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ABSTRACT

This paper presents a statistical procedure (denoted by SIB) designed to test for uni-
directional test bias existing simultaneously in several items of an ability test. It was
argued in Shealy and Stout (1991) that in order to model such bias with an IRT model, a
multidimensional model is necessary. The proposed procedure, based on this multidimen-
sional IRT modeling approach, statistically tests for bias in one or more items at a time
and is corrected for the inflation (or deflation) of the test statistic due to target ability
difference, a valid group difference that is conceptually independent of psychological test
bias. The correction plays the same role as the practice of including the single studied
item in the "matching criterion" score in the Mantel-Haenszel (MH) procedure adapted
for test responses by Holland and Thayer (1988). It is shown through the initial portion of
an extensive simulation study underway (Shealy (1991)) that, with the correction in place,
the procedure performs as well as the MH procedure in many cases when there is a single
biased item, and performs well in the case of multiple item test bias.

Key Words: item bias, test bias, DIF, latent trait theory, item response theory, target abil-
ity, valid subtest, nuisance determinants, potential for bias, expressed bias, unidirectional
test bias, bidirectional test bias, SIB, Mantel-Haenszel.
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INTRODUCTION

The purpose of this paper is to present a statistical procedure (denoted by SIB for
simultaneous item bias) for detecting bias present in one or more test items of a standard-
ized ability test. The procedure is based on the multidimensional item response theory
(IRT) model of test bias presented in Shealy and Stout (1991). By "test bias" we mean
a formalization of the intuitive idea that a test is less valid for one group of examinees
than for another group in its attempt to assess examinee differences in a prescribed la-
tent trait, such as mathematics ability. Test bias is conceptualized herein as the result of
individually-biased items acting in concert through a test scoring method, such as number
correct, to produce a biased test.

Two distinct features of this conceptualization of bias are as follows. First, it provides
a mechanism for explaining how several individually-biased items can combine through a
test score to exhibit a coherent and major biasing influence at the test level. In partic-
ular, this can be true even if each individual item displays only a minor amount of item
bias. For example, word problems on a mathematics test that are too dependent on so-
phisticated written English comprehension could combine to produce pervasive test bias
against English-as-a-second-language examinees. A second feature, possible because of our
multidimensional modeling approach, is that the underlying psychological mechanism that
produces bias is addressed. This mechanism lies in the distinction made between the abil-
ity the test is intended to measure, called the target ability, and other abilities influencing
test performance that the test does not intend to measure, called nuisance determinants.
Test bias will be seen to occur because of the presence of nuisance determinants possessed
in differing amounts by different examinee groups. Through the presence of these nuisance
determinants, bias then is expressed in one or more items.

The test bias detection procedure can simultaneously assess bias in several items,
thus addressing the above two features. In contrast, most item bias procedures detailed
in the literature perform tests on a single item at a time: The pseudo IRT procedure
of Linn and Harnish (1981) estimates possibly group-dependent item response functions
(IRFs) without the use of item parameter estimation algorithms when the sample size is
too small for their use. Thissen, Steinberg, and Wainer (1988) employ marginal maximum
likelihood estimation to obtain group-dependent item parameters in a 3-parameter logistic
framework and use the likelihood ratio test to test the equality of the parameters across
group. The Mantel-Haenszel procedure, adapted for test response data by Holland and
Thayer (1988), and which is in wide use, employs the practice of using the score of the
entire test instead of the score of the non-studied items as the "matching criterion" to test
for item bias. Etc. Conceivably these procedures could be used once for each item in a set
of items being tested for bias, and multiple comparison procedures could be employed to
assess the hypothesis of the entire set being biased. However, if the amount of bias is small
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in each item, a multiple comparison procedure may not pick up bias in the set of items at
all. Moreover this approach cannot address underlying causal mechanisms of bias.

The novelty of our approach to detecting test bias lies not so much with its recognition
of the role of nuisance determinants in the expression of test bias, but rather in its explicit
use of a multidimensional model to motivate the procedure to detect it. The presence of
multidimensionality of test item responses where bias is present has long been recognized
in test and item bias studies: Lord (1980) states "if many of the items [in a test] are found
to be seriously biased, it appears that the items are not strictly unidimensional" (p. 220).
Recently, Lautenschlager and Park (1988) employed a technique of generating simulated
biased item responses using a method of Ansley and Forsyth (1985), which involves using
multidimensional item response functions (IRFs)-and latent ability distributions to deter-
mine conditional probabilities of correct response. Kok (1988), taking a multidimensional
viewpoint similar to Shealy and Stout (1991), presents a specific multidimensional IRT
model for bias where the nuisance determinants are compensating abilities, contextual
abilities such as language, and testwiseness.

An important issue addressed by our procedure is that a careful distinction is made be-
tween genuine test bias, often operationally embodied as DIF (Holland and Thayer (1988))
by practitioners, and non-bias differences in examinee group performance, sometimes called
impact (see, for example, Ackerman (1991) for a careful discussion of impact as distinct
from bias), that are caused by examinee group differences in target ability distributions.
It is important that the latter not be mistakenly labeled as test bias. The procedure
developed herein makes this distinction in its application.
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FORMULATION OF TEST BIAS

'7141

Test bias in this paper is modeled using a multidimensional item response theory
(IRT) model, which is assumed to be the model behind the observed test responses. For
purposes of exposition, we restrict ourselves to the case where there is a single nuisance
determinant; this two-dimensional modeling approach is often realistic in practice. Exten-
sions to multiple nuisance determinants are straightforward. For a fuller treatment of the
conception of test bias, including the case of multiple nuisance determinants and item bias
cancellation, in a more general framework, see Shealy and Stout (1991) and Shealy (1989).

We consider two biologically- or sociologically-defined groups, named "reference" and
"focal" groups (after Holland and Thayer's (1988) naming convention). A random sample
of examinees is drawn from each group, and a test of N items is administered to them.
Typically it is suspected that a part of the test is biased against the focal group; this
group is usually the object of the bias study. The responses to the test items from a
randomly-chosen examinee are denoted U = (U1, . , UN), where each U; can take on
0 or 1, according as the response to item i is incorrect or correct, respectively.

The IRT model in general is composed of two components that generate U: (1) a d-
dimensional examinee ability parameter and (2) a set of item response functions (IRFs), one
for each item, which determine the probability of correct response for the items. Here we
restrict the model to have d = 1 or 2, because we are considering a single nuisance determi-
nant in addition to the target ability. The ability vector is (0,q) for an arbitrary examinee
from either group, where 0 denotes target ability and ti denotes the nuisance determinant.
A distribution of (0,q) over the combined group of examinees is induced by choosing ex-
aminees at random; the variable for a randomly chosen examinee is denoted (0, 7/). The
IRF for item i is denoted P;(0,ii), and it is assumed that all items depend on 0, and one
or more may depend on ri; for those dependent only on 0, the IRF is P1(0). It is implicitly
assumed that an IRT representation for L. in terms of (0, 77) and {P;(9,77) : i = 1, ... ,N)
is possible; for a fuller treatment of this assumption, see Shealy (1989). In addition, it is
assumed that each P1(0,77) is increasing in (0, 77) when item i is dependent on both abilities
and increasing in 0 when it is dependent on 0 alone; and that each P1(0) is differentiable.
Finally, local independence of U given (0,q) is assumed.

