.0e-8;(error tolerated in the answer)

var
9 1 i (previous estimate of square root)
g2 (current estimate of square root)
: real;

begin
g2 := a / 2; ..

repeat
g 1 := g2;

g2:=(g1 +a/gl)/ 2;
until abs(g 1 - g2) < error;
sqroot := 92

end;(function sqroot)

function smalldivisor (n : integer) : integer;
(finds the smallest exact divisor of an integer n)

var
d, (current divisor and member of odd sequence)
r : (biggest integer <= sqrt(n))
integer;

begin
if not odd(n) then
smalldivisor := 2

else
begin(search for odd divisor)
r := trunc(sqrqnp;
d := 3;

while (n mod d o 0) and (d < r) do
d :21 d + 2;

if n mod d = 0 then
smalldivisor := d

else
smalldivisor := 1

end(search for odd divisor)
end;(function smalldivisor)

23

function gcd (n, m : integer) : integer;
(find the greatest common divisor of two positive integers m and n)

var
r (remainder after division of n by m)
: integer;

begin
repeat
r:=nmodm;
n := m;

m := r;
until r = 0;
gcd := n

end;(function gcd)

function power (x, n : integer) : longint;
(raise x to the n power)

var
product, (current accumulated product)
psequence : (current power sequence value)
longint;

begin
product := 1;
psequence := x;
while n) 0 do
begin

if (n mod 2) z 1 then
product := product * psequence;

n := n div 2;
psequence := psequence* psequence

end;
power := product

end;(function power)

begin(main program)
writeln('The square root of 2 is ', sqroot(2) : 12 : 8);
writelnCThe smallest divisor of 901 is ', smalldivisor(901) : 1);
write('The greatest common divisor of 1008 and 270 is ');
writeln(gcd(1008, 270) : 1);

writeln('3 raised to the 13th power is ', power(3, 13) : 1);
end.

D-10

program countem (input, output);
(ex. 8-14 of Oh! Pascal!)
{Count the number of words and sentences in some text}
var
symbol : char;{the latest symbol read)
numwords, numsent : integer;(the number of words and sentences)
inaword : boolean; (tells whether we are currently in a new word)

begin
numwords := 0;
numsent := 0;
inaword := false;
while not eoln do
begin

read(symbol);
if symbol in r, '?'I then

begin(found the end of a sentence)
numsent := numsent + 1;
if inaword then
begin (this is also the end of a word)

numwords := numwords + 1;
inaword := false;

end: (of word at end of sentence)
end(found the end of a sentence)

else if (symbol o ') and (not inward) then
inaword := true (found the beginning of a word)

else if (symbol = ") and inaword then
begin (found the end of a word)
numwords := numwords + 1;
inaword := false;

end;(found the end of a word)
end;(while not eoln)

writeln;
writeCThere are ', numwords : 1, words and numsent : 1, sentences');
writeln(' in this text*);

end.

program magician (input, output);
{exercise 6-31 of Ohl Pascal, 2nd ed.)
(After doing some funny computations, the original number is)
(arrived at.)
{Written by Ray Greenwell, summer 1987, to thrill his Math 287 students.)
var

num, (the original number)
a, b, c, (the digits of the original number)
x, y, z, sum1, sum2, sum3 : (some intermediate variables)
integer;

function resultmod11 (p, q, r : integer) : integer;
{returns the remainder of pqr, interpreted as a 3 digit number,I
(when divided by 11.)
begin

resultmod 1 1 := (100 * p + 10 * q + r) mod 11
end,(functi on resul tmod11)

procedure checkodd (var sum : integer);
(if the sum is odd, increase or decrease it, whichever results)
(in a nonnegative number less than 20)
begin
if odd(sum) then

if sum < 11 then
sum := sum + 11

else {sum is odd and >=11)
sum := sum - 11

endjprocedure checkodd)

begin (main program)
write('Enter a 3 digit number: ');
readln(num);
a := num div 100;(hundreds digit)
b := num div 10 mod 10;(tens digit)
c := num - a * 100 - b * 10;(ones digit)
x := resultmodll(a, b, c);
y := resultmodll(b, c, a);
2 := resultmod11(c, a, b);
sum1 ::: x + y;
sum2 := y + z;
sum3 := 2 + x;
checkodd(sum1);
checkodd(sum2);

D-12

checkodd(sum3);
write(*The result of the magic computation is ');
writeln((suml div 2) : 1, (sum2 dl v 2) : 1, (sum3 div 2) : 1);

end.

