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Abstract

"...Then anyone who leaves behind him a written manual, and likewise

yone who receives it, in the belief that such writing will be clear
and certain, must be exceedingly simple-minded..."

Plato, Phaedrus 275d

This Tem arch is part of the larger project "The Evaluation of Primary Education in The

Netherlands". In this project the following research questions are studied:

(1) Are significant positive effects produced by the change hum primary education for 6 to 12 year

olds, to basic education (basisvorming) for 4 to 12 year olds ?

(2) Are there measurable differences between, on the one hand, schools with and without

basisvorming and, on the other, schools with experimental basic education ?

(3) Do structural and organizational differences of basic schools produce distinguishable effects ?

All three research questions involve data measured at at least two levels. For the first two questions

these are the student and the school levels, for the last question we also have the regional or

structural level as a third level. Because of this hierarchical structure special demands are placed

upon the analysis technique which can be used to answer these questions.

In this report we give an overview of some of the available statistical theory and software for

analyzing hierarchically nested data. Next, we evaluate these programs. Finally, we propose a

technique that can analyze data of several different domains and is (at least in some respects) more

general than the existing programs.
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1. INTRODUCTION.

1.1. Why new techniques ?

Evaluating the effectiveness of large-scale experiments in education involves the analysis of

hierarchical data structures. Educational data are often hierarchical because pupils are in schools,

schools are in districts, districts are in counties, and counties are in states. In a large-scale research

project we usually have information about two or more of the levels involved, for instance

variables describing individuals (such as intelligence, school career, and family background),

variables describing the schools (school type, schools in a special program, curricula offered), and

perhaps variables describing districts or countries (available resources). It'. is well known that

analysis of these variables on any of these levels separately can be seriously misleading. For an

overview see Burstein, 1980, and Kreft, 1987. It is more satisfactory to construct models and

techniques which simultaneously take information of all levels into account. But in order to be able

to do this some serious statistical problems have to be solved. Problems in hardware and software

that were unsolvable until recently. In the last few years, however, a number of papers in the

statistical and methodological literature directly have attacked the problem of analyzing variables

measured at different levels of a hierarchy. (See Mason, Wong, & Entwistle, 1985; Aitkin &

Longford, 1986; Goldstein, 1986; Raudenbush & Bryk, 1906; and De Leeuw & Kreft, 1986.)

These investigators work with basically the same model, known as the hierarchical linear model,

the random colfficient model, or the Bayesian linear model. All models deal with the problem of

analyzing nested data collected under non-experimental conditions.

Mathematical models can serve the goal of describing relationships between variables of

different levels. Use of a mathematical model indicates the researcher's assumption that the

structure of the model is more or less in correspondence with that of the real world. The model

describes the empirical world as a formalized theory. Preference for one model over another is

based on the researcher's theoretical knowledge of the subject and knowledge of the way the data

are produced.
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For instance the hierarchical linear model, the model we are discussing here, is preferable

to traditional models such as multiple regression and analysis of covariance (ANCOVA), when the

assumptions of the latter are violated. As a result of tlis violation we assume that estimators based

on the more realistic model are less biased and more efficient. Let us give an example with

educational data, comparing the hierarchical model with ANCOVA, a traditional fixed linear model.

In ANCOVA the most ob ious assumption violated is that of random sampling. This is clear, since

in education we are dealing with data in which students are sampled from within schools and more

often than not even these schools are not a random sample (but are stratified or otherwise

sampled). Moreover, school populations do not consist of a random sample of the country's

population of students, but are highly selective, causing a restricted range of many important

variables. Selection often takes place on the dependent variable school success, since schools are

in poor or rich neighborhoods, and the relation between school success and social economic status

is obvious in many instances. In addition, when we want to apply within-school analysis, the

samples within schools are not large enough to make up for this non-normality of the data. As a

result, the ordinary least squares (OLS) estimates of the traditional linear model provide confidence

intervals that are too short and too often the null hypotheses will be rejected. This causes many

type I errors, and as a result contradictory research results.

The literature tells us that the choice of the best model depends on the simplest description

of the population studied that is consistent with the data (see Everett & Dunn, 1983, for instance).

Of course, within certain limits, it is always true that when we make our models complex enough,

they are bound to fit. But a complicated model may have less explanatory power than a simple and

more elegant one; a simpler model also may be easier to interpret. This is the trade-off between

parsimony and goodness of fit. In April 1987, at E.T.S. in Princeton, there was a conference

especially devoted to studying problems of this kind. The proceedings were published in a very

useful book (Bock, 1988). The book, and many recent articles, show that various groups of

researchers are still busy extending the theory as well as the existing models and techniques for

analyzing this type of data. We i'so see the trend of extending these techniques to more general

types of situations, and applying them to domains other than school effectiveness research (see

Laird & Ware, 1982; Jennrich & Schluchter, 1986; Hox, Kreft & Hermkes, 1988).
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The question we study in detail is how to fit separate models for separate schools in an

elegant and parsimonious way. In order to do this we present a detailed comparison of four

computer programs for analyzing hierarchical linear models. The programs we discuss att

VARCL, HLM, ML2, and GENMOD. We have sulected them on the basis of the following

criteria. We restrict our attention to programs that are (a) compiled, (b) stand-alone, and (c)

specialized. On the basis of (a) and (b) we exclude the GGCMAOV routine by Swam, Laird and

Ware (1986), which is written in SAS/MACRO and in SAS/MATRIX, and die routine by Kim

(Kim & Kreft, 1989), which is written in GAUSS. Because of (c) we exclude general purpose

mixed-model ANOVA routines, and because of (b) we do not discuss packaged modules such as

BMDP/5V (Schluchter, 1988) or GLM and VARCOMP from the SAS statistics package. The

BMDP/5V routines of Schluchter, and GGCMAOV of Strain, Laird, and Ware, were written with

longitudinal (growth curve, ttpeated measures) data in mind. They will be discussed and

compared in a separate paper (Van der Leeden & De Leeuw, 1990).

The four programs produce their own answers, but basically their answers leacl to the same

conclusion. OLS produces biased and unstable estimates of the parameters and their precision,

since the assumptions on which OLS is based are clearly violated. The specialized methods can

produce more stable estimates. There are some quite subtle differences among the models that can

be fitted by the programs, but in general these approaches have a great deal in common. Most

programs concentrate on two parts, or levels to decompose, although having more than two is

possible (HLM 3 and ML 3 have been recently released in beta-form; VARCL already exists as

VARCL 3 and VARCL 9). Using an educational example again, these levels may be the variance

between students and the variance among schools. In this example, students are the fvst level and

schools the second, but the levels could be defined differently. All four programs use Maximum

Likelihood (ML) estimation for decomposition of the variance into different parts. In all cases

computing the ML estimates involves complex nonlinear expressions in the parameters. In such

cases the equations must be solved by an iterative procedure. The major difference among the

programs is in the choice of the criterion to optimize and the choice of me algorithm to optimize the

criterion.
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1.2. Models.

There has been quite a bit of confusion in the literature about the precise differences among

the programs, the distinction between restricted and full ML, the precise definition of the

algorithm, and the various reasons one can use to choose dmong programs and options. This may

be due to the fact that the investigators have concentrated on making the software work and

publishing the application-oriented papers. It also may be due to the fact that some things are taken

for granted, which are not obvious at all. Why do we use ML? Why do we choose restricted MI,

rather than full ML? What is the EM algorithm? We will try io give a clear outline of the various

tools that are used and of the various aspects of the packages.

Our first step is to suggest a uniform terminology and notation. Although, of course,

notation and terminology should not be a barrier to understanding other people's work, they often

have this effect. We then introduce the models at three different levels of generality: (a) the most

general models, the Random Coefficient Models; (b) an important special case, the Hierarchical

Mixed linear Mode lr, and (c) the Multilevel Linear Models, which are the most specialized

models, although they are still E very general class. We will discuss most problems at their

appropriate level of generality. For example, in the random coefficient model context, for instance,

there is a minimum of notation and various technical matters can be discussed by using matrices,

without cluttering the page with a primeval forest of formulas. Simplifications are possible for the

more specialized models, and this leads to Prime unpleasant algebra, but the equations will show

where computational efficiency can be found.

In general we will emphasize the abstract characteristics of the three classes of models and

the symmetric treatment of random and nonrandom parts of each class. In this context it is perhaps

necessary to stress a philosophical point. What we model as "random" and what we model as

"fixed" should be ultimately decided by a replication of the experiment or study. If our definition

of a replication implies that certain variables will have the same values over different replications,

then they will be modeled as fixed. If variables are allowed to change over replications, then they
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will be modeled as random. Another philosophical point is that we do not stress the distinction

between variables and parameters very much, only that between variables which are observed and

variables which are hypothetical and not observed. This could be considered as a small step in the

direcdon of Bayesian statistics, but there is nothing inherently Bayesian about our interpretations.

1.2.1 Random Coefficient Models

In order to fix the notation for random coefficient models we discuss a completely general

case in which we observe measurements of n individuals on a single outcome variable y. The

outcome variable is often called the dependent variable, but this is quite misleading. The

observations yi are interpreted as realizations of a randomvariable A. We shall underline random

variables in our discussion of models. This convention (Hemelrijk, 1966) is especially compelling

in our context, in which the distinction between fixed and random is of major importance. For

each individual we also have observations x1 .. on m predictors x. Tile x. are thought of as fixedJ 1 1

(by design). They arc often called independent variables or regressors. Observe that, by

definition, random variables are unobserved. We observe only a single realization of them in the

particular trial of the experiment or study at hand. Or, to put it diffeiently, random variables enter

only into the formulation of the models; they do not figure in the formulas for the maximum

likelihood loss functions or in the notation for observed values.

Our model for the A supposes that for eah individual there exists an In-element vector of

random coefficients A and a one-dimensional residual gi such that
m

(1): yi=E xiiiegi
j=1

with E(Ei) = 0 and V(gi) = 02 for all i. Moreover all gi are independent of one another and of all

Pik The basic assumption on residuals is that there is no structure left in themthey are

completely random.

Now let
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(2a): E(j) = Pu

(2b): 4j - = ij

This means that

(3):

and Eav = 0. The first summation in (3) defines the fixed part of the model, the second

summation the random part. It follows from the assumptions so far that expectation and

covariance of the outcomes are given by

(4a): E(Ii) = xifiii
1

(4b): C(j,y,k) = xibikxk +

where

(4c): = E (ag)
and Sik is the Kronecker delta (i.e. 61c = 1 if i = k, and tic = 0 otherwise). This model is very

simple, very general, and perfectly useless. With each single observation yi we introduce m fixed

parameters Pp With each pair of observations we introduce m(m+1)/2 parameters Ow Moreover

there is the additional parameter a2. In general there will be far too many parameters to estimate,

and far too few observations on whicn to base the estimation.

Therefore we must impose restrictions on the parameters, or, in other words, we must

make our models more specific. One typical set of restrictions defines the usual linear model, in

which there is no nontrivial random part and the fixed coefficients are all equal. Thus LI& = 0 and

[3ii = The model becomrs E(x) = XII and V(x) = a2I. In this model m + 1 parameters are left

to estimate, and we all know how to estimate them by using ordinary least squares. A different set

of restrictions defines the variance components model, which does not have a fixed part and which

has all equal and diagonal. Thus, 13ti = 0 and = diag(12), and the model is E(y) 0, V(y)

= MiXT + 021. Again there are m + 1 free parameters, but they are not used now to model the

expected values of the outcomes; rather, they are used to model their variances and covariances.

Both sets of restrictions are very strong and, moreover, they do not take any hierarchical structure

12
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,f the data into account. In order to model this structuit, we first have to defme it precisely.

1.2.2 Hierarchical Mixed Linear Models

We start with the index set N = 1 ,2,...,n ) . Suppose fly,, ..,ils are nested partitionings of

N, i.e. all nr are partitionings of N, and the sets in nr+i are subsets of the sets in nr We can also

say that nr+I is a refinement of nr One special pardtioning is nmin = ( ( 1,2,...,n) ) , i.e. nmin

consists of one subset, all of N. Another one is nmax = ( ( 1 ) , ( 2 ),...,( n ) ) , i.e. fin= consists of

all singletons fnim N. For interpretation purposes, we can think of the elements of N as students,

for instance. n, partitions the whole set of students (in the investigation) into countries, rI2

partitions countries (and thus students) into cities, 113 partitions cities (and thus countries and thus

students) into neighborhoods, 114 partitions neighborhoods into schools, 115 partitions schools

into classes, and n6 partitions classes into individual students. This is the finest partitioning. We

indicate the nestedness of a given hierarchy (nr) by writing < < Ils Ilmax. The

numbers 1 5 n1 < < ns n indicate the number of sets in each of the partitionings. Thus nr is

the number of sets in nr With each pardtioning we associate an equivalence relation. Suppose =r

is the equivalence relation defined by nr Thus i =r k if and only if individuals i and k are in the

same subset on level r. Students are equal at the school level if they are in the same school, they

are equal at the county level if their schools are in the same county, and so on. Wehavei=jqk

for all i and k, and i = k if and only if i = k.

We now assign to each variable its level in the following way. Let us call a predictor xj o f

level r, with 1 5 r 5 n, if

(5) (i =r k) (xij = xkj)

If xj is of level r, then it also is of level t with t > r. A variable of level r can have at most nr

different valueg Thus a predictor of level one is a necessarily a constant, a predictor of level n

can have all ito values different. Observe, however, that a constant can also be a predictor of level

r, with r > 1. The definition extends, without problems, to random variables. We say that variable

11.1 hixs level r if

13
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(6) (i =r k) E

where we use E for equivalence of random variables (that is, equality up to sets of probability

zero). Given these definitions, it is now clear what we mean by a hierarchical data structure. It

consists of a number of variables on N, plus a nested set ( fir} of partitionings of the individuals in

N. It is also clear what we mean by a multilevel data structure. It is a hierarchical data structure,

with variables (defined on N, fixed and/or random) of different levels.

We now incorporate the hierarchical structure of the data into the general model (3).

Suppose that coefficients b? are partitioned into subsets as

(7): f=I
where subset r has mr elements of level r. Thus there are disturbances on all levels of the

hierarchy. We now link the hierarchical structure of the data set and the correlation of the error

terms by the following assumption

(8a): if r t then E(01) = 0

(8b): j i k then E(fogd) = 0

(8c): if i = k then OW = (4)

This means that all betweon-level correlations are zero. If individuals i and k are not in the same

equivalence class on level r, then their level-r random coefficients are uncorrelated. If they are in

the same equivalence class, then their level-r random coefficients are by definition identical

because they are of level r. Moreover, the blocks of covariances for all equivalence classes are

equal.

We partition the columns of X in exactly the same way as the random coefficients. Thus

(9): X = (X(1) I ... I X(s))

with no restrictions on the level of X(r). We also assume that the fixed coefficients are the same for

all i. Then
S En, Int

(10): yj = Xirj)e) 4)0+ fi
r=1 j=1 r=1 j=1



Report # 1, SVOproject 7130, Intro 12

It follows that
s ni,

(11a): E(N) = 1 1 xt)fir
rail j=1

s mf m
(11b): C(yjak) = 1 8,(i,k)E 1 xt)xtg) + 028ik

r=1 j=1 1=1

where 81(i,k) = 1 if i =rk and 81(i,k) = 0 otherwise. Observe that if 8r(i,k) = 1, then 81(i,k) = 1 for

all t < r as well. Clearly (11a) and (11b) specialize (4a) and (4b). Let us translate (11) into matrix

notation. It then says that
s

(12a): E(y) = I xrpr
rad

(12b): V(y) = i AIX,O,,XT] +0321

mi

where A[.] muldplies its argument elementwise by 61(i,k) (i.e., it zeroes out the covariances .

between nonequivalent individuals on each level).

Additional restrictions can be imposed that require either some of the Pr.' to be zero (a

variable does not occur in the fixed part) some of the rows and columns of the Or to be zero (a

variable does not occur in the random part). Model search usually takes place in the general class

of models defined by (11a) and (11b), over the submodels specified by the various zeroes (or

otherwise fixed numbers).

1.2.3. Multilevel Models.

We now define multilevel models in a quite general way. Suppose we have a hierarchy

(llr). The outcome variable y is of the most refined level s. In fact we assume that s = n (i.e.,

none of the yi are necessarily equal, though they could very well be accidentally equalthink of

the case in which the outcome is binary, as in passing or not passing an exam). For each level r

we have mr predictors of level r, all defined on N. They are collected in the matrices X(). Our

first equation is

. 15
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m.

(13): xi = 1 xTrilsi-1) + 41)

i=1

Thus, for example, columns of X(s) are predictors on the student level (remember this does not

exclude that there are school variables, county variables, and even constants among them), and the

columns of 11(-1) are random coefficients on the school level (that is, if students i and k are in the

same school then their betas are equal). The disturbances is) in (13) have the usual structure.

They are independent, identically distributed, centered, and they are independent of the random

coefficients.

Now take the second step in the specification. For the elements of B(-1) we assume a

model of the form
nuivt(14): fa" = L kil il '''.1i
1=1

Here the random regression coefficients of level s - 1 are linear combinations of fixed predictors of

level s - 1 and new random regression coefficients of level s - 2 (plus a disturbance term of level s -

1). Observe that X(s-1) and 11,4-2) both have ms.1 columns. Disturbances is-1) are independent of

previous disturbances and of disturbances of the level s - 1 that correspond with different

equivalence classes. They are identically distributed over equivalence classes. Of course the

disturbances have zero expectations: We do not assume that they are independent within

equivalence classes (for different variables j and 1).

Progression to the next level is now clear. On level s (which is level n) we have nms

random coefficients, which form ms variables of level s - 1. Thus, they take at most insrs.i

different values. On the second level we have nin5m5.1 random coefficients, forming msms.i

variables of level s - 2, that is takes at most m5ins.1r2 values. And so on. To stop the sequence

starting at (13) and (14), we usually assume that coefficients on the last (crudest) level are no

longer random (have zero disturbances).

In order to indicate how multilevel models are a special case of hierarchical mixed linear models we

1

1 6
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substitute (14) into (13). This gives

m.m. m..1
(5) (s-11s-

(15): Xi = I xlsi1)42)+41-1) + EIS Xij x1 2) +) = I
j=1 1.1 j=1 1.1

els)

j=1

It is clear how this substitution continues when more levels are involved. IC level (s - 1) is the

highest level we are interested in, then we stop our recursion by assuming that 110"2) is fixed and

of minimum level. Thus all its elements are equal to the fixed parameters 13 (which are the same

for all students). This gives
m. m.

(16): y; = I x(4)xlv)iiii xciv4-1)+40
j=1 1.1 j-1

Now (16) gives a model in which the fixed part consists of products of variables of different levels

(interactions). If the models (13) and (14) have constant terms, then some of the products will

degenerate to some of the variables themselves. The random part of the model also has product

variables, but of lower order. In the case of (16), no actual products occur in the random part of

the formulation because we only have two levels.

