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Abstract

In 1955 Levine introduced two linear equating procedures for the canmon-

item nonequivalent-populations design. His two procedures make the same

assumptions about true scores; they differ in terns of the nature of the

equating function employed.

In this paper two parameterizations of a classical congeneric model are

introduced to model the variables in the Levine procedures for the external

and internal anchor cases. The models differ in the constraints imposed on

certain effective test length parameters, as well as assumptions made about

one covariance term. This modeling leads to simple expressions for true-score

variances, reliabilities, anti the so-called "Angoff error variances."

Appl ying these two parameteri zati ons of the class; cal co ngeneri c model

with the Levine assumptions leads to general equations (for both of the Levine

procedures and both the external and internal anchor cases) that involve

ratios of the effective tst, length parameters. This presentation facilitates

interpretation.

The role of synthetic population weights for both Levine procedures 15

considered, along with an alternative interpretation of' one of Levine's

procedures.

iii



Congeneric Models and Levine's
Linear Equating Procedures

Levine (1955) introduced two linear equating methods for a design in

which two non-equivalent populations take different forms of a test with a

common set of equating items, or anchor. Levine referred to his two methods

as major-axis procedures. Angoff discussed these methods in his 1971 chapter

on Scales, norms, and equivalent scores in the second edition of Educational

Measurement. Angoff's chapter was reprinted in 1984 by the Educational

Testing Service. Other authors who have treated one or both of these methods

incli.le Woodruff (1986, 1989), Kolen and Brennan (1987), Petersen, Kolen, and

Hoover (1989), Mac Cann (1990), and Hanson (1990).

Levine's methods make assumptions about true scores and error scores.

Consequently, to apply these methods, it is necessary to model the

relationships among observed, true, and error scores. In this paper, a

particular version of a congeneric model is employed in which the error

variances are assumed to follow classical assumptions. Actually, two

parameterizations of the model are employed--one that is associated with the

common i t eels co ns ti tut I ng an ext er nal anchor,, and the other for an I nter nal

anchor in which the cccnmon items are part of the full length forms.

For both of Levine's methods, this modeling leads to general equations

that involve ratios of certain effective test length parameters. These

parameters aid in presenting and interpreting results. It is also shown that

Angoff's (1984, pp. 114-119) results for Levine's methods can be obtained frce

the results presented hkre.

The paper ends with a discussion of an alternative conception of one of

Levine's methods, followed by a consideration of other issues of interpreta-

tion and possible future research.
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Terminology

Terminology employed with Levine's procedures has become sanewhat

confused or, at best, inconsistent in recent years. In particular, Levine

originally distinguished between his procedures in terms of their presumed

appropriateness for equally reliable and unequally reliable tests. However,

Woodruff (1986), Kolen and Brennan (1987), and Hanson (1990) nave all noted

that Levine's results can be derived without making any assumptions about the

rel iabi iti es of the tests i nvolved. Rather, the di sti nguishi ng difference i n

the derivations of the procedures is that the so-called "equally reliable"

method is an observed-score equating procedure, whereas the so-called

"unequally reliable" method uses observed scores in a linear relationship

between true scores for the two forms. Here, therefore, to avoid perpetuating

the impression that Levine's procedures make reliability assumptions, the

procedures will be referred to as Levine's observed-score and true-score

equating procedures. (Admittedly, the phrase "true-score equ/ting" is a bit
inaccurate because, as noted above, it is actually observed scores that are

used in a true-score relationship, but this inconsistency seems slight

compared to the potential misunderstanding inherent in the phrases "equally-

rel i a bl e" and " unequal I y-r el i a bl e ." )

Also, as noted by Woodruff (1989), a distinction can be drawn between the

results for Levine's procedures as expressed by Levine (1%5), and a

part cul ar cane of Levi ne' s resul ts that Angoff (1984 ) provi des . In terms of

formulas, Levine's "general" results and Angoff's version of 1.evine'

can be distinguished by the fact. that Levine (19Y)) typicilly exprames true-

score variance as observed-score variance times rel 1ahi. itr, without

specifying a specific reliabi ity coeff icient. Ry contrast, Angoff' s versioris

of Levine's results are based on specific reliability coefficients that are
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derived using "Angoff's error variances" (see Angoff, 1953). In this paper,

whenever there is the potential for confusion with respect to this

distinction, "Levine-Angoff" will be used to designate Ang, "f's (1984) results

for Levine's methods. Largely, this paper deals with alternative and sanewhat

more general derivations and presentations of the Levine-Angoff result-- a

presentation intended to aid interpretation.

Sam Results for the Classical Congeneric Model

Let X and V designate observed scores for two tests or sets of items.