Test bias in the above-mentioned model is formulated through three components:

(a) The potential for bias, if it exists, resides within the target ability/nuisance determi-
nant distributions of the two groups being studied;

(b) potential for bias is expressed in items whose responses depend on the nuisance de-
terminant;1 and

1 We remark that Kok's (1988) formulation is also based upon (a) and (b); Kok's and
our formulation were developed independently of one another.
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(c) the scoring method of the test, to be viewed as an estimate of target ability, transmits
expressed item biases into test bias.

Potential for test bias is explained prosaically in the following manner. After condi-
tioning on a particular 0, suppose that the reference group has a higher level of nuisance
ability on average than the focal group. Then those reference group examinees with abil-
ity 0 would have an overall advantage over the corresponding focal group examinees when
responding to items at least partially dependent on the nuisance determinants 7? (formally,
because of the monotonicity of the items III.Fs Pi(0,11)). Formally, we define the potential
for test bias at 0:

Definition 1. Potential for test bias exists against-the-focal group at target ability level 0
with respect to 77 if 77 I 0 = 0, G = F is stochastically less than 77 I 0 = 0, G = R, where
"G = F" denotes sampling from the focal group and "G = R" sampling from reference
group. Potential for bias exists against the reference group if the converse holds.

Note that we are restricting consideration to conditional nuisance distributions rfle =
0, G = R and 77 I 0 = 0, G = F that are stochastically ordered; that is, where the
two distribution functions do not 'ntersect. Figure 1 displays two distributions that are
stochastically ordered and also two distributions that are not.

place Figure 1 about here

In order for test bias to occur, it must be expressed in one or more items. Our definition
of expressed bias for an item, when specialized to Kok's model, is really the same as that
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of Xok (1988, p. 269). It is defined in terms of a marginalization of the multidimensional
IRF P1(007).

Definition 2. Let P1(0, ri) be the IRF for item i. The marginal IRF for group g (g = R
or F) with respect to target ability 0 is defined as

Ti9(9) = E[Pi(e, 71) I = G = 9].

When ri I 9 has a conditional density, Aril 0) say, Definition 2 translates into

00

Tig(e) =
'

POI OM e)C177'

(1)

Definition 3. Expressed bias for item i against the focal group occurs at target ability 0
if TiF(0) < T'iR(0); it occurs against the reference group if the converse holds.

A test can consist of many items simultaneously biased by the same nuisance determi-
nant. In this case, items can cohere and act through the prescribed test score to produce
substantial bias against a particular group even if individual items display undetectably
small amounts of item bias. This is the final (and novel) component of our formulation of
test bias mentioned above. We consider the large class of test scores of the form

h(L) (2)

where h(u) is real valued with domain u a (u15 , uN) such that u; = 0 or 1 for i =
1,... ,N and h(u) is coordinate wise non-decreasing in u. This class contains many of
the standard scoring procedures for many standard models; for example, number correct,
linear formula scoring of the form Er_i ait71, with cti > 0, maximum likelihood estimation
of ability for certain logistic models with item parameters assumed known, etc. In this
paper we restrict attention to number correct as the test score; the results presented herein
are easily extendable to other forms of h(u). The key point about number correct scoring
is that each item is weighted equally. Thus, if a subset of the items is suspected of bias,
we should give equal weight to the items in this "studied" subtest in our attempt to
quantitatively assess the amount of test bias resulting from the simultaneous influence of
thses items. We thus define test bias for a specified studied subtest of items as follows:

Definition 4. Let Wi1, U12, , Uie) be any subtest of items to be studied for bias from
the test of concern and define

h (11.) = E .

Then this studied subtest of items displays test bias against the focal group at 0 if

E[h(E) I 0 = 0,G = < E[h(U) I 0 = 0,G = 11].

6
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The subtest is biased against the reference group if the converse holds.
Finally, the components of the bias formulation can be integrated using the following

theorem, adapted from Theorem 4.2 in Shealy and Stout (1991):

Theorem 1. Fix a target ability 0 and choose the subtest scoring method h(u) of the
form (3). Assume potential for bias against the focal group at 0 holds (Defmition 1). Then
test bias exists against the focal group; i.e.,

b b

E Egli, I 0 = 0,G = 11 <EE[ui, 1 0. 0,G = 14 (4)

In order to test for bias of the above form, there must be an implicit assumption that a
portion of the test measures only the target abilityrotherwise; a conditional-on-observed
score procedure to detect bias is not possible. This set of items will be denoted the valid

subtest. The issue of the existence and identification of a valid subtest is extremely difficult
to frame philosophically (it is really an issue of construct validity) and must primarily be
an empirical decision based on expert opinion or data at least in part external to the test
being studied; it is not dealt with here. For a fuller discussion, see Shealy and Stout (1991).
For notational simplicity we denote the valid subtest to consist of first n < N items of
the test, and we call the remainder of the N n items the studied subtest. We note that
use of a valid subtest is operationally equivalent to making use of a subset of items whose

purpose is to partition examinees into "comparable" sets as is done in the MH procedure
described below and other DIF procedures. Hence, the proposed use of a valid subtest in
the SIB procedure can be interpreted either in the strong sense of our test bias paradigm
or in the weak sense of the DIF paradigm (of matching of "comparable" examinees). Thus
use of our statistical procedure for assessing bias in no way requires acceptance of our bias
framework as opposed to a "comparability" framework, where no claims about "bias" are
made.

Using the above conventions, the specification of test bias against the focal group at
0 becomes

N N

TF(61) TiF(0) < E Ti(0)::=. T(0) (5)
i=n+1 izIn+1

because Tig (0 = E[U1 I 0 = 0, G = g] by a simple application of a standard conditioning
formula to Definition 2. T9(0) is called the studied subtest response function for group g.

Unidirectional test bias

Test bias heretofore has been considered conditional on a single target ability; we now
turn to a global perspective. If there is test bias against the same group for all 0, then
there is unidirectional bias against this group. Specifically, if

B(0) = T(0) TF(0)
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is the level of bias against Group F at 0, then unidirectional bias holds if either B(9) > 0
for all 0 or B(0) < 0 for all O. A strong form of unidirectional bias, termed uniform
bias by Mellenbergh (1982), is the type of bias that the modified Mantel-Haenszel test
statistic devised by Holland and Thayer (1988) is designed to detect. Although the Mantel-
Haenszel approach is not dependent on an IR.T framework, it can be put in a Rasch
model IRT framework, with the single biased item having group-dependent item difficulties.
Here, the bias is "uniform" in the sense that TF(0) is merely TR(0) shifted horizontally.
Unidirectional bias is less restrictive in that T9(0) does not have to be a logistic IRF, and
more importantly, TR(0) does not have to be TF(0) shifted.

Since we are concerned with bias against the focal group, it is intuitive that a suitable
theoretical unidirectional bias index is

#u = f B(0)fF(0)d0
0

(6)

where fF(9) is the probability density function of 0 for the focal group. Equivalent in-
dices weighted by the reference target ability distribution and the combined-group target
distribution are easily conceptualized.