Once again we take expectations to see how (16) specializes (4) and (11). Before we do

this, we extend the model (as an exercise) to three levels. We have to add the specification

.4-2) 0-2)04) (s-2)
(1 i): = Zd X1.11V ajiv eij1

vz:1

Substitute this into (15). Then
me in, Mr2 ins

(18): = I I E 0)P-i)x0-211r) E P)P-1)e-2) 4. x(s)e-1)+ 45)
1.11 1.11V 11V 1.11 .11 1.1

kat1 1=1 v=1 .1=1 1=1 j=1

Now make the usual constancy assumption for the random coefficients on the lowest level. Taking

expectations then gives
me-i me-2

(19a): gy.i) = I x(irxi!jil)xisii,2)110,

3=1 1.1 v=1
flbflb

(19b): C(y.by.) = tn. t 4)4.41)41)47.1)81.2(i,k)(411.4,) + 44185_1(i,k)41) + a28jk
j=1 1=1 u=1 v=1 34 1=1

Formula (16) is clearly equivalent to (11) in the special case of only one level (schools) besides the
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highest one (students). Forum la (19) is (11) for the case of three levels. In muldlevel models the

special product structure defining the interactive variables is added. For mote than two or three

levels the notation becomes embarrassing. It is much better to discuss the general case in the

context of the hierarchical mixed linear model.

1.2.4 Transformation of Models

In our discussion of transfoimations we use the notion of invariance. This means

(roughly) that if we transform the variables in the model by any admissible transformation, then the

results given by the technique should not change in any essential way.

In the linear model we often think that the results of the analysis should be invariant over all

linear combinations of the predictors. In mixed linear models (with both fixed and random parts)

we often require invariance only over linear combinations of the predictors corresponding with

fixed coefficients. In the random coefficient and hierarchical models the situation becomes

somewhat more complicated, because the same predictors occur in both the fixed and random

parts. This has led to some confusion (Raudenbusch, 1989a, 1989b; Longford, 1989a; Plewis,

1989).

Suppose, in (12) for instance, that the admissible transformations of Xr are of the form

XrT, where T c T, a class of singular matrices. If we transform the regression coefficients to 14 =

rlbr and the dispersions to 2ir = riag-V, then we fit exactly the same model. The only thing

we have to be careful about is that if we require certain elements of br and Or to be zero, then jar

and a should have the same pattern of zeroes for all T in T, otherwise the pattern of zeroes is not

an invariant. This is especially important in the case in which the first column of the Xr has all

elements equal to +1 (it is the intercept of the regression). Centering of some or all of the

remaining columns in Xr then is of the required form XrT, and for invariance we need to assume

that elements in the irst row and column of R. are not restricted to zero or to other fixed constants.

Observe that if there is no intercept in the regression, then centering cannot be written as
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XrT, but it must be written as Dir, with J = I - n-luuT, where u has elements equal to +1. If we

interpret y and X as their centered versions, then (12) remains cue, except for one minor detail. In

(12b) we must replace 021 by cr2J = 021 02uuT. This trivial modification means that we do not

have exact invariance in this case. The situation becomes even more complicated if we use

premultiplication by a general projector P (for instance if the columns of PXr are deviations from

subgroup means). Again this is similar to fitting the same model on the Py, except for the

disturbance term 02P. Also oh:terve that even this restricted form of invariance applies only if we

premultiply all columns in all Xr by P, irrespective of their level.

For multilevel models such as (16) or (18) the situation becomes more involved because of

the interaction variables. If we make a linear transformation a + bx of a variable x, then this linear

transformation will affect all products in which the variable x occurs. If we transform x to a + bx

and z to c + dz, then xz is transformed to ac + bex + adz + bdxz, and thus we only get invariance

in the fixed part if the original model had xz, but also x, z, and an intercept. In general, it is clear

that the consequences of transformations such as centering or centering around group means can be

traced fairly easily using simple algebra. If one insists on a particular form of invariance, then this

means that some variables have to be present and some coefficients cannot be restricted to be equal

to zero. It is difficult to give clear-cut rules here, except for the obvious ones we have already

discussed.

1.3 The Likelihood Function

1.3.1. Full Information Likelihood Function.

Even our most general class of models, the random coefficient models, are special cases of

the general mixed linear model, and the general mixed linear model is a special case of the

heteroscedastic linear model. For computational purposes, let us look at the heteroscedastic linear

model rust.

19



Report # 1, SVO-project 7130, Intro 17

In the general heteroscedastic model we have y = X13 + g, where V(g) = r and of course

E(g) = 0. We now also assume (for the first time) normality of the residuals. The negative log

likelihood function is (except for some irrelevant constants)

(20): L = ln I rI + (y - X13)110y - X13)

Full maximum likelihood estimates minimize this loss function over the unknown parameters.

Let us now specialize (20) to the random coefficient model (4), in the important special case

in which all pi; are equal to pi, and all a& ate equal to O. Then

(21): L = ln I MIXT + LI + (y XarkfIXT + zr(y x0)

where usually E = a2I; however, we use the somewhat more general notation to leave open the

possibility of additional parametrization of E. The free parameters here are (0, 0, E), although in

general there will be restrictions on these free parameters. Some elements of p will be made zero,

some elements of 0 will be made zero, and usually we require E = 021.

We can rewrite formula (21) in a much more interesting way, generalizing (and correcting)

a result also given by De Leeuw and Kieft (1986).

(22a): L = ln I 0 + (grex)' I + ln I z I + 111 I xTex I + (b - 13)10 + (XTE-50-11;1 (b - 13) + ns2

(22b): b = (XTE-Ix)IXTE-ly

(22c): ns2 = yTiri - E-'(xTexYlz-ly

Thus b is the least squares (and maximum likelihood) estimate of 13 in the model y = X13 + g, if

V(g) = KE. Because E is usually (321, b is usually the unweighed least squares estimate. And ns2

is the residual sum of squares from this regression (i.e., s2 is the maximum likelihood estimate of

ic). Anyway, it is clear that transforming the likelihood as in (22) means that we can actually work

with matrices of order m instead of with matrices of order n, which is almost always a considerable

gain in terms of computational complexity. It also shows that estimates of 13 and 0 are functions

of the vector b, the matrix XTE-1X, and the quantity s2, no matter what the specifics of the model
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are. We start by reducing our data structure in this way. The hierarchical model (11) and the

multilevel models (16) and (18) can be written in the random coefficient form, with a likelihood

function that specializes (21). In all cases full maximum likelihood estimates are computed by

minimizing the loss function L.

1.3.2. Restricted Likelihood Function.

It is well-known, from ordinary analysis of variance theory, that ML applied in this way

often produces downward biased estimates of the variance estimates (Harville, 1977). Variance

estimates are generally too small, suggesting more precision than we actually have. In order to

understand this properly, itmember that the ML estimate of the variance from a sample of a normal

disaibution is the sum of squares around the mean, divided by n. We know this is too small,

because the unbiased estimate divides by n - 1. In ordinary fixed effects ANOVA the ML estimate

of the error variance is the residual sum of squares divided by n, which can differ quite

substantially from the unbiased estimate that divides by n - p. A solution to this problem is to use

n - p linearly independent or orthogonal contrasts H, which are orthogonal to the design matrix,

and estimate the itsidual variance by applying ML to HTy and not to y. This produces restricted

maximum likelihood, or RML, estimates. Another way of formulating this is to compute the

negative log likelihood of the ordinary least squares residuals as our loss function. Thus we

transform the data to residuals and use the likelihood of tke transformed data as our criterion. Let

us agree to call our previous estimates, which maximize the likelihood of the observations directly,

full maxinuun likelihood or FML estimates.

It has been shown by Harville (1974) that the loss funcdon, which we have to minimize in

order to get MI, estimates in the general heteroscedastic linear model, is

with

(23a): L = ln Id+ In lx Trtm + (y - Xbr)Tri(y - Xbr)

(23b): br = (XTr1X)'ICTr1y
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Observe this does not involve [I any more. Compare (23) with (20), which can be written as

(24): L = In I ri + (y - Xbr)rrl(y - Xbr) + (br - 13)IXTriX(br -

Of course we get additional specifications of (23) in the case of random coefficient models,

hierarchical linear models, and multilevel models, but we shall not discuss these specifications

here.

1.4 Algorithms

The four programs we discuss use three types of algorithms. One way to proceed is to

think of the likelihood function as depending on two sets of parameters: the regression coefficients

13, and the variances r. If the variances are known, the regression coefficients can be estimated

easily by weighted least squares. If the regression coefficients are known, the variance

components can perhaps be estimated fairly simply as well. The idea is to alternate these two

minimizations iteratively. Oberhofer and Kmenta (1974) already proved the convergence of such

an alternating algorithm, but application in a context such as ours was proposed by Goldstein

(1986).

If we write down the likelihood equations, using (24), in the way suggested by this

algorithm, we find in the first place

(25): 13 = br = (XTr1X)1XTrly

Secondly we can rewrite L as

(26a): L =litlrl+tir1V

with

(26b): V = (y - Xbr)(y - Xbr)T + X(br - 13)(b1- - 13)IXT

If we replace (br - 0)(br - 13)T by its expected value, then we find

(26c): = (y - Xbr)(y - Xbr)T + xixTr1xrxT

22
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The alternating maximum likelihood algorithms, now start with an initial estimate of r, for

instance, one that is proportional to I. Next, (25) is applied to find the corresponding estimate of

13; (26a) is maximized over all I' of the appropriate form, with V given by (26c), using the current

estimates of r and 13. This gives a new F. In this last minimization we use the fact that in random

coefficient models, I" is a linear combination with unknown coefficients (the variance and

covariance components) of known matrices.

Goldstein (1989) points out that the algorithm can be applied equally well to RML

estimation. This result is based on the differential identity

(27): a In I xTr-11c = t1(ar9x(xTr-1x)'xT)

The advantage of the alternating or weighted least squares algorithms is that the problem is

decomposed into a sequence of linear regressions which can be solved quickly and precisely. A

major disadvantage is that in each iteration we use the design matrix X, and reductions of the

problem by using sufficient statistics (cf. below) are not possible. Another consequence of this is,

however, that Goldstein's algorithms can fit a more general class of models such as hierarchical

models with nontrivial disturbances on the first level. From the mathematical point of view there

are a number of questions that still need to be cleared up. It seems that a precise convergence proof

is missing, and it seems to us that one based on majorization (as for the EM algorithm) must be

possible. We are also a bit slow to understand the precise implications of (27), but we continue to

study them diligently.

The second type of algorithm, proposed for hierarchical linear models by Longford (1987)

and for multilevel models by De Leeuw and Kreft (1986), is simply the classical method of

scoring. This is the Newton-Raphson method, applied to the likelihood function with a convenient

first-derivative approximation to the second derivatives. Full implementations of the Newton-

Raphson method for general mixed linear models were discussed by Jennrich and Schluchter

(1986) and by Lindstrom and Bates (1988). For random coefficient models we use the

transformation of the likelihood given in (22). It shows that we can reduce the problem to one that

only involves the sufficient statistics b and 0,2, which means that we can actually throw away the
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raw data after we have computed these statistics. And this makes it possible, of course, to deal

with a virtually unlimited number of individuals. Longfoid (1987) generalized this particular type

of partitioning to more than two levels, using results of LaMotte (1972).

The third type of algorithm is the EM algorithm of Dempster, Laird and Rubin (1977). It

was applied to covariance component models by Dempster, Rubin, and Tsutakawa (1981), and to

(longitudinal) multilevel linear models by Strain, Laird and Ware (1986). (Compare also Jennrich

& Schluchter, 1986; and Lindstrom & Bates, 1988.) Multilevel programs discussed by us that use

the EM algorithm are HLM by Bryk, Raudenbusch, Seltzer, and Congdon (1988), and GENMOD

by Mason, Wong and Entwistle (1983). The EM algorithm is based on a clever bonding of the

likelihood function with a more convenient minorizadon. In each iteration the minorization is

maximized, and each of these steps increases the likelihood function as well.

Let us illustrate this with the case of the mixed linear model y = X13 + Za + e. Here E is

N(0, E) and A is N(0, Li), and the two are independent. The conditional distribution of y given A

= 8 is N(X13 + Z8, E), and thus the log-likelihood can be written in the form (except for some

constants)
MD

(28): L. 4-ln I z I -1-1n1111+ ln f expi-121(y - xp - Z8rEly - X13 -

N

In ordur to apply majorization we use the general result that

I
f gu,v)dv f tlt

(29): In = ln

,
flt,v

if tit,v)dv f flt,v)dv

f(t,v) In i tgavildv
flt,v)

ffit,v1dv

z8) 8Ta-18)1d8

This is true for any function f(u,v) for which the integrals and logarithms are defined. It is a

simple consequence of the concavity of the logarithm, which in this context is also known as

Jensen's inequality. Moreover we have equality in (29) if and only if u =1, Now apply (29) to
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(28). We use for f(u,v) the joint density of x and at parameter values (E,043), and for f(t,v) the

joint density at parameter values in a previous iteration, written with tildes above the symbols. We

integrate over 8, of course. Using probabilistic notation,

(30): L(E,I241) + Ea'[Q(E,Q,13)]-

Here Q is the logarithm of the joint density and the expectation is taken over the conditional

distribution of A, given I = y (the data). Now the only term on the right that depends on the

unknown (L,1143) is the middle one. We maximize the right hand side by maximizing this middle

term over the parameters, which gives us new estimates (Z+,0+43+). From our inequalities so far,

L(+,o4,13+) is strictly larger than the right hand side of (30), which in its turn is larger than the

log likelihood in the previous iteration. Thus we increase likelihood, and by iterating this process

we produce a convergent sequence of likelihood values and parameter estimates ;If several

regularity conditions, which obtain in our case, are true). Maximizing the middle term on the right

of (30) is easy, because we only need to compute expectations of linear and quadratic functions of

8, and the conditional distribution of 8 given y is a known multivariate normal.

Theoretically, a comparison of the various types of algorithms should be based on the fact

that EM typically has (very) slow linear convergence, which is global (i.e., which occurs from any

starting point). Both weighted iterative least squares and scoring have fast linear convergence, and

for models which fit very well, scoring will be almost quadratic. We do not yet understand the

behavior of Goldstein's algorithms very well, because the descriptions are somewhat short and we

do not have the code. This means that we cannot be too sure about the convergence properties

either. The Newton-Raphson method is truly quadratic, but it may diverge from starting points

that are not appropriately chosen. In this paper we compare EM (used in GENMOD and HLM),

scoring (used in VARCL), and weighted iterative least squares (used in ML2). From our results so

far it seems that in practice the results are less clear than the theory above suggests. But precise

results will also depend on the details of the parametrization and on the particular expression for the

likelihood function that is used.

1.5 Limitations

25
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The multilevel techniques discussed below have various limitations, which perhaps restrict

their applicability to educational research data. First, they are design-oriented, assuming fixed

regressors on et individual level. In most evaluation studies, however, the regressors are sampled

in the same way as the dependent variables, and thus this assumption is not appropriate. The

second limitation is that the techniques deal with a single dependent variable predicted by a number

of independent variables. In evaluation studies, and in school research in general, there is often

more than one criterion to predict. One could apply the technique to each criterion separately, but

this is not satisfactory because it ignores the relations among criteria. A multivariate extension is

r.eeded, and, more generally, we would like to have the capability of fitting path models with

multilevel techniques. A thud limitation is that the algorithms, or at least some of them, cannot

handle missing data and categorical dependent variables. A fourth limitation is thc linearity of the

existing techniques; a fifth is the assumption of normality of the residuals. Although these last two

are indeed serious restrictions of generality, developing a technique that does not impose these

restrictions involves a more far-reaching generalization of the existing methods than developing

multilevel path analysis techniques. Farther on in this report we shall indicate how we want to

remove some of these restrictio is of generality in the program MULTIPATH. This program will fit

path models to data measured at two or more levels of a hierarchy. It will be able to handle

categorical endogeneous variables, by treating such categorical variables as discreticized indicators

of latent continuous variables (in this respect it is similar to the work of Muthen, 1989).
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2. DESCRIPTIONS OF THE FOUR SOFTWARE PACKAGES.

2.0 Introduction

The four software packages are compared in the following way

A Design philosophy.

hnplementation details (language, OS, hardware).

Models.

Routines (algorithms, centering, boundaries, singularities).

Data setup Find data handling (input, preprocessing, missing data)

Results (output files, written output, special statistics).

User friendliness (ease of use, manual, examples).

Special features (program limitations, unique features, special options).

Results and speed.

Direct quotations from the program output will be written as

>THIS IS A DIRECT QUOTATION

The comparisons mentioned in the first paragraph are collected in a separate chapter.
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2.1. GENMOD

A. Design Philosophy

GENMOD is written by Benjamin Hermann and Albert F. Anderson at the Population

Studies Center, University of Michigan, from instructions provided by George Y. Wong and

William M. Mason. The rogram implements the general model proposed by Wong and Mason

(1989) (see also Mason, Wong & Entwistle, 1984). It is a (two-level) multilevel model, according

to our definidon, because it allows the user to specify the macro variables to be used as regressors

in a macro regression in which the regessand is the micro coefficient or micro intercept.

GENMOD is developed to accommodate two broad classes of applications: comparative

analysis and contextual analysis. Contextual analysis is found in the other three programs. Special

to GENMOD is comparative analysis. The assumption here is that we have a different data file for

each context; these files may even have different formats. Moreover, the micro data fde for one

context may also contain variables that are different. This characteristic of the program is very

valuable in demographics, the field for which this program was developed. As shown in the

original paper of Mason, Wong and Entwistle (1984), countries may differ in their methods of

birth control, in the way birth control clinics operate, and/or the extent that they are available in

different countries. At the same time, the background variables of the women involved in birth-

control efforts may be defined differently in different countries. The program was originally

designed to analyze this kind of data, but a later version, dated April 1989, also provides the

opportunity to use a single micro file as input and a single associated format statement (as do the

other three programs). This kind of data file is used for analyzing data that are similar over all

groups.

The program is quite inexpensive ($20.00 at this writing). It comes on two 5.25 floppies

and includes source code, docamentation, and (hypothetical) examples.

B. Implementation details

28
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The program is written in Fortran 77 and is currently compiled to run under the MS-DOS and MTS

operating systems. File names must satisfy MS-DOS file naming conventions. Under MS-DOS,

the program reads and writes ASCII files only; MTS uses EBCDIC. The manual assumes that the

program is running under MS-DOS; MTS tailoring is given in the Appendix.

There are three versions (GEN30, GEN40 and GEN50), which differ in the size of the real

array storage that has beea allocated (35,000, 45,000 and 55,000 elements of REAL*8 storage,

respectively). The distribution includes source code, however, which means that (at least in

principle) any DOS or OS/2 user with a (Micro Soft) FORTRAN compiler can make his own

version with storage requirements adapted to his own environment. In practice this may still lead

to some problems. We have tried to compile GENMOD with the Leahy FORTRAN compiler

under DOS, with the VS-FORTRAN compiler under MVS, and with the Language Systems

FORTRAN compiler under the MacOS, and none of these attempts have been successful so far.

The memory available for array storage is the major constraint on the size and complexity

of the model that can be handled. The array space required for a given setup is allocated

dynamically from a single large array that has been defined in the source code. The three versions

of the program differ only in the size of that array. For GEN30 the load size is 420K, for GEN40

it is 500K, and for GEN50 it is 580K. The amount of array space required depends largely on an

interaction between the number of contexts to be handled and the complexity of the model. The

memory requirements are greatest for the combination of a large number of contexts with a model

that specifies fixed effect coefficients and OLS estimation for the start values.

It is possible , in principle, to determine the maximum size of the problem that can be

handled from the size of the large array contdming all the reals. The manual does not give general

rules. Clearly there is no maximum on the number of cases.

C. Models
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The basic model fitted in GENMOD is the two-level model of section 1.2.3, rewritten in matrix

notation. The first level equation is

(GENMOD1): j = Upj + Xjjki + A

and the second level equation is

(GENMOD2): 12j = Zjiy +

For the disturbances we assume

(GENMOD3): fij N (0, op), N (0, CI)

The matrix z. in (GENMOD3) has a block structure, with the macro regressors for each of the G

contexts as row vectors in the diagonal blocks. Thus

(GENMOD4): Zj .

o z}3

The notation here differs a bit from the more general notation in 1.2.3 becaust we can simplify it

for two-level models. The notation also differs from the notation used in the GENMOD manual

and in the Wong and Mason (1989) paper.