For the congeneric model, X and V are decomposed as follows:

X - T E T + ) Ex
6x +

xx x and (1)

V T + E - (A T +v 6v)
vV V (2)

A partictlar version of the congeneric model arises when it is further

specified that

a2(Ex) - A xa2(E) and (3)

02(Ev) = A v a2(E) .

This special version will be called here the classical congeneric model. It
is discussed by Veldt (1975), Feldt and Brennan (1989, pp. 111-112) and

Woodruff (1986), among others. The word "classical" is used here to indicate

that the error variances are proportional to the "effective" test
lengths, Ax and Av . In this sense, this model is closer to the traditional

classical test theory model than would be the ease if Equations 3 and 14 did

not hold.

Discussed next are two parameterizations of this classical congeneric

model. These parameterizations differ with respect to constraints imposed on

the A's and assumptions about o(E ,E ). The first ease is for tests X and Vx v

disjoi nt and will, be applied later to external anchor equati ng; the second

O
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case is for V included in X and will be applied later to internal anchor

equating.

lests X and V Disjoint

Suppose that tests X and V are disjoint in the sense that they contain no

common items. To represent this case, we assume that errors have an

expectation of zero, all covariances between true and error scores are zero

and, since X and V are distinct,

0(E ,£ ) - .
x v

For identifiability purposes we impose the usual constraint

A
x

+ A 1
y

- .

(5)

(6)

(It is also usual to impose the constraint dx + ov - 0, but doing so is not

required for the following derivations.)

For this model, the variances and covariances are easily determined:

o2(X) A2xo2(T) + Xxo2(E)

02(V) = A2o2(T) + vo2(E), and

o(X,V) = AxAvo2(T) .

Further, letting A X + V (recall that X and V consist of non-overlapping

sets of items) it is easy to show that

02(A) - 02(1) + 02(E) .

To derive Ax in terms of variances and covariances, note that

o2(X) o(X,V) = A2o2(T) + A o2(E) A A o2(T)x v

- A [(A A )02(T) + o2(F)]
x x v

= A [o2(T) + o2(E)1

Axo2(A) .

(7)

(8)

(9)
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It follows that the effective test length for X is

A
x

[02(X) o(X,V)]/o2(A)

o(X,X + V)/o2(A)

o(X,A)/o2(A)

a(X1A)

(10)

where a(XIA) is the slope of the linear regression of X on A. Similarly, the

effective test length for V is

A
v

[02(V) + o(X,V)]/o2(A) (12)

a(V1A)

Note that, 11o2(X) + o(X,V)3/02(A) and lo2(V) o(X,V))/o2(A) are both

(relative) vffective weights, as defined by Wang and Stanley (1970). Hence,

the effective test lengths Xx and kv are also interpretable as (relative)

effective weights, as well as slopes of X (or V) on A . X + V.

For this classical congeneric model, using Equation 9 and noting

that o2(T
v

) = A2o2(T) , we obtain

02(1 ) (A /X ) o(X,V)
v

.

v x

Consequently, the reliability of test V is

p(V,V') = o2(Tv)/02(V)

o(X,V)/o2(V) .

v x

(13)

(14)

(15)

Also, using Equation 14 (and then Equations 10 and 12) the variance of the

errors associated with test V is found to be

o2(E ) o2(V) - (A /A ) a(X,V) (16)v x

o2(X)c77.(V) Eo(X,V).12
:17)

o2(X) o(X,V)

For test X, equations for true-score variance, reliability, and error

variance can be obtained by interchanging X and V in Equatiorn 14-17 resulting

in



6

o2(T ) = (A /A ) c(X,V) (18)x

p(X,X') - (A /A ) o(X,V)/o2(X), and (19)x v

o2(Ex) = 02(X) (A IA )o(X,V)XV (20)

2(X)02(V) [c(X,V)]2 (21)
02(V) + o(X,V)

Equations 17 and 21 are the usual expressions ror the so-called "Angoff

error variances" for tests V and X, respectively, for X and V disjoint (see

Angoff, 1953; Petersen et al., 1989, p. 2514).

Test V Included in Test X

The previous section considered the case of tests X and V containing

ccemion items. In equating terminology this is the case associated with V

being an external anchor. Suppose now that test V is an internal anchor--

i.e., all of the items in test V are included in test X. In this ease, the

classical congeneric model Equations 1-14 still apply, and we assume that

errors have an expectation of zero and all covariances between true and error

scores are zero. However, we replace the constraint ir. Equation 6 with

1 . (22)

(For completeness it is typical to specify the constraint dx - 0, but doing so

s not necessary for deri vi ng tha resul ts that follow.) Setti ng A 1 merely

specifies that, when V is included in X, the full-length test, X, has an

effective length of' 1. Consequently, for this model we let. Tx = T and Ex = E

and Equation 1 can De written

X r; Tx + Ex T + F .