THE BASIC PROCEDURE

The statistical procedure to be presented is based on (6); the hypothesis is

H : #u = 0 vs.

the alternative being one-sided to specifically test for bias against the focal group. The
test statistic to be constructed is essentially an estimate of ,8u normalized to have unit
variance. The estimate of #u is derived first.

Since test bias is analyzed using number correct on the studied subtest, set

s
(7)

i=n-I-1

tO be the studied subtest score; also set X = Etit_i LT; to be the valid subtest score. In
selecting the valid subtest score to be number correct, we follow the convention set out in
Holland and Thayer (1988), among many others. Other choices would of course be possible
and could improve the performance of the procedure.

The naive intuition is that exa.minees with the same valid subtest score are examinees
of approximately equal target ability and thus such examinees are directly comparable in
the assessment of bias. Thus the difference

?Rk -1-7Fkl

8

k = 0,. ,n,

1 2
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where Po is the average Y for all examinees in group g attaining valid subtest score X = k,
should provide a measure of the bias against the focal group (resulting from the reference
group having superior nuisance ability ri on average). In particular, if there is no bias (H
holds), then ?Rk - Fk = 0 for all k should be observed, and if there is unidirectional
bias against the focal group (B(0) > 0 fcr all 0) then ?Rk ?Fk > 0 for all lc, except for
statistical error, should be observed.

The above assertion needs support; it will suffice to argue that

E[PRk PFkl =. 0 for all k if B(0) = 0 for all 0, and

E[?Rk ?Fk] > 0 for all k if B(0) > 0 for all 0.. (9)

For now we restrict the target ability distributions to be equal for the two groups; i.e.,
OIG=R and 0 IG=F have the same distribution. It is easy to prove (following (5))
under the model presented herein that

E[Pgk = I X = k, G = 61= E[21(0) = k, G g]. (10)

Now assume that the valid subtest is long enough so that the distribution of so I X =
G = g is tightly concentrated about its mean, and hence that T9(0) is locally flat within
the range of 0 where the distribution of 0 I X = k, G = g mostly resides. Then

E[T9(0) I X = lc, G = g] T9(E[0 I X = 10,G = g]) (11)

= T9(E[0 I X = k]),

because the two target ability distributions are equal and expectation is a linear operator.
Thus, denoting k = E[0 I X = k],

E[YRk k] BOO' (12)

Thus (9) follows easily; the n + 1 differences in (8) provide an estimate of 11(0) at n + 1
points in the 0-domain. It is intuitive that an estimate of gu

-g1.1 =E13k(PRk ?Fk)
k=0

(13)

where 73k is the proportion (among focal group examinees) attaining X = lc. Specifically,
if Jgk is the number of examinees in group g attaining X = k, then Pk .1 1 7= Fk. Fk

In the case where the target ability distributions are the same, then, it is straightfor-
ward that

E[u] -÷-EPkB(9k) fiu
k=0

9
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where pk = P[X=kIG=1]. Thus the expected value of 4u is a weighted difference
of marginal IRFs, this weighted difference approximating Ou, which is a continuously
weighted difference of marginal IRFs. From (14), it follows that Eiji/ 0 if Ou = 0, and

> 0 if Ou > 0. This suggests the standardized test statistic

B = 3.,u (15)
er(Ou)

for testing H, where the denominator is defined as

=
1

k, R)aCgu) (Di (7---e(Y I (Y k , F))
k=0 Rk jFk

(16)

where &2(Y I k , g) is the sample variance of the studied subtest scores of those group g
examinees with valid subtest score k. A full description of the computation of the test
statistic, with contingencies for exclusion of certain valid subtest scores based on inadequate
examinee counts, is presented in the Appendix. B is approximately standard normal when
flu = 0 and the target ability distributions are the same, because riju is the weighted sum
of approximately normal random variables PRk ?Fk; these are approximately normal (for
suitable sample sizes) by the central limit theorem (proof of asymptotic normality of B
omit ted).

The regression correction for target ability difference

The presence of a difference in target ability distributions in test bias studies has been
treated in various contexts in the literature. The issue of the linking of metrics across group
in the estimation of IRT item parameters is one such context (see Linn, et al (1981) for an
IRT item bias approach where linking of metrics is crucial). Holland and Thayer (1988)
also deal with this problem by including the single studied item in the matching criterion
score of the Mantel-Haenszel test; they prove that this method completely compensates
for target ability difference (in their context, the distributional difference in the postulated
unidimensional latent trait) when the underlying IRT model is a Rasch model. Millsap
and Meredith (1989) elegantly formulate the problem in terms of a divergence of two
hypotheses (a "conditional on observed score" hypothesis and a "latent trait" hypothesis),
which would occur if target ability difference is present. A "conditional on observed score"
procedure such as (15) in its present form is not adequate to address the separation of
target ability difference from test bias; the presence of target ability difference when in
fact there is no test bias present can statistically inflate B, thereby suggesting test bias
actually is present. It is therefore necessary to formulate a correction for target ability
difference.

10
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To motivate the proposed correction it is necessary to show that a decomposition of the
differences itnk - PFk into "test bias only" and "target ability difference only" components
is possible. First we note that by similar arguments to those used in deriving (10) and (11),

E[P9k] :---*- T9(0ok), (17)

where 9. = E[0 I k, g]. The condition Ef?Rk = 0 requires 9Ilk 9 o= F as in (11)L- I PFd
where g was removed from the conditioning; but this may not happen if the target ability
distributions are not the same, as Figure 2 suggests. Figure 2, which displays densities
for four distributions, assumes that the distribution of 0 I F is stochastically smaller than
that of 0 I R.

place figure 2 about here

Note that the (conditional) distribution of 0 I k, F is stochastically smaller than that
of 0 I k, R for all k. The standard Bayesian calculation makes this insight rigorous. Thus,

9Fk < 9Rk for all k, and, in the absence of bias, where TR(0) = TF(0) ..=... T(0) for all 0,

EPFk = T(OFk) < T(O Rk) = EPRk

(T(0) is assumed monotone; for mild conditions giving such monotonicity, see Shealy and
Stout (1991)). Thus

n

EPk(T(9Rk) 2' (0F k)) > 0.
k=0.

In the case where bias is present, we can thus decompose E[f3u]:
n n

Wu] --= EPk(TR(9Rk) 2' AORk)) + EMATF(9Rk) 2' AOFk))
k=0 k=0

n n

=-ENB(9Rk)+ENTkoz)(oRk
k=0 k=0

(18)

where 91; is between ORk and OFk (TF(9) is assumed differentiable here and the mean
value theorem has been applied.) The first term is due only to test bias; the second is due
only to target ability difference.



This approximate decomposition argument is the motivation behind the proposed
correction. Our strategy is to adjust PRk, ?kik to Pr such that the inflating effect of
the group differences in target ability is eliminated. The manner this is accomplished is to
construct 11 and Ph; so that they are estimating the studied subtest response functions
TR(0) and Tp(0) at approximately the same target ability Ok defined below (as opposed
to two different ones, as is evident from (17)).

