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Abstract

In 1955 Levine introduced two linear equating procedures for the common-
item nonequivalent-populatinns design. His two procedures make the same
assumptions about true scores; they differ in tems of the nature of the
equating function employed.

In this paper two parameterizations of a classical ccngeneric model are
introduced to model the variabhles in the Levine procedures for the external
and internal anchor cases. The models differ in the constraints imposed on
certain effective test length parameters, as well as assumplions made ahout
one covariance term. This modeling leads to simple expressions for true-score
variances, reliabilities, and the so-called "Angoff error variances."

Applying these two parameterizations of the classical congeneric model
with the Levine assumptions leads to general equations {(for both of the Levine
procedures and both the external and int.ernal anchor cases) that involve
ratios of the effective test length parameters, This presentation facilitates
interpretation.

The role of synthetic population welghts for both Levine procedures is
considered, along with an alternative interpretation of one of Levine's

procedures.
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Congeneric Models and Levine's
Linear Equating Procedures

Levine {1955) Introduced two linear equating methods for a design in
which two non-equivalent populations take different forms of a test with a
cammon set of equating items, or anchor. Levine referred to his two methods
as major-axis procedures. Angoff discussed these methods in his 1971 chapter

on Scales, norms, and equivalent scores in the second edition of Educational

Measurement. Angoff's chapter was reprinted in 1984 by the Educational

Teating Service. Other authors who have treated one or both of these methods
include Woodruff (1986, 1989), Kolen and Brennan (1987), Petersen, Kolen, and
Hoover (1989), MacCann (1990), and Hanson (1990).

Levine's methods make assumptions about true scores and error scores.
Consequently, to apply these methods, it is necessary to model the
relationships among observed, true, and error scores. In this paper, a
particular version of a congeneric model is employed in which the error
variances are assumed to follow classical assumptions. Actually, two
parameterizations of the model are employed--one that is associated with the
common items constituting an external anchor, and the other for an internal
anchor in which the common items are part of the full length forms.

For both of Levine's methods, this modeling leads to general egquations
that involve ratios of certain effective test length parameters. These
parameters aid in presenting and interpreting results. It is also shown that
Angoff's (1984, pp. 114-115) results for Levine's methods can be obtained from
the results presented hore.

The paper ends with a discussion of an alternative conception of one of
Levine's methods, followed by a consideration of other issues of interpreta-

tion and possible future research.



Terminology

Terminology employed with Levine's procedures has become somewhat
confused or, at best, inconsistent in recent years. In particular, Levine
originally distinguished between his procedures in terms of their presumed
appropriateness for equally reliable and unequally reliable tests. However,
Woodruff (1986), Kolen and Brennan (1987), and Hanson (1990) have all noted
that Levine's results can be derived without making any assumptions about the
reliabilities of the tests involved. Rather, the distinguishing difference in
the derivations of the procedures is that the so-called "equally reliable”
method is an observed-score equating procedure, whereas the so-called
"unequally reliable" method uses observed scores in a linear relationship
between true scores for the two forms. Here, therefore, to avoid perpetuating
the impression that Levine's procedures make reliability assumptions, the
procedures will be referred to as Levine's observed-score and true-score
equating procedures. (Admittedly, the phrase "true-score equating" i{s a bit
inaccurate because, as noted above, it is actually observed scores that are
used in a true-score relationship, but this inconsistency seems slight
compared to the potential misunderstanding inherent in the phrases "equally-
reliable" and "unequally-reliable.")

Also, as noted by Woodruff (1989}, a distinction can be drawn between the
results for Levine's procedures as expressed by Levine (19%5), and a
particular case of Levine's results that Angoff (1984) provides. In terms of
formulas, Levine's '"general" results and Angoff's version of levine's rosylts
can be distinguished by the fact that Levine (195%) typically expresses true-
s3core variance as observed-scorse variance times reliabi'ity, without
specifying a specific reliability coefficient, Ry contrast, Angoff's versions

of Levine's results are based on specific reliadbility coefficients that are
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derived using "Angoff's error variances" (see Angoff, 1953). 1In this paper,
 whenever there is the potential for confusion with respect to this
distinction, “Levine-Angoff" will be used to designate Ang “f's (1984) results
for Levine's methods. Largely, this paper deals with alternative and samewhat
more general derivations and presentations of the Levine-Angoff result.- a
presentation intended to aid interpretation.
Same Results for the Classical Congeneric Model

Let X and V designate observed scores for two tests or sets of items.
For the congeneric model, X and V are decomposed as follows:

X = Tx + Ex = (AXT + dx) + Ex and (1)

V“Tv’gv”("vT‘Gv)’Ev' (2)
A particilar version of the congeneric model arises when it is further
specified that

o’(Ex) = Axo’(E) and (3)

o’(Ev) = Avcz(E) . (4)
This special version will be called here the classical congeneric model. It
{s discussed by Feldt (1975), Feldt and Brennan {1989, pp. 111-112) and
Woodruff (1986), among others. The word "classical™ is used here to indicate
that the error variances are proportional to the "effective" test
lengths, Ax and xv . In this sense, this model {s closer to the traditional
classical test theory model than would be the case if Equatfons 3 and 4 did
not hold.