Observe that (GENMOD3) tells us that different contexts may have different first-level

error variances. This is, of course, particulary important in comparative analyses. In the same

way, from (GENMOD1), we can have different fixed first-level regressions in each context. Both

conditions taken together imply that in comparative analysis the contexts are much more loosely

coupled by the model than they are in contextual analysis. GENMOD contains the option to

require equality of the error variances in groups of contexts, which means that we actually have a

simple third level model for the error variances.

D. Routines.
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The basic algorithm of GENMOD performs the following three steps:

1. Constructs cross-product matrices and G-matrices from raw data.

2. Performs ordinary least squares (OLS) estimation to obtain initial values.

3. Performs EM iterations.

The user can activate the three steps by choice, so any of the three can be the starting point of the

analysis. To activate step one the user must supply raw data files. To activate step two the user

must supply a file with cross-product matrices. To activate step three the user must supply a file

containing starting values for the micro and macro error variances and covariance. As a result of

the above options the program can provide the user with two output files. One contains the

statistical output, the other contains the information that can be used in subsequent analyses to

activate tht second or third step.

The maximum number of iterations is specified in the batch job. If convergence has not

been achieved by the NUMIT-th iteration, the program will nonetheless stop, giving complete

output as of the NUMIT-th iteration. The estimation procedure is restricted maximum likelihood

(RML). The EM algorithm used is based on equations developed by Mason and Wong.

E. Data Setup and Data Handling.

The program runs as a batch job. To run the program the user must create a Setup File, a

Micro Fi:e, a Macro File and (optionally) an Auxiliary Data File.

The setup file in GENMOD describes the model to be estimated and provides instructions

for reading and saving information. The structure of the setup file is like the usual SPSS or SAS

job, with the header being a specified output file name and three options of data input to choose

from (raw data, cross products, or macro error variances and covariances). In principle the data

setup consists of 14 lines. When the first setup is ready for a particular data set, only little changes

are needed in the setup for fitting the following models. The first lines of such a setup, with a data

set named GALO, is shown in Figure 1.
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#1 GALO.OUT
#2 GALO.DATA
#3 **********************************************************

* This is the first of the two models we want to fit. We
* start with a random intercept only, and the next one will
* also have a * random slope for IQ. The followina variables
* are all student level variables: IQ, SES and sex. No
* second level variables.

#4.1 0 0 2 0 1 1 1

#4.2 GALO.DAT
#4.3 (6F5.)
#5 36 3 3 100

The first line contains the name of the output file, followed by a header for the run, followed by as

many * lines for the documentation of the job as needed, followed by a blank line. Line 4.1

contains seven numbers in free format, with at least one space between each entry. In this line the

following choices are made: OLS as starting values, a irport on all iterations and the request to

include in the output file the OLS parameter estimates. In the same line we have informed the

program that the data is in one single file (instead of separate files for each context) and we request

estimation of a pooled variance over all J contexts (instead of the other option, to calculate an

unique variance for each context). Line 4.2 contains the name of the file (in which all the micro

data are stacked, context by context). Line 4.3 contains the format statement (which may be

different for each context, but is equal over all contexts in this example). Line 5 contains, in order,

the number of contexts, the number of micro mgressors, the number of fixed-effect micro

variables, and the number of iterations. Lines 6 thru 13 (not shown here) contain the macro level

variables, the macro file name and format, the model to be fitted, and so on, in the same straight-

forward fashion.

The user starts the run stage by entering the name of the version to run (GEN40, for

instance) and responding to the program's request for a setup filename. An additional request may

ask for confirmation that the already existing output or savefile be overwritten. The options for

data input are (a) to start with raw micro and macro files, (b) supply a file containing cross-

products matrices and descriptive information, or (c) activate the program with macro error

32
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variances and covariances. The latter data can be provided by an earlier run of the progam by

using an AUXILIARY file mated in the preliminary run as a SAVEFILE. OLS estimations or

starting values read from an AUXFILE not constructed by the program also may be used as

starting values for micro effor variances and for the matrix of macro effor variances and

covariances. The option to use an AUXFILE becomes very useful when (a) the previous job did

not iterate to converge and a restart beginning with the last iteration is desired, (b) the user wants to

do a subsequent analysis in which only a subset of the original values is used, or (c) if we want to

respecify the model by maktig a change in the macro equations. In several options it is possible to

use the SAVEFILE of a previous run as AUXFILE in a following run. Because LS estimates may

be chosen as starting values, they also are presented in the output. If not, no LS estimates are

provided by the program.

To analyze the data with GENMOD, two data files have to be prepared: a micro file and a

macro file. The macro file should consist of the same number of contexts and the same names (a

separate name for each context in case separate files for each context are used) as the records in the

micro file. This also shows the uniqueness of the GENMOD computer program, which allows

each context to have its own raw micro data file, with variables that may be in different o.: ler and

even to a certain extent be different measuzements. In that case, if there are J contexts, the user

must pre e J micro data files before running the program.

In .s report we only used GENMOD to analyze one single micro file, that is, the micro

data for each context were readable by the same format statement. In such a case the single data file

contains all information over contexts, but observations have to be sorted by context so that they

are contiguous within contexts. Agreement must exist between the order of the contexts within this

sir gle micro file and the order in the other file, the macro data file.

Missing data cannot be handled by GENMOD and, as a result, are excluded. This is true

for the other three programs as well.

F. Results
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The program can produce two different output files. One of these files contains the

statistical output, that is, all relevant parameter estimates calculated by the program. In addition to

this file, the program may produce an output file called SAVEFILE or AUXFILE (an auxiliary

which contains all the information necessary for restart or for subsequent analysis. If this file

is to be used in the next run, it must be saved under a different name so that it is not overwritten by

a file of the same name in the next run. (In GENMOD the SAVEFILE is an ASCII file, thus it can

be edited easily before it is used.)

The program writes the results of its operations into a formatted output file with numbered

pages. The output file is described in Appendix F and consists of the following information:

I. The setup parameters.

2. OLS estimates of the micro parameters and cross products are printed on request if

starting values are estimated during the run in case raw data are the input data. (Note that if cross

products, variance-covariance matrices, or other starting values are entered, no starting values have

to be estimated. As a result no starting values are printed in the output file.) KC is the number of

fixed-effect micro variables included in the model. If KC = 0 the estimated variance-covariance

matrices of the micro parameters are printed.

3. OLS estimates of eta, tau, sigma-squand per context, and alpha per context .

4. Information about convergence at every iteration.

5. The RML estimates of sigma-squared and omega at the last iteration, as well as the

estimates of gain, , the slopes per context, and the intercepts per context. The output provides

posterior means for each context, with the standard eriors.

In sum, the output consists of the usual basic information: information about convergence
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at every iteration, and RML estimates of the sigma-squares and omega parameters at the last

iteration, as well as estimates of all the parameters. More can be obtained on request.

The estimates of the coefficients (gamma) of the micro-macro imen tions are provided with

the usual standard errors (asymptotic standard normal variates under the model), the covariance

matrix, and the standardized covariance matrix (equals the correlation matrix). The slopes and

intercepts for each group are reported with the usual standard errors and the estimated variance-

covariance matrix. Two different estimates for the regression coefficients per context are given:

the OLS estimates and the ML posterior means. Not provided are t-test values for the parameters,

or chi-square tests.

G. User friendliness.

The software is in some respects easy to use and unproblematic, but in others somewhat

puzzling. The present version of the manual is not very clear in how and when to use cent*

options (the authors are working on this). A user well introduced in the problems and possibilities

of multilevel modeling may encounter fewer problems than will a novice. There is no example of

the output files and no explanation of the outcome in the manual (although there are examples on

the disks). For instance, LS estimates of the regression coefficients (called alpha and beta) are

given for each context, but it is unclear from the manual and/or output what alpha and beta

represent Some comparable problems can be found in the (R)ML output. Is the posterior mean

given in the alpha vector for a group the macro level disturbance (two random coefficients produce

two macro level disturbances, three produces three, etc.)? Are the posterior coefficients (beta) of

the posterior variable-effect micro variables equal to the means for the intercept and the slope(s)?

Probably yes, but the manual does not tell us. And, for the values between brackets, are the t- or

z-values posterior means or the raw standard errors? Another example: It is hard to find how to

declare the dependent variable in a batch job. Even worse, we deduced the position of the

dependent variable from an example and still do not know where to look in the manual for this

information. Together with the fact that no examples are provided and no output file is presented

in the manual, GENMOD is not easy to use for the first time. The input in a batch job is otherwise
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fairly straightforward, but the preparation of the raw data file for input needs some thought.

Mainly because the program is set up to analyze different types of contexts the input file needs a

special structure.

Dermitely user-friendly are the error messages which give you a clear idea what goes

wrong. The program attempts to trap all setup and data errors that could cause the program to fail.

The error messages are intended to help the user pinpoint where and why an error occurs, but the

nature of the program, the number of data files that must be handled, and the nature of the EM

algorithm can combine to produce very perplexing consequences from fairly simple setup errors.

A complete list of all error messages (number I to number 52) is added to the manual.

Errors are generally reported on the screen and inithe output file, but the screen output gives a

better trace of the program's progress in reading and interpreting the setup file. Examples:

ERROR 23: The number of contexts specified in the Auxiliary

Data File (11) and the Setup File (5) do not agree.

ERROR 34: The macro data file, Macro-File-Name 1....1., could

not be assigned. Check the filename and status.

The manual advises the user to rerun a setup that produces errors (with the screen output redirected

to a file) and verify if the program is interpreting the setup file as intended.

The program comes with one artificial data set that consists of 10 groups. There are 5

groups with 10 observations and 5 groups with 20, and there are 5 micro-variables. The disks

contain 10 setup files for 10 runs with these data, complete with output, and explanations in the

headings. This is actually quite useful to show the various options of the program, although it

gives no clear indication of possible applications.

H. Special Features
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Because the program is running as a batch job, only one model per run can be fitted. The

testing of fit among several models is not possible by directly comparing deviances, because the

latter are not reported. But it is possible to deduce the difference in fit among models from the

reported log likelihood (the deviance is -2 times the log of the likelihood). The log likelihood of

Restricted Maximum Likelihood (RML) and the Full Maximum Likelihood (FML) are both

reported in output file of the software.

GENMOD was developed for comparative analysis. In this type of analysis different files

for each context can be used, and these files may even have different formats. Moreover, the

micro data file for different contexts may also contain different variables. This makes it possible to

fit different estimates of the variance per group (the sigma-squared). In the other three software

programs discussed in this report, this variance is assumed to be equal over groups and is not

allowed to vary. In the case of the comparative analysis, the output of GENMOD produces

regression coefficient estimates and sigma squareds for each context separately, as well as OLS

estimates and the posterior variable-effect micro coefficientswith the respective standard errors.
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2.2. HIM

A. Design Philosophy

HLM, Version 2.1, has been written by Anthony Bryk, Steven Raudenbush, and Richard

Congdon. The manual was written by the same authors, with Michael Seltzer (1988). It is the

most popular program in the USA for at least two reasons: the easy-to-use interactive interface,

and the output which includes significance tests, model testing, and other desirable properties

Another explanation is the educational character of the manual. It provides a theoretical

background for multilevel modeling and an abundance of references for more study. The

introduction explains why :krid how a hierarchical linear model is useful in many research

situations.

HIM is developed to accommodate two broad classes of applications: contextual analysis

and growth curve analysis. One application of the contextual analysis is for research on school

effects, where the first represents within-class or school analysis on student data, and the

second level represents the between-class or school analysis. An application of growth curve

analysis is for repeated measurement data. The fffst level in the latter case is the individual change,

and correlates of change, in a within-person model. The second-level analysis is the estimation of

the effect of environmente characteristics upon these individual growth curves (see Raudenbush,

1989; and Bryk & Raudenbush, 1987). This last type of analysis allows the researcher to: (a)

describe the structure of the mean growth, (b) estimate the extent and character of the individual

growth in comparison with the mean growth, (c) assess the reliability of the study of these growth

curves, (d) estimate the correlation between the measures over the same person, in the same way

that the correlation between students in the same school is measured, (e) assess thc reduction in the

unexplained parameter variance, and (f) improve predictions of future individual growth. We

know that hierarchical linear models can handle repeated measurement data, but since specialized

programs for this type of problem have been available for a while and in more advanced stages of

development, we see no specific reason to prefer HLM models for this kind of data. A later report

(Van der Leeden & de Leeuw, in preparation) compares HLM with two software packages that

were written with longitudinal data in mind: BMDP-5V (Schluchter, 1987) and GGCMAOV
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(Stram, Laird & Ware 1986). In the present report we compare HLM in the usual way, with

hierarchical linear data and no repeated measurements.

B. Implementation details.

There are basically two versions of the program available. The first one is for workstations

or mainframe computers with no real restrictions on the memory. The second one is an adaptation

for the PC, and it takes the 640 K memory limit of DOS into account. Both versions are written in

FORTRAN 77, although for the DOS version the main program and some screen control functions

have been written in C. This mixed language feature of HLM, plus the particular type of screen

control used, make the program less than completely portable, although the computational routines

are in straightforward FORTRAN 77. The source of HLM 2.1 is no longer in the public domain,

which means that the question of portability is no longer very interesting. We know of a version

for UNIX on HP workstations, a version for DOS and OS/2, we know that older versions of

HLM have been compiled under VS-FORTRAN to run on IBM mainframes under CMS or

MVS/TSO. We have worked quite hard on a Macintosh version of ILLM 2.0, and although the

program compiled (using Language Systems FORTRAN under MPW), we could not get it to run.

Current program limitations for the PC version (manual, p. 39) are as follows: There is a

maximum of 10 within-unit variables per model. The input file and sufficient statistics file can

contain 25 within-unit variables, 25 between-unit variables, and 300 units. In the between-unit

model there is a maximum of 15 variables per equation; and the maximum on the total number of

fixed effects over all equations is 35. For non-PC versions the default limitations are a bit higher,

and if the parameters statements in the source code are modified, all limitations can, in principle, be

removed.

C. Model

The basic model fitted in 1112 , is again the two-level model discussed in section 1.2.3. We

rewrite it in the same way as for GENMOD:

,
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(HLM1): j= +gj

and the second level equation is

(HLM2): ki= +

with the smicture of Z. the same as in GENMOD. For the disturbances we assume

(HLM3): N (0, 021), N (0, II)

Thus the micro level errors are the same for all contexts. The notation differs again from the

notation used in the RLM manual, because we prefer to choose a uniform notation to desctibe all

programs.

By default, both the micro model and the macro model have an intercept, but the default can

be overwritten. For growth curves, for example, it can be interesting to fit models without a micro

intercept. At the time of the run the user can introduce additional restrictions on the parameters.

Some gammas and some omegas can be set equal to zero (only the diagonal elements can be set for

the omegas; this implies that all off-diagonal elements are zero). Thus we can have micro variables

with only a fixed effect and micro variables with only a random effect, the default being that a

micro variable has both types of effects.

D. Routines.

Ttvo routines are given in the manual: (a) an EM algorithm with an Aitkin accelerator, used

as the core routine in the HLM program, and (b) a V-known routine. The latter is a more

specialized algorithm, which assumes that there is a fixed number of random parameters for each

context whose dispersion matrix in each context is known. The V-known routine is useful mainly

in research synthesis (meta analysis), and we have not incorporated it in our comparisons. See

Raudenbush and Bryk (1985) for details. There is also an application of the V-known option in the

HLM manual, section 2.8.

In the mom general contextual analysis, the dispersions are unknown, and they are

estimated jointly with the other parameters. To generate starting values for sigma-squared and
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omega, HLM uses an ANOVA-type procedure. When the starting procedure fails to produce a

positive definite omega matrix, the automatic fix-up routine, used in earlier versions, is replaced in

the recent version (HLM 2.1) by the following options: (a) the decision to stop the analysis and to

quit, (b) setting all the diagonal elements to zero, (c) resetting these values by plugging in the

users' own solution, or (d) trying the original solution with an automatic fixup. The differences

among the above solutions (except the first one, "to quit") is mainly in the number of iterations

needed for subsequen: estimates of omega and sigma-soared.

The number of iterations is, as usual, optional and left to the decision of the user. The

suggested number of iterations for exploratory analysis is 10. In most packages the advice is

similar: up to 10 to 15 iterations. In the third part of the report we will show that for EM

algorithms this number is defmitely too small to get final results that are comparable to those of

other programs.

E. Data Setup and Data Handling

Two input files are needed: a within-unit file and a between-unit file, each with an

identification number (TD). The within-unit file should contain all the unit level records that are

used (in the first analysis) or will be used (in subsequent analyses). The between unit file should

contains the group-level records. The raw data input file can be either a "V-known" file or a

SYSTAT.SYS file. In case of a SYSTAT input file, the residual file (which is produced by the

program) will also be a SYSTAT file. A V-known file is one single unit file with parameter

estimates for each context and their associated sampling varilnce/covariance estimates.

As in the other programs, missing data atv not allowed and have to be dealt with before

starting the analysis. The program offers (only for the within-unit file) the two usual options: pairs

or listwise deletion. No missing data in the between-unit file can be handled within the program.

The input file holds all the information of first and second stage units together. The start of the

program has a build-in check for identifying missing data and inconsistencies in the data. For

example: a group ID is identified, student data exists, but no school data are found. The program



Report * 1, SVO-project 7130, HLM 39

gives a warning of this nature. Another inconsistency could be that the ID of a student is available

but no student data follow, while group data are available for this student. Again, the program has

warnings for this case.

Special options.

There is a choice between two different estimation procedures: "H" for a complete

hierarchical model or "M" for a mixed model. In the hierarchical model (H), all within-unit

parameters are assumed to be random; in the mixed model (M), one or more of the within-unit

coefficients can be treated as fixed. Because of the disadvantages of the hierarchical model (see p.

11 of manual), the mixed model estimation will be the preferred choice for most applications.

When choosing this mixed model, one of the questions asked by the program is:

>DO YOU WISH TO SET ANY OF THE RESIDUAL PARAMETER VARIANCES

TO ZERO ?

If the answer is "Yes" the program asks the user to specify the variables. All variables witit

residual parameter variances set to zero are treated as fixed parameters.

In the new versions of HLM (starting with 2.0) it is possible to introduce in the model a

variable that has no fixed part, only a random one.

It is possible to center or not center variables from their respective group means within the

program itself. Centering from the overall mean is not an option and has to be manage r! before

starting HLM. To center none, all, or one or more variables is a choice left to the user. The option

to center or not center the variables is different for each of the several computer programs

discussed in this report. Centering around the group mean is, in principle, fitting another model

(the so-called Cronbach model) and will not be used in the examples in this report. Compare the

discussion in sections 1.2.4 and 2.2.

The within-unit models can be estimated with and without intercepts. In other words, the

models can produce either standardized or unstandardized coefficients. The relevant option is
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suppression of the base, which means that no intercept is available to interact with the second-level

vanables.

It is possible to give different weights to the between-unit variables. This is useful in cases

when certain types of units (for instance special schools) areoverrepresented in the sample.

A special default file, DEFILE.HLM, which can be switched on or off, is automatically

used if the user does not specify a default file on the command line. This file turns off all special

options, thus making a straightforward analysis mud easier to handle. When users wish to test

(but not fuLy explore) a specific model, they do nut have to respond to irrelevant prompts while

using the interactive mode. If the user includes another file instead of the default file, the

DEFILE.HLM is ignored and options are available.