A natural attempt to make adjustments to ?Rk and ?kik iS to approximate TR(0) and
TF(0) in the neighborhood of ORk and OFk by linear functions. If we assume that ORk and
0Fk are sufficiently close together to do this, TR(0) and TF(0) can be linearly interpolated
at Ok = -}(ORk OFk):

where

T9(0 k) = T9(090+ mgk(Ok 99k)

Tg(O g,k+1)
mgk =

g,k+1

T9(99,k_l)

811,k-1

(19)

however, though estimates of T 9(0 9k) (namely, I-79k) arr., available for all k, estimates for
{00 : k = 0, ,n} are not. Abilities on the 0-scale are not observable; however, one can
egimate abilities on the scale defined by the valid subtest, namely

v = P(0)

where P(0) is the average of the valid subtest IRFs .1)1(0). P(0) I G = g is the
true score for a randomly chosen group g examinee, i.e., the valid subtest true score P(0)
for group g. Let

V9(x) = E[P(0) I X = x,G = g], (20)

the (theoretical) regresion of true on observed (here, valid) score. 1/9(x) can be easily
estimated using classical true score theory, assuming that the above regression is linear or
nearly so. The estimation of 119(x) is deferred to the appendix. Denote this estimator by

At this point it is expedient to describe three latent scales, which must be simulta-
neously considered in order to understand the correction. Figure 3 delineates the three
scales and should be referred to frequently.

12
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So, the interpolation of (19) must be transformed so as to use the easily estimable
179(k) instead of Ogk Through a monotonic transformation P(9), Vg(k) and Ogk represent
approximately ("approximately" because P(94,k) Vg(k) will be demonstrated below)
the same ability on two different latent scales and thus for our purposes interchangeable.
Note that s = T9(9) defines a monotonic transformation from the fundamental latent
scale to the studied subtest scale, and v = P(9) defines one from the fundamental scale
to the valid subtest scale. T9(9) must be transformed so we can use the valid subtest
scale as domain, because abilities on this scale can be estimated. Figure 4 illustrates the
appropriate correspondence,

place figure 4 about here

thus defining a new transformation Sg(v) = T9(15-1(v)) from valid subtest scale to studied
subtest scale, with domain (c, 1) and range (c,1) (c > 0 is the guessing parameter, assumed
common for all items in the test).

With this transformation in hand, the correction can be performed in the following
manner. First, by the same arguments as used in (10) and (11), using P(8) in place of
T9(0) in the arugments,

Vg(k) P(E[e I k,g]) a 13(89k).

So P -1 (179(k)) 199k by continuity; and

13

= T9(69k),
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also by continuity. By definition of Sg(v), this becomes S9(V9(k)) T9(09k), and thus
by (17),

Efts,k Sg(n(k)). (22)

Thus i'9k is a reasonable estimation of Sg(Vg(k)) for each k. To transform (19) into
an interpolation involving S9(.), we assume that Sg(v) can be approximated by a linear
function in a small region about V9(k), and that VR(k) and VF(k) are close enough to
allow the approximation to be effective. Then, we interpolate SR(VR(k)) and SF(VF(k))
to their respective values at Vk = 1(VR(k) VF(k));

where

Sg(Vk) = Sg(Vg(k)) + rn;k(14 V9(k))1

rn;fk = V9(k +1) V9(k 1)

is the approximate slope of Sg(v) in the region of V(k) and Vk. All of the above terms on
the right hand side of (23) are estimable; using ?slk to estimate S9(V9(k)), we define the
adjusted PA:

S(Vg(k + 1)) S9(V9(k 1))

(23)

= ?gk llAigk(% lAig(k))

where, recalling that the estimator fig(x) is given in the Appendix,

if'gk ?g,k+1 ?g,k-1
Vg(k + 1) fig(k 1)

and define fik = (1...7it(k)+1A7F(k)). Because the right hand side of equation (24) is a good
estimator of the right hand side of (23), PA is thus a good estimator of S9(Vk). Finally, ?9'ik
must be shown to be a good estimator of T9(0) at the same 0 for both groups. By definition
of Sg(v), Sg(Vk) = T9(13-1(Vk)). If ORk and OFk are sufficiently close together then F(S)
may be taken to be approximately linear in the neighborhood of Ok = (9Rk+OFk)12. Thus,
using (21) and assuming approximate linearity of P in the neighborhood of Okl

(24)

1
Vk = 2(VR(k) +VF(k))

1
(P(9Rk) 13(eFk))

).

Thus, by the continuity of P(9),

ok P-1(vk).

14



Hence, by the definition of Sg(v)

Sg(Vk)=Tg(P'(Vk)) -4.-719(0k).

Thus, because PA has been shown to be a good estimator of Sg(Vk), it is shown that
Pgsk is a good estimator of Tg(0k). Thus, itiik Ph, as desired, is a good estimator of
TR(Ok) TF(0k), i.e., of the difference of the marginal IRFs at the same 0, establishing
the usefulness of the interpolation (19).

(24) is called the regression correction for target ability difference. Thus, with the
correction (24) in place, (13) can be reconstructed, with

IU = EhAsik Psik)
k=0

(25)

and B defined as in (15). Rejection of the hypothesis of no test bias (H : Ou = 0) occurs
when B > z, where P[N(0, 1) > za]= a defines za. This procedure will be referred to
as the SIB procedure, "SIB" for simultaneous item bias.

Thus, the contribution to the differences itRk PFk due to target ability difference
has been eliminated. It is extremely instructive to note that the correction (24) is the
sample analogue of (23), which is basically the decomposition (19), albeit on a different
latent scale (though the two latent scales, 0 and V, are indistinguishable up to a monotonic
tranformation).

A modification of the basic procedure to achieve better statistical behavior

Redefine P to be the proportion of all examinees (focal and reference group) attaining
X = k. That is fik = (JFk Jltk)/ Enk=0(JFk JRk). Substitute this new Pk into (25)
and (16) to obtain the statistic B of (15). Because of a slightly better adherence in
simulation studies to the nominal level of significance when the hypothesis of no test bias
holds, this new choice of Pk is recommended over the slightly more intuitive choice based
upon focal group examinees alone. The power performance of both versions of B when

test bias was present was very similar. It is upon this version of the SIB statistic that our
simulation studies reported below are based.

SIMULATION STUDY

In order to assess the performance of the procedure in a variety of testing situations,
a moderate-sized (84 simulation cases) simulation study was performed. Three parameter
logistic item parameters actually estimated from two test data sets, an ACT math test
(estimated by Drasgow (1987)) and an ASVAB auto shop test (estimated by Mislevy and
Bock (1984)), are used to specify the IRFs in the IRT model. Univariate and bivariate



normal ability distributions, appropriately centered relative to the test item parameters
(for the purpose of good measurability of target ability), are used for the focal and reference
groups. Two levels of bias and three levels of target ability difference are simulated; tests
with a singly-based item and with three biased items are used in the simulations. The level
of guessing in the tests is varied. Finally, group size pairs of (3000, 3000), (3000, 1000),
and (1500,1500) for the reference group and focal group examinees respectively are used.

