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ABSTRACT

This paper presents a statistical procedure (denoted by SIB) designed to test for uni-
directional test bias existing simultaneously in several items of an ability test. It was
argued in Shealy and Stout (1991) that in order to model such bias with an IRT model, a
multidimensional model is necessary. The proposed procedure, based on this multidimen-
sional IRT modeling approach, statistically tests for bias in one or more items at a time
and is corrected for the inflation (or deflation) of the test statistic due to target ability
difference, a valid group difference that is conceptually independent of psychological test
bias. The correction plays the same role as the practice of including the single studied
item in the “matching criterion” score in the Mantel-Haenszel (MH) procedure adapted
for test responses by Holland and Thayer (1988). It is shown through the initial portion of
an extensive simulation study underway (Shealy (1991)) that, with the correction in place,
the procedure performs as well as the MH procedure in many cases when there is a single
biased item, and performs well in the case of multiple item test bias.

Kev Words: item bias, test bias, DIF, latent trait theory, item response theory, target abil-
ity, valid subtest, nuisance determinants, potential for bias, expressed bias, unidirectional
test bias, bidirectional test bias, SIB, Mantel-Haenszel.



INTRODUCTION

The purpose of this paper is to present a statistical procedure (denoted by SIB for
simultaneous item bias) for detecting bias present in one or more test items of a standard-
ized ability test. The procedure is based on the multidimensional item response theory
(IRT) model of test bias presented in Shealy and Stout (1991). By “test bias” we mean
a formalization of the intuitive idea that a test is less valid for one group of examinees
than for another group in its attempt to assess examinee differences in a prescribed la-
tent trait, such as mathematics ability. Test bias is conceptualized herein as the result of
individually-biased items acting in concert through a test scoring method, such as number
correct, to produce a biased test.

Two distinct features of this conceptualization of bias are as follows. First, it provides
a mechanism for explaining how several individually-biased items can combine through a
test score to exhibit a coherent and major biasing influence at the test level. In partic-
ular, this can be true even if each individual item displays only a minor amount of item
bias. For example, word problems on a mathematics test that are too dependent on so-
phisticated written English comprehension could combine to produce pervasive test bias
against English-as-a-second-language examinees. A second feature, possible because of our
multidimensional modeling approach, is that the underlying psychological mechanism: that
produces bias is addressed. This mechanism lies in the distinction made between the abil-
ity the test is intended to measure, called the target ability, and other abilities influencing
test performance that the test does not intend to measure, called nuisance determinants.
Test bias will be seen to occur because of the presence of nuisance determinants possessed
in differing amounts by different examinee groups. Through the presence of these nuisance
determinants, bias then is expressed in one or more items.

The test bias detection procedure can simultaneously assess bias in several items,
thus addressing the above two features. In contrast, most item bias procedures detailed
in the literature perform tests on a single item at a tiine: The pseudo IRT procedure
of Linn and Harnish (1981) estimates possibly group-dependent item response functions
(IRFs) without the use of item parameter estimation algorithms when the sample size is
too smeall for their use. Thissen, Steinberg, and Wainer (1988) employ marginal maximum
likelihood estimation to obtain group-dependent item parameters in a 3-parameter logistic
framework and use the likelihood ratio test to test the equality of the parameters across
group. The Mantel-Haenszel procedure, adapted for test response data by Holland and
Thayer (1988), and which is in wide use, employs the practice of using the score of the
entire test instead of the score of the non-studied items as the “matching critcrion” to test
for item bias. Etc. Conceivably these procedures could be used once for each item in a set
of items being tested for bias, and multiple comparison procedures could be employed to
assess the hypothesis of the entire set being biased. However, if the amount of bias is small
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in each item, a multiple comparison procedure may not pick up bias in the set of items at
all. Moreover this approach cannot address underlying causal mechanisms of bias.