Discussed next are two parameterizations of this classical congeneric

model. These parameterizations differ with respect to constratnts imposed on
the A's and assumptions about c(Ex,Ev). The first case {s for tests X and V

disjoint and will be applied later to external anchor equati ng; the second
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case is for V included in X and will be applied later to internal anchor
equating.

Tests X and V Disjoint

Suppose that tests X and V are disjoint in the sense that they contain no
common items. To represent this case, we assume that errors have an
expectation of zero, all covariances between true and error scores are zero
and, since X and V are distinct,

c(Ex,Ev) = 0 . (5}
For identifiability purposes we impose the usual constraint
= . A
Ax+kv 1 (h}
(It {s also usual to impose the constraint 5x + Gv = 0, but doing so is not

required for the following derivations.)

For this model, the variances and covariances are easlly determined:

2 e 22pq2 . 2

0?(X) Axo (T Axc (E) , (7
o2(V) = Aio’(T) + Avc’(E), and (8)
a{X,V) = Axxvoz(T) . (9)

Further, letting & = X + V (recall that X and V consist of non-overlapping
sets of ftems) it is easy to show that

o*(AY = o*(T) + o?(E)

To derive Ax in terms of variances and covariances, note that

02 {X) + o(X,V)

A20%(T) + A _0%(E) + A X ¢g?(T)
X X XV

= Axf(kx + Xv)o’(T) + o0 (E)]

1l

Ax{o’(T) + 0?(E)]

a

A oo?(A) .
X



It follows that the effective test length for X is

A
X

[o?(X) + o(X,V)]/0%(R) (10)

1]

a{X,X + V)/a?(A)

o(X,RA)/a?(48)

L}

a

alX|A) , (t1)
where a(XjA) is the slope of the linear regression of X on A. Similarly, the
effective test length for V is
A, = [ (V) + o(X, V) V/a?(R) (12)
= a(V[R) . (13)
Note that, [o0%(X) + o(X,V)]/02(A) and [a*(V) + o(X,V)]/02(A) are both
(relative) effective weights, as defined by Wang and Stanley (1970). Hence,
the effective test lengths Ax and Xv are also interpretable as (relative)
effective weights, as well as slopes of X (or V) on A = X + V.
For this classical congeneric model, using Equation 9 and noting
that o‘(Tv) = A:oz(T) , wWe obtain
oz(Tv) = (AVIAX) o(X,V) . (14)
Consequently, the reliability of test V is
pLV, V") = 6®(T )/0?(V)
= (Av/Ax) olX,V)/ao?2(V) . (15)
Also, using Equatfon 14 (and then Equations 10 and 12) the variance of the
errors associated with test V is found to bhe
o®(E ) = o?{V) - (A 7A) olX, V) (16)

Cof(X)ef(v) - [o(x,V))?
o?(X) + o(X, V)

For test X, equations for true-score variance, reiiability, and error
variance can be obtained by interchanging % and V in Equations 14-17 resulting

in

110)




o2(T ) = (A /%2 ) alX,V) , (18)
X X Vv

p(X,X") = (Ax/kv) o(X,V)/6?(X), and (19)

a?(E_ ) = o2(X) ~ (A_/x Do(X,V) (20)
X X Vv

L 92 (X)e? (V) - Lofx,V]?
o?(V} + of(X,V)

. (21)

Equations 17 and 21 are the usual expressions [or the so-called "Angoff
error variances" for tests V and X, respectively, for X and V disjoint (see
Angoff, 1953; Petersen et al., 1989, p. 254).

Test V Included in Test X

The previous section considered the case of tests X and V containing ro
common items. 1In equating terminology this {s the case associated with V
being an external anchor. Suppose now that test V i{s an internal anchor--
l.e., all of the items in test V are included intest X. In this case, the
classical congeneric model Equatfons 1-4 still appiy, and we assume that
errors have an expectation of zero and all covariances between true and error
scores are zero. However, we replace the constraint in Equation 6 with

A= 1, (22)
(For completeness it is typical to specify the constraint éx = 0, but doing so
is not necessary for deriving the results that follow.) Setting Ax = 1 merely
specifies that, when V is included in X, the full-length test, X, has an
effective length of t. C(onsequently, for this model we let Tx = T and Ex = E,

and Equation 1 can pe written

Equation 5, o(Ex,Ev) = 0, 1is not valid for this case, however. Rather, since
V is included {n X, only the covariance between V and the non-common part of X

is zero. Therefore,

- - e a? - 2
c(Ex,Ev) = U(E,Ev) o(EV,EV) 0 <Ev) Avc (E) . (23)