Each simulation model is run 100 times (trials). For a particular simulation model, the
item parameters and the two ability distributions for the two groups are fixed; however,
at each trial, a new set of examinees (ability parameters) is generated from the ability
distributions.

When a single item is to be studied in a simulation, the Mantel-Haenszel procedure as
modified by Holland and Thayer is run in parallel in order to provide an external reference
to compare to and to compare our procedure with.

Item paramet ers

Estimated item parameters from the above mentioned tests were used to construct test
models; the ASVAB test length is 25, and the ACT test length is 40. Table 1 gives the sum-
mary statistics for the a's, b's, and c's as estimated by Mislevy and Bock and by Drasgow;
for the actual parameter values, see Mislevy and Bock (1984) and Drasgow (1987).

place table 1 here

The test for each simulation was generated in the following manner. Let N denote
test length and n6 the number of items to be studied for possible bias. First, n6 was chosen
to be either 1 or 3. There were two cases to consider.

1. No bias: unidimensional items are used for the entire test.
2. Bias: unidimensional items are used in the valid subtest, and 2-dimensional items are

used in the studied subtest.
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In the first case, n0 of the N items were chosen randomly to be the studied ones, and
the remainder were used as the valid subtest. In the second case, n = N n6 items were
chosen at random from either the ASVAB or the ACT test to be the valid subtest, and
the 2-dimensional studied item parameters were chosen according to Table 2. Note that
the studied item guessing parameters are a function of the average and standard deviation
of the guessing parameters on the ASVAB -or ACTIests; the studied item a's and b's are
the same for both tests.

The IRFs are for case 1 (no bias)

(1 ci)
Pi(9) = ci + 1 + exp(-1.7a19(9

i = 1, , N, (26)

where ao and bo are the target discrimination and difficulty for item i. In case 2 (bias),
items 1 to n were of the form (26), and items n + 1 to N (studied items) had IRFs

(1 ci)
Pi(91 n) = ci + 1 + exp(-1.7(a2e(9 bo) ai,3(0

The final factor in determining the item parameters was whether or not to include guessing;
that is, whether to assume 2PL or 3PL modeling. The presence of guessing is thought
to influence the performance of the procedure. Thus, in some simulation models, the
estimated ci's from the literature were used in conjunction with (26) and (27); in others
all ci's were set to 0 producing a 2PL model. A detailed description of the experimental
design of the simulations follows.

i = n + 1, , N. (27)

Ability distributions

Specifying the ability distributions involves choosing the five parameters determining
the bivariate normal distributions for each group in such a way to meet the following goals:

1. Introduce a specified amount of group difference between target ability distributions.
2. Require the test to measure the target ability well, as would be true for any "good"

test.
3. Introduce a specified amount of potential for bias into the distributions.
4. In the case of 2-dimensional studied items (bias case), require that examinee nuisance

abilities be influential in determining the response to the item, e.g., that target and
reference group examinees have moderate nuisance abilities.

17



Each goal is elaborated upon separately below. The bivariate distributions for group g
(g = R or F) is denoted

(e Ig) N[(P99) [1 11111 g p 1
(28)

where p = Corr(0,n I G = g) is taken to be the same for both groups (p taken to be
different across group tends to introduce bidirectional bias, where marginal IRFs in 0 for
the two groups cross; see Shealy (1989)). Note that 472(0 j g) and cr2(77 I g) are taken to
be 1 in our study.

Goal 1. We first define target ability difference. We need some notation; let aR =
the proportion of the entire (conceptual) population of examinees who are referece group
members, and aF = 1 aR be the corresponding proportion for the focal group. (Note:
as JR and JF both increase to oo, conceptually, 7Z--bi, aR and aF. Here Jg
denotes the number of sampled Group g examinees.) Define

Pelt 118FdT
ceP

to be the target ability difference between the focal and reference groups, where

crp = R0.2 (p R) aF0.2(0 F).

(29)

(30)

Note that when (28) holds cr3p = 1 and thus that dT = ilaR peF dT is a quantity
specified in the simulations.

Goal 2. The criterion used to ensure good measurability of 0 by the test, is that the
average difficulty (6) of the valid subtest should be close to the average target ability over
the pooled groups. Specifically, peR and peF are chosen so that

= E[ø] = aRPOR + (31)

is taken from Table 1. peR and peF are completely determined by specification of dT
and (31).

Goal 3. We use a more restrictive version of Definition 1 to define potential for bias: set

Co(9) = E[77 I 0 = 0,G = E[77 I 0 = 0,G = F]. (32)

Co(9) > 0 is defined to be the potential for bias against the focal group. When (28) holds,
(32) becomes

Cs(9) EE = Pnit PPOR (117IF PPOF)

= (PR P(Pen PeF) = (Pot PF) PdT,
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0 dropping out because the ability correlation (p) is equal for both groups. Note that
because C is constant for all 0, unidirectional bias is being introduced. For a specified

amount of Co, tevR and /.4,7F are determined partially. The reader should note that potential
for bias can hold even though Nit= IL1F unless 11$F = peR.

Goal 4. The criterion used to ensure nuisance determinant influence is the following. The
nuisance difficulties for all studied items were chosen to be 0. For an arbitrarily chosen
target ability (say 0 = 0) we thus want the average nuisance ability to be near 0 as well.

Thus we choose
E[ri = 0, G = = E[ri I 0 = 0, G = (34)

i.e., the conditional nuisance expectation at ® = 0 is to.be.centered around the average
studied item nuisance difficulty of 0, for the reference and focal groups. Our intent in this

study was to introduce bias against the focal group, so 2,- In I 0,R] > 0 in (34) and thus we

get

0 < kinR Pilen = (12nF PileF); (35)

this Nvill specify j.LnR and i.LnF, along with specification of Co in (33).
There is an additional issue here: how large should Co be chosen to introduce a

"moderate" or "severe" amount of bias into the 2-dimensonal studied items of Table 2?
This is treated below, in the experimental design of the study.

Goals 1-4 now completely specify (28): p.m, 118F, NRI and it,IF can be found by
solving (29), (31), (33), and (35) simultaneously for them. p, a2(0 I g), and a2(ri I g) are

chosen: p = .5, and all a's are 1.

Choice of Co

The amount of potential for bias Co in each simulation model was chosen so that the

actual level of bias Ou produced was such that the power behavior of the statistic caa be
well assessed for the given examinee sample sizes, valid subtest used (recall Table 1), and
biased items used (recall Table 2). These Ou values (ro.1nded to two significant figures)
are shown in Table 3. The governing equations determining Co from gu were

where

Ou = f(TR(9) TF(0))fF(9)dO

T9(0) = E E[13,(0, 77) I = 0,G =
i=n+I

(36)

with P1(8,77) defined in (27) and the item parameters in (27) define:1 in Table 2, and the
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parameters of the (0, n) distribution determined from (29), (31), (33), and (35). One
standard often used to interpret from a practitioner's viewpoint the magnitude of the bias
is that tlie bias is "moderate" if 0.5 < AmH < 1 while it is "large" if Amu > 1, where
Awl is the theoretical index based on use of the Mantel-Haenszel log odds ratio proposed
by Holland and Thayer (1988). The rationale for AmH and fiu are different, but for nb = 1
and unidirectional bias, they tend to be highly correlated and are crudely related by

fiu AMH/10.