Many possibilides for exploration of the data are available. This exploration can be done in

three stages: before, in the middle, and after.

Before. In the initial phase, the program car be used ti explore all kinds of fixed effects by

exa mining the means, regression coefficients, and ANOVA estimates. Measures of reliability and

homogeneity are printed, giving information about the within-unit variables and whether it may be

rewarding to include them as random effects in the within-unit analysis.

In the middle. Another exploration is possible for the between-unit variables. The option

given here (see the manual) allows the user to exarrrine promising candidates for inclmiun in the

between-unit model. The output can produce three different matrices: a correlation matrix among

univariate regression coefficients (with standard deviations), a matrix of conelations among group-

level variables, and a correlation matrix between group-level variables and the univariate regression

coefficients.

After. The last exploration of the data can be performed after the first analysis is finished.

This is the !optional) hypothesis testing phase (see pages 65-66 of the manual). The exploration
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includes:

1. A homogeneity test for residual dispersions.

2. A test against an alternative model of the variance/covariance components. In fact, this

is the difference in deviance between two models with the same fixed effects in relation to their

difference in degrees of freedom and/or the number of parameters. This difference follows a chi-

square distribution.

3. A multivariate hypothesis testing for the fixed effect. The residual file is part of the

optional output (see section F, "output files," for more information) and can also be further

explored by packages such as SAS or SPSS/X to check the adequacy of the fitted model and the

assumptions.

F. Results

The output of the gamma coefficients is similar to the output of the other software

packages. It provides the user with the estimated coefficients and their standard error. The t-

statistic and p-value of each coefficient is a feature not provided by the other packages. These

statistics have the same interpretation as in the OLS output for regression coefficients and their

reliability.

Three output features art unique to HLM: A reliability estimate, a deviance statistic, and a

chi-square statistic.

Reliability estimates for the variables in the model are calculated as a proportion. This is

the proportion of the total veriance in the within-unit OLS estimates that is parameter variance,

similar to the ratio of true and observed variance. For cempleteness we give some of the formulas

that are relevant. The variance of the OLS regression coefficients is

(HI.M4): VAR(1).1) = (1144 + n = vi + II
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The reliabilities are on the diagonal of the matrices

(HLMS): Ai= sxv;+

Using the matrix Aj we can write the posterior means of the regression coefficients in the form

(HLM6): b = + (I - Aj)Zie

where
o

(HLM7): y = il(a2(44+ a)4z; Z OAcrixpq+ nr113;
i-1

One important reason for the success of the two-level model, and of HLM in particular, is the basic

simplicity and interpretability of these formulas.

The deviance statistic tests the fit of the, model. The deviance compares tne full model (with

all the first-level parameters random and all the second-level variables as functions of the first level

parameters) with a more restricted model of some sort. The deviance is reported with the number

of the degrees of freedom. Comparing the two models will determine how much fit the researcher

will lose by releasing some parameters (by setdng the variance equal to zero or leaving the variable

entirely out of the analysis).

The chi-square statistic tests if a sufficient part of the variance of a particular coefficient is

explained by group characteristics or if a significant part is still left unexplained. This statistic can

be used to examine research hypotheses. The chi-square test is an approximate test and does not

take the full multivariate structure of the estimation into account. The deviance test is, for that

matter, a more powerful test of the same kind.

Depending on the option chosen by the user, either all or only the first 10 OLS-estimates

for each unit are presented. The same holds true for the number of iterations: either all or only the

first and the last iterations are printed.

An option is available for setting up a residual output file for later data exploition. The

residuals written to this file are: the empirical Bayes (EB) residuals, the OLS residuals, and the
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fitted values for each within-unit component. Also Mahalanobis distances within each unit are

written to this file. The Mahalanobis distance is a measure of how far the observed values of the

responses for a given subject are from their estimated conditional means. Assuming multivariate

normality, in large samples the Mahalanobis distance will be distributed approximately as a chi-

square variate with degrees of freedom equal to the number of responses present for that subject.

Large pozitive 'ialues for standardized residuals help detect possible observations that may be

outliers.

The output also contains the variance-covariance matrix of the within-unit slope estimates,

plus the correlation matrix between these coefficients. This is a convenient way of getting an

impression of how much multi-collinearity (if any) exists among the variables of the first level.

The slopefmtercept correlation is usually high, which leads some researchers to prefer to center

variables around the group mean before starting the analysis.

An exploratory analysis can be selected by the option ADDITIONAL PROGRAM

SPECIFICATIONS . Residuals of the fitted model are used for regression on between-unit

variables selected for subsequent inclusion in following HIM runs. This is useful to identify

variables that show some relation with other variables not yet explored, and that may subsequently

be entered into the next equations.

G. User friendliness.

For the convenience of the user the program provides three data sets: (1) the rat data, (2)

the High School and Beyond data with a code book, and (3) a ineta-analysis data set of research on

teacher-expectancy effects.

The program is completely interactive, which makes it very easy to use. The manual is also

user friendly. Every prompt of the interactive session is explained in the manual. It ai.o contains

the output of several runs with different data sets; these examples are extensively annotated.
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The manual contains useful suggestions for several methods of data exploration. The

option to specify an output file for residuals is one of them; others include the directions on how to

create a SYSTAT-file or a SAS-file from this residual output file, and the explanation and directions

on how to use this file for analyses such as checking for outliers, normality, or systematic trends in

the residuals.

The organization of the manual, easy as it is for first use, also has its setbacks. Specific

information is not easy to fmd, since it is not organized under special headings. Special remarks

and basic information are interwoven with explanations of prompts and with examples of different

kinds of output. For example: In section 2.7 the program limitations and suggestions for

enhancing program limitations are discussed below the prompt PLEASE ENTER THE

BETWEENUNIT VARIABLES YOU WISH TO USE. Section 23 is a work session designed

to demonstrate all HLM optionsprogram limitations are luud to find. Another example is the

procedure for handling boundaries, which is hidden (and explained) below the prompt WHAT IS

THE NAME OF THE OUTPUT FILE. It is a bit hard to understand the logic of this

organization. The organization is most problematic when the user is quite familiar with the

program and does not need to read through the prompts anymore, but still needs the kind of

information mentioned in the examples. Something similar happened to us when we were

analyzing our examples with the GALO and GRAY data. Below the output of the reliability

estimates the message appeared, indicating that fewer groups had been used to calculate these

estimates. However, no other package calculates reliability estimates; the manual offers an

explanation of why and how this happens on page 50. Since this explanation was hidden in an

example of an output file, it escaped our attention and we had to consult one of the authors before

we could make use of it. In the same way, the program limitations for the PC version are given in

a session log on page 39 of the manual. We think the manual would be much improved by a

chapter with clear reference and organization on error messages and other miscellaneous

happenings that may worry the user.

A nice feature of HLM is that the output can be limited to the essentials. The default

options in DEFILE.FILM can be used to drop all but the most essential parts of the output, which
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turns off all special options and featuies (such as data analysis for the purpose of preliminary

exploration befoie starting with the definition of the model for hierarchical linear analysis). If the

researcher knows which variables to use, this shortcut presents the user with fewer prompts (when

using the program interactively), saving her from responding mpeatedly to irrelevant prompts.

Still, the output provided by FILM is extensive.

The last point to mention here is the very useful list of keywords and options for default

files presented at the end of the manual.

It is clear from the options available and the suggestions given that the program was

designed to provide a maximum of answers to possible questions and/or wishes posed by a variety

of researchers.

H. Special Features

HLM is the only one of the four programs that delivers a variety of tests. These are: (a)

the t-test for significance of the fixed parameters, (b) a chi-square test for residual unexplained

variance in the first level parameters, (c) a reliability estimate of the first level variables, (d) the

three hypothesis tests mentioned before and (e) a test for homogeneity of variances. Homogeneity

of variances is assumed under the recent version, which means that a Constant error variance is

estimated that is assumed to be equal over all schools.

Three options are available for data input. Two of them are unique to HLM. One is the

possibility of using SYSTAT files; input of a SYSTAT file instead of an ASCII file is also plssible.

For people who have SYSTAT this provides additional possibilities for data handling. Although it

is not clear that SYSTAT is a particularly good choice in this context, it certainly is nice to have the

additional option. The other unique input option is the V-known file, which we discussed briefly

in section D of this chapter.
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2.3. ML 2

A. Design philosophy.

ML 2 is software for two-level analysis (we expect ML 3 for three-level data soon) by

Rabash, Prosser and Goldstein. ML 2 is based on earlier work by Goldstein (1987). It was

produced as part of the Multilevel Models Project of the Institute of Education at the University of

London. This project is funded by the Economic and Social Research Council of the United

Kingdom to extend the theory of multilevel modeling, to study the practical application of the

models to real data sets, and to disseminate information about the theory and practice of this form

of analysis. ML 2 also was developed for fitting mixed linear models. The program is able to fit

data with a two-level hierarchical or a nested structure. The cedficient of any explanatory variable

may be random. Among the specialized models that can be estimated using the program are

growth curve models and hierarchical logit models.

B. Implementation details.

ML 2 is provided only in binary form. It runs on DOS/0S2 computers and needs 540 K of

RAM. Program and manual are a commercial product and can be obtained from the authors. The

remarkable aspect of the ML 2 implementation is that the multilevel software is merged with the

kernel of the general-purpose package NANOSTAT (Healy, 1987), which offers a whole set of
data handling and data transformation operations. NANOSTAT also provides descriptive statistics

and high-resolution plots. If you want to use the graphics that come with the NANOSTAT
package, you need a CGA, EGA, VGA, or Herculus card. We have had only minor problems
with ML 2 (in part III we shall report some bugs, which we presume have been corrected in the

newest version).

An important difference between ML 2 and the other three programs is that the data are not

first reduced to sufficient statistics and then kept in core memory. In ML 2 the complete data
matrix is read into core memory, which means that the restrictions on the size of the problem are
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much more serious for ML 2. The manual gives no clear cut rules, but on page 107, in the

footnote, we find: "Insufficient memory is the most common problem new users experience. Use

the CHKDSK command to determine the amount of RAM that is free, and if necessary, remove

RAM-resident utilities." In more practical terms this means that really big examples cannot be

analyzed by ML2.

C. Models.

The basic model fitted in ML2 is again the two-level model discussed in section 1.2.3. We

rewrite it in the same way as in GENMOD and HLM, but we introduce a slight generalization. The

first-level equation is

(ML 2: 1): xj = Xj1 + 1-Igj

and the second-level equation is, as usual,

(ML 2: 2): hj = + A

For the disturhances we assume

(ML 2: 3): gi N (O,al), N (0, (2)

Of course the fi are of level n, while the ai are of level G (the number of contexts). Observe that

the two-level model in ML 2 allows for a more general error structure than either GENMOD or

HLM. Also it is useful to emphasize that the columns of Hi are not necessarily different from

th thoseof X. e single equation specification of the model

(ML 2: 4): xj = VD, + Xiaj +

some columns of X. may be the same as those of Hi' leading to possible identification problems.

As usual, our notation differs from the notation used in the ML 2 manual.

D. Routines.

An iterative generalized least squares (IGLS) algorithm provides estimates of model

parameters and, when normality assumptions are met, maximum likelihood estimates. AiL 2 can

also compute unbiased or restricted RIGLS estimates, which are called restricted maximum
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likelihood (RML) estimates in other contexts. The user has the choice between IGLS, described

by Goldstein (1986, 1987) and RIGLS, described by Goldstein (1989). IGLS is the default

estimation method and is comparable with FML used in the VARCL program by Longford; RIGLS

is comparable with RML as used in HLM by Bryk et al. The Restricted IGLS adds bias correction

terms on each iteration to IGLS estimates. This amounts to treating the fixed coefficients as

quantities which have uncertainty "built in" when computing the random parameters. IGLS, on the

other hand, treats the fixed coefficients as known in the same situation. For small data sets the

different estimation procedures may produce considerably different results. Compare our

discussion in part I and the data analysis using a small data set in part III of this report. It is not

clear for the user when to use IGIS and when to use RIGLS. The fact that the distinction between

the two is not mu-, .iiscussed is an omission general to all four software packages, but it is

especially missed in ML 2, since the choice between the two is stressed.

The first step in ML 2's estimation process is to conduct an OLS regression using all the

cases, ignoring grouping. The estimates for the fixed coefficients and for the residual variance

become default starting values for the IGLS or RIGLS iterations. A user having some knowledge

of estimates fmm modeling a particular data set may wish to start the iterations fora new model at a

point thought to be closer to the new fmal estimates than the default values. (See the section on

special options below.)

The number of iterations can range from 1 to 999. The default value is five iterations. This

number is sufficient for reaching convergence when the conditions arc favorable, that is, when the

number of observations per unit is large enough to obtain stable estimations, the number of

parameters to be estimated is small, and the tolerance/convergence criterion is between 2 and 4. It

is advisable to increase the number of iterations when the convergence is reached slowly, the

amount of data is small, and/or the number of parameters to be estimated is large.

When one of a pair of random coefficients has a variance of zero, the covariance is set to

zero. This default option can be switched off. (See the section on special options below.)
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E. Data setup.

The steps in the analysis are Input, Model Specification, Run, and Output. The input file

can be either mw data or a modified data set. Only one data file is needed with all micro and macm

data together, plus the created interactions of micro and macro variables. In this respect ML 2 is

comparable to VARCL, where interactions also have to be planned in advance. In ML 2 the

interactions can be made in NANOSTAT in the model specification stage, which makes the data

handling easier than it is in VARCL. In cases where variables are centered around the grand mean,

this may lead to different results between the combination of VARCL and ML 2 and the

combination of HLM and GENMOD, since the last two packages make interactions during the run

and, as a consequence, these interactions are not centered. The micro data and interactions have to

be sorted by context and two Ds are needed, a case ID and a group ID. Missing data can be

handled, but have to be assigned a numerical code, which means that they cannot be left as a blank.

The NANOSTAT package allows all kinds of data modifications before starting with the multilevel

model specification stage. The model specification stage involves the usual things: the roles of the

variables that have been read or created and the parameters to be estimated. In the 'run' stage the

user has control over the usual features of the program's estimation process prior to starting

computation; some default values can be changed, such as the maximum number of iterations

allowed before the program stops, the size of the convergence criterion, and the estimation

algorithm used.

The choice of the model is completely free. The user can consider models ranging from a

random intercept to a full model with ail first level variables random. As in HLM, this program

allows variables that are not in the list of fixed effects to be in the list of variables with a random

effect. In other wonls, variables can have a random effect at the second level, while not having a

fixed effect estimate at the first level.

As in the other programs, no missing data are allowed in the multilevel modeling stage.

The usual preprocessing options are available in the NANOSTAT package: use listwise deletion,

input estimated values, or mark with missing value codes.

//
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F. Results.

By entering the command LOGO at the start of the analysis, the user can get a complete log

of all information that appears on the screen during the analysis.

Since this default output is minimal, special output can be required by using special

commands. The default gives estimates of the fixed and random parameters and the covariance

matrices for these estimates. OLS estimates and/or predicted values for each case can be obtained

by giving the command OLSE. Optional commands, for instance, allow the user to examine

residuals, to obtain confidence intervals, and to do hypothesis testing by contrasting certain

parameters. In this kind of hypothesis testing more than one command is needed, since contrasts

must be specified (see manual, page 72).

ML 2 provides numerical output in two forms: One labeled listing for interpretation, and

one unlabeled listing in a worksheet for graphing purposes. Plotting and graphics commands are

explained in the manual (sec section 4.3 and subsection 5.4.1). The parameter estimates are

presented in the output with their associated standard errors. Each random coefficient will have a

set of residuals associated with it for each level at which that coefficient is random. So ML 2

provides predicted values, 'raw' level one and level two residuals, and their comparative and

diagnostic standard errors.

In sum, the following results can be obtained, but are optional:

1. Estimates of residuals frsom each level and their standard errors. These estimates can be

used for (a) calculating posterior means or shrunken residuals or (b) for checking model

assumptions.

2. Standard deviations of the residuals useful for diagnostic plots (an extensive graphics

component, built in the general-purpose package NANOSTAT, enables the user to produce
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a variety of plots of the estimated quantities).

3. Predicted response variable values for individuals.

4. Estimates of contrasts of the fixed parameters, associated chi-square values for

hypothesis tests, and simultaneous confidence intervals.

The RESI command, used after convergence is reached, stores the residuals requested with

this command in columns to be specified by the user. A composite residual for each level can be

obtained, if desired, by subtracting the column of IOLS or RIGLS predicted values from the

column of observed values of the response variable. Another way to use the residuals is to plot a

graph of residuals against predicted values. The user's guide explains the theoretical background

of residual structures, as well as its practical application. A convenient fature of the output is that

the previous estimate is provided next to the current estimate, making the changes easy to see.

The residuals can be used in two ways. First, the level two residuals may be, and often

are, used directly to provide estimates of the unknown level two effects. Second, for hypothesis

testing, ML 2 can calculate simultaneous confidence intervals for a set of contrasts that tho user

specifies, as well as a confidence interval for each contrast considered individually. Each random

coefficient has a set of associated residuals for each level at which that coefficient is random.

Clearly, the total residual is partly a first level and partly a second level residual. When the total

residual is defmed as the difference between the estimated and the observed dependent variable, it

is possible to test complex hypotheses about several elements of the matrix omega. By using a

contrast matrix (equivalent to the matrices used in the Scheffd test for effects in ANOVA), several

combinations of effects can be tested against one another without enlarging the alpha level

G. User friendliness.

In the last chapter of the manual, Chapter 9, several examples incorporating different data
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sets and different set-ups and computer output are given. The examples illustrate the variety of

models that can be fitted. The first part of the chapter (9.1) presents a sequenced exploration of the

data and a random regression model. The second part (9.2) contains an example of a model with

longitudinal data, and the third part (9.3) gives a repeated measures analysis. The last example in

9.4 describes an analysis with proportions as the dependent variable.

Several data sets are used in paragraph 9.1. The first one is an educational example: data

on students in 96 inner London secondary schools are used to illustrate various aspects of

command usage k NANOSTAT and also to show how to specify a variance component model and

a random coefficient model. Three stages are distinguished and explained in the modeling phase of

this example: the specification of the model, the run stage, and the output stage. The second

example (page 85) is a growth curve analysis, comparing weight gains of young Asian and non-

Asian children (n=568). Eight exploratory variables are available at the first level. This example

shows how to fit a polynomial, how the program handles a missing value code (such as -1) and

how to recode a variable to make it a dummy variable. The third example uses four repeated

measurements of jaw bone length from 20 boys at ages 8, 8.5, 9, and 9.5 years of age (see Elston

& Grizzle, 1962). The third example shows a pooled cross-sectional time series design. The data

is taken from a study of youth unemployment (Garner, Main, & Raffe, 1987). The level one units

are the four cells of formed by two binary variables, 'sex' and 'qualifications' (n= 401 units). The

level two units are the postal code sectors (n=122 units). The dependent variable is the

u unsformed proportion of employed leavers for a cell within a zone. The output examples in

Chapter 9 are useful, although they arc perhaps a bit specialized. In his papers and his book

Goldstein illustrates multilevel modeling by discussing several relatively small models in detail, not

a general model in a general notation first, with the specializations later. The same strategy is

followed in the ML 2 user's guide.