The novelty of our approach to detecting test bias lies not so much with its recognition
of the role of nuisance determinants in the expression of test bias, but rather in its explicit
use of a multidimensional model to motivate the procedure ic detect it. The presence of
multidimensionality of test item responses where bias is present has long been recognized
in test and item bias studies: Lord (1980) states “if many of the items [in a test) are found
to be seriously biased, it appears that the items are not strictly unidimensional” (p. 220).
Recently, Lautenschlager and Park (1988) employed a technique of generating simulated
biased item responses using a method of Ansley and Forsyth (1985), which involves using
multidimensional item response functions (IRFs)-and latent ability distributions to deter-
mine conditional probabilities of correct response. Kok (1988), taking a multidimensional
viewpoint similar to Shealy and Stout (1991), presents a specific multidimensional IRT
model for bias where the nuisance determinants are compensating abilities, contextual
abilities such as language, and testwiseness.

An important issue addressed by our procedure is that a careful distinction is made be-
tween genuine test bias, often operationally embodied as DIF (Holland and Thayer (1988))
by practitioners, and non-bias differences in examinee group performance, sometimes called
impact (see, for example, Ackerman (1991) for a careful discussion of impact as distinct
from bias), that are caused by examinee group differences in target ability distributions.
It is important that the latter not be mistakenly labeled as test bias. The procedure
developed herein makes this distinction in its application.
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FORMULATION OF TEST BIAS

Test bias in this paper is modeled using a multidimensional item response theory
(IRT) model, which is assumed to be the model behind the observed test responses. For
purposes of exposition, we restrict ourselves to the case where there is a single nuisance
determinant; this two-dimensional modeling approach is often realistic in practice. Exten-
sions to multiple nuisance determinants are straightforward. For a fuller treatment of the
conception of test bias, including the case of multiple nuisance determinants and item bias
cancellation, in a more general framework, see Shealy and Stout (1991) and Shealy (1989).

We consider two biologically- or sociologically-defined groups, named “reference” and
“focal” groups (after Holland and Thayer’s (1988) naming convention). A random sample
of examinees is drawn from each group, and a test of N items is administered to them.
Typically it is suspected that a part of the test is biased against the focal group; this
group is usually the object of the bias study. The responses to the test items from a
randomly-chosen examinee are denoted U = (Uy,...,Uy), where each U; can take on
0 or 1, according as the response to item ¢ is incorrect or correct, respectively.

The IRT model in general is composed of two components that generate U: (1) a d-
dimensional examinee ability parameter and (2) a set of item response functions (IRFs), one
for each item, which determine the probability of correct response for the items. Here we
restrict the model to have d = 1 or 2, because we are considering a single nuisance determi-
nant in addition to the target ability. The ability vector is (6,7) for an arbitrary examinee
from either group, where 8 denotes target ability and n denotes the nuisance determinant.
A distribution of (6,7n) over the combined group of examinees is induced by choosing ex-
aminees at random,; the variable for a randomly chosen examinee is denoted (©,7n). The
IRF for item i is denoted P;(6,7), and it is assumed that all items depend on 6, and one
or more may depend on n; for those dependent only on 6, the IRF is P;(6). It is implicitly
assumed that an IRT representation for U in terms of (©,7n) and {P;(4,7):i=1,... ,N}
is possible; for a fuller treatment of this assumption, see Shealy (1989). In addition, it is
assumed that each P;(6,n) is increasing in (8, 7) when item : is dependent on both abilities
and increasing in 6 when it is dependent on 6 alone; and that each P;(6) is differentiable.
Finally, local independence of U given (6, 7n) is assumed.

Test bias in the above-mentioned model is formulated through three components:

(a) The potential for bias, if it exists, resides within the target ability /nuisance determi-
nant distributions of the two groups being studied;

(b) potential for bias is ezpressed in items whose responses depend on the nuisance de-
terminant;! and

1 We remark that Kok's (1988) formulation is also based upon (a) and (b); Kek’s and
our formulation were developed independently of one another.
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(c) the scoring method of the test, to be viewed as an estimate of target ability, transmits
expressed item biases into test bias.