27

program hpcalculator (input, output);
(Program to simulate a Hewlett Packard calculator.)
(Written far Math 287 by Ray Grienwell, Fall 1986)
const

maxsite = 10;
tgpe
stacktype = record

top : integer;
entry : orreg11..maxsizel of integer;

end; (stacktype)
ver'
stack : stacktype;
number, numl, num2 : integer;
symbol : char;
operators : set of char;

fusction empty (stack : stacktype) : boolean;
(check to see if the stack is empty)
begin

if stack.top = 0 then
empty := true

else
empty := false;

end; (function empty)

procedure push (ver stack : stacktype;
value : integer);

begin
with stack do
if top >:: maxsize then
writelnCstack overflow. Last entry ignoredl

else
begin

top := top + 1;
entryltop] := value

end
end;(procedure push)

procedure pop (ver stack : stacktype;
ver value : integer);

begin
if empty(stack) then
writeln('Stack empty. Operator ignored?)

28

el se
with stack do
begin

value := entryItop);
top := top - 1

end
end; (procedure pop)

function convert (symbol : char) : integer;
(convert a digit character to its numeric value)

begin
convert := ord(symbol) - ord('0');

end;(f unction convert)

function operate (num1, num2 : integer;
operator : char) : integer;

(operate on num1 and num2 with the operator)
begin
case operator of

operate num2 + num 1;

operate := num2 - num1;
'*' :

operate num2 * num1;
end;(case)

end;(function operate)

D-1 14

begin (main)
operators := + - *);
writeln('Enter an expression in Reverse Polish Notation.);
writeln('If you type an 'sr, the result will be printed1;
writelnCType a "q" to quit.');
writeln('For simplicity, only one digit numbers may be entered,');
writeln('and the only operators are +, and *.1);
repeat

reed(symbol);

if (symbol >.z. '0') and (symbol <= '9') then
begin (digit case)

number convert(symbol);
push(stack, number);

end(digit case)
else if symbol in operators then

29

. D-15

begin(operetor cese)
pop(sthck, num 1);
pop(steck, num2);
push(steck, operete(numl, num2, symbol));

end(operetor case}
else if symbol = 'r' then
begin (print result case)
writeln;
if steck.top > 0 then
writelnCResult= ', steck.entry[steck.topl : 1)

'else
writeln('Steck is empty; no result')

end(print result case}
until symbol
writeln;
if steck.top > 0 thee
writelnCResult= ', steck.entrylsteck:topl : 1);

end.

E-1

Math 237 tallotoutt ifitibUrnt
October 30, 1986 Worth 130 poire.s.
In an mathematical problems, be sure to show all your work.

1) (11 pts) Compute 151151 to the accuracy of your calculator. And don't tell
me your calculator won't compute a number that big; I already know that.

f511° = 34,014 q t77
.5%"

15111.1= 3 q o f 771 (0 6.1 /r/

IbioS-, oq33 /0":
1.ogosaci93 7 4i07"

ozdjuli, s- q4,7
O

r. 10344.1)as-rig

10"klo.6"fri = Leorao 3,3a/Ouer

2) (16 pts) In the quadratic formula problem done in class, we corputed
8*5 - 4*A*C, and if this quantity was negative, we printitl out the

message "No real roots." Now you are to modify the program so thit if the
roots are, for example, 3 ± 21, the program will print °The comple) con jugate

roots are 3.0 21 and 3.0 - 2i.' An you need do is write the Pasca

statements that go between the begin and end in the following stItement:
discr < 0 then
begin

end

REALIMIt r: 09;
7A&PA,T; = soAr tascR)/064);