The final version of the manual is a nice and complete document: informative and clear as

far as the theory and the examples go. It is actually more than a manual, since it introduces the

reader to the hows and whys of multilevel analysis with a multitude of references. A disadvantage

of the manual is the belated instruction on how to do a multilevel analysis. After the introduction to
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multilevel analysis in a fnaceptual as well as theontical part, the reader has to cover fifty pages

(until page 63) before the multilevel data analysis is reached. This is due to the extensive

documentation of the NANOSTAT package. Since in most model fitting cases the user may need

the use of NANOSTAT commands (illustrated in Chapters 3 and 4), we do not know how the

authors could have prevented this circuitous route. Apart from that, the manual is well organized

and clear. Each chaver starts with an overview of the chapter's content and a summary of the

commands recorded in that chapter. A general overview of all the commands (which includes

references to the chapters in which they are discussed) is given at the end of the introduction of

Chapter 1. The manual's organization does not prevent a feeling of being lost when starting to use

this package for the first time. "What do I do to fit a simple random coefficient model without data

manipulation?" is not an easy question to answer, since no examples are given.

As we mentioned earlier a disadvantage of the manual, as we experienced it, is the overload

of information on data manipulation and the limited amount of clear information about the most

essential aspect of the progam: the fitting of a simple multilevel model. Only after the user is

familiar with NANOSTAT and its command strum= can she discover how easy and simple the

model specification can be and how helpful the package is for data manipulation. We will illustrate

this with the following example. Four different models are fitted with a data set that consists of

only one micro variable and one macro variable. The first step is to prepare the data set and to add

all the relevant interactions, which is in our case only one: the interaction between the micro and the

macro variable.

Example: (comments are added in parentheses).

DREA 1 C1C4 (data set, see Chapter 3)

(F2.0,3F7.3) (the format)

MULT C3 C9 C5 (make a new variable by multiplying variable at C3

with C4 and put it in column C5; see Chapter 4 for

information on data manipulation)

PUT 3691 1 C6

NAME Cl "ID" C2 y (all variable names are specified including the new
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interaction, see Chapter 3).

IDEN 1 I ID' (identification number level 1, see Chapter 7)

IDEN 2 `ID' (identification number level 2)

RESP IY' (our response variable has the name Y, see

Chapter 7)

EXPL ICONS"X' et c . (cons is for constant and X is the name for our first

level variable, second level variables have to be

specified hem, too).

MAXI 100 (the maximum number of iterations is specified here;

see Chapter 8 for this and the following commands)

TOLE 3 (the precision, here up to three decimals)

BATCH (meaning no stopping between iterations)

All these commands are put in by the user line by line. The answer given by the program is

either an error message (when wrong) or a confirmation (when right). The user realizes quickly

that more than one chapter has to be scanned in order to find the correct set up. To be precise:

Chapters 3, 4, 7 and 8 had to be consulted when we set up our example.

After preparing the data the next stage is the specification of the multilevel model. This

procedure includes listing all possible variables that may be used in the sequence of the different

models that are to be fitted. In our example we use only one interaction: between a micro and a

macro variable (the only two variables in our data set), which means we fit four different models:

a random intercept only (4odel 1); adding a random slope, no second level variable (Model 2);

adding i4 second level variable interacting with the intercept only (Model 3); and second level

variable interacting with both intercept and slope (Model 4).

Model 1: random intercept only, no second level variables, no interaction (see the

exclusion of these variables in the first statement)

FPAR "OTL" "XOTL"

SETV 1 "CONS"

(see Chapter 7 for this and following commands)

Jr /
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SETV 2 "CONS"

START (see Chapter 8)

The second run is again a matter of one or two statements, a process that is easier and faster

than going through a whole sequence ofquestions (comp= VARCL and

Model 2: as afore, but a random slope is added:

before,

CLRV 2

SETV 2 "CONS"

START

(this statement "wipes the slate clean," or delete all or

part of the requests given in the model fitted

see Chapter 7)

(two random coefficients: intercept and X, see

Chapter 7)

(see Chapter 8)

Model 3: adding an second level variable, OTL, that only interacts with the intercept:

CLRV 1

CLRV 2

FPAR "OTL" (F is for fixed part)

SETV 1 "CONS"

SETV 2 "CONS"

START

Model 4: as before but an interaction, 011, (second level variable), is added with the slope:

CLRV 2

SETV 2 "CONS" "X"

START

This is the kind of simple example that we missed in the manual. By scanning back and forth

between Chapters 7 and 8 we were able to fit one model next to the other.

The complexity of the manual is a result of the following nice feature of ML 2: ML 2 is

integrated with the general statistical package NANOSTAT. Many commands are available to

modify data before starting the multilevel analysis; for example:

1. Creating, recoding and transforming variables.

2. Sorting and selecting cases. (In order to use ML 2, s well as all other packages, the data must
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be ordered, so that all cases belonging to a given level are sorted together.)

3. Deleting cases (listwise) with missing values.

4. Conducting exploratory plotting.

5. Computing descriptive statistics and performing simple analyses such as OLS 'egression.

Since many commands are available, a HELP program is built in. This online help facility

shows the commands and/or the commands' format.

Of all the programs mentioned in this report, ML 2 is the one that allows the users the most

freedom to choose input and even what happens during the tun. From the moment that the model

is specified and choices are made, to the time the program starts running, ML 2 allows control.

After the command STAR (the start of the estimation process), the user can speed up the procedure

by typing in NEXT (a request for the next iteration) or stop the program by typing in FREE (to

freeze some estimates), followed by the name and column of the variable that should be stopped

from being estimated any further. When the user sees from the iteration process that some

estimates are unstable, the convergence can be hastened by holding the instable parameters constant

at their most recent estimated values and continue with fewer parameters. FIXE and RAND
commands also can be used after convergence has been reached or at the end of any iteration. By

typing FIXE, the IGLS or RIGLS estimates of the fixed coefficients and their standard errors are

obtained; by typing RAND, the same happens for the random parameter estimates. Together with

the random estimates the dispersion matrix is obtained. The default output is simple, without extra

and maybe unnecessary information.

To make use of the full potential of the program, extensive experience (or going to one of

the many workshops offered by the program authors) is necessary. The reward for the user is that

the program obviates the necessity of preparing the data in advance in another package. Another

advantage is that it is easy to make adjustments or new interactions in a later modeling stage.

The default output is limited. Only the essential parameters and the respective standard

errurs are provided. It is possible to choose an output that, for example, includef, OLS Estimates
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or RESIduals to test CONTrast. Missing in the output are posterior means for intercepts. Slopes

are provided that are not in the output, although they can be computed quite easily from the

"shrunken" itsiduals.

H. Special Features.

The RESE command is an on/off option that allows pairs of random coefficients to have a

nonzero covariance when one of the pair has a variance of zero. This option is useful in explicit

modeling of variation when one wants to avoid constraints inherent in particular parametrization.

See Goldstein (1987, p. 36) for an example.

The BATC command switches the mode of operation between batch (no pauses) and

intemipted (pauses between iterations). The pause option is useful whtn starting a new analysis to

get a sense how the estimates change from iteration to iteration, which indicates which parameters

have stable estimates and which do not.

The option to enter starting values for the parameter estimates other than the default OLS

estimation is a special feature. These initial estimates can be read into the appropriate columns

using the READ command, The manual explains how to read these data by using either a file or by

manual entry. This information is found in the part that explains the use of the larger software

package into which ML 2 is built (see Subsection 4.1.7 of the manual). The program can analyze

two levels. (ML 3 is available but it is not quite finished.)

Another feature in this softwitie package lets the user model a simple multilevel logit and

log-linear model. This allows the researcher to analyze survey data with proportions or binary

variables as the dependent variable. A simple multilevel logit and log-linear model is described in

the manual. ML 2 also can include a variable in the random part that is not included in the fixed

part, a feature that program shares with HLM. The manual explains the value of this option in

the section dealing with a logit model (see page 23).
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Information about the convergence process is provided; this is useful since it is possible in

ML 2 to interrupt the program and "freeze" the estimation of individual parameters for the rest of

the estimation during the run. This is especially helpful in situations where some parameter

estimations seem to converge slowly because the estimated variance of those random parameters

are close to zero. The freezing of the estimates speeds up the convergence. ML 2 alerts the user to

slow converging parameters during the session, and the user can take action by freezing those

parameters instead of waiting too long for convergence.

ML 2 provides predicted values for level 1 and 2 residuals and their comparative and

diagnostic standard errors. These values can be used for several purposes; for instance, the user

can obtain the estimate of the random coefficients for each level, or she can check the model

assumptions. Useful suggestions can be found in the user's guide.

Very special is the factmentioned several timesthat ML 2 is built into or around an

existing software package. Although some programs (HLM, GENMOD) allow preliminary data

analysis to explore the relation in the data before the hierarchical model is fit, this package is unique

in the variety it offers in this respect. Simple commands are available to: create, recode, or

ransform variabic...); sort and select cases and delete missing data; conduct exploratory plotting; and

to compute descriptive statistics and perform simple analyses. This is very useful feature since it

solves the problem of opening and closing various programs and of transporting data whenever a

multi-level analysis is performed after data modification.

ML 2 offers many possibilities for the advanced user of two-level analysis techniques. For

the same reason it is not an easy program to start out with.
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2.4. VARCL

A. Design Philosophy

VARCL was initiated by Aitkin and Longford (1986) and produced and maintained by

Longford. A random coefficient type of analysis, it Lan be used to analyze multilevel data. It

provides the option to fit random slopes, but has no possibilities for interactions between slopes

and second or third level variables. VARCL is a single purpose package, (resigned for the fitting of

mixed linear models with nested random effects to data involving hierarchies of nesting. It

consists of two independent computer programs, VARCL3 and VARCL9. VARCL3 is used for the

analysis of data with three or two levels of nesting and for studies in which mcdeiing of the

variation of the within-area and within-group relationships is of interest. VARCL9 can be used for

analysis of data with up to 9 levels of nesting, but it permits only simple structure of the random

effects. There is no requirement for the balance of the nesting structure in either program.

B. Implementati xi details.

Both programs are written in FORTRAN 77 and require an interactive computing

environment. VARCL was originally written for VAX/VMS, but its has been ported successfully

to PC/DOS, MacOS, and Sun/Unix environments. VARCL3 is complex and has a more elaborate

interface than VARCL9, but the two are similar enough to warrant a single user's guide. The

interface of VARCL combines interactive and batch features. The batch feature is the control file

that contains declarations related to the data set such as the title, data file names (the data set may

consist of several data files), formats, variable names, nesting structure, etc. Having this

information available in a separate file makes the interactive session less tedious.

The implementation restrictions are defined in the include file IMPLE.ADD, thus they can

be changed very easily by recompilation. There is no limit on the maximum number of fffst level

cases. With the DOS version we have worked with a maximum number of variables equal to 24, a

maximum number of factors of 24, and a maximum number of sufficient statistics equal to 30.000.
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For VMS and for a Mac with 5Mb RAM these limits can be increased without problems to

48 / 48 / 300000. The number of factors and of variables, as well as the number of degrees of

freedom, must not exceed the number in the IMPLE.ADD file, which is echoed in the output

header.

C. Models

The models fined by VARCL generally are quite diffemnt from the ones fitted by

GENMOD, HLM, and MU. VARCL3 fits the following maximal model (in the two-level case)

(VARCL1): Yijh = E khkxqhk gijh

The random coefficients are further specified by

(VARCL2): hihk = yk + figt + Wink

The disturbances satisfy

(VARCL3): lid N (0, 02), IlLjh lid N (09 02). lid N (0, ()3)

Here the matrices 02 and 03 are of order K.

Various restrictions are possible within the framework of the maximal model. Thekihk can

be restricted to be equal to zero ( a variable does not occur); we can require yk = E(ljhk) to be equal
to a given constant (for instance zero, then the variable only has a random part); we can require one

or both of the random components to be zero or nonzero (in four possible combinations). The

variances (diagonal elements of De2 and C13) can be restricted to be equal to given positive constants

(if they are nonzero). In fact, all individual elements of the covariance matrices can be restricted as

well. Because of invariance considerations, it is suggested that covariances between intercepts and

slopes be left free. It is clear that a large variety of models can be created by using these

restrictions, although nontrivial first level random effects (as in ML2) are not possible.

In VARCL9 we have an inherently more simple structure for the error terms. For four

levels, for instance, the general model is
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(VARCL4): xijhs = ihns + rtg + Lig + khg + Eijhg

Here Rog is the fixed part of the model, and each of the disturbance terms is a single normal

random variable, independent from anything else. Thus, there are no covariance components and

no random slopes. The extra parameters (next to those in the fixed part) are L variance

components, if there are L levels.

D. Routines.

For his VARCL program, Longford (1987) uses the Fisher scoring algorithm. The manual

describes the algorithm in detail (quite unlike the black box approach in the ML2 manual). Two

possible complications can occur during the iterations of the scoring algorithm. Both are dealt with

explicitly and automatically by VARCL. If one of the estimated dispersion matrices becomes

indefinite (has negative eigenvalues) during the iterations, the iterations are damped. Thus the

program does not go all the way, but forces positive definiteness by interpolating. This may result

in a considerable deterioration of the convergence behavior of the algorithm. (More elegant

solutions to this problem are possible--one is updating a triangular factorization of the dispersions;

see Lindstrom & Bates, 1988.) The program prints the message that a covariance adjustment has

taken place.

The second problem occurs when the information matrix, used in the scoring iterations,

becomes singular. The offending parameter is then allased (i.e., excluded from the model).

Aliasing obviously improves the convergence, but results in fitdng a different model. It is

irreversible (i.e., once a parameter is aliased, it will not be unaliased and left free to vary anymore).

It has been our experience with VARCL that aliasing occurs in situations with complicated models,

in which the EM algorithms of GENMOD and IILM exhibit very slow convergence. In the case of

aliasing and in the case of covariance adjustment, the VARCL manual suggests fitting a smaller

model.

E. Data Setup and Data Handling
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The input data for the outcome and explanatory variables can be stored in separate

locations, one location for each level. For instance, files can be referred to as subject-level, group-

level, area-level, and so on. The subject level (level 1) is also referred to as the "elementary" level.

The data can be stoitd in separate files with fixed F-formats; the control file with the basic

information has to be written in a special way specified in the manual. The data can also be stored

in a single file (group level and individual level together), or in two or three separate file.; as long

as the information is not mixed between the three files. The data matrix has to have a hkxarchical

ordering, which means that observations belonging to the same context or group 'lave to be

grouped together. The basic information (a batch job provided by the user) has to contain the

number of observations per group in the order they appear in the data matrix because no facility is

provided by the program to read a group identification.

Basically VARCL does not fit multilevel models, but hierarchical random coefficient

models. It accomodates random slopes and an interaction between group-level chanicteristics and

intercepts, but not between slopes and group level variables. By using an input matrix with

specially created interaction variables, the program can be used in the same way as the other

programs are. Here again, no missing data can be handled in the model fitting stage.

A session with VARCL consists of the following steps:

1. A declaration of the maximal model. Declaration of the maximal model is fully

interactive and is made only once in each session. A maximal model is declared by answering

three prompts: (a) a declaration of the y-variate and sampling weights (if there are any weights,

and only variables defined on the elementary level are acceptable as response variables); (b) a

declaration of the fixed part of the model; and (c) a declaration of the random part of the model.

This third declaration is only relevant for VARCL3, because only models with simple random parts

can be fitted in VARCL9.

2. After declaring the maximal model, the program proceeds to input the data (as declared

in the control file) and to compute the sufficient statistics.
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3. Fitting of new models. VARCL allows interactive fitting of several models to a data set.

Before fining the first model, the user has to define a maximal model that contains all the models

considered for fitting as its submodels. Only variables declared in this step, which is the first step

above, can be used in the following steps. This is the most important part of the session. In later

steps, fitting of new models is restricted to these variables (in still later steps, the fitting of models

is restricted to subsets of these variables). Each model fitting step consists of a new cycle of model

selection (carried out interactively by the user), model fitting, and display of the results. This

means that after the. ;:alculation of a set of sufficient statistics for a model, the user is presented with

a default model for fitting. Alterations in this model can be made followed by the fitting of the

approved model. Next, the user can inspect the results, make further alterations, and so on,

consecutively fitting any number of models in a session. Any model can be selected as long as it is

a submodel of the maximum model declared in the second step. Usually a data set is analyzed

during several sessions of VARCL, with different maximal models declared in each session.

F. Results

Output: A session of VARCL can be saved in a binary "dump" file NI hich contains the entire

information required to carry on, in a new session of VARCL, where the old session was

terminated. If the user wishes to restore such a dump file, the answer should be "Y" to the prompt

>WANT TO RESTORE A DUMP FILE ?

This is followed by the prompt that asks for the name of the dump file. The basic information, the

maximal model, the sample means and proportions, and the results of the last model fitted are

stored. The dump files can only be used for data with normally distributed error terms.

If the user does not want to restore a dump file, a valid name for another store file has to be

assigned. This output file will contain the results of the analysis and a summary of the initial

specifications. If no name or an unacceptable name is entered, the output will be directed to the

terminal only. This is a non-fatal error, and the session will continue after the message

>OUTPUT DIRECTED TO THE TERMINAL.
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Several models as output: The interactive fitting of several models within the maximum

model allows the researcher to compare the fit of these models with each other or with the

maximum model. By using the deviance from the maximal model and comparing this with the

deviance of other models and the difference in degrees of freedom, it is possible to make a choice

between one model and another that does not fit A.s well, but is simpler. It is unfortunate that the

VARCL manual does not provide guidelines for how to use the deviances in testing the differences

in goodness of fit for the models fitted in one single session.

Several data sets are provided with the program. Two of them are used in the manual as

examples.

The first one is the Gray et al. data set, a school effectiveness example. It contains data for

907 students in 18 schools. Sex and test scores are the main variables. The manual shows some

model fitting with this data set. (See also Aitkin and Longford, 1986, for the use of these data.)

Next is a cherry tree example, with one level of observation, 30 observations, and 3

variables: diameter, height and volume.

Next is an example (The lower class men short forms academi6 profile, Fall, 1987) with

three levels of observation: a subscore, the student and college level. The number of subscores is

18.320 (four observations per student over two variables). The number of students is 4580 and

the number of colleges 3;/Two variables at the subscom level and one variable at the student level

are measured.

Another example, with five levels of nesting, contains 242 individuals nested within 49

groups in 14 areas within 5 states in 3 countries. Since we are dealing with simple models (only

random intercepts are allowed in models with more than 5 levels), only two individual variables are

used. No variables are specified for higher levels of aggregation. This data set is used also as an

example in the manual and is worked out for several models shown in the manual.
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/
G. User friendliness.

The VARCL manual is, for the most part, user-friendly. The manual contains much

valuable background information concerning the output and interpretation. Not so helpful are the

output examples given without comments (one run with VARCL provides you with the same

output). For the preparation of the batch job (the file where all the basic information is stored)

some work has to be done, since for each group the number of observations has to be specified.

This is a tedious job, especially when the number of groups in the data set is large. Extra

preparation is also needed when interactions between first level and second level variables are of

interest for the researcher.

The model fitting part of this program is very user-friendly and easy. It is possible to fit a

large number of models within the declared maximum model in a single session. After each

calculation of a set of sufficient statistics, the user is presented with a default (only random

intercept) model for the next model fitting stage. The program fits the chosen model by making

alterations in this default model. After inspecting the last results, new alterations can be made,

which are calculated, and so on, fitting consecutively any number of models in one single session

in an easy way. Although model fitting involves the bulk of the computational load, the user is

spared repeated input of the data. Compared to the other three software programs, this is a very

nice and also unique feature. In general VARCL is quite friendly, but it is difficult to use

mindlessly. The user has to know quite well which models to fit, which interaction variables to

create before starting any session, and which covariances to fit.