/1



For this internal anchor classical congeneric model, the variances and

covariances are easily found to be

0% (X) = a2(T) + o(E) , (24)
02(V) = Azoz(T) + Avo’(E). and (25)
a(X,V) = AVUZ(T) + Avoz(ﬁ) (26)

= Avoz(X) . (27)

From Equation 27, it is clear that
A, = o(X,V)/a?(X) = alV[X) . (28)
Again we find that the effective test length parameter kv is a slope.
Recalling that oz(Tv) = Aio’(T) , and solving Equations 25 and 26
simultaneocusly, we obtain
A

v
T -
v

o’(Tv) = Lo(X,V) - o®(V)] . (29)

Consequently, the reliability of test V {s:

‘o 6(X,V) - a2({V)
T Av a2 (V)

D(VQV') = (30)

Also, using Equation 29 (and then Equation 29%)

o (V) - A o(X,V)
v

-
v

L 02006 (V) - To(x,¥}]?
o?(X) - o(X,V)

2 =
o (Ev) (31)

. (32)

Since czﬁTv) = Aio*(T) = Aio’(Tx) , it follows from Equation 29 that

_ oL V) = g3 (V)
A {1 - '
v v

2
0 (Tx) (33)

and the reliability of test X is

o(X,V) - o (V)

e X)) T e e
A\ v

|2



Cince c’(Ev) = ch’(E) s Avo*(Ex) and A = o{X,V)/e?(X), it follows from
Equations 31 and 32, respectively, that
of (V) - kvo(X.V)

Av(1 - Av)

o?(E ) = (35}
X

_o2(X) {o2(X)o2(V) - [o(X, 1)1}
o(X, V) [o?(X) - o(X,V)]

(3%)

Equations 32 and 36 are the usual expressions for the Angoff error
variances for V and X, respectively, for the case of V included in X {sec
Angoff, 1953; Petersen et al., 1989, p. 254).

Comments

Many of the results presented thus far have been provided implicitly or
explicitly by others (e.g., Angoff, 1953; Feldt, 1975; and Woodruff, 1986).
However, the particular form of some of the derivations presented here is
sanewhat novel and compact.

Also, strictly speaking, not all of the rasults that have been presented
are required to derive the Levine-Angoff results considered subsequently. In
particular, the reliabilities and Angoff error variances are not required per
Se, but they are useful in relating expressions of results to be presented
with corresponding expressions provided by Angoff (1984), Kolen and Brennan
(1987), and Petersen et al. (1989), among others,

Levine Observed-Score Method

The Levine observed-score method (elsewhere called the "equally reliable"
method) for the common-item nonequivalent-populations design was originally
developed hy lLevine (1955), Angoff (1984, p. 118) and Petersen ot al. (1989,
p. 254) also present descriptions of the method. Using a congeneric model,
Woodruff (1986) derived a special case of the Levine-Angof{ results.
Subsequently, Kolen and Brennan (1987) derived a more general version of the

Levine-Angoff results using a framework that explicitly incorporates the

o
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synthetic group concept originally introduced by Braun and Holland (1982).
The derivation outlined below integrates the Kolen and Brennan {1987)
presentation and the classical congeneric mcdel results presesnted previously.

Assume that a new test form X is administered to pcpulation 1 and an old
test torm Y is administered to population 2. (The adjectives "new" and "old"
to describe forms X and Y, respectively, are used here for convenience only.
There {s nothing in the derivations th=% distinguisﬁgs between the "newness™
or "oldness" of a form.) Also, assume that both populations take a common set
of items, V, which may be distinct from X and Y or included in both X and Y.
This is a description of the common-item non-equivalent populations design.

For this design, the two populations can be combined into a single
population for definir , the equating relationship. To address this issue
Braun and Holland (1982) introduced the concept of a synthetic population.
Statistics for populations 1 and 2 are proportionally weighted by W, and w,,
respectively, (i.e., w, *+ w, = 1 withw,, w, 2 0) to obtain statistics for
the synthetic population.

For the Levine observed-score method, the linear equation for equating
scores on X to the scale of Y is

o (Y)

s .
LX) = E;T)_(—‘" (x - us(X)l + uS(Y) s (37

where s ind’cates the synthetic population. For exaninees in the syntaietic
population, the transformed observed scores on X Ti.e., 2(X)] have the same
mean and standard deviation as the observed scores on Y.

Assumptions

Letting T , Ty» and T be true scores for X, Y, and v, respectively,

Levine made the following three Aassumptions in deriving his results (see Kolen

& Brennan, 1987, pp. 266-257):

14
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{a) Tx and Tv correlate perfectly for both populations, and the same
condition holds for Ty and Tv;

(b) the linear function of Tx on ‘I‘v is the same for both populations,
and the same condition holds for Ty and T,; and

(¢) measurement error variance for X is the same for both populations,

and the same condition holds for Y and V.

