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Abstract

New multivariate permutation tests are proposed which may be

effectively substituted for Hotelling's T2 test in

situations coLtonly arising in educational research. The new

tests (a) are aistribution-free, (b) provide tests of

directional as well as nondirectional hypothestls, (c) may be

tailored for sensitivity to specific treatment effects, and

(d) may be computed when the number of variables is larger

than the number of subjects. Comparisons of the power of the

permutation tests to that of Hotelling's T2 suggest

substantial advantages in a number of situations. Results

are interpreted in terms of applications to educational

research in which multivariate research questions are posed

but the number of units for analysis are small.
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Power Properties of Multivariate Permutation Tests

Relative to Hotelling's T2 in Small Samples

The advantages of multivariate statistical tests,

relative to univariate hypothesis tests have been well

documented in the methodological literature in education and

related fields of study (e.g., Stevens, 1986; Huberty &

Morris, 1989; and Ottenbacher, 1989). However, limitations

of popular multivariate tests have also been recognized.

Practical problems associated with multivariate tests

arise in many research applications when the number of

observations is limited. A commonly encounterei small sample

situation is when classrooms or schools are used as the unit

of analysis in applied research or evaluation studies.

Issues and strategies related to units of analysis have been

described in Blair and Higgins (1986), Hopkins (1982), and

Barcikowski (1981). The Zirst problem that arises is the

fact that the power of multivariate tests in small

sample research is often limited (Stevens, 1980), and in

extreme circumstances (i.e., when the number of observations

is less than the number of variables) common multivariate

test statistics cannot be computed. Secondly, the assumption

of multivariate normality, which underlies most multivariate

test statistics, is often unjustified with educational data

(Micceri, 1989). Although the test statistics may be robust

to violations of this assumption, the number of subjects

required to be certain of this robustness is of little

reassurance to researchers dealing with small samples

(Everitt, 1979; Olson, 1974). Thirdly, multivariate

procedures are formulated to detect any departures from the

null hypothesis, and may therefore lack power to detect

4
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spegifi2 departures (Meier, 1975; O'Brien, 1984; and Pocock,

Geller & Tsiatis, 1987). Finally, multivariate tests are

inherently nond1rectional (two-tailed) and do not provide

the power advantages obtained through the specification of a

directional hypothesis test when the researcher can

formulate such a directional hypothesis.

The objectives of this research are to present an

alternative statistical methodology to popular multivariate

testing procedures and to investigate the power properties

of this method relative to a popular multivariate test (the

paired semi:0es Hotelling's T2). The alternative method,

based upon permutation tests, has the potential to overcome

the limitations described above. Moreover, the general

methods described in this research are easily extended to

the independent samples Hotelling's T2. The remainder of

this paper consists of a description of the proposed

permutation tests, a presentation of the results of a study

designed to compare the power of the new tests to that of

Hotelling's test, and a brief consideration of the

implications of these tests for educational researchers.

Proposed Tests

The theoretical bases of permutation tests (also known

as the method of randomization) were developed by Pitman

(1a37) and Fisher (1966). Univariate permutation tests are

relatively well-known and have been described in detail by

Bradley (1968) and Noreen (1989). In cont',:ast, extensions of

these procedures to multivariate data analysis have been

limited (Boyett & Shuster, 1977).

In general, the sampling distribution of a multivariate

permutation test statistic is obtained by computing the

desired statistic on all possible permutations of the data

t)
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vectors obtained from the units of analysis in the research

study. All such permutations are equally likely under the

null hypothesis of no treatment effect. The probability,

under a true null hypothesis, of obtaining the value of the

test statistic calculated from the sample is computed by

counting the number of such statistics that exceed or equal

that obtained value, and dividing this count by the total

number of permutations.

More formally, xi =(xil, lxip) and

yi =(yil, lyip) are p-dimensional vectors denoting

observed values from the ith subject under control and treatment

conditions, respectively, and di =(xi/-yil, lxip-yip)

denotes the p-dimensional vector of differences that represents

change between the treatment and control conditions.

Finally, -di represents the negative of vector di (for

example, if +di = (-1, 2, 4), then -di = (1, -2, -4).

The probability level associated with a test statistic

t, based on the permutation principle, is computed as

follows. For each of the 2n possible assignments of J. or -

to the n vectors di, i = 1, n, which are equally

likely to occur under the null hypothesis, compute the value

of the test statistic. If to is the value of the statistic

computed on the original data, and N(to) is the number of

permutations in which the value of t is greater than or

equal to to, then the observed (one-tailed) significance

level of the test is

p = N(to) / 2n

Computations of the 2n test statistics may be

prohibitive with moderLte sample sizes and modern computers.