The speed of the convergence is another nice feature. Comparable programs take much

longer to do the same job (we deal with this more extensively in Chapter 3). The algorithm is

certainly fast scoring.

Also helpful are the error messages and the options to correct them. At the stage when the

declared files are opened (but not read yet), the interactive part of the progam can give several

error messages when something is wrong and, at the same time, the option to correct these
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mistakes. Examples:

>REFUSAL . FILE CANNOT BE OPENED.

or

>FAILURE TO READ NAME AND TYPE OF VARIABLE NO:

Some errors are fatal, which means the VARCL session is terminated. This feature permits the

user to check the data filenames orrectify the problems by other means.

The time and effort saving device at the variables declaration stage (especially when the

number of variables is large) is nice. By choosing the option "(almost) all variables in the model,"

time is saved, because only the variables left out have to be declared. In cases where only a few

out of many variables are used for the next model, the option "explicit declaration" is a quicker way

to proceed. A third option is "Pick the variables for the model." This is the most secure choice,

but it is also the more time consuming one. Here all variables are listed one by one and the user

has to itspond to the prompts by "Y" or "N." Unfriendly is the fact that the user has to remember

(or make a note) of the number the program assigns to each variable (the inkercept is number 1 and

each following variable number 2,3,4,...,m+1), since the program only accepts numbers.

Helpful are the built-in checks and opportunities to correct mistakes in the just declared

model. The maximal irxlel (or any following model) is displayed again after the declaration in a

table stating the Y-vak.ate, prior weights, for each variable whether it is included in or excluded

from the fixed or random part. This display is followed by the prompt

>ANY ALTERATIONS ?

If the user responds "Y" all the declarations of the maximal model made so far are

invalidated and the interface returns to the declaration of the y-variate and weights. The same rules

and defaults apply as described in the fixed part for the random part in the VARCL3 program, with

one exception: only variables included in the fixed part are eligible for the random part.

H. Special features.

Unrestricted refit facilities. VARCL allows interactive fitting of several models to a data
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set. Before fitting the first model the user has to define a maximal model which contains all the

models considered for fitting as its submodels. After declaring the maximal model the program

proceeds to input the data, calculate a set of sufficient statistics, and present the user with a default

model for fitting. The user can make alterations in this model, make further alterations, and so on,

fitting consecutively any number of models in a session. This feature is so special because it

allows the user to find conveniently the most parsimonious model by compating models against the

best fitting, but unrestricted maximum model. By doing so, it raises the user's awareness of the

importance of the goodness of fit, instead of ovetemphasizing significant (separate) effects of

(separate) coefficients and/or theoretical importance of these effects.

Unique is a quasi likelihood adaptation for non-normal (binary, binomial, Poisson, and

Gamma-distributed) outcomes. The first page of the program output is immediately followed by

the prompt relating to the type of error distribution. The choices are: normal error, binary or

binomial error, Poisson error, or gamma error. It is clear that when the dependent variable consists

of proportions or probabilities instead of numerical values, these options for the error distribution

are more appropriate. For example, if a binomial or binary distribution has been selected, the user

is asked for the binomial denominator with the prompt

>THE BINOMIAL DENOMINATOR IS VARIABLE NO:

The user has to respond with a variable number. For instance, for binary data the answer would

be 1 (In VARCL the first variable is always the Grand Mean). For the Gamma error distribution

the user is asked for the scale with the prompt

>ENTER THE GAMMA SCALE:

A positive number should be entered; most common again is the number 1. This last option is also

available in the software package ML2 (see par. 2.5). Following these steps will automatically

result in different estimation procedures. VARCL is the only program that allows the user to

choose among four different error distributions. ML2 also incorporates a logistic option. HLM

and CENMOD assume normally distributed errors.

The estimation of a covariance structure with three level data. The maximum number of

levels of nesting is three for VARCL3, with full flexibility for modeling of variation. The
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maximum number of levels of nesting is nine for VARCL9, with simple variance component

structure. In the three-level model only variables defined at the first level can be included in the

random part. Variables defined at the second or third level can only be included in the fixed part of

the model. VARCL9 only decomposes variance at the several levels. No variables at any level

interact with each other or have random parts.

A unique feature is the option to declare a covariance structure. The user may declare the

covariance structure according to his/her own expectations. The extreme choices are: intercept by

slope covariance only or (the other extreme) all co-ariances. Choices between these extremes are

possible as well. When the first choice is "intercept by slope covariances only," the user is

prompted to declare additional covariances. It is obvious from the assumptions of the theory

behind the model that only variables included in the random part are allowed to have covariances

with variables in the random part on the same level. This includes categorical variables with more

than two categories. A categorical variable can be declared to have covariances with itself

Covariances will be declared for the pair of different categories other than the first reference

category.

VARCL provides a special treatment for categorical independent variables. Categorical

data, when declared as such, are changed into dummy variables. For each categorical variable In-1

(m is the number of categories), parameters are estimated. This feature is not of much use when

using a categorical variable for interaction with another level variable, since the dummies have to be

constructed anyway in order to make interactions with other variables before starting the analysis.
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2.2. Summary

The usual restrictions imposed by the four programs we have discussed are:

1. All variables in the random part are inclu6k4 in the fixed part.

2. All level one coefficients are rat.lom at level two (the full random coefficient model).

3. The only explanatory variable whose coefficientscould be considered to be random at

level one is the intercept.

All four programs have ways to deal with the first two restrictions, and all leave room for

variables that are not included in the fixed part tobe random (HLM, ML 2), or ti fit a mixed model

(all programs), but the last restriction is only overcome in ML 2. On page 17 of the ML 2 manual

an example is given in which a predictor of the first level has a random part w, that same first level.

A test of significant improvement of fit between two models, a simple and a more

complicated model for instance, is provided only in HLM. For the other packages, except for ML

2, it is easy to calculate the test statistic by subtracting the deviances of two separate models. In

GENMOD, however, the likelihood does not seem to be computed correctly. Deviances can be

used especially effectively when using VARCL with its "interactive fitting of several models"

facility. The user can make alterations in the first fitted model, make further alterations, and so on,

fitting consecutively any number of models in a single session. This feature allows the user to find

conveniently the most parsimonious model by comparing models against the best fitting, but

unresnicted maximum model. By using the deviance from the maximal model of more than one

solution and comparing the difference with the degrees of freedom gained by estimating a smaller

number of parameters, it is possible to make a choice between one model and another. Since the

maximal model has the most parameters, by definition it has the best fit. However, the question is

whether it is much better than a simpler, more useful (and easier to interpret) model. The deviance

statistic can be employed in a likelihood ratio test by comparing the deviance of two or more

models. This difference between the two statistics has a chi-square distribution. The chi-square

test of testing the significance of the differences in deviance, in relation to the gain in degrees of

freedom, has to be calculated by the user herself in order to compare the fit of the different models.
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By doing so, it raises the user's awareness of the importance of the goodness of fit. In HLM the

deviance of the tested model from the "full model" (the name of the maximum model) with the

associated degrees of freedom and chi-square statistic are part of the output. Since HLM allows

only one model next to the full model in each session, this output can be given. Because the
maximum model can be followed by any number of different models in VARCL, and as a result the

number of comparisons can be extensive, it is impossible to give those statistics in the output. It is

unfortunate that the VARCL manual does not provide guidelines for how to use the deviances in
testing the differences in goodness of fit of the different models fitted in one session.

The number of iterations is variable in all packages and is left to the decision of the user.

The suggested number in most packages is from 10 to 15 iterations. In this paragraph we wili
show that for EM algorithms this number is definitely too small to get results comparable to those
of other programs. Comparing HLM and GENMOD with ML 2 and VARCL in Table 2a,b and
4a,b, for instance, shows this clearly. The latter two packages, with fast linear or superlinear

convergence, stay within the limit of 15 iterations, while the other two exceed that number
considerably to reach the same convergence criterion. In our examples, more complicated models
(more complicated than a model with only a random intercept and no second level variables) need

many more iterations in the packages that use the EM algorithm (GENiviOD and HLM) than in the
ones that use scoring (VARCL) or weighted least squares (ML 2).

The (default) output given by the four packages differ from one page to several and from

many parameters and significance tests to only the essentials. The default for ML 2 gives only the

fixed and random parameters with the respective standard errors and the number of iterations. This
may be nice for new users because they are not confronted with an abundance of output, within
which the relevant numbers may be hard to find. The more experienced user needs more output,
which can be provided on request, such as OLS estimates and residuals. In this respect GENMOD
resembles ML 2, and both differ considerably from VARCL and HLM.

T-test values for parameters are provided only in IiI,M. This is not unusual for this type of
software, since separate t-tests do not take the total analysis into accountthis may lead to type-I
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errors when making interpretations from single t-tests. In addition, tests are more heavily

dependent on statistical assumptions, such as normal distributions, than parameter estimates are.

When we compared HLM to the other packages, we found that HLM provides a maximum of

information in order to minimize the effort for the user. For example: Next to the usual estimates

of the fixed part of the coefficients (gammas) and their standard effors, the t-statistics and p-values

are also given. In contrast, the other three programs provide only the first two and leave it to the

user to calculate the significance tests when this calculation is a necessary and/or responsible thing

to do. The overall test (test of differences between deviances for the goodness of fit) may be more

reliable here.

Packages differ in the way they handle the raw data set. Centering is a much discussed

issue in recent studies (Raudenbush, 1989a,b; Longford, 1989b; Plewis, 1989). One of the

options is to center variables around group mean or grand mean. An option offered in ML 2 is the

choice to center variables used in the fixed and random part around the grand mean in either, both,

or none of the parts with the options FMEA (fixed part) and RMEA (random part). The reason for

centering, as given in the ML 2 manual (page 14), is that centering sometimes facilitates

interpretation, but that it is used mainly as a way to improve the numerical performance of the

estimation algorithm. Variables are replaced by their centered version in VARCL to make

computation easier. The deviation is a deviation of the grand mean, not of the group mean. No

options are available to change this default centering in order to use raw scores. But since the

outcome is reparametrized in terms of the original data, this leads to the same outcomes produced

by programs that use raw data (as shown in the comparisons in Chapter 3). This also leads to the

conclusion that centering in VARCL is of no consequence. In HLM the authors have built in a

question in their interface: "Do you want to center variables?" If the answer is "yes," the user

must introduce the names of the variables to be centered. The choice to center none, all, one, or

more variables is left to the user. This is, however, centering around the group mean. Centering

around the overall mean is not an option and has to be done before starting HLM. The manual

explains that this type of centering may be advisable to make interpretation of the intercept easier.

Centering around the group mean is, in principle, fitting another model. We do not use this option

on the examples in this report for this reason. We will return to this topic briefly when discussing

7 4
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Table 2c in the next chapter.

Information about the convergence process and the use of this information differs

significantly among the four programs. In the program ML 2 it is possible to interrupt the run and

freeze the estimation of individual parameters for the rest of the ecrnation during the run. This is

helpful in situations where some parameter estimations seem to converge slowly because the

estimated variance of those random parameters is close to zero. The freezing of the estimates

speeds up the convergence. The user of ML 2 is informal during the session of slow converging

parameters and can take action by freezing them. A somewhat similar concern is formulated in the

manual of HLM, but the user is not allowed to take action during the run. Rather, the user is

informed afterwards when she looks at the chi-square table and the deviance statistics of the run.

By setting the residual parameter variance at zero in the next run for those variables that slowly

converged, the same effect is reached in HLM as is reached in ML 2 by freezing during the run.

These boundaries are handled in various ways. Programs using the EM method need no special

provisions to deal with boundary constraints. Parameters can never get outside, variances are

never negative, and matrices are never exactly singular. Nevertheless, EM methods that converge

to boundary points generally have sublinear convergence (Horng, 1987). It is not entirely clear

that this boundary is treated efficiently in ML 2 and VARCL. What happens if a matrix is almost

singular? Will the parameter be set to zero (saves time), or will the iterative process merely slow

down? Differences among programs (or versions of the same program) may result in different

solutions (see Chapter 3).

Hypothesis tests are possible within some packages. In ML 2 the residuals can be used in

two different ways. Firstly, the level two residuals may be, and often are, used directly to provide

estimates of the unknown level two effects (this procedure is beautifully explained in Aitkin and

Longford, 1986). ML 2 will provide estimates of the standard errors of these estimates, so that

confidence intervals may be examined. When sample size is large, the estimates will have an

approximately normal distribution, and confidence intervals can be estimated in a reliable way.

Secondly, ML 2 can calculate simultaneous confidence intervals for a set of contrasts that the user

specifies as well as the confidence interval for each contrast considered individually. Thus, the
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user is able to test complex hypotheses about several elements of the matrix gamma. By using a

contrast matrix (equivalent to the matrices used in the Scheffé test for effects in ANOVA), several

combinations of effects can be tested against each other without enlarging the alpha level.

Hypothesis testing is also offered as part of the HLM program, but in a slightly different way,

basically to univariate t and multivariate T testing.

The use of interaction variables, such as the interaction of a (fixed) macro level variable

with a random micro level variable, is quite common in multilevel data analysis. But not all

packages provide equal opportunities to use interaction variables. It is relatively easy to use these

types of interactions in the programs GENMoD and HLM. Use is less obvious in ML 2 and

almost forbidding in VARCL. In the ML 2 manual this is emphasized in the first example. It is

clearly indicated that interaction variables (interactions between first and second level) have to be

created before the analysis starts. It can easily be done in "the specification of the model" phase by

using the command MULT, followed by the two names of the variables and a position for the new

created variable (format statement). In the VARCL manual no mention is made of the fitting of

interactions between random first level and fixed second level variables. Basically, VARCL does

not fit random coefficient models, but variance component models. It permits random slopes and

an interaction between group-level characteristics and intercepts, but not interactions between

slopes and group level variables. This means that VARCL does not create variables during the

session, as do HLM and GENMOD, nor does the program allow the researcher to make these

interactions as does ML 2. An earlier version of VARCL did allow the user to make interactions,

but this feature was removed from later versions. (Also removed was a module to include various

transformations of the variables.) It is, however, possible to fit a model with interactions by

fooling the program and using an input matrix with specially created interaction variables. By

treating these interactions as fixed micro level variables in the model, the same results can be

obtained with VARCL as are obtained with other packages, as will be shown Chapter 3.

Sonn packages allow dichotomous dependent variables. A specialty offered in ML 2 is the

opportunity to model a simple multilevel logit and log-linear model. This allows the researcher to

analyze survey data with proportions or binary variables as the dependent variable. A simple
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multilevel logit and log-linear model is described in the manual. This feature is shared with

Longford's program VARCL, which also includes an opdon for the effor distributions to be either

logistic, logarithmic, or reciprocal. We understand that there is also a version of GENMOD to deal

with logistic multilevel models, but we have not seen it.
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GENMOD
HLM M 1.2 VARCL3

avallibility shareware, from
author; source
included

OOMMerCell, from
sofhvare house, no
SOUr00

commericial, from
author, no source

shareware, from
author; source
available

literature references in
manual to basic literature
or applications of the
hierarchical linear model

few, mainly to
theoretical or basic
work

.--
many . 'minty to
applied work

mow, mainly to
applied work

few, mainly to
theoretical or basic
work

ease of use of the
program and manual

the manual is difficult to
read and the program
set up complicated

P manual is dear
. program easy

.. No program
set-up, but answers to
questions,

the manual is dear, but It
is hard to And the
program set-up for a
particular problem, due
to the many choices

the manual is not easy
but the program is easy
to use. No program
set-IIP, but an
Interactive answer and
question system.

estimation procedures restricted maximum
Likelihood REML

restricted maximum
likelihood REML

Generalized Least
Squares, restricted or
unrestricted IGLS and
RIGLS

Information
MFulliocimum Likelihood

possibilities within the
package for data
manipulation before or
after the modelling stage

none, the data has to
be prepared in advance

a lot; before, within,
and after; see the
manual

a lot; data exploration
and preparasan balm
and after modelling:
plots of residuals etc.

none, the data has to
be fully prepared in
advance

Interface batch Job fully interactive. The
program asks
questions, the user
answers,

interactive, USW gives
a statemy programs
answers

WWII.* fcf date
declaration. The run
stage is fully interactive:
the program asks the
User answers

complication of the
preparation of the dataset

,,
Identification for both
levels. Data have to be
hierarchically ordered

identification and
hierarchical ordering of
the data

no preparation, all the
necessary preparation
(Interactions and ID)
can be done within the

Package

preparations of the
datset can be
complicated; necessary
interactions
prepared in advance

default output in the batch lob mow
parameters are
available to ask for a
lot or only the
essential parameters

default output is a lot, but
It can be expanded with
we tests

output can be regulated
from very essential to
very much, by way of
the oommands used in
the interactive stage

output is the whole
history. Only the
posterior means and the
iteration history can be
impressed

Specialities and/or
unique features

allows variation over
context of residual
variance. Allows
different models over
diff4 111 contexts

hypothesis testing
(shared wilh GENMOD)
The estimation of
reliability coefficients

The choice between
restricted and
unrestricted estimation.
Proportions as the
dependent variables,

Three levels and up till
nine levels for simple
models. Mows for
proportions as the
dependent variable.

--b
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GENMOD HLM M L2 VARCL3

options for weighting no Yee no yes

veriance-covarianoe
adjustments

not neoessary, the EM

elgodthm

not necessary: the
EN-algorithm

n? alleging and covariance
adjustments.

small data sets (#
observations within
groups less than I
varlabies)

no Yee Yee Yee

performance very slow
convergence

faulty singularity test fails tor some Mail
datasets in RGLS

adjusts covariances

documentation

-

not good

.

Pod good average

ease of learning hard very easy very hard easy

ease of use

.

moderate easy very easy easy

error handling

, .

good moderate moderate moderate

speed slow fast/stow not fast very fast
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3. COMPARISON OF THE PROGRAMS

3.1 Introduction

In this section we compare the various programs. The comparisons are far from complete,

for various reasons. We briefly discuss those reasons here.

Some programs are not finished products (although ML2 and HLM seem to be approaching

this stage). During our experiments we discovered bugs in all four programs. We reported these

problems to the authors, and the problems were (or will be) corrected. We think that all four

progams may still contain bugs of some sort, because all four give strange output under some

circumstances. As far as ML2 is concerned, we do not have the source code for this program, and

we cannot really experiment with it in the same sense that we can experiment with the other

programs. It is difficult to decide which version of ML 2 to use. While we were printing the first

version of this report, we received a new version of ML2, which was nearly three times faster than

the original version. During the first and second veision of this report, I-ILM was updated to

version 2.1 and VARCL was modified. This is somewhat frustrating, but we have to live with it.

We have tried to address the changes made by the authors as much as possible, but at some point

we obviously had to stop. Changes reported after November 15, 1989, have not been

incorporated in our comparisons.

Secondly, comparisons are difficult because the programs are different in various

unfortunate aspects (at least for our purposes). ML2 does not write out the value of the likelihood

function or the deviance, HLM writes the value of the restricted log-likelihood, VARCL the value

of the unrestricted deviance, and GENMOD writes out both values (but minimizes only the first

one; moreover, it seems to write out the wrong value). For large examples GENMOD does not

givl sufficient precision in the output to compare values of the likelihood function with those of

other progsms (because the authors want to have the output for each iteration on a single 80-

column line). The stopping criteria for each program are very different. ML2 and VARCL have
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fast linear convergence; in fact, the convergence is actually close to superlinear if the model fits

well. GENMOD and HLM typically have slow linear convergence, and the default stopping

criteria for GENMOD are much more conservative than those of HLM. Thus, comparison, of

convergence should really be in terms of the likelihood function, but we have already seen that this

leads to unexpected difficulties.