GCeneral Results

Letting subscripts designate populations, Kolen and Brennan (1987, see
especially pp. 267, 268, and 272) show that under the Levine assumptions the

four parameters in Equation 37 can be represented as:

us(X) = u (XY = wa Y Du (V) - ua ()], (38)
us(Y) = ua (Y)Y + w, Y [u, (V) - u ()1, (39
c;(X) = ab(X) - wo Y od (V) -~ o3(V)] + wyw,Y2[p, (V) - p,(VI?, and (40)

*

o;(Y) = 07(Y) + w, Y [o3(V) - o2 (V)] + wow, Y2 [u, (V) = u (V]2 ; (4a1)

where the Y-terms are ratios of true-score standard deviations. In

particular,
Y, = °‘(Tx)/°’(Tv) and (42)
Y, = cz(Ty),"o,(Tv) . (43)

(Angoff, 1987, and Brennan & Kolen, 1987, discuss and debate various issues
with respect to choosing the weights w, and w,.)

When the classical congeneric model is applied to obtain Y, and Y;, the
results discussed next are obtained for the external and internal anchor

cases.

15
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External Anchor

Substituting Equations 14 and 18 into Equation 42 we obtain

Y= /N A, VO, A

1 1 1

= A /A, (4y)
X

wiere the subscript 1 is used to specify that the data are for examinees in
population 1. In tems of variances and covariances, the effective test
length parameters in Equation 44 are given by Equations 10 and 12. Therefore,

Yy, = Lo (X) + o, (X, V)I/[02(V) + 0,(X,V)] . (45)
Furthermore, the effective test length parameters in Equation 44 are also
given by the slopes in Equations 11 and 13. Therefore,

Y, = a, (X]A)/a,(V]a) , (46)
where A = X + V,

Corresponding equations for the old test form Y and population 2 can be

obtained by substituting ¥ for X, 2 for 1, and B =Y + V for A = X+ V, in

Equations 34-46 resulting in

= u
Ya = Ay A u7)

= [oZ(Y) + 0, (Y,V]I/[02(V) + o,(Y, V)] (48)

= a, (Y|B)/a,(V|B) . (49)

Equations 44 and 47 state that, for the Levine observed~score method with
an external anchor, Y, and v, {i.e., the ratio of the true-score standard
deviations in Equations 42 and 43) are ratios of effective test lengths in
populations 1 and 2, respectively.

Equations 45 and 48 are the most frequently reported expressions for
the Y-terms (see, for example, Angoff, 1984, p. 115 and Kolen & Brennan, 1987,

p. 272), but to this author these expressions lack the interpretability of the

6
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effective test length ratios in Equations 44 and 47, and to some extent they
lack the interpretability of the slope ratios in Equations 46 and 49.

Internal Anchor

Subscituting Equations 29 and 33 into Equation 42, we obtain

Av!(1 - lv‘) va

= 1/sz . (50)
This, too, is a ratio of effective test lengths because, for the internal
anchor case, the effective test length of X in population 1 is Ax, = 1 (see
Equation 22), which is the numerator of Equation 50. Using Equation 28, an
alternative expression for Y, is

Y, = 170, (V[X) , (51)
which is the expression provided by Angoff (1984, p. 115) and Kolen and
Brennan (1987, p. 272). For the old form Y and population 2,

Y, = 1/Av2 (52)

= 1/a,(V]Y) . (53)

Comment

The derivation that has been outlined here of Levine's observed-score
method integrates the Kolen and Brennan presentation of this method with the
classical congeneric model results presented previously, with emphasis placed
upon the interpretation of the Y-terms as ratfos of effective test lengths.
Certain aspects of the approach, results, and interpretations presented here
are also provided by Angoff (1984, p. 114-115), Kolen and Brennan (1987), and

Woodruff (1986). For example, Angoff's (1984) results are equlvalent to those

presented here when w;, = n,/{(n, + n,) and w, = n,/(n, + n,), where

o 17
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n, and n; are sample sizes for populations 1 and 2, respectively. WwWoodruff's
(1986) results are equivalent to those presented here when w, = 1,
Levine True-Score Method

Levine {1955) also developed another method for the common-item non-
equivalent populations design. This second method is called Levine's
true-score" method here. (Elsewhere, it is called Levine's "unequally
reliable" method.) Angoff (1984, p. 115) and Petersen et al. (1989, p. 254)
present descriptions of the method. The assumptions abou!. true scores for
this method are the same as those for the observed-score method. What
distinguishes the methods is that the linear equation for the true-score
method i{s expressed in terms of certain true-score quantities, rather than the
observed-score quantities in Equation 37.