Equation 5, o(Ex,Ev) = 0, is not val id for thi s case, however. Rather, since

V is included in X, only the covariance between V and the non-common part of X

is zero. Therefore,

o(E ,E ) o(E,E) = o(E ,E ) o2(E) = A o2(E) . (23)x v v v v v v

I I
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For this internal anchor classical congeneric model, the variances and

covariances are easily found to be

o2(X) . 02(1) + o2(E) , (24)

02(v) 202(T) 4. A 2(
v

E), and (25)

o(X,V) A
v
02(T) + A

v
02(E) (26)

A en() (27)v

From Equation 27, it is clear that

X - o(X,V)1o2(X) ct(VIX) .

Again we find that the effective test length parameter Ay is a slope.

Recalling that 02(1v) Av2a2(T)

simultaneously, we obtain

Ay

[0(X,V)02(Tv) 1 Ay

and solving Equations 25 and 26

Consequently, the reliability or test V is:

p(V,V)
A o(X,V) o2(V)

1 A
02(V)

Also, using Equation 29 (and then Equation 28)

02(V) A o(X,V)
o2(E) =

v 1 A

o2(X)o2(V) Eo(x,t1)]2

o2(x) o(x,v)

Since o2(Tv) = k2o2(T) = A2o2(T ) it follows from Equation 29 that
t= x

02(1 o(X,V) - a2(v)
A v(1 - A I =

and the reliability of test X is

o(X,V) o2(V)o(X,X")
Av(1 Av)o2(X)

12

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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C.Ince o2(E) = Ao2(E) - A 02(E ) and A cr(X,V)/c7(X), it follows fro
v v

e
v x

Equations 31 and 32, respectively, thac

o2(Ex)
A v(1 Ay)

o2(V) - vo(X,V)

o2(X) fa2(X)02(V) [o(X,V)]2 J

( 35)

( 36)
o(X,V) Co2(X) o(X,V)]

Equations 32 and 36 are the usual expressions for the Angoff error

variances for V and X, respectively, for the case of V included in X (see

Angoff, 1953; Petersen et al., 1989, p. 250.

Comments

Many of the results presented ti.us far have been provided implicitly or

explicitly by others (e.g., Angoff, 1953; Veldt, 1975; and Woodruff, 1986).

However, the particular form of some of the derivations presented here is

sornewhat novel and compact.

Also, strictly speaking, not all of' the results that have been pretaented

are required to derive the Levine-Angoff results considered subsequently. In

particular, the reliabiliti es and Angoff error variances are not required Efr

se, but they are useful in relating expressions of results to be presented

with corresponding expressions provided by Angoff (1984), Kolen and Brennan

(1987), and Petersen et al. (1989), among others.

Levine Observed-Score Method

The Levine observed-score method (elsewhere called the "equally reliable"

method) for the common- item nonequi val ent-popul at ions des i gn was ori gi nal l y

developed by Levine (1955). Angoff (1 954, g. 11 9) and Poternen et al. (1 98 9,

p. 2514) also present descriptions of the method. Using a congeneric model,

Woodruff (1 956) derived a special ease of the Levine-Angoff results.

Subsequently, Kolen and Brennan (1987) derived a more general version of the

Levine-Angoff results using a framework that explicitly incorporates the
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synthetic group concept originally introduced by Braun and Holland (1982).

The derivation outlined below integrates the Kolen and Brennan (1987)

presentation and the classical congeneric mcdel results presented previously.

Assume that a new test form X is administerei to population 1 and an old

test form Y is administered to population 2. (The adjectives "nee' and "old"

to describe forms X and Y, respectively, are used here for convenience only.

There is nothing in the derivations th?t distinguishes between the "newness"

or "oldness" of a form.) Also, assurne that both populations take a common set

of itens, V. which may be distinct frail X and Y or included in both X and Y.

This is a description of the common-item non-equivalent populations design.

For this design, the two populations can be combined into a single
population for definir . the equating relationship. To address this issue

Braun and Holland (1982) introduced the concept of' a synthetic population.

Statistics for populations 1 and 2 are proportionally weighted by wz and w2,

respectively, (i.e., wl w2 = 1 with w1, w2 0) to obtain statistics for
the synthetic population.

For the Levine observed-score method, the linear equation for equating

scores on X to the scale of Y is

c (y)
t(X) = s [X p 3(X)] 4- 1.15(Y) ,as(X) ( 37 )

where s i nd: cat es the synthet i.e popul at i on. For exani nees I n the a ynt et i e

population, the transformed observed scores on X :i.e., 9.(X)) have the same

mean and standard deviation as the observed scores on Y.

Assumptions

Letting Tx, Ty, and Tv be true scores for X, Y, and V, respectively,
Levine made the following three assumptions in deriving his results (nee Kolen

& Brennan, 1987, pp. 266-267) :

1 4
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(a) Tx and Tv correlate perfectly ror both populations, and the same

condition holds for T
y and T

v'

(b) the linear function of Tx on Tv is the same for both populations,

and the same condition holds for T and Tv: and

(c) measurement error variance for X is the same for both populations,

and the same condition holds for Y and V.