Thirdly, programs may have restrictions which may not have been intended by the authors.

HLM refuses to perform at least some functions if a within-group cross product matrix is singular.

GENMOD, in its original versions, had different individual-level error variances for each group,

and consequently could not be compared with the other programs because of this. In the latest

version the option of restricting all these error variances to be equal has been added. VARCL uses

aliasing and covariance adjustment in case of singularities, which is perhaps a good idea, but

which again makes comparisons very difficult.

Thus, we are forced to give only some preliminary comparisons, and we will continue to

work with the authors of the programs (at least with the authors of VARCL, GENMOD, and

HLM) to improve these comparisons. Most of our comparisons are on Al.-type machines running

DOS, although we also have versions of HLM for TSO, CMS, and UNIX; of VARCL for VMS,

CMS, and the MacOS; and of GENMOD for UNIX and MTS (a local IBM mainframe OS). We

will extend at least some of the comparisons to these other operating systems and machines. We

will report some within-machine and some between-machine comparisons.

Comparing the same program which fits the same model on the same data on different

machines seems simple, but is actually quite complicated for various reasons. In ihe first place,

not all programs run on all machines. For ML2 we can only compare within the DOS/0S2 family,

for instance. HLM runs on PCs and (at least on some) Unix machines. We have not been able to

compile it (so far) under BSD 4.3 on the Sun or under A/WC on the Mac II. We will continue to

try to do so. A Macintosh version of HLM has also been attempted, but without success so far.

GENMOD runs on PCs with DOS, on Apo llos with UNIX, and on IBM mainframes with MTS.
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We have not obtained (and not tested) the UNIX version yet. A Macintosh version is being

developed, but we have run into trouble here as well. Work on this version (done with Albert

Anderson and Bill Mason) continues. VARCL was designed on the VAX, under VMS.

Consequently, it is no surprise that it readily compiles and runs on VAX. With some minor

adaptations, we have also produced versions for the Mac OS (using Language Systems

FORTRAN under MPW), for 4.3 BSD (using f77 on the Sun 3/280), for A/UX (using Absoft

RAT compiler for A/UX), for IBM 3090 under VMS, and for the various members of the PC

family. If portability is a criterion, it seems that VARCL is the best choice, followed by GENMOD

(which is designed for portability, but may have some bugs), then by HLM (which has different

implementations for the PC and UNIX systems), and finally by ML2 (which is inherently non-

portable because there is no source and because it is built into the NANOSTAT package). Of

course, we ignore compiler effects in this comparison, although we could (and perhaps will)

compare Lahey and MS-FORTRAN version6 of VARCL and GENMOD. IILM has the main

driver and some screen control functions written in C, which makes a Lahey version complicated

to write.

Portability in itself may not necessarily be good. There is, for instance, the version of

HLM that uses screen support functions on the PC (a fffst step in the direction of using windows),

and the version with a termcap interface for UNIX. There is a version of ML2 that assumes that

one has a coprocessor, and a version that does not assume this. Ideally, one would like a version

of each pmgram that uses the strong points of each machine/OS combination (for instance, the

Toolbox on the Mac, MS-Windows on the PC, X Windows on UNIX or VMS machines with

bitmapped screens, cursors on dumb termin0-, connected to UNIX computers, SPSF on terminals

connected to IBM mainframes, and so on). These versions are no longer portable, but in order to

build them with any efficiency, one needs a computational core that is as portable as possible.

We shall discuss some experiments that indicate why intermachine comparisons are

complicated, even with a portable program such as VARCL To make the comparisons we used a

new version of VARCL, which writes the time of day (hours, minutes, seconds) at the start of each
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iteration. Real time measurement as soon as iterations start now seems reasonably reliable.

However, in the interactive stages of the program they are rather useless, because we are to a large

extent measuring our reaction speed.

3.2 Data, Models, and Results

We use six data sets for our comparisonsSIMS, GALO, GRAY, OSHEA, WEBB, anC

VOCALwhich we describe briefly before we give the results of the analyses.

3.2.1 SIMS

The SIMS (Second International Mathematics Study) data is taken from a national sample

of United States eighth-grade students who took a series of mathematics achievement tests

conducted by IEA (the International Association for the Evaluation of Educational Achievement) in

1981-1982. For this study, 3691 cases out of approximately 7500 were extracted. There are 190

school classes. Only two student-level variablec, the sum of PRETEST core items and the GAM

score (difference between FOSTTOT and PRETOT), are used. The second level variable is OTh

(Opportunity to Learn).

The wit:lin-group model is (using a simplified version of the notation of chapter 1)

WALD! = 130i + 0.1PRETOM gip

and the between-group model is

= yoo + Li(OTL)J + 60.1,

= 110 + 0114 Bij.
The first version of the model has E 0 and yoi = = 0 (a random intercep, model); the

second version has a random interrept and a random slope (and they are correlated), but s till no

second level variable (.so Yor = i i =0). The third model ha5, in addition, the macro variable OM.

The results of fitting these three models are in Tables 1 a, 1 b, and 1 c.
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Table la: SIMS data, random intercept model, no macro variable

GENMOD ELM ML2(R) ML2(F) VARCL

FixedPart

(gamma) 00 7.027 7.027 7.028 7.024 7.024
(gamma) 10 -0.192 -0.192 -0.192 -0.1917 -0.1916

RandomPart

(sigma) 22.52 22.52 22.52 22.51 22.51
(omega) 00 9.443 9.443 9.442 9.374 9.374

Additional

TotaIter 9 5 5 5 7

TimeIter 220 9 50 38 8

deviance 22306.6 22380.7

Table lb: SIMS data, random slope model, no macro variable

GENMOD HLM ML2(R) ML2(F) VARCL

FixedPart

(gamma)00 7.060 7.060 7.060 7.055 7.0553
(gamma) 10 -0.186 -0.186 -0.186 -0.1857 -0.1858

RandomPart

(sigma) 22.23 22.23 22.24 22.24 22.240
(omega) 00 14.52 14.53 14.491 14.36 14.329
(omega) 11 0.009 0.009 0.009 0.0088 0.00885
(omega) 01 -.2342 -.2370 -0.2340 -0.2297 -0.229

Additional

TotaIter 189 76 10 10 14
TimeIter 480 16 180 142 11

deviance 22382.4 22373.11
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Table lc: SIMS data, random slope model with OTL as macro variable

GENMOD HLM ML2(R) ML2(F) VARCL

FixedPart

(gamma)00 0.0627383 0.069168 0.06191 0.03242 0.039131

(gamma) 01 0.234197 0.234021 0.2342 0.2349 0.234701

(gamma) 10 -0.228330 -0.229388 -0.2282 -0.2236 -0.224472

(gamma)11 0.0008590 0.000891 0.0008554 0.0007268 0.000751

RandomPart

(sigma) 22.1318 22.1265 22.13 22.14 22.139398

(omega) 00 12.65 12.68382 12.64 12.38 12.362

(omega) 11 0.0119 0.01141 0.01117 0.01046 0.010

(omega) 10 -0.2302 -0.23294 -0.2300 -0.2205 -0.220

Additional

TotaIter 145 59 10 10 13

TimeIter 515 25 242 165 18

deviance 22367.8 22340.7

The rules for interpreting these tables (and the other ones in this chapter) are simple. The

easiest procedure is to refer to the formulas for the corresponding model, which employ the same

notation. The fixed regression coefficients (gammas) are given first, with (gamma)ij indicating the

effect of macro variable j on the regression coefficient of micro variable i. Thus (gamma)00 is the

fixed intercept, (gamma)i0 is the effect of the macro intercept on the micro variable i (i.e., the

regression coefficient of micro variable i), and (gamma)0j is the effect of macro variable j on the

micro intercept (i.e., the regression coefficient of the macro variable j). In the same way (gamma)ij

with both i and j not equal to zero is the regression coefficient of an interactive variable, the product

of micro variable i and macro variable j.

The second part of each table gives the random components. We use (sigma) for the

variance of the first level disturbance. The variances and covariances of the random part of the
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regression coefficients are the (omegas). The (omega)ii are variances of the random slopes, with

(omega)00 the variance of the random intercept. Also, (omega)i0 is the covariance between the

ran& in components of the intercept and the slope of variable i. In general, (ome, a)ij is the

covariance between the disturbances of the regression coefficients of variables i and j.

In the last part of each table we give some additional information. Totalter is the total

number of iterations, Timelier is the time per iteration. The product of the two is the total time

spent in the iterative process. The total number of iterations depends, obviously, on the precision

we impose. In the current version of this report some of this additional information is still

missing.

Our general rule here is to use the defaults, adjusted in such a way that the programs seem

to converge with about Nual precision. Generally it is difficult to do this in a completely

satisfactory way, for the reasons mentioned above. GENMOD has two stopping criteria: one at

the absolute change and one at the relative change in the parameters. The others have as a stop

criterion the absolute change in the parameter estimates. HLM has another stop criterionit uses

the (restricted) likelihood function. In some of the tables, but not all, we also give values of the

likelihood function or the deviance at the optimum. Tables la and 1 b are computed on a IBM/PC

80286 (6 Mhz); the results of Table lc were computed on a much faster 80386 (20 Mhz) machine.

This explains the smaller number of seconds needed for each package (Timelier) per iteration. The

IBM/PC 80286, although the slowest, is used throughout this chapter since it is the machine most

commonly available to researchers. The time comparisons also include compiler and overlay

effects.

Table la shows that the outcomes of comparable programs are the same up to two

decimals. Remember that the convergence is not comparable in all cases because the programs

sometimes use different stopping criteria. Another difference is that the first three programs use a

restricted maximum likelihood method, while the last two use full maximum likelihood. This is

also the difference between ML2(R) and ML2(F), since ML2 offers a choice between the two
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estimation procedures. The difference in the solutions that the different estimation methods

produce (R or F) is clear in all tables in this chapter. The difference is more pronounced in small

data sets than in large ones, and in complicated models with random slopes than in simple models

with only a random intercept. Compare the solutions for RML and FML of the larger SIMS data

set with tho smaller GALO data reported in the next paragraph. These data sets are 3691 students

in 190 schools and 1290 students in 37 schools, respectively. Also compare the solutions for the

simple model in Table la with the more complicated model in Table lb in this section and Table 2a

with Table 2b in the next paragraph.

If we compare times for the 286 machine we see that VARCL and HLM are clearly the two

fastest programs for simple models (with only a random intercept), as shown in Table la (and

Tables 2a and 4a in the next paragraphs) The time needed to mach the convergence criterion in the

more complicated models with random slopes, shown in Table lb ( and Table 2b and Table 4b in

the next paragraphs), is many times larger (from four titnes more for GENMOD; as much as forty

times more for HLM). VARCL is still by far the fastest, and GENMOD is by far the slowest, but

the HLM program is fairly slow, slower than ML2(R) in most instances. The faster programs for

fitting complicated models are the two that use FML ( i.e., VARCL and ML2[F]). We have also

run VARCL on the Mac II (Language Systems FORTRAN) and on the Sun 3/280 (FTP

coprocessor, f77 compiler). On the Mac U each itetation for the random intercept model took 4

seconds; on the Sun 3 each took seconds (the last runs included some time to write to the terminal).

The random slope model took 5 seconds per iterations on the Mac and 4 seconds on the Sun. The

number of iterations and the solution were the same as those in Tables 1 a and 1b.

3.2.2 GALO

These data were collected from 1290 students in 37 schools in the city of Groningen (see

De Leeuw and Kreft, 1986, or Kreft and De Lecuw, 1989). For each pupil the individual level

independent variables were gender (SEX), IQ, and occupational level of the father (SES). The

dependent variable ADV represented teachers' advice on the most appropriate form cif secondary
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education (scaled as a continuous variable). There was no macro variable.

Thewithin-groupmodelwas

(ADY)1=1}0i+Au(SEX)1+A2j(1Q)i+h(SES)i+gi,

andthebetween-groupmodel

00j = 700 + a0j,

Iij = filj
A2j = 720 +

43j = 730 + El3j.

The basic results for the random intercept axe found in Table 2a, results for the random slope model

are found in Table 2b.

Table 2a: GALO data, random intercept model

GENMOD ELM* ML2(B) ML2(F) VARCL

FixedPart

(gamma)00 -4.6738 -0.0325 -4.6740 -4.6770 -4.6766

(gamma)10 -0.0901 -0.0901 -0.0901 -0.0903 -0.0903

(gamma)20 0.0804 0.0804 0.0804 0.0805 0.0805

(gamma)30 0.1487 0.1486 0.1488 0.1489 0.1489

RandomPart

(omega) 0.9074 0.9075 0.9075 0.9053 0.9053

(omega)U0 0.0489 0.0488 0.0488 0.0466 0.0466

Additional

TotaIter 11 11 3 4 5

TimeIter 12 2.5 34 19 3

deviance 3601.77 3569.61

* For HLM all variables were centered around their grand means .
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Table 2b: GALO data, random slope model, no macro variables

GENMCD HLM* ML2(R) ML2(F) VARCL

FixedPart

(gamma) 00 -4.5393 -4.5361 -4.5290 -4.5280 -4.6195

(gamma) 10 -0.0600 -0.0605 -0.0592 -0.0605 -0.0686

(gamma) 20 0.0783 7.8263* 0.0781 0.0781 0.0793

(gamma) 30 0.1497 0.1499 0.1519 0.1520 0.1497

RandomPart

(sigma) 0.8786 0.8793 0.8824 0.8818 0.8846

(omega) 00 0.7391 0.7206 0.6569 0.5768 1.1230

(omega)11 0.0422 0.0402 0.0376 0.0339 0.0280

(omega)22 0.0002 1.5321* 0.0001 0.0001 0.0000

(omega) 33 0.0011 0.0009 0.0000 0.0000 0.0000

Additional

TotaIter 214 772 13 15 13

TimeIter 75 11 217 167 11

deviance 3578.36 3559.03

* Coefficients are based upon IQ 100.

These tables show more discrepancies in the solutions produced by the different programs

(R or F) than we noticed in Table 1. Particularly evident are the discrepancies in Table 2b, where

the more complicated model with random slopes is fitted. However, the deviant behaviorof HLM

with respect to the intercept in Table 2a is an artifact of our own data manipulation. To get HLM

started we had to center all variables around the grand mean (c .ntering of the independent variables

only also would have done the trick, as we will discuss later). Use of the raw data set was not

possible in this case Ind ended in an error message which contained the following:

At least some subset of the units must have sufficient data to

permit OLS estimation within groups to generate starting values.
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One of the following problems or combination of problems has

occurred in every unit:

1. No variation in the outcome measure;

2. No variation in one or more of the within-unit explanatory

variables;

3. A singularity in within-unit data matrix for each unit.

We suggest that you carefully examine for each group the sums of

squares and cross products among the within unit variabies. If

these appear OK, try centering each of the within-unit explanatory

variables around the grand mean. Since a condition check on XIX

is included, near singular but technically invertible matrices are

excluded from the starting value routine. Centering around the

grand mean should solve this problem.

According to this message, all 37 groups were deemed to have singular cross-product

matrices, and no data were left to start the iterations. The authors suggest that transforming

predictors to deviations from the mean may solve the problem. It did indeed solve the problem,

because HLM ran nicely after this transformation was performed. Centering of all the variables

gave us the solution reported in Table 2a Since centering in this case clearly violated the

invariance considerations (see section 1.2.4.), we looked into it somewhat deeper. The results are

given in ;Ole 3. The problem, we found out, was not the data set, but the conditioning test used

by HLM. The authors are aware of the problem and will correct it in the next release.

Looking at the different solutions given by HLM in Table 3, the most visible changes are

that of the intercept, from negative -4.53 to positive +4.06, and that of the correlation between the

intercept (base) and the slope of IQ, from negative -.9846 to positive +.4168. A lower correlation

often means a faster convergence and a more precise estimate of the parameters. For the same

reason the VARCL starts its calculations with deviation scores, but recalculates the estimates back

to the original values for raw data scores after convergence. Since HLM starts with the raw data,
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the user is sometimes forced to center the scores to obtain a solution. But the reason for using

deviation scores instead of raw scores in our case was related to the different range of the

variables, since IQ has a range of 60 to 130, while the other two variable3 (SEX and SES) have a

much smaller range. To get a solution for our GALO example, it was sufficient to make the range

of the variable IQ smaller and thus more equal to the scale of the other variables (SEX with two

and SES with six integer categories).

Table 3: GALO data, HLM results with different scalings of IQ

IO/10 IQ/100 IODev IndVarDev AllVarDev

.FixedPart

(gamma)00 -4.5390 -4.5420 3.5190 4.0660 -.0682
(gamma) 10 -.0604 -.0599 -.0611 -.0604 -.0603
(gamma) 20 .7830 7.831 .0783 .0783 .083
(gamma) 30 .1496 .1497 .1493 .1496 .1496

RandomPart

(sigma) .8786 .8782 .8783 .8785 .8785

(omega) 00 .7551 .7676 .1859 .1328 .0532

(omega)11 .0411 .0424 .0421 .0411 .0415

(omega) 22 .0155 1.559 .0002 .0002 .0002
(omega) 33 .0012 .0011 .0010 .0012 .0012

Additional

TotIter* 101 99 116 103 98

Groups 36 37 36 36 36

Correlation** -.9846 -.9833 -.9355 .4191 .4168

Deviance 3583.20 3578.60 3587.79 3587.81 3587.81

* Stopping criterion is 0.00005.
** Corr is correlation between St (BASE) and S2 (IQ) .

The results of the different manipulations are shown in Table 3. The first column of this

table shows a solution with IQ divided by 10, the second with 1Q divided by 100, the third with IQ

in deviation from the grand mean (which makes the range of the IQ-variable much smaller), and the
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fourth with all regressors in deviation from the grand mean. In the last column all variables are put

in deviation of their respective grand mean (as we did in Table 2a), and as a result, the intercept is

close to zero. In the first two columns of Table 3 the interpretation of the intercept is equal; it is the

value for the dependent variable (advice) when the values of the independent variables (SES and

SEX) are zero. Since SES and IQ are never zero, this situation does not exist. The interpretation

of the intercept in column three is diffferent: When a student has a zero SEX (male) score, a mean

IQ, and a zero SES (an unrealistic assumption), the predicted advice will be 3.5190 (the value of

the intercept). The fourth column predicts a value of 4.0660 for advice for a student scoring

average on all three independent variables. The changing values tor the slope of IQ in Table 3 over

solutions, (gamma)20 and (omega)22, are due to the different scalings of IQ. The changes in the

variance of the intercept, omega(00), and the changes of the correlation in the same table can easily

be proven to be the result of using deviation scores instead of raw scores. These changes do not

cause the conclusions based on one of these solutions to differ.

Researchers may prefer centering in some form because of the ease of interpretation. Some

other reasons for centering (around the group mean in that case) are discussed by Raudenbush

(1989a,b), Longford (1989b), and Plewis (1989). We do not enter this discussion, but only show

the differences in interpretation of the intercept.

We also illustrate one tricky effect of speed comparisons between machines. Let us first

determine what VARCL does with GALO data on the Sun 3/280 (using Sun's FTP floating-point

accelerator, compiled with the standard f77 compiler). The programs were rim using a 1200 baud

serial connection to a Mac II, at a time when there was not much activity on the system. VARCL

took 14 seconds between the definition of the maximal model and the output of du- sample means,

which is the stage in which the data are read and the sufficient statistics are computed. This time

included waiting time for one user response and sending some output through the serial line.