Potential for test bias is explained prosaically in the following manner. After condi-
tioning on a particular §, suppose that the reference group has a higher level of nuisance
ability on average than the focal group. Then those reference group examinees with abil-
ity 8 would have an overall advantage over the corresponding focal group examinees when
responding to items at least partially dependent on the nuisance determinants  (formally,
because of the monotonicity of the items IRFs P;(6,7)). Formally, we define the potential
for test bias at 6:

Definition 1. Potential for test bias exists-against-the focal group at target ability level 6
with respect to 9 if n | © = 8, G = F is stochastically less than 9 | © = 6, G = R, where
“G = F” denotes sampling from the focal group and “G = R” sampling from reference
group. Potential for bias exists against the reference group if the converse holds.

Note that we are restricting consideration to conditional nuisance distributions n|@ =
6,G=Randn | © =6, G = F that are stochastically ordered; that is, where the
two distribution functions do not ‘ntersect. Figure 1 displays two distributions that are
stochastically ordered and also two distributions that are not.

place Figure 1 about here

In order for test bias to occur, it must be ezpressed in one or more items. Our definition
of expressed bias for an item, when specialized to Kok’s model, is really the same as that
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of Kok (1988, p. 269). It is defined in terms of a marginalization of the multidimensional
IRF P,(8,n).

Definition 2. Let P;(6,n) be the IRF for item i{. The marginal IRF for group g (¢ = R
or F) with respect to target ability 8 is defined as

T;y(6) = E[P(©,n) | © =6,G =g]. (1)

When 7 | 6 has a conditional density, f(1 | 6) say, Definition 2 translates into
oo
Ty®) = [ P60 |0
-0

Definition 3. Ezpressed bias for item : against the focal group occurs at target ability 6
if T;p(6) < T;r(6); it occurs against the reference group if the converse holds.

A test can consist of many items simultaneously biased by the same nuisance determi-
nant. In this case, items can cohere and act through the prescribed test score to produce
substantial bias against a particular group even if individual items display undetectably
small amounts of item bias. This is the final (and novel) component of our formulation of
test bias mentioned above. We consider the large class of test scores of the form

(L) (2)
where h(u) is real valued with domain u = (u,,...,uy) such that u; =0 or 1 for i =
1,...,N and h(u) is coordinate wise non-decreasing in u. This class contains many of

the standard scoring procedures for many standard models; for example, number correct,
linear formula scoring of the form E,Ii, a;U;, with a; > 0, maximum likelihood estimation
of ability for certain logistic models with item parameters assumed known, etc. In this
paper we restrict attention to number correct as the test score; the results presented herein
are easily extendable to other forms of h(u). The key point about number correct scoring
is that each item is weighted equally. Thus, if a subset of the items is suspected of bias,
we should give equal weight to the items in this “studied” subtest in our attempt to
quantitatively assess the amount of test bias resulting from the simultaneous influence of
thses items. We thus define test bias for a specified studied subtest of items as follows:

Definition 4. Let {U;,,U;,,... ,U;,} be any subtest of items to be studied for bias from

1!

the test of concern and define )

MU) =D U, (3)

i=1
Then this studied subtest of items displays test bias against the focal group at @ if

E[h(U)|© = 6,G = F] < E[A(U) | © = §,G = R}
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The subtest is biased against the reference group if the converse holds.
Finally, the components of the bias formulation can be integrated using the following
theorem, adapted from Theorerr 4.2 in Shealy and Stout (1991):