General Results

Letting subscripts designate populations, Kolen and Brennan (1987, see

especially pp. 267, 268, and 272) show that under the Levine assumptions the

four parameters in Equation 37 can be represented as:

vs(X) ul(X) w2Y1[P1(V) 112(V)]

u
s (Y) u2(Y) wlYjul(V) 02(V)]

(38)

(39)
0200 c(X) w2Yl(01(1) 40,03 + w1w2Yf[p1(V) u2(V)72, and (40)

o(Y) a(Y) w1Y1[4(V) oi(V)] w1w2Y3[V1(V) 112(V)P (41)

where the Y-terms are ratios of true-score standard deviations. In

particular,

Y1 = ol(Tx)/ol(Tif) and (42)

Y2 = a2(Ty)/a2(Tv) (43)

(Angoff, 1987, and Brennan & Kolen, 1987, discuss and debate various issues

with respect to choosing the weights wl and w2.)

When the classical congeneric model is applied to obtain Y1 and Y2, the

results discussed next are obtained for the external and internal anchor

cases.
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External Anchor

Substituting Equations 14 and 18 into Equation 42 we obtain

Yl= I (A /A )/(A /A )xl vl vl xl

A IA ,xl vl (1414)

wnere the subscript 1 is used to specify that the data are for examinees in

population 1. In terms of' variances and covariances, the effective teist
length parameters in Equation 44 are given by Equations 10 and 12. Therefore,

Yi [(31(X) + o1(X,V)]/[01(V) + 01(X,V)] . (45)

Furthermore, the effective test length parameters in Equation 44 are also

given by the slopes in Equations 11 and 13. Therefore,

at(XIA)/a1(VIA) (46)

where A - X + V.

Corresponding equations for the old test form Y and population 2 can be

obtained by substituting Y for X, 2 for 1, and B = Y + V for A = X + V, in

Equations 44-46 resulting in

Y2 = A /A
y2 V2

= [01(Y) 02(Y,V)3/[0;(V)

(147)

(48)

ct2(YIB)/c12(VIB) . (49)

Equations 44 and 147 state that, for the Levine observed-score method with

an external anchor, Yi and Y2 (i.e., the ratio of the true-score standard

deviations in Equations 42 and 43) are ratios of effective test lengths in
populations 1 and 2, respectively.

Equations 45 and 148 are the most frequently reported expressions for
the Y-terms (see, for example, Angoff, 1984, p. 115 and Kolen & Brennan, 1987,

p. 272), but to this author these expressions lack the interpretability of the
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effective test length ratios in Equations 44 and 47, and to some extent they

lack the interpretability of the slope ratios in Equations 46 and 49.

Internal Anchor

Substituting Equati ons 29 and 33 into Equation 42, we obtain

j[ 1

A (1vl vi A vt

1 lAvi . (50)

This, too, is a ratio of effective test lengths because, for the internal

anchor case, the effective test length of' X in population 1 is Ax = 1 (see
l

Equation 22), which is the numerator of' Equation 50. Using Equation 28, an

alternative expression for Y1 is

Y1 = 1/m1(11X) ,
(51)

which is the expression provided by Angoff (1984, p. 115) and Kolen and

Brennan (1987, p. 272). For the old form Y and population 2,

Y2 1/A (52)
V2

1 /a2( IY) (53)

Comment

The derivation that has been outlined here of Levine's observed-score

method integrates the Kolen and Brennan presentation of' this method with the

classical congeneric model results presented previously, with emphasis placed

upon the Interpretation of the Y-terms as ratios of' effective test lengths.

Certain aspects of' the approach, results, and interpretations presented here

are also provided by Angoff (1984, p. 114-11 5), Kolen and Brennan (1 987), and

Woodruff (1986 ) For exampl e, Angoff's (19814) results are equivalent to those

presented here when wl = n1/(n1 + n2) and w2 = n2/(n1 + n2), where

1 7
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n1 and n2 are sample sizes for populations 1 and 2, respectively. Woodruff's

(1986) results are equivalent to those presented here when w1 1.

Levine True-Score Method

Levine (1955) also developed another method for the common-item non-

equivalent populations design. This second method is called Levine's

true-score" method here. (Elsewhere, it is called Levine's "unequally

reliable" method.) Angoff (1984, p. 115) and Petersen et al. (1989, p. 254)

present descriptions of the method. The assumptions about true scores for

this method are the same as those for the observed-score method. What

distinguishes the methods is that the linear equation for the true-score

method is expressed in terms of' certain true-score quantities, rather than the

observed-score quantities in Equation 37.