x TE t c..0.44.7231. nAreeit J

Wit rr E4A, m(te L PArr: 3: I) is ij vA A &FAA r: 3: 1) 1 o...1 REAsl'Ar1T3; 1)1

2,406-PAR?: 3: I j,91

31
p. 1 of 6 Erre? rsinii AVAIl Alal

3) (13 pts) Write a procedure that adds together two matrices A ond and

puts the result in C. For example, if A .= ft 2 31 and 6 [O 2 -11, then C

11 4 21. 1.0 1 2.1 3 1 2 j

L3 2 4i
You mly assume that the program contains the statement
type :natrix array(1. .10, 1 . .10) of integer;
Lettiog "rows" and "cols" be the number of rows and columns in the matrices,

here is the first statement of your procedure:

procedure addrnat(ver A:B, C: matrix; rows, cols: integer);
TF &FR.;

peCr2d
FOR i To Rows DO

F0A -ro cos.5 DO

4 CYJJJ =

F ND; I

6 [z) al;

ar...(Aitog ja,,; I iglfIdta... 3-A41)
4) (12 pts) Suppose 161is written as a binary number. How many Veiling O's
are there, counting from the right, until the first 1 is encountered?

1'6-414" 61, daer-19..-6JIAE, otr

Ara.... I 4...0-4-ie A. a) otr 0

p. ? of 6 3 2

E

5) (18 pts) Use a Boolean variable to rewrite the following section of Pascal
code without using any goto's. The comments in brackets refer to
unspecified sections of code.

for 1:::1 to n do
begin
(stuff)
If x < 0 then g.ito later;
(more stuff)
If y then goto later;
(even more stuff)
end;

later: ithe res.t of the program goes here);

VAR WAIF: BOOLFAN

76: =
DoJE:= FAL s E;
WigLE CZ< r.-0 AND

8E&Jel
&or DO,JE) DO

191#3
IF X40 arkEN rodF;:-- erRur

Egb;
f764. of .7r.,4 tr 4-4

ELSE 3Eer2.0
ehArt.

IF Y,= -rgiEd po4E =- 1-guE

ELSE 8 EG2041
sere." oa..40

X: =
F NMAA-11-14 E SEJ

r atsg

P 3 of

6) (16 pts) Suppose we represent fractions by the type

type fraction = record
numerator, denominator: integer

end;

Wrge a procedure which adds the fractions A and 6 to give the result C. You

may assume that A and B are &re* t'educed, but you need not reduce C.

However, you must find use the 11,west common denominator of A and B when

finding C. For example, if A = 3/10 and = 7/15, C should equal

(3/10*(3/3) (7/15)*(2/2) = 23/30. You may assume that we already have

created a function LcAi which Oves the le 411s t Cedwitmoh Mid/qpIe Of two

numbers (e.g. LCK(10, 15) = 30). Here is the first line of the procedure:

procedure addfrac(var A, 1, C: fraction);

VAR ArAcroo) BFAcv oft rArre &Pie;

Et E 64141

C. PEolomsivAT oR: L (A.Drvo^ixtvAr OR B.

AFAcroA: = C, DE,,eurtv.4r. ott v A. PEAdom 7.164 TOR;
FAcToR C, 01,404474.4Telt b B. bEfidAlz.....-roR j

C otJUMERATo.-::: AFAcroR A, 14 ERATO 8FAcvAit iiNUAIERA7-0/2;
41); f eiwuirc.R. 4.44t,..,..1

p.4of 6 34

7) (18 ots) If ai, a2, ... is a sequence of real numbers such that an41

(n,Pan 1)/(n + 1), find a closed formula for an (as a function of n and 436) and

prove this formula by induction Then find Um an .

44 .-: pal -1
I I

a 3.)44a-i Ceir D./
I 3 3

aLi= 3110,-1 z) 1 3
t If

Moe f
alho.:a. eft" 3., 4,

MOP

4.* ,17 ^5
lit Ai"4,1

a -A
Ala

L. O.*. = Lt..... !EL awl
Oft

E-5

8) Terrbl Pascal Is a non-standard version of Pascal, available at Waldbaums
for $3.95, or available for free with 17 boxtops from Kellogg's Raisin Bran.