Theorem 1. Fix a target ability 8 and choose the subtest scoring method h(x) of the
form (3). Assume potential for bias against the focal group at 8 holds (Definition 1). Then
test bias exists against the focal group; i.e.,

b b

Y E[U, |0=6,G=F|<) E[U,|0=6G=R). (4)

j=1 j=1
In order to test for bias of the above form, there must be an implicit assumption that a
portion of the test measures only the target ability;-otherwise; a conditional-on-observed
score procedure to detect bias is not possible. This set of items will be denoted the valid
subtest. The issue of the existence and identification of a valid subtest is extremely difficult
to frame philosophically (it is really an issue of construct validity) and must primarily be
an empirical decision based on expert opinion or data at least in part external to the test
being studied; it is not dealt with here. For a fuller discussion, see Shealy and Stout (1991).
For notational simplicity we denote the valid subtest to consist of first n < N items of
the test, and we call the remainder of the N — n items the studied subtest. We note that
use of a valid subtest is operationally equivalent to making use of a subset of items whose
purpose is to partition examinees into “comparable” sets as is done in the MH procedure
described below and other DIF procedures. Hence, the proposed use of a valid subtest in
the SIB procedure can be interpreted either in the strong sense of our test bias paradigm
or in the weak sense of the DIF paradigm (of matching of “comparable” examinees). Thus
use of our statistical procedure for assessing bias in no way requires acceptance of our bias
framework as opposed to a “comparability” framework, where no claims about “bias” are

made.
Using the above conventions, the specification of test bias against the focal group at
8 becomes
N N
Te(0)= ) Tp(6) < ) Tir(6) = Tx(9) ()
i=n+l i=n+l

because T}, (6) = E[U; | © = §,G = g] by a simple application of a standard conditioning
formula to Definition 2. T;(6) is called the studied subicst response function for group g.

Unidirectional test bias

Test bias heretofore has been considered conditional on a single target ability; we now
turn to a global perspective. If there is test bias against the same group for all 6, then
there is unidirectional bias against this group. Specifically, if

B(8) = Tr(6) ~ Tr(6)

7 .
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is the level of bias against Group F at 6, then unidirectional bias holds if either B(6) > 0
for all 8 or B(6) < 0 for all §. A strong form of unidirectional bias, termed uniform
bias by Mellenbergh (1982), is the type of bias that the modified Mantel-Haenszel test
statistic devised by Holland and Thayer (1988) is designed to detect. Although the Mantel-
Haenszel approach is not dependent on an IRT framework, it can be put in a Rasch
model IRT framework, with the single biased item having group-dependent item difficulties.
Here, the bias is “uniform” in the sense that Tr(6) is merely Tr(6) shifted horizontally.
Unidirectional bias is less restrictive in that T,(6) does not have to be a logistic IRF, and
more importantly, T(6) does not have to be Tr(6) shifted.

Since we are concerned with bias against the focal group, it is intuitive that a suitable
theoretical unidirectional bias index is

By = /a B(6)(6)d8 (6)

where fp(6) is the probability density function of © for the focal group. Equivalent in-
dices weighted by the reference target ability distribution and the combined-group target
distribution are easily conceptualized.

THE BASIC PROCEDURE
The statistical procedure to be presented is based on (6); the hypothesis is

H:By=0 vs. By >0,

the alternative being one-sided to specifically test for bias against the focal group. The
test statistic to be constructed is essentially an estimate of 8, normalized to have unit
variance. The estimate of §;; is derived first.

Since test bias is analyzed using number correct on the studied subtest, set

Y=.§: U, (

to be the studied subtest score; also set X = Y_i_; U; to be the valid subtest score. In
selecting the valid subtest score to be number correct, we follow the convention set out in
Holland and Thayer (1988), among many others. Other choices would of course be possible
and could improve the performance of the procedure.

The naive intuition is that examinees with the same valid subtest score are examinees

~J

)

of approximately equal target ability and thus such examinees are directly comparable in
the assessment of bias. Thus the difference

}-,Rk—}-,Fk’ k=0a"' y 1 (8)

11



where 17g ;. is the average Y for all examinees in group g attaining valid subtest score X =k,
should provide a measure of the bias against the focal group (resulting from the reference
group having superior nuisance ability n on average). In particular, if there is no bias (H
holds), then Yz, — Yz = 0 for all k should be observed, and if there is unidirectional
bias against the focal group (B(8) > 0 fc- all §) then Yg, — Y, > 0 for all k, except for
statistical error, should be ohserved.