Specifically, for the true-score method, the basic linear equation is

a (T )

g(T ) (T (T )3 4. p (T )x a (T ) x s x s y
s x

where Tx designates the true score associated with a particular examinee's

observed score. For examinees in the synthetic population, the transfomed

true scores on X [i.e., g(Tx)] have the same mean and standard deviation as

the true scores on Y.

Clearly, however, examinees' true scores are never known. Theref ore, the
linear equation that is used in practice is

a (T )
g(X) [X p (T ).3 + (T )(T )

s x
x y

0 IT )

[X
o (T )

u
5
(X)] + us(Y) .

s x

1 8

(54)

(55)
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since true-soore means equal observed-score means for ttle models considered

here. Equation 511 or 55 is the Levine true-score equating function. The

logic of using g(X) rather than WO is neither more nor less compelling

than, for example, using observed scores in IRT true-score equating procedures

(see Lord, 1980, p. 202). Note, in particular, that the transformed observed

scorm on X [i.e., g(X)] typically do not have the same standard deviation as

the true scores on Y or the observed scores on Y.

General Results

Using the Kolen and Brennan (1987) approach, it can be shown that under

evine's assumptions:

(T ) (X) pi(X) - w2Yl[p1(V) p2(V)3 (56)
s x

(T ) (Y) u2(Y) w112[u1rV) p2( V)] , (57)
s y s

02(T yla2(T and
s x s v

(58)

o2(T ) Yla2(T ) . (59)
s y s v

where o2(T ) wicri(V) + w201(V) + w1w2{u1(V) 1120012 .s v

Equations 56 and 57 are the same as the corresponding Equations 38 and 39,

respectively, for the observed-score method. Equation 58 for the true-score

variance of' X in the synthetic population is derived in the Appendi x, and

Equation 59 can be derived in a similar manner.

Since the assumptions for both the observed-score and true-score methods

are the same, in general the Y-terms in Equations 56-59 are the ratios of the

true-score standard deviations in Equations 142 and 43. Furthermore, the

Y-tems are the same as those derived previously using the classical

congeneric models for the external and internal anchor cases. Thus,

the Y's in Equations 56-59 are also interpretable as ratios of effective test

1 engths .
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The simple form of Equations 58 and 59 leads to the slope of the linear
equation for g(X) in Equation 55 being

a ET Vs ET ) Y2/Y, (60)sy sx
which is (A IA )/(A /A ) for the external anchor case, and A /A for they2 V2 X1 V1 Vi V2

internal anchor case. As shown below, the intercept for g(X) can also be

expreesed relatively simply in terms of directly estimable parameters. Using

Equations 56 and C7 with v ul(V) 1.12(V), the intercept is

u s EY) [as (T )/as (T ))11s (X)yx
= 42(Y) + w1'f2v (Y2/Y1)Co1(X) w2Y1v3

u2(Y) (12/Y1)41(X) + Y2(wl + w2)v .

Since wl + w2 1, it follows that the irtercept equals

[v2(Y) (Y2/Y1)s,(X)3 Y2Cu1(V) u2(V)1 . (61)

Note that the slope and intercept do not depend on the weights, w1 and w2

Replacing Equations 60 and 61 in Equation 55 we obtain

g(X) (Y2/Y1)[X pI(X)] + u2EY' + Y2[41(V) 112(V)) (62)

Hence, g(X) for Levine's true-score method is invariant with respect to
weighting of populations 1 and 2 in forming the synthetic population, or we

might say that the concept of a synthetic population is not necessary to

conceptualize this method's results. Even so, it is sometimes useful to

display Levine's true-score method in the form of Equations 55-59 to compare

it with Levine's observed-score method in the form of Equations 37-41.

The usual presentation of results for the Levine true-score method is

rather different from that presented here. Therefore, provided below are the

"usual" Levine-Angoff results presented by Angoff (19814, p. 115), along with

proofs of their equivalence to the results presented here (which assume, of

course, the classical congeneric models discussed in this paper'.

"EST COPY in I.E 2ii
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External Anchor

Angoff (1984, p. 115) states that, when V is an external anchor, the

slope of g(X) is

o (T ) a2(Y1V) pl(V,V.)

o ( T ) a1(X1V) A2(V,V.)
s x

(63)

Using Equation 15 for pi(V,V') and the parallel equation for the reliability

of V on population 2,

(T ) a2(Y1V) (Av /Xv )01(X,V)/eq(V)
wi ^1

-
o 3- (Tx) al(XFV) (A /A )(12(Y,V)/o3(V)

V2 y2

Since al(XIV) al(X,V)/ol(V) and a2(YIV) = o2(Y,V)/o(V) , it follows that

o (T )
AY2/Av2

o (T ) A /X
s x X1 vi

Finally, from Equations 44 and 47, we obtain the slope given by Equation 60.