Specifically, for the true-score method, the basic linear equation is

o (T)
B(T) = s [T, - u (T )]+ mg(T)
s’ 'x

where Tx designates the true score associated with a particular examinee's
observed score. For examinees in the synthetic populaticon, the transformed
true scores on X [i.e., g(Tx)] have the same mean and standard deviation as
the true scores on Y.

Clearly, however, examinees' true scores are never known. Therefore, the

linear equation that is used in practice is

os(T )

-2 ¥ [x- . :
B = Ty DX = (TP (1) (54)

aS(T )
= ;;T?fj [x - us(X)} + us(Y) , (5%

15
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since true-score means equal observed-score means for the models considered
here. Equation 5S4 or 55 {s the Levine true-score equating function. The
logic of using g(X) rather than g(Tx) is neither more nor less compelling
than, for example, using observed scores in IRT true-score equating procedures
(see Lord, 1980, p. 202). Note, in particular, that the transformed observed
scores on X [i.e., g(X)] typically do not have the same standard deviation as
the true scores onY or the observed scores on Y.

Ceneral Results

Using the Kolen and Brennan (1987) approach, it can be shown that under

y evine's assumptions:

us(Tx) = us(X) = u, (X)) = WYy [uy (V) = u (V)] (56)
us(Ty) = us(Y) = pa(Y) ¢ w, Y [u, V) - u (V)] , (5T
02(T ) = Y{oi(T) , and (58)
o;('ry> = Yol (T) . (59)

[}

where o;(Tv) wood (V) + waod(V) 4w w, [ (V) - u ()12,

Equations 56 and 57 are the same as the corresponding Equations 38 and 39,
respectively, for the observed-score method. Equation 58 for the true-score
variance of X in the synthetic population i{s derived in the Appendix, and
Equation 59 can be derived in a similar manner.

Since the assumptions for both the observed-score and true-score methods
are the same, in general the Y-terms in Equations 56-59 are the ratios of the
true-score standard deviations in Equations 42 and 43, Furthermore, the

Y-terms are the same as those derived previously using the classical

congeneric models for the external and internal anchor cases. Thus,

the Y's in Equations 56-59 are also interpretable as ratios of effective test

lengths.

13
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The simple form of Equations 58 and 59 leads to the slope of the linear
equation for g(X) in Equation 55 being

os(Ty)/os(Tx) = Y,/Y, (60)
which is (Ayz/sz)/(xx‘/Avl) fcr the external anchor case, and xv,/kvz for the
internal anchor case. As shown below, the intercept for g(X) can also be
expressed relatively simply in termms of directly eatimable parameters. Using
Equations 56 and S7 with v = u,(V) - u,(V), the fntercept is

uS(Y) - [os(Ty)/cs(Tx)]us(X)

= W (Y) + wyYou = (Y,/Y M u, (X) - WY, v]
= u(Y) = (Y /Y D (X)) 4 Yo(w, + wy)y .

Since w, + w, = 1, it follows that the intercept equals

D2 (YY) = (Y /Yy du, (X3 ¢ Yo[p, (V) - ua2(V)1 . (61)
Note that the slope and intercept do not depend on the weights, w, and Wy

Replacing Equations 60 and 61 in Equation 55 we obtain

8{X) = (/Y X = uy (0] + g, (Y« Y [u (V) - u (V)] . (62)
Hence, g{(X) for Levine's true-score muthod is invariant with respect to
weighting of populations ! and 2 in forming the synthetic population, or we
might say that the concept of a synthetic population is not necessary to
conceptualize this method's results. Even so, it is sometimes useful to
display Levine's true-score method in the form of Equations 55-59 to compare
it with Levine's observed-score method in the form of Equations 37-u41.

The usual presentation of results for the Levine true-score method is
rather different from that presented here. Therefore, provided below are the
"usual" Levine-Angoff results presented by Angoff (1984, p. 115), along with
proofs of their equivalence to the re;ults presented here {(which assume, of

course, the classical congeneric models discussed in this paper’.

“£ST COPY AVAILABLE <V
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External Anchor

Angoff (1984, p. 115) states that, when V is an external anchor, the
slope of g(X) is

OS(TXE,_ az (Y|V) py(V,V")
o (T,)  a (X[V) o (V,V7) °

(63)

Using Equation 15 for p,(V,V’) and the parallel equation for the reliabllity

of V on population 2,

2
OS(T_)& Q:(YlV) (Av‘/kx!)ql(x'V)/ox(V)
°5(Tx) T e, XV (sz/xyz)o,(t,v)/og(v) .

Since a,(X]V) = o0,(X,V)/0}(V) and a (Y|V) = 0, (Y,V}/03(V) , it follows that

A /A
os(Ty) _ Y2 Va2
US(TX) xx,/xv,

Finally, from Equations 44 and 47, we obtain the slope given by Fquation 60,
Angoff (1984, p. 115) also states that the intercept of g(X) with V being
an external anchor is

o (T ) a, (43 V)

up (Y3 - u(X) + ————r
2 cs(Tx) ! p{V, V")