The above assertion needs support; it will suffice to argue that

ElYpi — Yp,) =0 forall kif B(6) = 0 for all §, and 9
E[Yg, — Y] >0 forall kif B(f) > 0 for all 6. (

For now we restrict the target ability distributions to be equal for the two groups; i.e.,
© | G = R and O | G = F have the same distribution. It is easy to prove (following (5))
under the model presented herein that

E[¥,) = E[Y | X = k,G = g = E[T,(0) | X = k,G = g]. (10)

Now assume that the valid subtest is long enough so that the distribution of © | X =k,
G = g is tightly concentrated about its mean, and hence that T,(6) is locally flat within
the range of & where the distribution of © | X = k, G = g mostly resides. Then

E[T,(0) | X = k,G=g] = T,(E[0 | X = k&,G = g]) (11)
=T,(E(©] X = k)),

because the two target ability distributions are equal and expectation is a linear operator.
Thus, denoting 6, = E[O | X = k],

ElYp, — Yri = B(6;). (12)

Thus (9) follows easily; the n + 1 differences in (8) provide an estimate of B(f) at n + 1
points in the §-domain. It is intuitive that an estimate of gy, is

n
Bu = Zﬁk(YRk ~Yr) (13)
k=0
where p, is the proportion (among focal group examinees) attaining X = k. Specifically,
if Jgk is the number of examinees in group g attaining X = k, then p, = Jp,/ ELO Jpk-
In the case where the target ability distributions are the same, then, it is straightfor-
ward that

E(Byl = puB(8:) = By (14)
k=0

9
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where p, = P[X = k| G = F). Thus the expected value of 3y, is a weighted difference
of marginal IRFs, this weighted difference approximating 8y, which is a continuously
weighted difference of marginal IRFs. From (14), it follows that Efy =0if By =0, and
E,BU > 0 if By > 0. This suggests the standardized test statistic

B= (15)

(/?)

for testing H, where the denominator is defined as

1/2
a(,@u) = (z (—a (Y |k R)+ ———&2(Y | k F))) , (16)

where 6%(Y | k,g) is the sample variance of the studied subtest scores of those group g
examinees with valid subtest score k. A full description of the computation of the test
statistic, with contingencies for exclusion of certain valid subtest scores based on inadequate
examinee counts, is presented in the Appendix. B is approximately standard normal when
By = 0 and the target ability distributions are the same, because BU is the weighted sum
of approximately normal random variables Yy, — Y, ; these are approximately normal (for
suitable sample sizes) by the central limit theorem (proof of asymptotic normality of B
omitted).

The regression correction for target ability difference

The presence of a difference in target ability distributions in test bias studies has been
treated in various contexts in the literature. The issue of the linking of metrics across group
in the estimation of IRT item parameters is one such context (see Linn, et al (1981) for an
IRT item bias approach where linking of metrics is crucial). Holland and Thayer (1988)
also deal with this problem by including the single studied item in the matching criterion
score of the Mantel-Haenszel test; they prove that this method completely compensates
for target ability difference (in their context, the distributional difference in the postulated
unidimensional latent trait) when the underlying IRT model is a Rasch model. Millsap
and Meredith (1989) elegantly formulate the problem in terms of a divergence of two
hypotheses (a “conditional on observed score” hypothesis and a “latent trait” hypothesis),
which would occur if target ability difference is present. A “conditional on observed score”
procedure such as (15) in its present form is not adequate to address the separation of
target ability difference from test bias; the presence of target ability difference when in
fact there is no test bias present can statistically inflate B, thereby suggesting test bias
actually is present. It is therefore necessary to formulate a correction for target ability
difference.