Thus, roughly, 0.05 < fiu < 0.1 would constitute moderate bias while fiu > 0.1 would
constitute large bias. Thus in the rtb = 1 case, referring to Table 4, the amount of bias
being simulated is actually either (low) moderate or small. Examination of (36) shows that
fiu is a measure of how much lower the probability of getting the biased item right is for
an average focal group examinee as compared with an average reference group examinee
of the same target ability. Thus fiu has a natural and useful empirical interpretation. In
our context, AI, HI by contrast, is a measure of horizontal distance between TR(9) and
TF(0) at y = p (i.e., the value of Til((1 E)/2) Ti1((1 + 0/2)), where E is defined
in Table 1.

place table 4 about here

Experimental design

The design is as follows. For the case of no test bias (Co = 0), for each test type
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(ASVAB Auto Shop or ACT Math) the following simulations are done:

0.0 3000/3000
nb = x ciT = / 0.5 x JR/JF = 3000/1000

1.0 J 1500/1500

fguessing
no guessing

Here "guessing" means that the estimated ACT and ASVAB guessing parameters are used
in the model and "no guessing" means that all cs are set to zero; that is, 2PL modeling
is used. Also, "3" means that this guessing "factor" is randomly assigned within the
36 levels produced by crossing the other factors.

For the case of test bias (Co > 0) the following simulation are done for each test type:

3000/3000
1

nb {3 } x u T,
{00:0- 51 x Co = °*5 x JR/JF = 3000/1000

1.0 1500/1500

guessing 1
no guessing

For nb = 1, the nuisance discrimination as,1 of the studied item is .8; for rib = 3, the
nuisance discrimination of each of the 3 studied items is .4. These discriminations were
chosen so that the power of the procedure could be well assessed (i.e., so that it would not
be too close to 1). It is informative to note in passing that the power of the procedure
is expected to be greater when nb is increased from 1 to 3 unless each item individually
displays less bias in the nb = 3 case. This is why the ctin (1 = N - 2, N - 1, N) was chosen
to be .4 in the rib = 3 case, -} of that used in the n6 = 1 case.

There are therefore 48 simulation models that incorporate bias. Thus, a total of
84 simulation models were used in the simulation study.

RESULTS OF THE SIMULATION STUDY

The results of the simulation stidy are given in Tables 5-8 and 9-12, with Tables 5-8
summarizing the no test bias simulations and Tables 9-12 summarizing the simulations
having test bias present. The c column indicates whether the model has guessing present
or not. In all nb = 1 case,. the Mantel-Haenszel rejection rate for the hypothesis of no item
bias (based on 100 trials) is reported in the MH column. In all cases the SIB rejection rate
is reported in the SIB column. In all cases where test bias is present (Tables 9-12), the
Co column presents the amount of potential for bias present (recall (33)); the i3u column
presents our index of the amount of bias present against the focal group in the model
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(recall (6)); lit/ is the average of the estimates iju of f3u over the 100 trials; the AMH
column presents the amount of bias present against the focal group in the model from the
Mantel-Haenszel perspective.

Tables 5-8 indicate that both the SIB statistic and the MH statistic display reasonable
adherence to the nominal level of significance of 0.05. There appear to be situations of
no bias, which have a target ability difference and which depart from the Rasch model,
where the Mantel-Haenszel procedure displays inflated Type 1 error. (See Zwick (1990),
for a discussion of this problem and an illustrative example.) There is evidence that
in such situations (Shealy (1989)), the SIB statistic adheres closely to the nominal level
of significance. On the other hand there are likely portions of the "parameter space"
of realistic IRT models where our linear regression correction is stressed and hence the
MH would likely display better Type 1 error performance. More study is required before
it can be claimed that either MH or SIB displays superior Type 1 error performance.
The striking fact is that both procedures seem to be quite robust against the inflating
Type 1 error effect of differing target ability distributions. In this regard, dT = 1 from the
practitioner perspective is certainly a large amount of target ability difference.

Tables 9 and 11 indicate that both the SIB statistic and the MH statistic are quite
powerful against moderate amounts of bias and fairly powerful against small amounts of
bias in a single biased item. Untabulated simulation studies for larger amounts of bias
produced rejection rates of essentially unity for both the SIB and MH procedures.

Tables 10 and 12 indicate that the SIB procedure is quite powerful against moderate
amounts of bias resulting from several (3 here) items producing bias in the same direction.
The reader should recall that the amount of bias/item was lowered for the rib = 3 case by
reducing the discrimination in the nuisance dimension from anN = 0.8 to ani = 0.4 for the
studied items. In both the nb = 1 and rib = 3 cases, the potential for bias as measurod
by Co was kept the same (Co = 0.2 or 0.3). These two table show, as claimed, that tht.
SIB procedure can successfully detect simultaneous item bias, even if the amount of bias
present per item is small.

Tables 9 and 11 show, for the particular bias models of the simulation study, that SIB
is somewhat more powerful than MH, averaging 0.07 higher for those models for which
rejection rates are < 0.9. We do not know whether this greater SIB power generalizes to
other models of bias.

Tables 9-12 provide evidence about the ability of -4 to estimate f3u, our measure of
the amount of bias present. For each case 137' u is an indicator of the amount of statistical
bias one might expect in using igu. Clearly statistical bias of roughly +0.01 is present.
The estimated standard errors for iju are not recorded, but averaged (roughly) about 1/3
of Pu. Thus if iju = 0.05 there is likely a bias of 0.01 and a standard error of 0.017. Thus,
crudely, a 95% confidence interval (if asymptotic normality is a good approximation) would
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be given by 0.04 ± 0.028. Here 0.04 = 0.05 0.01 is the correction for statistical bias. It
would seem that .i.ju provides a useful empirical index of the amount of bias present in a
statistical subtest of items; more work is planned in studying its theoretical and empirical
properties.

SUMMARY AND CONCLUSIONS

The SIB procedure was designed to test for unidirectional test bias residing in one or
more items, using the conception that test bias is incipient within the two groups' ability
distributions (in terms of a difference in conditional nuisance ability distributions). By
means of the regression correction presented here, the inflation of the SIB test statistic
due to target ability difference (one group having a stochastically larger distribution of 0)
is extracted. This correction represents a conceptual link between conditional-on-observed-
score methods and IRr-based methods, just as the practice of including the studied item
in the comparable examinee criterion in the Mantel-Haenszel procedure of Holland and
Thayer (1938) does. The correction adjusts the studied subtest scores for the two groups so
that they are now estimates of the same latent IRT ability in the case of no test bias, even if
group target abilities exist. It is useful to note that the adjustment, although conceptually
based upon multidimensional IRT modeling, is in fact computed using a classical approach
and hence does not depend on IRT ability or item parameter estimation.