Angoff (1984, p. 115) also states that the intercept of g(X) with V being

an external anchor is

(T )

u2(Y) ( X )
a (T )
s x

a2( V)

p2 (V, V') 102 ( V) 2 ( V ) ]

Since a2(Y1V) (12(Y,V)/c1(V) and, by the parallel of Equation 15 for

(64)

population 2, a2(V,V') = (AV2/AY2)a2(Y,V)/A(V) , it follows that

a2(YIV)/p2(V,r) - A /A - Y2 by Equation 47. Therefore, since
Y2 V2

s( T s
(T ) = Y2/Y1 , the intercept given by Equation 64 can be written as

y x

P2(Y) (Y2/Y1)p1(X) 4- Y2[1.11(V) P2(V)3

which is identical to the result in Equation 62.

Internal Anchor

For an internal anchor, Angoff (1984, p. 115) sta'-es that the slope of

g(X) is

o
s
(T )/o (T ) = a1(VIX)/a2(VIY) . (65)

y s x

21
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For the development considered he, by Equations 58 and 59, 50 and 52, and 51

and 53, respectively, the slope is

a (T ) "Y2
xvi cii(VIX)

y.
a (T ) Y1 A 07,17Y7s x

which equals Equation 65-

Angoff (1954, p. 115) also states that the intercept of g(X) for an

internal anchor is

1
1.12(Y) cis(T)' ) (X) + [1.11(v)

(T )s x

Using Equations 58, 59, and 53, we can rewrite Equation 66 as

(66)

u2(Y) (Y2/Y1)1i1(X) + Y2[41(11) 112(V)]

which is identical to the result in Equation 62.

First-Order Equity

For the Levine true-score method, a function relating true scores is

applied to observed scores. As noted previously, the logic of doing so is

somewhat less than compelling, and it is not clear how the converted scores on

X, Ei.e., g(X)3 are canparable to scores on Y. Hanson (1990), however, has

shown that Levine's true-score equating function (Equation 54) for the common-

item nonequivalent-populations design results in first-order equity of the

equated test scores under a particular parameterization of' the classical

congeneric model.

Before describing Hanson's modeling in more detail, we illustrate

Hanson's approach for the much simpler case of the single group design and the

Levine true-score equating function

g(X) r_o(1"
y

)fer(T
x

)3[X p(Tx)] u(T) .

(With the single group design, no synthetic population is involved.

Therefore, there are no subscripts on the parameters in Equation 67.)
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Letting 41 be a function that relates true scores on X to true scores on

Y. first-order, or weak, equity is defined as

T3 g(yiTy T) for all I . (68)

Under this definition, the transformed score g(X) is defined to be equivalent

to Y if the expected value of the conditional distribution of' g(X) given

*CTx ) i equals the expected value of the conditional distribution of Y

given T T Divgi (1 981), Morris (1982), and Yen (1983) consider first-

order equity, which is a weaker case of the concept of equity first proposed

by Lord (1 980).

Consider the single group design with no common itans, and assume that no

context effects exist relative to the fact that examinees take both forms.

For this design the congeneric model for test forms X and Y can be specified

as

X - T + E (A T + 6x) + Ex and
X X x

Y T + E (A T + 6 ) + E .
Y

It follows that

T (A /A )(T 6 ) 4- 6 - tP(T)
y yx x x

(69)

(70)

Consequently,

g(X) = [6y (A /A ) 6 + (A /A )X (71)
y x x y x

satisfies the condition of first-order equity in Equation 68, because the

expected value of' g(X) in Equation 71, given T, equals the expected value of Y

given 1, for all T.

To show that, g(X) in Equation 67 satisfies first-order equity, it is

sufficient to show that it equals Equation 71. From Equations 6 9 and 70,

p(Tx) Axp(T) dx , tl(Ty) = AyP(T) dy

a(Tx) = xo(T) , and o(T ) - X o(T) .

23
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Replacing these equations in Equation 67 gives

A

g(X) X X p(T)
x

6x
Ax

+ A ii(T) 6

)1 X + A e(T) + 6y A
y

p(T) 6
X

x xx

6 4- -A-1 X ,y A x A
x x

which is identical to Equation 71.

The same type of logic has been applied by Hanson (1990) in the much more

canplicated context of the cammon-items nonequivalent-populations design.

Specifically, except for slight notational differences, Hanson (1990) uses the

following congeneric model for the test forms and common items:

H2 = T2 + Eh , (72)

V2 ( X IfT2 Sy) E (73)

K1 = (AkTI + 6k) + Eki, and (70
V1 - (AvT1 + 6v) + Ev1 , (75)

where 1 and 2 designate populations, Ti (i = 1,2) is the true-score random

variable corresponding to the observable score Hi, Y H + V, and X K + V.