Cuy (V) - (V)] (64)

Since uz(Y}V) = g,(Y,V)/03(V) and, by the parallel of Equation 15 for
population 2, p,(V,V") = (szfxyz)oz(Y,V)/o§(V) , it follows that
a (Y| V)/p(V,V7) = Ayz/sz = Y, by Equation #7. Therefore, since
' os(Ty)/us(Tx) = Y,/Y, , the intercept given by Equation 64 can be written as
pa(Y) = (Y/¥ du, (XY + Yolu (V) - ua (V)]
which {s identical to the result in Equation 62,

Internal Anchor

For an internal anchor, Angoff (1984, p. 115) states that the slope of

g({X) is

os<ry)/cstrx) = a, (V]X)/a,(V]Y) . (65)

21
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For the development considered he, 2, by Equations 58 and 59, 50 and 52, and %)

and 53, respectively, the slope s
A
OS(T ) Y; V‘ Q‘(VIX)

v

OS(TX) Yl sz Gz(V}Y) »

which equals Equation 65.
Angoff (1954, p. 115) also states that the intercept of g(X) for an

internal anchor is

o (T )
- S ¥ + ! -
Uz(Y) US(Tx} My (X) m[“:(v) uz(V)] . (66}

Using Equations 58, 59, and 53, we can rewrite Equation 65 as
u;(y) = (Yngg)LH(x) + Yz{ﬂ;(v) - u;(V)] .
which i3 identical to the result in Equation 62.

First-Order Equity

For the Levine true-score method, a function relating true scores is
applied to observed scores. As noted previously, the logic of doingsois
somewhat less than compelling, and it is not clear how the converted scores on
X, [t.e., g(X)] are comparable to scores on Y. Hanson (1990), however, has
shown that Levine's true-score equating function (Equation 54) for the common-
item nonequivalent-populations design results in first-order equity of the
equated test scores under a particular parameterization of the classical
congeneric model.

Before describing Hanson's modeling in more detail, we illustrate
Hanson's approach for the much simpler case of the single group design and the
Levine true-score equating function

g(X) = (o(Ty)/c(Tx)J[X - u(Tx)3 + u(Ty) . (67}
(With the single group design, no synthetic population is involved.

Therefore, there are no subscripts on the parameters in Equation 67.)

25
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Letting ¢ be a function that relates true scores on X to true scores on
Y, first-order, or weak, equity is defined as

&ES(XHW(TX) = 1] = &(YETY = 1) for all 1. (68)
Under this definition, the transformed score g(X) is defired to be equivalent
to Y if the expected value of the conditional distribution of g(X} given

w(Tx) = 1 equals the expected value of the conditional distribution of ¥
given Ty = 1 . Divgi (1981), Morris (1982), and Yen (1983) consider first-
order equity, which is a weaker case of the concept of equity first proposed
by Lord (1980).
Consider the single group design with no common items, and assume that no

context effects exist relative to the fact that examinees take both forms.

For this design the congeneric model for test forms X and Y can be specified
as

X = Tx + Ex = (XXT + Gx) + Ex and (69)

Y = Ty + Ey = (AyT + dy) + Ey . (70}
It follows that

Ty = (xy/Ax)(Tx - éx) ¢ Gy = w(Tx)

Consequently,

g(X) = [cy - (xy/xx) 8.3+ (Ay/Ax)X (11)
satisfies the condition of first-order equity in Equation 68, because the
expected value of g(X) in Equation Tt, given 1, equals the expected value of Y
given 1, for all 1.

To show that g(X) in Equation 67 sati{sfies first-order equity, it is
sufficient to show that it equals Equation 71. From Equations 69 and 70,
u(Tx) = Axu(T) + 8

x ° u(Ty) = Ayu(T) + 8

y
u(Tx) = xxo(T) , and o(Ty) = Ayo(T) .
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Replacing these equations in Equation 67 gives
by
g(X) = Ax X - qu(T) - Gx + xyu(T) + Gy

X A
I 4 - - X
r X ¢ P u(T) 8 = 2w : 5,

which is fdentical to Equation 71.

The same type of logic has been applied by Hanson (1990) in the much more
complicated context of the common items nonequi valent-populations design.
Specifically, except for slight notational differences, Hanson (1990) uses the

following congeneric model for the test formms and common items:

Hy = Ty o (72)
Va s Ta 4 8) ¢ E (73)
Ki= T+ 8) + B, and (70
Vi= T, v 8) ¢ E )

1
where 1 and 2 designate populations, Ty {1 = 1,2) is the true-score random

variable corresponding to the observable score Hi’ Y=H+ V, and X = K + Vv,
Further, the error variances are assumed to satisfy the assumptions of the
classical congeneric model, and the constraints imposed are Ah = 1 and

Gh = 0 . Given this modeling, Hanson (1990) shows that Levine's true-score
equating procedure satisfies first-order equity, for both internal and
external sets of common items,

Note that Hanson's modeling of congeneric forms in Equations 72-7%

differs considerably from that discussed in previous sections of this paper.