A moderate (84 models) simulation study shows that both MH and SIB display good
adherence to the nominal level of significance, even for large (dT = 1) target ability differ-
ences. In the case of a single biased item, both MH and SIB display good power with SIB
displaying slightly higher power. As designed, the SIB statistic displays good power in the
case of several biased items (3 here), even when the amount of bias/item is fairly small.

A large scale simulation study is in progress with the goal of obtaining a better un-
derstanding of the performance characteristics of both the SIB and the MH statistics with
particular emphasis on investigation of statistical power and adherence to the nominal
level of significance. Based upon the completed portion of this simulation study reported
herein, we would recommend that practitioners use the SIB and MH statistics simultane-
ously. Both are extremely easy to compute and for moderate sized data sets run quickly on
a typical PC configuration. Carefully checked code with a user oriented driver is available
from the authors for running both the SIB and MH statistics on real data sets and also
for doing simulation studies of performance.



APPENDIX

1. Derivation of fi9(k), the estimated regression of true on observed valid
subtest score, for I: = 0, ,n.

Recall that Vg(k) = E[P(0) I k , g] needs to be estimated in order for Sg(Vk) of (23)
to be estimated. Suppressing g for simplicity, we need to estimate V(k) at k = 0,1, ... ,n.
Although V (k) is not necessarily linear in k (see Shealy (1989), p. 87ff for a discussion),
as an approximation we assume nV(k) is linear in k; i.e.,

nV(k) = a + 13k.

To estimate V (k), we consider the true score model for the valid subtest score X:

X = T e (Al)

where

E(e) = 0, cov(T, e) = 0 (A2)

is assumed and the true score T has the latent variable representation T = ni5(0). Thus

nV(k) = E[T I k].

Standard regression theory for E(T I k) yields

aV (k) = PivTTET + (k EX))
x

But, for the true score model given by (Al) and (A2),

PX7'47T 1 62(e)
(x 62(x))

(A3)

(A4)

is well known (see page 61 of Lord and Novick (1968). Using (Al) and (A2), ET = EX
holds. Thus, by (A3) and (A4),

62(
V (k) = 7-

17[EX + (1 "
2 (X)

(k EX)]
0-

(A5)

holds.
Clearly EX E[X I g] can be estimated by the average valid subtest score lc

of all Group g examinees taking the test. Thus it remains to estimate 62(e)/62(X).

24



a2(X) a2(X g) can clearly be estimated by the usual sample variance estimate of all

Group g examinees taking the test

)def 1

- 1) j.,(X 9)2 (A6)b2(X 9 =

where Jg denotes the number of Group g examinees taking the test and Xgj is the valid
subtest number correct score of the jth such Group g examinee. It remains to estimate
a2(e); denote this estimation by ii2(e). Then the desired estimation of a2(e)/a2(X) will be

given by 6.2 (e)/o.2(X). A standard conditioning formula yields, indexing the valid subtest

items by i = 1, 2, . , n, and setting X9 = X 1 g, 09 = 0 g as a reminder that sampling
here is from Group g only,

a2 (X f g) c12(X9) = a2(E[X9 I e9l) + E[a2(X9 (09)1

= a2(nP(09)) EE[Pi(e9)(1 Pi(esal
(A7)

i=1

using the standard item response theory assumption of local independence of items, given a

Also, by (A2) it is trivial that

c12(X I 9) = cf2(nP(0) I g) + a2(e 19).

Thus, by (A7),

a2(e

This suggests

g) = EE[P,(09)(1 P1(09))}.
1=1

er2(e 1 9) = E 04(1 (A8)
i=1

where (fig is the proportion correct for Group g exarninees for valid subtest item i. Thus,
using (A5), we will estimate 179(k) by

f79(k)= 71 [g9+ (1 (k iC9)]. (A9)

2. The complete procedure to detect test bias, using the proposed regres-
sion correction.

The SIB procedure in its entirety is presented here. First we set some basic notation.

Group g (g = R or F) has Jg examinees taking the test of N items. The response to item i

of the jth group g examinee is U. The subtest scores are

X = E U (valid subtest score), Y = E U (studied subtest score).
9i 9U

i=n+1
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The classical group item difficulties are Ogi = (1/Jg)Ej Li Ugij. Let Vik) denote summa-
tion over those group g examinees j with k correct on the valid subtest.

1. Compute Jo' the number of group g examinees with k correct on the valid subtest.
2. Compute

?gk =

1 (k)2

gk

t it fr 12
'-' T 1 L., j k gj sgkl

li '
If Jo = 0, set ?gk = 0; if J. < 1, set S. = 0. ?gk is the sample average studied
subtest score of group g examinees attaining Xg = lc, and Sg2k is the sample variance.

3. Compute P9(k) = ,I9k/ J9, for both groups and all k. P9(k) is the estimate of the his-
togram of X I G = g. Then compute P;(k), the MLE of the unimodalized histogram
of X I G = g, over the class of all possible unimodal MLE of the histograms with 72+1
possible values (X I G = g is assumed to have a unimodal distribution and hence its
estimate {P;(k),k > 0) should also be unimodal). For details of this procedure, using
the up-and-down-blocks algorithm, see Barlow et al. (1972; pp. 72-73; pp. 223-231).

4. Set I(k) = 1 for all k unless either
(a) k = 0 or n,
(b) S2Rk = 0 or Slk = 0,
(c) JR1511(k) < Jmin or JFh(k) < Jmin where Jmin is set by user, usually around 30,

Or

(d) k < ncu, where cu > 0 is the user-specified global guessing parameter for the
test. (It is assumed that there is a relatively constant level of guessing across
item, and that there is at least partial knowledge of this guessing value.)

I(k), k = 0, ... , n, is the examinee inclusi)n indicator; it is 1 if examinees with
X = k are to have their responses included in the test statistic. (a) excludes the two
extreme valid subtest scores because of their poor estimation of target ability. The
(b) exclusion is obvious. The (c) exclusion is done to assure that each valid subtest
score category has enough examinees to make ?Rk and PF k approximately normal; the
unimodal mass function is used so that only extreme valid subtest score catagories are
excluded. As for (d), all valid scores below that expected by guessing are excluded.

5. Compute the regression of true score on valid subtest score:
(a) E-7;i = 2-,S--. If the result is < 0, set it to 0 (adjustment for guessing).

(b) .?? = X .
9 Ja J=1 91

(C) -o2 (X I g) = 77-2-1- E112.1(X9j

(d) b2(e I 9) = fi'i 0;1(i U;i)
(e) -69 = 7::--'_i (1 :41))
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(f) islo(k) = fi(its, + g69(k I '9)) for both g and k = 0, .. . ,n.
6. Make the regression correction:

(a) ke=minfk : 1(k) = 11, kr = max{k : 1(k) =1).
(b) fik = .}(fiR(k)-1-1A7F(k)), for ke k
(c) For ke < k < kr, compute

P.= g* +
k 1

g'
P k 1fi k

Then compute Pg*k = Pgk + Ak(flic
(d) For k = ke and k = kr, compute )' s;sk in.the following.way.

i. Define

(1 ce)?9,k+i + alto

i§ (v) = I ?go

Pgn

and

if IA79(k) < v <119(k +1)

if v < fig(0)

if v ? flg(n),

v 1^79(k)a = .
V9(k +1) fl9(k).

is the linear interpolation of {i7-90,... ,Pon).
ii. Compute

= :5 g(IATk)

for k = ke and k = kr.
7. Compute the bias statistic.