Further, the error variances are assumed to satisfy the assumptions of the

classical congeneric model, and the constraints imposed are XII - 1 and

6h 0 . Given this modeling, Hanson (1990) shows that Levine's true-score

equating procedure satisfies first-order equity, for both internal and

external sets of common items.

Note that Hanson's modeling of congeneric forms in Equations 72-75

differs considerably from that discussed in previous sections of this paper.

In particular, Equations 72-75 directly relate V to both X and Y in a single
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model. In other words, Equations 72-75 constitute one model with one Av

term for V, whereas in previous sections the common-items nonequivalent-

populations design was framed in terms of' separate congeneric models for the

two forms, which involves two effective test length parameters for V.

Summary and Discussion

In this paper, two different parameterizations of' a classical congeneric

model have been introduced to model explicitly the variables in the Levine

observed-score and true-score linear equating procedures, for the external and

internal anchor cases. The models differ in the constraints imposed on the

effective test length parameters, Ax and Av, as well as assumptions made

about one covariance term, o(E ,E ). With an external anchor the model
x v

employs the constraint Ax + Av - 1 and assumes o(Ex,Ev) - 0, whereas with an

internal anchor
x

is set to 1, and it is assumed that o(E ,E ) = va2(E).x v

Using these two parameterizations, relatively simple expressions are easily

obtained for true-score variances, reliabilities, and error variances.

Further, the error variances are equal to the so-called "Angoff error

variances."

Applying these two parameterizations of the classical congeneric model

with the Levine assumptions leads to general equations (for both of' Levine's

procedures and both the external and internal anchor cases) that involve

ratios of' effective test length parameters. This aids interpretation.

The derived results are sunmarized in Table 1, where t(X) and g(X) are

the linear functions for the observed-score and true-score methods,

respectively. There are similarities between the expression of sane of' the

results in Table 1 and other expressions of results for the Levine procedures

(notably, Angoff, 1984, i$. 115, and Kolen & Brennan, 1987, p. 272). For

2;1
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example, as in Kolen and Drennan (1987), results are expressed in terms of

synthetic population weights, means and variances that are directly

observable, and certain 1-terms. (Kolen & Brennan, however, provide results

for the observed-score case, only.) Also, for wt = n1/(r11 * n2)

and w2 n2/(n1 + n2) the results In Table 1 are algebraically equivalent to

those presented by Angoff (1984),

There are, however, several differences between the expression of results

summarized in Table 1 and other expressions. First, the 1-terms are all

expressed as ratios of effective test length parameters for the two

parameterizations of the classical congeneric model used in this paper. This

fact enhances the interpretability of the 1-terms. For example, with an

exclusive anchor, it is evident that 11 increases as the effective test

length of X inc-eases relative to V in population 1. Second, the 1-terms are

the same for both the observed-score and true-score methods. Third, the

effective test length parameters are all slopes in a particular linear

regression. In general XF = ai(FI*) where i = 1 or 2, F is X, Y , or V, -ind *

is a total score involving F. Fourth, the linear function for the true-score

method, g(X), can be obtained using expressions for synthetic group means and

variances that involve synthetic poi' ation weights, but g(X) itself is bl i nd

to such weights. This is a notable difference between the observed-score and

true-score methods--a difference that has not been reported previously.

The as3umptions about true scores and error variances for both of the

Levine methods are the same. What distinguishes the methods is the nature of

the linear functions. For the observed-score method, the linear function

relates converted observed scores on X to scores on Y. For the true-score

method, however, the basic linear function relates true scores, but it. is

applied to observed scores. Consequently, for the true-score method, it in
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not clear how the converted scores on X are in any sense comparable to scores

on Y. Recently, however, Hanson (1990) has shown that Levine's true-score

method satisfies the condition of first-order equity under a particular

parameterization of the classical congeneric model. Of course, this does not

necessarily mean that Levine's true-score method is preferable to Levine's

observed-score method, but Hanson's proof casts new light on Levine's true-

score method.

Although the two Levine methods are not properly distinguished in terms

of being derived ;Ander assumptions about equally reliable and unequally

reliable tests, there is a relationship between the two methods that involves

reliabili ties. In particular, if there exists a particular synthetic

population in which X and Y are equally reliable [i.e., ps(X,X") ps(Y,Y")

for a particular w1 (and w2 1 - w1)1, then

(T ) a(Y) p (Y,Y") (Y)s y 5

0 (T ) s (X) ps(X,X") s (X)s x

t(X) g(X) for this synthetic population, and for both methods the converted

scores on X for the synthetic population will have the same mean and variance

as the scores on Y. Note that this equivalence does not necessarily hold for

every synthetic population, however.