a) (14 pts) The only inverse trigonometric function in Terrtl Pascal is
arcsec(x), which gives sec"Ix in radlans if X 1 and bombs for any other
values of x. Use this functior to define an nrcton function that will give
tan-I x in radians for Creel numbers x. Here is the first line:

function arctan(x. real): reel; Of'

SE crzei
tF > = 0 7)4EPI ARCrAN:= AltdfEC(SORT(1 t)6,4)

ElfE Attc rA AA c SEc (50,cr (14)01)0)

g D.; f 0:8ftttott...

b) (12 pts)Tertql Pascal has the div function of standard Pascal, so p div q
gives the integer quotient of p/q, where p and q are integers. Unfortunately,
it has no mod function, which gives the remainder. Create such a function,
so that, fot example, mod(5,17) returns the value 2.

FOPCT.TOW MOO) s: ZNIE 6-00: zArr F co. 41;

Oe &id
mop: = A (A rav OA* 13
F f

P. 6 of 6
36

E-6

NO 287 fruiting %Main name 6(20-a-r--J

Worth 110 yummy points. July 30, 1987

1) (15 pts) The following program is supposed to take the average of a set of
nonnegative numbers and print the average to 2 decimal places. A negative

number is to be read in at the end of the set; it is not to be counted in the

average. Unfortunately, the program was written by my untrusty assistant
Igor and contains some errors. Correct all the errors, but do not change
anything that is correct.
program matic(input,output);
yew sum, count, 9alue,fivercte:
begin
count:0;

while value>=0 do
Lbegin

sum:30;
read(value); 3
sum:zsum + value;
counb:count + 1. REAq vAi-uE),
end;

writeln(The average is ',average:4:2);)
end.

integer; ^vileAcrE REAL_,

average:msum/count; F couJrO>
MIA/ 8E Opi

AvERA(rE: So ow /4""47.)
wevrEL Pdc:th, ove,foc,f,'

f 7-r Et /41 ('/1.0 .12---4.11 .1)

p. 1 of 5 :3 7

2) (15 pts) The latest version of Tern! Pascal has an arccos function built
in but no arctan function. Use the arccos function to write a function that
returns the arctan of any real number x. Here is the first line:
function arctan(x: real): real;
FE 6-7 ni

IF X>=o

E D;

c ro4W: "fig cees /SaRr(iELSE

3) (15 pts) Explain briefly what the following program accomplishes,
assuming it reaches a successful conclusion without running into integer
overflow problems.
program others(inputoutput);
var a,b,c: integer;
begin

b:=0;

c:=0;
while b < 3 do

begin
c:=c+1;
a:-za sqr(c);
if sqr(round(sqrt(a)))::a

then begin
writeln(a);
b:4+1;
end;

end;
end.

N

61- eNla.LeA goi A

y

7/,', /a-4-A ,v40

3.

1/'Ne4.,. /Lill'

erk.t Ida t(..trt
t4d exJ
et-0

p.2 of 5 38

envy MEV Mill 11111

E-8

E-9

4) (15 pts) What is the output of the following procedure?
procedure al;
var c: integer;
begin
for c:z10 to 20 do

case c*3 mod 5 of
0,4: writeCwho 1);
1: what '); witztei.,4
2: write sees ');
3: write('knows 1);

end;
end;

/ AArkv- .12.,., AAr1-4

..,+-1P AA)4.4' 41 :;--1, m.4-0")L01.4-2

A/J-43, AA-1-41 A.N4e.

C. S-

I° 4o -87 ()
II 33 -9 3

s a 34 4 1
13

41

grap 0
14 lett 0 3
17 I
IC S-10 Lit

zo 6o .40

Is-

5) (15 pts) Write a Pascal function with the single parameter NUMBER,
assumed to be a three-digit integer. The function should return an integer
that contains the digits in reverse order.

F E VERS E (N: rAll6ER) Z.JTE 6-ER;

VAt 0-tchiPi rElJr,0n/E5 zoPrEG-FR).
E

OrJES;= rI mOD 100.