For this reason, approximate permutation tests (Edgington,

1969) are used in the power study to be described. The
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approximate test differs from the exact test in that rather

than computing all possible 2n test statistics, a large

random sample of such statistics are computed. In the power

study to be described, 1000 such statistics were computed

for each permutation test. The associated probability for

the approximate permutation test is computed as

p = N(t0) / M

where M is the number of random permutations. The difference

between the exact and approximate permutation methods is

small when the number of random samples, M, is large. The

specific multivariate test statistics examined in this study

are described below.

The first statistic, tsum, is defined as

tsum = E tj

j=1

where t . denotes the usual one sample t statistic computed)

on the jth element of d. This statistic was examined in one-

tailed and two-tailed versions that will be referred to as

tsuml and tsum2, respectively.

The second test statistic, tisumi, is defined as

tIsuml = E Itjl

j=1

where Itjl denotes the absolute value of the one sample t

statistic computed on the jth element of d. In contrast to

the tsum statistic, tisumi yields only a two-tailed test.

7
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The final test statistic proposed, tmax, is defined as

tmax = .1tj

where tj' is equal to the tj (j = 1, p) that is

greatest in absolute value. This statistic was examined in

one-tailed and two-tailed versions that will be referred to

as tmaxl and tmax2, respectively. .

The test statistics described above are designed to be

sensitive to different forms of departure from the null

hypothesis. Because tsum is the summation of the individual

univariate t statistics, it should be most efficient in

detecting treatment effects that bring about general

increases or decreases across all p variables. Note,

however, that tsum would not be sensitive to effects that

bring about increases in some variables and decreases in

others, because the differences in algebraic signs of the

univariate t statistics would tend to cancel. For this type

of treatment effect, the test statistic tisumi should be

notably more sensitive. Finally, tmax is designed to detect

treatment effects that impact only a small subset of

dependent variables, such as might be seen when student

attitudes are affected by a treatment but student

achievement is not affected. The relative success of these

strategies is assessed in the sections that follow.

Method

The Monte Carlo study described in this section was

designed to compare the power of the five multivariate

permutation tests to that of Hotelling's T2 under four

treatment effect models. Data were generated by sampling

from a multivariate normal distribution with correlations
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between any two variables j and j' given by

rjjl = 1 - (j-j')(1/p) j' = 11 P; j

where p represents the number of variables in the data set.

In this study, p took the values of 4, 8, 161 21, 32, and

48. Data were generated to simulate the di defined above

with n taking the values of 10 or 25. The code for this

Monte Carlo study was written in FORTRAN making use of a

number of subroutines from the International Mathematical

and Statistical Libraries (IMSL, 1987).

Four treatment effect models were examined in the

study. In the first treatment model a constant treatment

effect (+.5a) was added to all variables, where a represents

the standard deviation of the marginal distributions. This

simulates an effect in which all dependent variables are

increased by the treatment. From the point of view of an

ANOVA design, this effect represents a main effect due to

treatment.

The second treatment model was obtained by adding .5a

to half of the dependent variables and subtracting .5a from

the other half. This represents an effect in which some

dependent variables are affected by the treatment in a

positive direction, while others are affected in a negative

direction. For example, a hypothetical treatment may yield

an increase in student achievement, but a decrease in

student attitudes. From the perspective of ANOVA, this

represents a disordinal interaction.

The third treatment model was obtained by adding .5a to

one-fifth of the dependent va':iables and leaving the other

four-fifths unchanged. This represents an effect in which

only a small proportion of the dependent variables are

affected by the treatment. An example in educational
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research is a hypothetical treatment that affects only some

measures of student achievement (perhaps students'

acquisition of basic skills) but does not affect students'

higher-order thinking skills or attitudes.

The last treatment model examined was obtained by

adding (j)(.5/p)a to the jth dependent variable, with j

taking the values 1 to p. This represents an effect in which

all of the dependent variables are affected by the

treatment, but the magnitude of the effect is variable. In

educational research, a hypothetical treatment may strongly

affects students' acquisition of basic skills, but affect

students' higher-order thinking skills and attitudes to a

much lesser extent. From the perspective of ANOVA, this

represents an ordinal interaction.

In addition to the four treatment effects studied, a

null model was investigated. Because the permutation tests

are dis,xibution-free and the assumption of population

normality that underlies Hetelling's T2 test was met, this

model served to verify the FORTRAN program used to carry out

the simulations.

Simulations were carried out for situations in whih

the sample sizes were 10 and 25, and the number of dependent

variables ranged from 4 to 48. For this study, the sampling

distributions of the p ,autation strttistics (and, hence, the

decisions to reject or fail to reject the null hypothesis)

were based on 1,000 random permutations of each sample. The

Type I error and power estimates were based on 5,000 samples

from each experimental condition. Two-tailed tests of

significance were carried out at .10, .05, and .01 levels

for all of the test statistics. In addition, one-tailed

tests were conducted at the same levels for the test

statistics tsum and tmax.
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Results

As expected, the Type I error rates (obtained under the

null model) were near nominal levels and are, therefore, not

shown. Because of similarities in the patterns of results,

only power results obtained for a = .05 are presented.