10
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To motivate the proposed correction it is necessary to show that a decomposition of the
differences Yg; — Y5, into “test bias only” and “target ability difference only” components
is possible. First we note that by similar arguments to those used in deriving (10) and (11),

E[Y,,] = Ty(6,0), (17)

where 6, = E[O | k,g]. The condition E[Yg; — Yr:] = 0 requires 65, = 6f,, as in (11)
where g was removed from the conditioning; but this may not happen if the target ability
distributions are nct the same, as Figure 2 suggests. Figure 2, which displays densities
for four distributions, assumes that the distribution of © | F is stochastically smaller than
that of © | R.

place figure 2 about here

Note that the (conditional) distribution of © | k, F is stochastically smaller than that
of O | k, R for all k. The standard Bayesian calculation makes this insight rigorous. Thus,
Op < Op, for all k, and, in the absence of bias, where Ty () = Tr(6) = T(6) for all 6,

EYpy = T(8p) < T(6py) = EYp,

(T(G) is assumed monotone; for mild conditions giving such monotonicity, see Shealy and
Stout (1991)). Thus

EBy =) pu(T(6ri) — T(6:)) > 0.
k=0.

In the case where bias is present, we can thus decompose E[BU]:

E[By) =) pi(Tr(0r) = Tr(Ore)) + Y pu(Tr(Bre) — Tr(8rs))

k:o i k=0 (18)
P B(Ors) + Z PeTr(0;)(6ri — OFs),

k=0 k=0

where 0}, is between 6p, and Op,. (Tr(6) is assumed differentiable here and the mean
value theorem has been applied.) The first term is due only to test bias; the second is due
only to target ability difference.

11
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This approximate decomposition argument is the motivation behind the proposed
correction. Our strategy is to adjust Y, Yy to Yii, ¥, such that the inflating effect of
the group differences in target ability is eliminated. The manner this is accomplished is to
construct ¥3, and Y2, so that they are estimating the studied subtest response functions
Tr(6) and Tr(F) at approximately the same target ability 6, defined below (as opposed
to two different ones, as is evident from (17)).

A natural attempt to make adjustments to Yy, and Yy, is to approximate T;(6) and
Tr(6) in the neighborhood of 8z, and 65, by linear functions. If we assume that 65, and
6, are sufficiently close together to do this, Tg(6) and Tr(8) can be linearly interpolated

at 6, = 3(0ps + Or):

T,(0,) = T, (0, ) + m i (61 — 6,1) (19)

where

— Tg(eg,k+1) - Tg(eg,k—l)
eg,k+1 - eg,k—l

Mgk )

however, though estimates of T;(6,,) (namely, }_’gk) arc available for all k, estimates for
{6,1:k=0,... ,n} are not. Abilities on the f-scale are not observable; however, one can
estimate abilities on the scale defined by the valid subtest, namely

v = P(6)

where P(6) is the average of the valid subtest IRFs 23", P;(6). P(O) | G = g is the
true score for a randomly chosen group g examinee, i.e., the valid subtest true score P(©)
for group g. Let

V,(z) = E[P(0) | X =2,G = g, (20)

the (theoretical) regresion of true on observed (here, valid) score. V (z) can be easily
estimated using classical true score theory, assuming that the above regression is linear or
nearly so. The estimation of V,(z) is deferred to the appendix. Denote this estimator by
Vg(:c).

At this point it is expedient to describe three latent scales, which must be simulta-
neously considered in order to understand the correction. Figure 3 delineates the three

scales and should be referred to frequently.
12
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place figure 3 about here

So, the interpolation of (19) must be transformed so as to use the easily estimable
V,(k) instead of 8 ;. Through a monotonic transformation P(8), V,(k) and 6, represent
approximately (“approximately” because P(ng) = V,(k) will be demonstrated below)
the same ability on two different latent scales and thus for our purposes interchangeable.
Note that s = T,(6) defines a monotonic transformation from the fundamental latent
scale to the studied subtest scale, and v = P(§) defines one from the fundamental scale
to the valid subtest scale. T,(f) must be transformed so we can use the valid subtest
scale as domain, because abilities on this scale can be estimated. Figure 4 illustrates the
appropriate correspondence,

place figure 4 about here

thus defining a new transformation S (v) = Tg(}_"l(v)) from valid subtest scale to studied
subtest scale, with domain (¢, 1) and range (¢, 1) (¢ 2 0 is the guessing parameter, assumed
common for all items in the test).