TEdS: = N to7V 10 moo 0

Hum!): N OfA1E

REvF/Z5E: ONESPIc0 t rENSt 10 t I-141ND
Ivb

4

6) (15 pts) Suppose the following Input is entered into the program below:
If McDougal programs in FORTRAN, then d'Antonio programs in Pascal.
Assuming that all writes are sent to the printer, but what is read only
appears on the screen, what is printed by the program?

program ming(input,output);
var ch: char;
begin
repeat tr---- l-

read(ch); Ax.,,,xy A:v. AL ell...44.0.4

If ch in ['K.:VI <--. ll'It% 4-4

then repeat
write(ch);
read(ch);
if ch in ra'..'z'l ? a. .6,44-1

Cfthen ch::chr(ord(ch) 4. ord('A') ordCa'N
until (ch:') or (ch:'.');

/4-- 7C4..4.44

write(ch); 4A-ezuin, 1 (-...,..,r4--.2 At 4

until chr.'.';
end.

MC I) 0 el Cr A 1,- es.i...frsdr.........,,so A., F OA TAZA Al) ri-avs (1. 1/11"4"12' 0

P'%-4311-4-4...40 . PA SC A L. ,

p.4of5 4 0

7) (20 pts) Use a Boolean variable to rewrite the following section of Pascal
code without any goto's. The comments in brackets refer to unspecified
sections of code.

for bn downto m do
begin
(stuff)
for J:=1 to n do

begin
(more stuff)
if x=0 then goto later;
(even more stuff)
end;

(still more stuff)
end;

later: (rest of program follows)

VAR DOAJE: 60oLFA/1).

z:=t4)
DOPJF; FALSE:
W M71 E (Nor DoNE) /0

BE Gz AI

WkILE e4=p1) eidl)

7F- X::0

4_r

pop; ImEeif
)44

LE J

.t 11 ut-4

THEW
EL-5E

END,. #.04,7&E

F NOT DO4
TI4E,.1 OFCr2A/

rfrYwrD

= /1/44) O

(fool- boxr() Oo

DoNE;-----rPuF
(4,4

EL.5

p. 5 of 5
4 1 urr PM Milli All

And now, what you've been waiting all semester for,

NOE U7 HMI MUM
Dec. 16, 1966 Wortn 144 priints. name

Part 1. Multiple choice. (wm-th 61 points)
4 pts for each correct answer, -1 pt for each incorrect anFwer. No penalty
for those left blank.
1. Suppose that one of many tasks a large program must perform is to displey
information about particular items in a table. (Som.:: of the other tm:ks also
involve searching and manipulating the table and displaying values.) Of the
following, which indicates the best design of a procedure P that performs
this task upon receiving a specification for an item?

Da) P searches the table for the specified item and then displays the
information about that item.

0b) P displays the whole table.

Oc) P calls a procedure S to search the table for the specifie'd item and then
calls a procedure D to display the information about that item.

Od) P searches the table for the specified item and then calls a procedure D
to display the information about that item.

De) P calls a procedure S to search the table for the specified item and then
itself displays the information about that item.

2) Suppose that items Xl, X2, X3, X4, and X5 are pushed, in that order, onto an
initially empty stack S. that S is then popped four times, end that es each Xi
is poPped off SI that XI is then inserted into an initially empty queue. If one
XI is then deleted from the queue, what is the nat item that will be deleted
from the queue?

Oa) X1 Ob) X2 0c) X3 Cid) X4 De) X5

3) A hypothetical digital computer computes the results of the four ordinary
binary operations +, -,*, / to 4 significant figures and returns the result of
each operation truncated to 3 significant figures. if the expression

(6.74 - 0.024)4,2.00 -13.38
is used as Inputs what if f r,sult returned by this computer?

0o) 5.00 Ob) 5.02 Lc) 5.03 Od) 5.04 De) 5.06

E-13

Questions 4 and 5 are based on a provam with the Wowing structure:

program A;

procedure B;

1" I procethire C;

begin

*C.;

end;

procedure D;
begin

. .

B;

B;

end;

begin

end.

4) A variable that Is declared in procedure B and only in procedure B is
accessible in

Da) all of program A

El) procedure 8, but not in procedures C and D

pc) procedures B and.C, but not in procedure D

Od) procedures B end D, but not in procedure C

De) procedures 8, Co and C, but not elsewhere in A

p. 2 of 1 1 43

E-114

5) Suppose that the program A contains no goto statements arid no procedure
calls other than those indicated. WW1) of the following lists ascribes
completely the order in which the prJcedures coritaincd in program A dre
called or invoked?