In particular, Equations 72-75 directly relate Vv to both X and Y in a single

24
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model. In other words, Equations 72-75 constitute one model with one Av
term for V, whereas in previous sections the common-items nonequivalent-
popul ations design was framed in temms of separate congeneric¢ models for the
two forms, which involves two effective test length parameters for V.

Summary and Discussion

In this paper, two different parameterizations of a classical congeneric
model have been introduced to model explicitly the variables in the Levine
observed-score and true-score linear equating procedures, for the external and
internal anchor cases. The models differ in the constraints imposed on the
effecti ve test length parameters, Ax and Av' as well as assumptions made
about one covariance term, o(Ex,EV). With an external anchor the model
employs the constraint A_ + A =1 and assumes c(Ex,EV) = 0, whereas with an
internal anchor A is set to 1, and it is assumed that G(Ex,Ev) = xva’(s).
Using these two parameterizations, relati{vely simple expressions are easily
obtained for true-score variances, reliabdbilities, and error variances.
Further, the error variances are equal to the so-called "Angoff error
variances."

Applying these two parameterizations of the classical congeneric model
with the Levine assumptions leads to general equations (for both of Levine's
procedures and both the external and internal anchor cases) that involve
ratios of effective test length parameters. This aids interpretation.

The derived results are sumnarized in Table 1, where £(X) and g{X) are
the linear functions for the observed-score and true-score methods,
respectively. There are similarities Letween the expression of some of the
results i{n Table 1 and other expressions of results for the Levine procedures

{(notably, Angoff, 1984, ¢g. 115, and Kolen & Brennan, 1987, p. 272). For

20
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example, as in Kolen and Urennan (1987), results are expressed {n terms of
synthetic population weights, means and variances that are directly
observable, and certain Y-terms. (Kolen & Brennan, however, provide results
for the observed-score case, only.) Also, for w, = n,/{(n, + n,)

and w, = n,/{n; + n,) the results in Table ! are algebraically equivalent to
those presented by Angoff (1984),

There are, however, several differences between the expression of results
summarized in Table 1 and other expressions. First, the Y-terms are all
expressed as ratios of effective test length parameters for the two
parameterizations of the classical congeneric model used {n this paper. This
fact enhances the interpretability of the Y-termms. For example, with an
exclusive anchor, it is evident that Y, increases as the effective test
length of X inc~eases relative to V {n population 1. Second, the Y-terms are
the same for both the observed-score and true-score methods. Third, the
effective test length parameters are all slopes in a particular linear
regression. In general AFi = ui(F[*) wierei = Y or 2, Fis X, ¥, or VvV, and *
is a total score involving F. Fourth, the linear function for the true-score
method, g(X), can be obtained using expressions for synthetic group means and
variances that involve synthetic poy ation weights, but g(X) itself is bdlind
to such weights. This is a notable difference between the observed-score ani
true-score methods--a difference that has not been reported previously.

The assumptions about true scores and error variances for both of the
Levine methods are the same. What distinguishes the methods is the nature of
the linear functions. For the observed-score method, the linear function
relates converted observed scores on X to scores on Y. For the true-score
method, however, the basic linear function relates true scores, but it is

arplied to observed scores. Consequently, for the true-score method, it is
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not clear how the converted scores on X are in any sense comparable to scores
on Y. Recently, however, Hanson (1990) has shown that Levine's true-score
method satisfies the condition of first-order equity under a particular
parameterization of the classical congeneric model. Of course, this does not
necessarily mean that Levine's true-score method is preferable to Levine's
observed~score method, but Hanson's proof casts new light on Levine's true-
score method.

Although the two Levine methods are not properly distinguished in terms
of being derived under assumptions about equally reliable and unequally
reliable tests, there is a relationship between the two methods that involves
reliabilities. In particular, {f there exists a particular synthetic
population in which X and Y are equally reliable [i.e., ps(x,x') = ps(Y,Y')
for a particular w, (and w, = 1 - w;)], then

os(?lz os(Y) pS(Y,Y') os(Y)

os(Tx) os(x) ps(x,x‘) cs(X) ’

£{X) = g(X) for this synthetic population, and for both methods the converted
scores on X for the synthetic population will have the same mean and variance
as the scores on Y. Note that this equivalence does not necessarily hold for
every synthetic population, however.