With this transformation in hand, the correction can be performed in the following
manner. First, by the same arguments as used in (10) and (11), using P(6) in place of
T,(6) in the arugments,

V,(k) = P(E[O | k,g]) = P(8,:)- (21)

So P=1(V,(k)) = 6, by continuity; and
Tg(p_l(v;(k))) = Tg(ogk)’
13
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also by continuity. By definition of S (v), this becomes S;(V,(k)) = T,(6,,), and thus
by (17),
E¥,, = 5,(V,(k). (22)

Thus ng is a reasonable estimation of S (V,(k)) for each k. To transform (19) into
an interpolation involving S,(:), we assume that S,(v) can be approximated by a linear
function in a small region about V,(k), and that Vp(k) and Vp(k) are close enough to
allow the approximation to be effective. Then, we interpolate Sg(Vz(k)) and Sp(Vp(k))
to their respective values at Vi, = 3(Vp(k) + Vi(k)):

Sg(Vi) = S5(Vy(F) + my, (Vi = Vi (), (23)

where

e Sk +1) = S,(Vy(k — 1)
T V(k+1) =V, (k-1)

is the approximate slope of S (v) in the region of V, (k) and V}.. All of the above terms on
the right hand side of (23) are estimable; using ng to estimate S (V,(k)), we define the
adjusted Y

F3 = Py + M,V - V, (k) (24)

where, recalling that the estimator Vg(m) is given in the Appendix,

M. = Yort1 ~ Yo
gk - & ~
T (k+1)-V,(k-1)

and define V, = %(VR(k) + Vg(k)). Because the right hand side of equation (24) is a good
estimator of the right hand side of (23), ?g.k is thus a good estimator of S (V}). Finally, —g‘k
must be shown to be a good estimator of T, (6) at the same 6 for both groups. By definition
of §,(v), S,(Vi) = T,(P~(V;)). If b, and b, are sufficiently close together then P(6)
may be taken to be approximately linear in the neighborhood of 8, = (8, +6F,)/2. Thus,
using (21) and assuming approximate linearity of P in the neighborhood of 6,,

Ve = 5(Valk) + V(k)

= 3(P(8ri) + P(6r))
= P(6,).

Thus, by the continuity of P(6),
8, = P~1(V,).

14
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Hence, by the definition of S (v)
S,(Vi) = T,(P™1 (Vi) = T, (6,).

Thus, because -g‘k has been shown to be a good estimator of S (Vj), it is shown that
-g‘k is a good estimator of T,(6;). Thus, Y3, — Y2, as desired, is a good estimator of
Tr(6:) — Tr(6;), i.e., of the difference of the marginal IRFs at the same 6, establishing
the usefulness of the interpolation (19).

(24) is called the regression correction for target ability difference. Thus, with the
correction (24) in place, (13) can be reconstructed, with

By = Zﬁk(?ﬁk ~-Y7,) (25)
k=0

and B defined as in (15). Rejection of the hypothesis of no test bias (H : §;; = 0) occurs
when B > z,, where P[N(0,1) > z,] = a defines z,. This procedure will be referred to
as the SIB procedure, “SIB” for simultaneous item bias.

Thus, the contribution to the differences Yz, — Yz, due to target ability difference
has been eliminated. It is extremely instructive to note that the correction (24) is the
sample analogue of (23), which is basically the decomposition (19), albeit on a different
latent scale (though the two latent scales, § and V, are indistinguishable up to a monotonic
tranformation).