Cla) 0, 8, C

Oto C, D

pc) C., 6, 8, D

0d) D, ot C

Oe) D, B, C, 8, C

6) Which of the followIng stotements, when used as the body of the function
definition procedure Fact(n:integer) : integer;

begin

end;
will enable that function to compute n correctly for any n > 0, where
nl n*(n.-1)*(n-2)* . . .*3*2*1 ?

I. Fact 3.- neFaet(n- 1)

11. If n < 2 then Fact := n
else Fact := n*Fact(n-1)

III, n = I then Fact := 1
else Fact := Fact(n+ W(n+ 1)

Da) I only

0b) II only

0c) I and II only

0d) II and III only

De) I, II, and III

7) What output is produced by the following program?
program ABC(input, output);

var n: integer;

procedure Increment(var a, b: integer);
begin

b:= b+1

end;

begin
n:= 2;

Increment(n,n);
write(n)

end.

Cla) 5 OW 4 Dc) 3 Od) 2 De) An error message

8) Consider the following sequence of procedure calls:
Push(x):
Push(y);

Add;
Push(z);
Push(w);
Mult;
Add;

Invoking Push causes its argument to be pushed onto a stack.. Invoking the
procedures Add or Mull causes (1) the stack to be popped twice, (2) the two
popped items to be added or multiplied, and (3) the result to be pushed onto
the stack. If x = 201 y. = 3012 = 20, and w = 70, and the stack is empty
initially, then at the end of the sequence of procedure call above, th stack
contains

OW Nothing Ob) 0 Elc) 1070 Od) 1230 DO 1450

9) If there ere 10 internal nodes (that is, nodes that are not leaves) in a
binary tree, at most how many leaves can there be?

Da) 1 11) 4 Oc) 9 Od) 11 Cle) 20

p.4 of 11 4 5

E-15

Questions 10 end 1 1 are based on the following declarations..
type 'SexType F);

PartyType (Christmas, Halloween, Comeasyoue-e, Other);
AgeType 0..125;

CitizenType record
Sex : SexType;
Party : ParttfType
Age : AgeType;

end;
vor Citizen : CitizenType;

Longevity AgeType;

10) Which of the following is a valid Pascal statement?

Da) writeln(Citizen)

Ob) writeln(Ci tizen.Sex)

Elc) writeln(CitizenAge)

0d) writeln(Age.Citizen)

Cle) writeln(Ci tizenTgpe.Age)

11) If 6 is a function with header
function 6(x, y: AgeType) : AgeType;

which of the following is a valid Pascal statement?

Oa) 6

Ob) 6(1,3)

Elc) read(6(1,3))

0d) Longevity:= 6(5, Citizen.Party)

Od) writeln(6(70,Longevity))

p. 5 of 1 1 4 6

12) Suppose that the following program segment is used to approximate a

zero of the real-valued function
f(x) = ex - 3

starting with Left = 1 end Right .= 2.

vor Left, Right, x, Epsilon: real;
repeat

x:L. (Left + Right)/2;
if f(x) < 0 then Left:: x

else Right:: x
until (Right - Left) < Epsilon

How many times must the loop be executed to produce an x that is guaranteed
to be within Epsilon of a zero of f when Epsilon is 0.001?

Oa) Once

Ob) 10 times

Dc) 100 times

Da) 1000 times

De) It cannot be determined from the information given.

13) Let Rnd be a function that returns a random value uniformly distributed
between 0 and 1. Which of the following expressions, when inserted at the
indicated point in the program segment

Count:: 0;
for 1:: 1 to n do

if (expression goes here) then
Count:: Count + 1;

P1:= 4*Count/n

will cause that program segment to approximate the number Pi ...: 3.14159...
by a Monte Carlo method?