Sometimes the following question is asked: '"When tests are equally
reliable, why doesn't Levine's unequally relliable procedwe give the same
results as Levine's equally reliable procedure?" This seemingly sensible
question, however, is samewhat misleading and ambiguous. It is misleading
because, as shown in this report, the generalized version of the Levine-Angoff
results summari{zed in Table 1 can be derived without any assumptions about
reliabllity. The so-called "equally reliable™"™ procedure is simply the

obcerved-score method denoted £(X), and the so-called "unequally reliable"

27



procedure is simply the true-scure method denoted g{(X). The questionis

ambi guous because it fails to recognize the role of the synthetic population
in obtaining 2(X). For example, suppose p,(X,X") = p,(Y,Y"), which implies
that X and Y are equally reliable for the populati{ons that actually took X and
Y. It does not follow, however, that ps(x,x’) 2 pS(Y,Y') for the particular
synthetic populiation actually used. Thus, {t is quite possible for forms to
be equally reliable In some sense without having (X)) = g(X).

Levine's (1955) methods make assumptions about true scores.
Consequently, to apply these methods, one must employ same model that relates
observed and true scores. Levine employed classical test theory assumptions,
and expressed many of his results in temms of reliability coefficients.
However, he gave only limited consideration to how such coefficients might be
estimated. Angoff's (1984) results are based on estimating these coefficients
using observed variances and Angoff's (1953) error variances. 1In this paper,
two specific classical congeneric models are used to derive results for
Levine's methods. These results can be viewed as more general versions of
Angoff's results, although they are derived and expressed differently.

Since Levine's methods require some model for the relationship between
observed and true scores, models other than the classical congeneric model
could lead to different results. In particular, the multi-factor congeneric
model discussed by Feldt and Brennan (1989, p. 111}, or one or more models in
generalizability theory, might be employed with Levine's methods. The
principal point is that improved estimates of true-score variances, error
variances, or reliabilities could lead to improved results. Also,

improvements might resuit from relaxing one or more of Levine's assumptions.
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Appendix
Proof that ¢2(T. ) = Yiol(T)

In general, it is easy to show that

o;(Tx) = w,o?(Tx) + w,oi(Tx) + W,wa[u,(Tx) - ua(Tx)J2 . (A1)
For the classical congeneric model u,(Tx) = u,(X) and uz(Tx) = u(X) . Also,
under Levine's assumptions Kolen and Brennan (1987, Equation 32) show that

2 (X) = uy (XY = Loy (T 070, (T ) 2w (V) ~ pa(W)]
It follows that

o;(Tx) = w,of(Tx) + wzci(Tx) + wxw,[uf(Tx)/ci(Tv)][u,(V) - w, (V)12

o2(T) 023(T.)
2 (w02 (T) + Wy

v
oi(T,) 03 (T,)

ci(Tx) + wywlu, (V) - u (V) ]2 (A2)

Under the Levine assumptions, the slope of the linear function of T, on Tv is
the same {n populations 1 and 2. This means that
Ul(Tx)/Og(Tv) = Ug(Tx)/Uz(Tv) . (AB)

Applying Equation A3 to the second term in braces in Equation A2 gives

o (T
2
os(Tx) = -

“icf(Tv) + wz°§(Tv) +ww [, (V) - pa(]2 .
03

(1,)
The term in braces is o;(Tv), and by Equation 42 of(Tx)/of(Tv) = Y2 ., Thus
2 = 2.2

as was to be proved.
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Table 1§

Equations for Levine's Observed-Score [2{X)]
and True-Score [g(X)] Methods

LX) = [cs(Y)/os(X)} (x - us(X)] + us(Y)
g{x) = [os(Ty)/os(Tx)] {x - uS(X)} + us(Y)

G IVA SIS SEITIG ORETINTFIS S IR SYETFE Q'S B JVEN )

uS(X) = py (X)) = woY [, (V) = u (V)]

+

Hz(Y)

uS(Y) Y Lu (V) = u, (V)]

u;(x) 02(X) = w¥2[o3(V) o2(V)) ¢ wow, YE[u, (V) - u,(V))?

+

o;(Y) = g2(Y) « w, Y[ ol (V) = o2(V)] + wow, Y[y, (V) - u,(V)]?
e Y242

o;(Tx) Y,GS(TV)

03(T,) = Y3O3(T)

whare o;(Tv) = w,cf(Tv) + wzoi(Tv) + wywa[py (V) = u (V)32

External Anchor (A = X + V, B = Y + V) (Classical congeneric model)

A a, (XTAY a3 (X) + o,(X,V)
1

L WA VR H S RN
1

by, @B 03N ¢ au(Y, V)
F4

R W N 1 I H C) RN N 3
2

Internal Anchor (Classical congeneric model)

Y, = 1/x, = 1/a, (V]X)
Vi

Y, = 1/h = 1/a,(V]Y)
Va

Bl

o2 (XY o, (X, V)

a3 (Y)Y 0, (Y, V)

Note. For Tucker's method use v, = a,(X|V) and y_ . a, (Y[v) 10

L{X) for both the internal and external anchor cases.
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