Computing initial estimates took 6 seconds, and the four iterations of the random intercept model

took 11 seconds. For the slightly more complicated model in which the variances of the slopes and

the covariances of the slopes with the intercept were nonzero, we needed 8 iterations and 36
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seconds.

In a second run on the Sun 3/280, at about the same time of day, we first made a file that

contained answers to all the questions asked by VARCL and made the program take its input from

the file. Moreover, all output was also written to a file. This meant that no human reactions and no

slow serial lines were involved; all input and output was done locally (time reading from and

writing to disk were still included, of course). The improvements in time were dramatic. Input

took 2 seconds, computing initial estimates only took one second, and all 4 iterations for the

random intercept model were completed within the same second. For the more complicated

random slope model, the 8 iterations took only 3 seconds.

3.2.3 GRAY

These are data on 864 students in 16 inner city schools in London (see Aitkin & Longford,

1986). We used two individual level variables, gender (SEX) and test score (VRQ). Again there

was no school level variable, and we used random slope and a random intercept model.

The within group-model was

MEM; = Poi + au(SEX); + Azi(VRQ); +

and the between-group model was

tiOj ='100 + boj9

Au = '110 + A1j,

ii2j = Y20 + rbj

Table 4 gives results for the random intercept and random slope models. Since HLM did

not run on the raw data again, we used data in which all variables were centered around the grand

mean. The intercept was close to zero as a result.
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Table 4a: GRAY data, random intercept model

GENMOD HLM* ML2 (R) ML2(F) VARCL

TocedPart

(gamma) 00 -60.7358 -0.0274 -60.7400 -60.7700 -60.7690

(gamma) 10 0.9079 0.9080 0.9079 0.9102 0.9101

iojamma)20 0.8243 0.8243 0.8243 0.8246 0.8246

RandamPart

(sigma) 94.0966 94.0991 94.1000 93.8900 93.8852

(omega) 00 2.0370 2.0281 2.0370 1.7790 1.7790

Additional

TotaIter 27 4 5 4 5

TimeIter 3 1 17 10 2

deviance 6396.99 6387.44

* For HLM all variables were centered around their grand means.

In Table 4b we used another option in order to get HLM running: We divided the IQ

variable (VRQ) by 100. As a result, the estimate of the slope gamma(20) was 100 times larger and

the estimate of (omega)22 was 10000 times larger than it was for the other programs. Taking this

into account, we see that the solutions of the five progams are very close, with the main difference

found between the RAIL and FML programs and, for omega(11), between the two ML2 programs

and the rest. Again, the largest difference between packages was in speed and number of

iterations. A slightly different version of these data, with 907 students in 18 schools, was also run

with VARCL on the Sun 31280 and the Vax 111750. The random intercept model took 5 iterations

and 18 seconds (Sun) or 25 seconds (Vax); the random slope model took 8 iterations and 29

seconds (Sun) or 42 seconds (Vax). Both Sun and Vax were measured through a 9600 baud direct

connect line to a Mac H. Solutions were the same as in Table 4.
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Table 4b: GRAY data, random slope model, no macro variable

GEMOD HLM* ML2 (R) ML2 (F) VARCL

FixedPart

(gamma)00 -61.2623 -61.2634 -61.3700 -61.2700 -61.4642
(gamma) 10 0.7939 0.7936 0.7755 0.7857 0.7703
(gamma) 20 0.8305 83.0510* 0.8319 0.8309 0.8328

RandomPart

(sigma) 91.4333 91.4273 91.5400 91.4800 91.3461
(omega)00 160.3000 160.3386 144.8000 124.5000 143.8160
(omega)11 0.5124 0.5432 0.0000 0.0000 0.4740
(omega)22 0.0176 176.5044* 0.0183 0.0160 0.0170

Additional

TotaIter 647 301 8 6 12
TimeIter 9 3 81 63 3.3

deviance 6373.98 6374.77

* Coefficients are based upon VRQ/100.

3.2.4 OSHEA

The data in this section were provided by David O'Shea, Grak!..late School of Education,

UCLA. Individuals were 4313 UCLA graduates working in 12 different industries (elementary or

secondary school; college / university / technical institute / professional school; retail / wholesale;

human services organization; local government; other business or service establishments;

commerce / insurance / finance / real estate; U.S. military service; agriculture / mining; US

government / civilian employee; manufacturing / construction; transportation / public utilities).

Variables on the individual level were gender (SEX), parental income (PI), selectivity of the major

(SEL), education (EDU), GPA, occupation (OCC), incentive (INC), hours/day (HD), Q14B, and

human capital (NC). The dependent variable was income. There were no variables on the group
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level. The example is interesting, because there were many predictors and large group3.

Thewithingroup-modelwas

(iliCOME)i = Doi + fiti(SEX)i + + h(SEL)i+ lisi(EDU)i+ A5i(GPA+

+ ei6j(OCC)i+ k(INC)1+ Agi(HD)i+ figj(Q14B)i+ Aiojalch

and the between-group model allowed for two random coefficients

110j = YO0 a0j,

Aij=Yioij'+

The other coefficients were fixed (i.e., As = yso for s=2,...,10).

Table 5: OSHEA data, random intercept model

GENMOD HLM* ML2**(R) ML2**(F) VARCL

FixedPart

(gamma) 00 -2.4171 -2.4134
(gamma) 10 -1.4465 -1.4486
(gamma) 20 0.0200 0.0200
(gamma) 30 0.2324 0.2326
(gamma) 40 1.0453 1.0446
(gamma) 50 0.2656 0.2655
(gamma) 60 0.6132 0.6128
(gamma)70 0.8990 0.9007
(gamma) 80 0.4070 0.4073
(gamma) 90 0.7936 0.7933
(gamma)10,0 0.2758 0.2757

RandomPart

(sigma) 11.4931 11.4689
(omega)00 6.0550 5.4370
(omega)11 1.1400 1.0220

Additional

TotaIter 6 7

Time iter 7.5 4.2

* For HLM we got a runtime error (M6101: Math floating point error: invalid
centering)
** ML2 gave the error message Worksheet Full

6
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Only GFNMOD and VARCL reached a solution for this data set. We do not precisely

know why. The problem was caused by either the combiration of a large sample and a large

number of variables, or the large number of observations within a group. The model that was

fitted was fairly simple: only one random slope and no second level interaction variables. At the

same time, the number of observations within groups was large, which made the number of

iterations needed to reach the stop criterion small.

3.2.5 VOCAL

The individuals in this data set were 5310 students in 70 secondary schools in the city of

Amsterdam in 1975. Individual level predictors were SEX and CITO. (CITO is a school

attainment test taken at the beginning of secondary education.) The dependent variable was

CAREER, which was a scale based on a multiple correspondence analysis of the complete school

career. For details we refer to Kreft (1987). A school-level predictor was TYP (which takes five

different values, one for each of the five major types of secondary education in The Netherlands).

Although this is not entirely appropriate, TYP was not used as a categorical variable, but as a

continuous variable.

The model we used in this study was

ccARFP,R)1= Doi + aq(SEX)i + h(CIT0)1 +

and the full between-group model was

110j = YO0 YO1CrYP)j a0j0

= Ylo +1111('nn) + Aljo

42j = Y20 + 121(TYP)j kj.
As usual, we fit a random intercept version,

1301= Y00 4101(TYP)j + rkj

lj = Y10 akj

112j = Y20 +

and a random slope version,

7
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A0j:2700+?Ol(Y1')Y1-60j1

Alj =7101

A2j Iv" 720 +1'21(TYP)j + 62j.

Results are given in Tables 6a and6b.

Table 6a: VOCAL data, random intercept model

GENMOD HLM* 1.22(R) ML2 (NR) VARCL

FixedPart

(gamma)00 1.2360 1.2360 1.2360 1.2340 1.2326

(gamma)01 -.2742 -.2743 -.2742 -.2731 -.2727

(gamma)10 -.0798 -.0797 -.0797 -.0797 -.0796

(gamma)20 -.3229 -.3229 -.3229 -.3232 -.3231

RandomPart

(sigma) 0.3995 0.3995 0.3995 0.3995 0.3995

(omega)00 0.3484 0.3480 0.3483 0.3392 0.3563

(omega)10 0.0071 0.0070 0.0071 0.0068 0,9070

(omega)20 0.0962 0.0962 0.0962 0.0946 0t0960

Additional

TotaIter 109 101 17 12 11

TimeIter 145 13 567 413 12

Deviance 10628 10593

It is clear from the Tables 6a and 6b that the packages gave very similar results, for fixed as

well as random parts, for the first level as well as for the interaction coefficients. The main

difference was again between restricted and full and between VARCL and the rest, but the

differences wen small. We expected that much, since the data were well conditioned and a large

number of observations within and between were present. The programs did not behave as nicely

in the following data set, which was substantially smaller.
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Table 6b: VOCAL analysis with TYPE as macro variable

GENMOD HLM ML (R) ML2 (NR) VARCL

FixedPart

(gamma)00 1.5041 1.5040 1.5040 1.5020 1.5026
(gamma)10 -.0981 -.0981 -.0981 -.0981 -.0981
(gamma)01 -.3728 -.3728 -.3723 -.3723 -.3722
(gamma)20 -.1221 -.1221 -.1221 -.1221 -.1219
(gamma)21 -.8340 -.8340 -.8350 -.8350 -.8360

RandomPart

(sigma) 0.4016 0.4C16 0.4016 0.4015 0.5016
(omega)00 0.3591 0.3590 0.3590 0.3480 0.1650
(omega)20 0.0899 0.0899 0.0899 0.0869 0.0870

Additional

TotaIter 8 11 6 6 14
TimeIter 81 10.2 454 256 8.8

Deviance 10632 10599

3.2.6 WEBB

This set comprised data from 96 students (grades 7 and 8) in three average-ability Los

Angeles junior high schools. They were in 35 small groups. The example (data provided by

Noreen Webb, Graduate School of Education, UCLA) is interesting, because the number of

groups was relatively large, and thus the number of individuals per group was small. Individual

level variables were posttest (POST), which is the dependent variable, pretest (PRE), and an

interaction variable (NOA: asldng a question and not getting an answer). For further details and

discussion we refer to Webb (1982).

The group level variable was the pretest means in the group (PREM). The model was

(ffaDi = Doi + 111.1(PRE)i + j2j(NOA)1 + ;,
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and the between-group model was

lij
§0j = YO0 YOI(PREM)j kj

= Yio y11(PRE1V) j Lljo

A2j = Y20 + Y21(PREKj

After some preliminary exploration we decided on a model with both fiii E 0 (coefficient of PRE is

non-random) and yi = 0 (no effect of pretest mean on pretest slope). Thus the single-equation

specification of the model was

(EOM = Yoo YogREM)j YHAPRE)i + y20(N0A)1 + 721((N0A)i(PREM)i) +

+

Results are given in Table 7b. Table 7a is the random slope model, which has in addition (21 = 0

(no effect of pretest mean on NOA slope).

Table 7a: WEBB data, random slope model, no macro variables

GENMOD*** HLM* ML2(R) ML2(F) VARCL

FixedPart

(gamma) 00 19.6895 20.5900 20.5500 20.3772

(gamma) 01 -1.2115 -1.2050 -1.2220 -1.1761

(gamma)10 3.3030 3.2150 3.2220 3.2191

(gamma) 20 -3.9235 -4.1170 -4.u640 -4.1021

RandomPart

(sigma) 26.2841 26.2400 25.6100 25.8873

(omega)00 40.8725 44.5400 42.7800 2925.1110**

(omega)20 4.0382 4.6570 4.4000 3.7100

Additional

TotaIter 200 17 26 13

TimeIter 4.3 8.2 5.8 4.3

deviance 620.2 612.0

* Stopped at 200 iterations.
** Obviously a bug.
*** GENMOD does not work because of singularities
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In this example of group interaction within school classes, the number of observations per

group was very small. The number of variables outnumbered the number of observations per

group. Traditional models that use LS estimation cannot estimate parameters within groups .

GENMOD did not run either and gave an error message about singular matrices.

Table 7b: WEBB data, random slope model, PREM macro variable

GENMOD*** HLM* ML2(R) ML2(F) VARCL

FixedPart

(gamma)00 10.9277 11.6600 11.3500 12.0932
(gamma)01 0.2545 0.0764 0.0921 0.0171
(gamma)10 3.2786 3.3420 3.3540 3.3428
(gamma) 20 0.167" 0.1204 0.2575 -0.0959
(gamma) 21 -0.6824 -0.6723 -0.6823 -0.6423

RandomPart

(sigma) 25.8800 26.1700 26.3300 25.7877
(omega)00 43.4384 46.1800 43.8600 3000.8270**
(omega)20 4.4773 4.8680 4.4580 3.8280

Additional
TotaIter 200 26 168 13
TimeIter 5.3 J.5 6.4 4 /

deviance 619.9 611.2

* Stopped at 200 iterations.
** Obviously a bug.
*** GENMOD does not work because of singularities

3.3 Conclusions.

It is difficult to summarize the results of our numerical comparisons, but we shall try to

give the main conclusions. Some of them are trivial, such as the conclusion that some computers

are faster than others and the conclusion that writing directly to the screen or a disk file is faster

than sending data over telephone lines. But there are a number of conclusions that appear to be

.101
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quite useful.

EM algorithms for (co)variance component analysis are helpful, because they are relatively

simple to program (especially in array oriented interpreted languages such as APL, MATHLAB,

GAUSS), because they give monotone convergence, and because they always stay within the

boundaries of the parameter space. Thrte convergence can be tediously slow, especially for more

complicated models. 1114M uses Aitkin acceleration, which makes quite a 'arge difference, and we

believe that even better acceleration algorithms are possible (Jamshidian & Jennrich, 1990). The

convergence of GENMOD is sometimes intolerably slow. We are investigating the possibility of a

bug that causes this, although it is due in part to the very strict convergence criteria in GENMOD.

The scoring algorithm of VARCL will tend to give much faster convergence, although sometimes

various parameters of the process have to be adjusted because of singularity, boundary conditions,

negative eigenvalues, and divergence. We have observed sublinear convergence of VARCL in

various examples, probably a result of excessive damping of the upgrade. Using the results of

Lindstmm and Bates (1988) could very well produce a more robust implementation of the scoring

algorithm. MX 2 has an algorithm that is still somewhat of a mystery to us, but it works quite well

in almost all cases. Because all the data have to be kept in core, it cannot analyn really large

examples. We think that this a high price to pay for the relatively small gain in additional

generality.

In general, it follows from our analysis that two-level models with random slopes have

very complicated likelihood surfaces. Maximizing the likelihood is inherently a difficult problem

unless the model is approximately true and sample size is really large (in that case, OLS will give

very good starting values). We also think that there is much room for exploring alternatives to ML

such as the weighted least squares methods discussed by De Leeuw and Kreft (1986), which are

possibly somewhat more robust, or MLNQUE/MINVE methods (Rao & Kleffe, 1989).

Investigators (if the past is any indication) will tend to choose models that are too complicated (five

levels, with 10 variables on each level). This leads to impossibly difficult search problems over

the space of models and to impossibly difficult likelihooe maximization problems. None of the
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programs reviewed here can handle such problems gracefullysomething would be wrong if they

could.

We have found a variety of bugs in the programs. Some of them have been corrected,

some of them remain (such as the value of the likelihood function in GENMOD, or the test for

singularity in IILM), but none are very serious. All four programs tend to converge to the same

solutions, which is rather nice, although there are some unpleasant exceptions.

In our comparisons we have not addressed the question about the usefulness of the

statistical information: Are the likelihood ratios close to chi-squares? How accurate are the

standard errors? Do the estimates really improve the mean square error of OLS and WLS

estimates? Such questions are important, in fact more important than computational speed or a

friendly interface, but they require more complicated research. Once you know that hierarchies

e xist, you see them everywhere. Thus the applicability of the software seems almost unlimited.

This pleases the authors of the programs, who have no interest in pointing out limitations and

shortcomings of their products. We think that it is time to start sampling, resampling, and cross

validation studies to get a more realistic idea about the possibilities of the techniques.
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4. MULTIPATH.

The comparisons in this wpm together with the requirements of the "evaluafion of

primary education in The Netherlands," indicate that from the theoretical and practical point of

view, a number of developments in multilevel analysis are very desirable. We shall therefore put

them on the agenda of our project. Some of our concerns have to do with improving and studying

existing software; some of them address the development of a new software program,

MULTIPATH.

The existing programs for multilevel analysis reviewed in this report must be compared in

various ways; a numerical comparison is particulary needed. There are some unresolved questions

we have not answered, and we suspect the presence of bugs, which seem to affect the programs

when they are run through different compilers. As far as VARCL and GENMOD are concerned,

the code of these programs is in the public domain, and we shall have ample opportunity to review

these programs in more detail. The situation for HIM is a bit more complicated because the

program and manual are now published by a software house and the code is no longer in the public

domain. For ML2 we do not have any codc, and we can only let the authors know which

enhancements we would like to see.

In regard to the loss function, we have seen that although all four packages use ML, they

differ in to what they apply the ML prinAple (either to the raw data, as in FML, or to the least

squares residuals, as in RML). This could be taken a bit further, perhaps, especially in models

with more than one level, bccausc there are many ways in which residuals can be defined.

Moreover, we have seen that the likelihood function can be expressed in various ways, and we

shall look further into comparison of the resulting formulas (both from the computational and the

interpretational point of view). We also emphasize here that among statisticians, ML methods for

variance component analysis art not necessarily thought to be optimal. The books by Humak

(1984) and by Rao and Kleffe (1989) concentrate on MINQUE and MINVE and related methods,

methods that have exact small sample optimality properties.

1"4
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As far as algorithms are concerned, it seems that our (admittedly preliminary) results so far

suggest that EM algorithms have limited usefulness, unless a suitable accelerator is provided.

Accelerating EM is an active area of research (Meilijson, 1989, Jamshidian and Jennrich, 1990),

and we hope to experiment somewhat using GENMOD, Newton-Raphson1 and scoring

algorithms seem to work quite well, but they have the disadvantage that they are general purpose

algorithms that do not take the structure of the problem into account. For this reason, for instance,

they can produce variance estimatm of less than zero (although it is not difficult to prevent this by

suitable parametrization). In that sense both EM and the iteradve weighted alternating LS methods

of ML2 are better.

We need more generality for the project we are dealing with. In particular, we need more

levels, and we need a more general class of models. This will be incorporated in the design of the

program MULTIPATH. Because of obvious interpretational difficulties, we think that it is unwise

to go beyond three levels; however, in principle, software can be written that handles an unlimited

number of levels. For the class of modelr we shall restrict ourselves in MULTIPATH to recursive

path models with observed variables. It is not too difficult to make multilevel versions of general

structural equations models (in fact we already have the theory for this), but we think that this

involves a step that is too big. General structural equation techniques already have their share of

problems, and compounding these by overlaying a multilevel structure seems too risky.

All four programs have command-line interfaces and run on XT and/or AT types of
computers. It is not too difficult (although rather time-consuming) to replace these interfaces by

character-based menu-driven or even graphical interfaces, using existing libraries for various
machines. To maximize portability we will write the program MULTIPATH in the C language, and

we will make a portable command line version (which will run on PC, PS, Mac, VM/CMS

mainframes, and Unix boxes). If there is enough time and money, we shall try to build versions

for X-Windows, MS-Windows, 0S2, and Mac Toolbox, using a portable graphical interface
library such as XVT.

' Raphson was Newton's computerprogrammer.

05
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