(a) Compute J; = EL0I(k).19k, the number d included group g examinees
(b) Compute

ELolfe-(f7. 14 Phg(k)
B =

+ Sh)/(k))

(c) Reject H : flu = 0 in favor of #u > 0 at level a if B > z., where P[N(0,1) >
z.]= a defines za.

1/2
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Table 1: Means and sds for the ASBAB and ACT item parameters used in the study.

Test a as ; crb a as N
ASVAB auto/shop

1 ACT math
1.22
1.09

0.7
0.35

0.09
0.5

0.72
0.61

0.20
0.14

0.06
0..04

25
40

Table 2: Item parameters for 2-dimensional stvdied in the bias case.

nb Item No. (zip big oin bin

1 N 1.0 0.0 0.8 0.0 a
3

,

N - 2 0.6 -0.3 0.4 0.0
N - 1 0.8 0.0 0.4 0.0 a

.
N 1.0 0.3 0.4 0.0 I a+-2-Gre

Table 3: Equivalence table for bias potential and actual test bias.

nb Co all i3u
0.0 - 0

0.2 0.8 0.03
0.3 0.8 0.05
0.0 - 0

0.2 0.4 0.06
3' 0.3 0.4 0.09 1

Table 4: Equivalence of Am)/ and fiu when nb = 1, using item parameters of Table 2.

Co c's used 6,),01 Au

0.0 - 0 0
0.2 0.0 .27 0.044
0.2 actual c's .27 0.026
0.3 0.0 .40 0.051
0.3 actual c's .39 0.039
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Table 5: No bias, ACT, nb =1, a = 0.05.

Jp JR c dT MH SIB
1500 1500 0 ..0 .03 .07
1000 3000 0 .0 .00 .02
3000 3000 c .0 .09 .06
1500 1500 0 .5 .04 .04
1000 3000 c .5 .10 .10
3000 3000 c .5 .05 .03
1500 1500 c 1.0 .02 .05
1000 3000 c 1.0 .05 .10
3000 3000 0 1.0 .06 .09

Table 6: No bias, ACT, nb = 3, a = 0.05.

JF JR C dT SIB
1500 1500 0 .0 .05

1000 3000 0 .0 .02
3000 3000 c .0 .07 :
1500 1500 0 .5 .08
1000 3000 c .5 .07
3000 3000 0 .05
1500 1500 c 1.0 .06
1000 3000 c 1.0 .16
3000 3000 0 1.0 .09

Table r: No bias, ASVAB, nb =1, a = 0.05.

JF JR C dr MH SIB
1500 1500 0 .0 .08 .07
1000 3000 0 .0 .04 .04
3000 3000 c .0 .06 .06
1500 1500 0 .5 .13 .14
1000 3000 c .5 .04 .03
3000
1500

.3000 e .5 .05 .04
1500 c 1.0 .07 .02

1000 3000 c 1.0 .15 .09
3000 3000 0 1.0 .11 .01
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Table 8: No bias, ASVAB, nb = 3, a = 0.05.

Jp JR c ch SIB

1500 1500 0 .0 .07

1000 3000 0 .04

3000 3000 c .0 .03

1500 1500 :0 .5 .07,..

1000 3000 c .5 .06

3000 3000 0 .5 .05

1500 1500 c 1.0 .15

1000 3000- c 1.0 .07

3000 3000 0 1.0 .04

Table 9: Bias, an = 0.8, ACT, nb = 1, a = 0.05.

Jp JR C C1T (70 fiu 13: A141.1 MI I SIB
1500 1500 c 0 .2 .026 .032 .27 .46 .

1000 3000 0- 0 .2 .032 .042 .27 .64 .70

3000 3000 0 0 .2 .032 .035 .27 .91 .95

1500 1500 c .5 .2 .029 .035 .27 .51 .60

1000 3000 0 .5 .2 .034 .044 .27 .65 .72

3000 3000 0 .5 .2 .034 .038 .27 .91 .94

1500 1500 0 0 :3 .048 .052 .40 .84 .90

1000 3000 c 0 .3 .042 .053 .40 .87 .91

3000 3000 c 0 .3 .042 .045 .40 .97 1.00

1500 1500 0 .5 .3 .050 .047 .40 .99 .99

1000 3000 c- .5 .3 .042 .054 .40 .80 .84

3000 3000 i ci .3 .042 .064 .40 .91 .92

, Table 10: Bias, an = 0.4, ACT, nb = 3, a = 0.05.

JF JR C ch. Cs fiu Ili -: SIB
1500 1500 0 0 .2 .063 .069 .70
1000 i 3000 c 0 .2 .053_,- .067 .68
3000 3000 c 0 .2 .053 .053 .80
1500 1500 c .5 .2 .055 .071 .60
1000 3000 0 .5 .2 .065 .083 .72
3000 3000 0 .5 .2 .065 .074 .96
1500 1500 0 0 .3 .093 .095 .91
1000 3000 0 0 .3 .093 .11 .89
3000 3000 c 0 .3 .080 .081 .99
1500 1500 0 .5 .3 .097 .12 .97
1000 3000 c .5 .3 .084 .11 .89
3000 3000 c .5 .3 .083 .09 1.00
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Table 11: Bias, an = 0.8, ASVAB, n b = 1) a = 0.05.

Jp JR c dr C's gu ;31: Awl MH SIB'
1500 1500 c 0 .2 .026 .029 .27 .42 .50

1000 3000 0 0 .034 .039 .27 .63 .79

3000 3000 0 0 .2 .034 .034 .27 .90 .95

1500 1500 c .5 .027 .035 .27 .63 .66

1000 3000 0 .5 .2 .034 .038 .27 .63 .70

3000 3000 0 .5 .2 .034 .036 .27 .89 .91

1500 1500 0 0 .3 .051 .052 .40 .85 .92

1000 3000 c 0 .042 .044 .40 .77 .84

3000 3000 c 0 .042 .046 .40 .99 .99

1500 1500 0 .5 .3 .051 .057 .40 .91 .93

1000 3000 c .5 .3 .038 .048 .40 .77 .82

3000 3000 c .5 .3 .039 .045 .40 94 .97 ,..

Table 12: Bias, an = 0.4, ASVAB, nb = 3, a = 0.05.

JF Ja c dr- Co Al A: SIB'
1500 1500 0 0 .2 .065 .067 .70
1000 3000 c 0 .2 .052 .056 .53
3000 3000 c 0 .2 .052 .053 .85
1500 1500 c .5 .2 .052 .068 .63

1000 3000 0 .5 .eh .064 .083 .73

3000 3000 0 .5 .2 .064 .072 .92
1500 1500 0 0 .3 .098 .10 .94
1000 3000 0 0 .3 .097- .10 .97

3000 3000 c 0 .3 .079 .079 .98
1500 1500 0 .5 .3 .097 .011 .98
1000 3000 c .3 .076 .098 .87

3000 3000 c .5 .078- .090 .99
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