I. sqr(Rnd) + sor(Rnd) < 1
II. Rnd*Rnd + Rnd*Rnd < 1
III. Rnd + Rnd < 1

Da) I only Ob) II only DO Ill only Od) I and II De) I and III

E-18

14) A certain binary tree T is represented as a two-dimensional 5x3 array A,
with rows of A corresponding to nodes of T. The columns of A contain the
following information:

column I--the matrix row hide of the left chila
column 2--the value stored at the node
column 3--the matrix row index of the right child

A mairix row index of 0 indicates a nonexistent child. If A consIsts of the
entries 5 7 4

0 0 1

0 I 0

3 4 0
0 8 0

then T is given by which of the following diagrams?

Da) 7 Ob) 7

/
4 8 8 4

Od) 0 De) 0

I.
7

4 4

1 1

Dc) .^7

0 I

4

15) Suppose that the variable d represents the number of dollars in a bank
account after interest has just been credited to that account (e.g., d
123.456). Which of the following Pascal expressions would round that
amount to the nearest cent (e.g., to 123.46)7

Da) round(d/100)*100

Ob) round(1004)/100

Dc) round(d/100)

Od) round(100*d)

De) round(d)

p. 7 of 11 45

E-19

Port 2. Fun part. (worth 84 points)
la) (0 pts) Represent the expression A/El C*D "(E - 6 + PH) b bindry
tree.

b) (5 pts) Write the expression from part e.) in postf ix notation (i.e. Reverse
Polish Nothtion).

c) (6 pts) Write the expression from part a) in prefix notation.

2) (9 pts) Here is Ackermann's function ayoin:
4. 1 if rr = 0

A(m,n) .. A(rn - 1, 1) ifm0,nTO
A(m - 1 , A(m, n - 1)) if m x 0, n t 0

Compute A(210). Show your world

3) Consider the following Pascal function, defined for N 1:

function f(N: integer): integer;
aegin
if N 1 then 0

else f:z. N div 2 + f(N div 2 + N mod 2)
end;

a) (10 pts) Compute f(1), f(2), f(3) end f(4).

b) (5 pts) Based on your answer from part a), you should be able to guess a
very simple, nonrecursive version of the function f. Write such a function.
(Note: if an extremely simple function is not obvious from part a), you've

done something wrong, and you won't be able to do part c). If you still want a
shot at doing part c), bring your test up to me and I'll grade parts a) and b)
immediately and give you the correct answers.)

c) (11 pts) Use induction to prove that you answer from part b) gives the
exact same result as the original function in part a). (Hint: to compute
f(K + 1), consider eveh end odd cases.)

p. 9 of 11

E-21

4) (6 pts) Show how the postfix expression 4 3 2 5 7 + - * is
evaluated with a stack by showing the contents of the stack at each step.
(Note: all numbers in the expression are single digit-positive numbers. This
will not necessarily be true of all numbers in the stack.)

5) (12 pts) Here is a section of code from a hypothetical game, where at
various points in the game, if more then 100 seconds have elapsed, the game
is over. The comments refer to unspecified sections of code. Use a Boolean
variable to write a section of code that performs exactly the same actions
as the code below, but without use of any goto's.

while citiesleft > 0 do
begin
(first bunch of stuff)
if time > 100 then goto gameover;
(second bunch of stuff)
if time > 100 then goto gameover;
(third bunch of stuff)
end;

gameover writelnCGame overi);

6) (11 pts) Assume we have the following declarations in the beginning ofour program
type sniallset :: set cif OW;

Cie3s set of smalet;
var hold: smallset;

result: Class;
11, 12. integer;

Trace through the following section cnf Pascal coda, aowing the values ofthe variables at each step. Tell whet the final value of the set 'result" is,and descrthe in words. what this section of code accomplishes. (Note:actually, this wouid ndt *irk in standard Pascal, War* the elements of setsmust be of an enumerated type, so we cannot have typs such as "classw.Ignort this restriction vt:!ile doing the problem, tecause to ge". around itwoulti bo r*Zher compllcated.)

hold:::11;
result:=1
for 11::: 1 to 2 rk

begin
if 11=1 then hold:: hold +

else hold:: hold -
for 12:= I to 2 do

besin
11 12:1 then hold::: hold + ('b

elsa hold:: hold LW),
result:: result 4 hold
rid (for 12 loop)

end; (for i I loop}

5 2

P. 1 I of 11