Figures 1 through 8 show power estimates plotted as a

function of the number of dependent variables for the

various tests obtained under the four treatment effect

models described above, and for sample sizes of 10 and 25.

Figures 1 and 2 show estimates obtained under the first

treatment model, in which the treatment effect was constant

for all dependent variables. All of the permutation tests

were more powerful than Hotelling's T2 test across all

numbers of dependent variables investigated. Note,

particularly, that the power of Hotelling's test declines

sharply as the number of variables approaches the number of

subjects. When the number of variables was 8 in Figure 1 or

21 in Figure 21 the power of Hotelling's test was only

slightly above a, demonstrating the near absence of

sensitivity to the treatment effect in this condition. Also
important is the fact that because n = 10 in Figure 1,

Hotelling's T2 could not be computed when the number of

variables was greater than 9. The corresponding effect

occurs in Figure 2 (n = 25), when the number of variables is

greater than 24. There is, of course, no such constraint on

the permutation tests. In contrast to the pattern seen for

Hotelling's T2, the permutation tests show relatively stable

power across all numbers of variables. This stability, which

is seen in all of the figures, is attributable to the fairly

constant effect sizes used in modeling alternatives.

Finally, as would be expected in this treatment effect, the

one-sided permutation tests were more powerful than their

1 1
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two-sided counterparts.

Figure 3 shows that, for the disordinal interaction

type of treatment model, Hotelling's test was more powerful

than all of the permutation tests for the four dependent

variable analysis, but fell below tisuml, tmaxl, and tmax2

when the number of variables was increased. This pattern is

also seen in Figure 4 (n = 25) except that T2 remained more

powerful than tmaxl at its ui:per variable limit. Note also

in these two figures that tsuml and tsum2 have emost no

sensitivity to this treatment effect, because of the

canceling effect of opposite signs in the univariate t

statistics referred to above.

Figure 5 shows the results for the third treatment

model, in which only 20% of the dependent variables are

affected by the treatment. In this figurer T2 and tmaxl have

similar power and are most powerful for the four dependent

variable situation. When n is increased to 25 (Figure 6),

Hotelling's test is the most powerful in the analyses with

4, 8, and 16 dependent variables. The decline in the power

of T2 at its upper variable limit 'saves tmaxl and tmax2 as

the most powerful tests in this condition.

Figures 7 and 8 show that all of the permutation tests

are morn powerful than Hotelling's T2 test for all

situations examined in this treatment effect (the model

analogous to an ordinal interaction in ANOVA). The power

differences are especially substantial for the n = 25

situation (Figure 8).

Discussion

The multivariate permutation tests described and

investigated in this research are not advocated as general

substitutes for Hotellingls T2. Hotelling's test is familiar
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to researchers, is easily calculated with available

software, and h-ts power advantages under certain conditions.

However, multivariate permutation tests should be considered

as valuable procedures that can be employed in situations

where the T2 test is suspect or is not calculable.

Particularly notable is the characteristic decline in

the power of T2 as the number of dependent variables

approaches the number of subjects. The implications for

researchers using small samples is obvious. Small sample

situations that are encountered in education-L. research

include those in which the appropria-e unit of analysis is

the classroom or school, projects in which resources for

data collection are limited, and studies of relatively rare

populations (such as autistic children or teachers of

German).

Also of note is the fact that the proposed permutation

tests are distribution-free under the same condition that

the Wilcoxon signed-rank test is distribution-free

(population symmetry about zero). This condition is always

met if, under a true null hypothesis, pretest and posttest

samples are drawn from a common population (Bradley, 1968).

The distribution-free property is especially important in

small sample situations, where the reliance on the central

limit theorem is questionable.

Finally, the permutation tests are constructed to be

especially sensitive to specific types of treatment effects.

For research situations in which the nature of the expected

effects can be specified a priori, this aspect of the

multivariate permutation tests provides a surprising level

of statistical power with small samples and large numbers of

dependent variables.

Educational researchers face a variety of constraints

in the conduct of empirical investigations (e.g., obtaining

13
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the cooperation of research subjects and appropriate

authorities, applying experimental treatments consistently

and for a sufficient duration to obtain reliable outcome

estimates). Statistical constraints are recognized as

vitally important in careful research design, because many

conclusions drawn from the research results are based upon

the outcomes of appropriate hypothesis tests.

Researchers should choose research questions and

variables for investigation on the basis of substantive

theory and not on the basis of constraints imposed by

statistical models. The method of permutation tests is

proposed as a feasible alternative to common multivariate

statistical testing procedures which relaxes some of the

statistical constraints faced by researchers.

1 4
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