Sometimes the following question is asked: "When tests are equally

reliable, why doesn't Levine's unequally reliable procedure give the same

results as Levine's equally reliable procedure?" This seemingly sensible

question, however, is somewhat misleading and ambiguous. It is misleading

because, as shown in this report, the generalized version of the Levine-Angoff

results summarized in Table 1 can be derived without any assumptions about

reliability. The so-called "equally reliable" procedure is simply the

obc,erved-score method denoted g.(X), and the so-called "unequally reliable"
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procedure is simply the true-score method denoted g(X). The question is

ambiguous because it fails to recognize the role of the synthetic population

in obtaining IL(X). For example, suppose pl(X,X") = p2(Y,Y"), which implies

that X and Y are equally reliable for the populations that actually took X and

Y. It does not follow, however, that ps(X,X") ps(Y,Y") for the particular

synthetic population actually used. Thus, it is quite possible for forms to

be equally reliable in scrne sense without having t(X) = g(X).

Levine's (1955) methods make assumptions about true scores.

Consequently, to apply these methods, one must employ sane model that relates

observed and true scores. Levine employed classical test theory assumptions,

and expressed many of his results in terms of reliability coefficients.

However, he gave only limited consideration to how such coefficients might be

estimated. Angofrs (198)4) results are based on estimating these coefficients

using observed variances and Angoff's (1953) error variances. In this paper,

two specific classical congeneric models are used to derive results for

Levine's methods. These results can be viewed as more general versions of

Angoff's results, although they are derived and expressed differently.

Since Levine's methods require sane model for the relationship between

observed and true scores, models other than the classical congeneric model

could lead to different results. In particular, the multi-factor congeneric

model discussed by Feldt and Brennan (1989, p. 111), or one or more models in

general izabi 1 ity theory, might be employed with Levine's methods. The

principal point is that improved estimates of true-score variances, error

variances, or reliabilities could lead to improved results. Also,

improvements might result fran relaxing one or more of Levine's assumptions.
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Appen di x

Proof that o 2 ( T ) e ( T )s x s v

In general, it is easy to show that

a2(T ) wIal(T ) + w2o1(T x) wiwjp1(T
x

) 1.12(Tx )32$ x x (A1)

For the classical congeneric model mI(Tx) = P1(X) and pa(Tx) u2(X) . Also,

under Levine's assumptions Kolen and Brennan (1987, Equation 32) show that

P2(X) ui(X) [a1(Tx)/01(Tv).M.11(V) p2(V)]

It follows that

02(T ) = w(T) + w2c4(Tx) + wiw2[4(Tx)/al(Tv)][3.11(V) ti2(V)i2s x

o(T) o(T)
wlaf(T

v
) W2 a(T) + w1w2[111(V) u2(V)]2 (A2)

ol (Tv) al(Tx)

Under the Levine assimptions, the slope of the linear function of Tx on Tv is

the same in populations 1 and 2. This means that

ol(Tx)/ol(Tv) = 02(Tx)102(Ty) . (A3)

Applying Equation A3 to the second term in braces in Equation A2 gives

ol(T
x

)

o2(T ) =
s x al(Tv)

The term in braces is a2(T ), and by Equation 42 al(Tx)/al(Tv) = Y . Thuss v

la(T) w20:(Tv) 14042ru1(V) p2(V)32

02(1 ) = 121c:12(T )s x s v

as was to be proved.
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Table 1

Equations for Levine's Observed-Score [1(X)]
and True-Score [g(X)] Methods

X) = :o
s
(Y)/a

s
00] IX u

s
(X)]

g(X) Ea (T (T )1 Lx (X)] (Y)sysx s s

(Y2/Y1)[X * 1.12(Y) + Y2[iii(V) - 02(V)]

p(X) WI(() 142Y1[111(V) W2(V))

1.1

s
CY) = 02(Y) .1'1Y2[1.11(V) 112(V)]

0200 = a(X) w2YNaf(V) al(V)] w1w2Yi[111(V) P2(V)]2

(12(Y) - t(Y) wIY:Ca?(V) 022(V)] w/w2Y[p1(V) u2(V)j2

(52(T ) = Yfa2(T )
s x s v

(52(T ) = Y;a2(T ) .

s y s v

wh.we o2(T ) = wlaf(T ) w2a22(T
v

) w1w2rp1(v) u2(V)32
s v v

External Anchor (A V, B Y V) (Classical congeneric model)

a1(X1A) o(X) ol(X,V)
xl

(if-A) ,T(10 7,0c,v5
v,

A a2(YIR) (X) + 02(Y,V)
Y2

1 = - _

2 A a2(V113) (7(V) + o2(Y,V)
v2

Internal Anchor (Classical congeneric model)

11 = 1/A
vi

1/a1(vlx) af(x)/ai(x,V)

Y 2 = 1/A = 1/a2(VIY) = 01(Y)/02(Y,V)
V2

Note. For Tucker's method use Y1 = al(X1V) and y2 . 12(y11.) in

i(X) for both the internal and external anchor cases.