A modification of the basic procedure to achieve better statistical behavior

Redefine 5, to be the proportion of all examinees (focal and reference group) attaining
X = k. Thatis p, = (Jpr + Jre)/ Li=o(JFr + Jri). Substitute this new p; into (25)
and (16) to obtain the statistic B of (15). Because of a slightly better adherence in
simulation studies to the nominal level of significance when the hypothesis of no test bias
holds, this new choice of p; is recommended over the slightly more intuitive choice based
upon focal group examinees alone. The power performance of both versions of B when
test bias was present was very similar. It is upon this version of the SIB statistic that our
simulation siudies reported below are based.

SIMULATION STUDY

In order to assess the performance of the procedure in a variety of testing situations,
a moderate-sized (84 simulation cases) simulation study was performed. Three parameter
logistic item parameters actually estimated from two test data sets, an ACT math test
(estimated by Drasgow (1987)) and an ASVAB auto shop test (estimated by Mislevy and
Bock (1984)), are used to specify the IRFs in the IRT model. Univariate and bivariate
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normal ability distributions, appropriately centered relative to the test item parameters
(for the purpose of good measurability of target ability), are used for the focal and reference
groups. Two levels of bias and three levels of target ability difference are simulated; tests
with a singly-based item and with three biased items are used in the simulations. The level
of guessing in the tests is varied. Finally, group size pairs of (3000, 3000), (3000,1000),
and (1500, 1500) for the reference group and focal group examinees respectively are used.

Each simulation model is run 100 times (trials). For a particular simulation model, the
item parameters and the two ability distributions for the two groups are fixed; however,
at each trial, a new set of examinees (ability parameters) is generated from the ability

distributions.
When a single item is to be studied in a simulation, the Mantel-Haenszel procedure as

modified by Holland and Thayer is run in parallel in order to provide an external reference
to compare to and to compare our procedure with.

tem1 parameters

Estimated item parameters from the above mentioned tests were used to construct test
models; the ASVAB test length is 25, and the ACT test length is 40. Table 1 gives the sum-
mary statistics for the a’s, b’s, and c’s as estimated by Mislevy and Bock and by Drasgow;
for the actual parameter values, see Mislevy and Bock (1984) and Drasgow (1987).

place table 1 here

The test for each simulation was generated in the following manner. Let N denote
test length and n;, the number of items {0 be studied for possible bias. First, n, was chosen
to be either 1 or 3. There were two cases to consider.

1. No bias: unidimensional items are used for the entire test.
2. Rias: unidimensional items are used in the valid subtest, and 2-dimensional items are

used in the studied subtest.
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place table 2 about here

In the first case, n, of the N items were chosen randomly to be the studied ones, and
the remainder were used as the valid subtest. In the second case, n = N — n; items were
chosen at random from either the ASVAB or the ACT test to be the valid subtest, and
the 2-dimensional studied item parameters were chosen according to Table 2. Note that
the studied item guessing parameters are a function of the average and standard deviation
of the guessing parameters on the ASVAB or ACT tests; the studied item a’s and b’s are
the same for both tests.
The IRFs are for case 1 (no bias)

— (1-¢) .
Fi(6)=ci+ 1 4 exp(—1.7a;4(6 — b;p)) =1 N, (26)

where a;4 and b;, are the target discrimination and difficulty for item ¢. In case 2 (bias),
items 1 to n were of the form (26), and items n + 1 to N (studied items) had IRFs

= (1-¢) .
Filbim) = eit 1 + exp(~1.7(a;4(6 = b;p) + a;,(6 — b;p))) pEn LN 20)

The final factor in determining the item parameters was whether or not to include guessing;
that is, whether to assume 2PL or 3PL modeling. The presence of guessing is thought
to influence the performance of the procedure. Thus, in some simulation models, the
estimated ¢;’s from the literature were used in conjunction with (26) and (27); in others.
all ¢,;’s were set to 0 producing a 2PL model. A detailed description of the experimental
design of the simulations follows.

Ability distributions

Specifying the ability distributions involves choosing the five parameters determining
the bivariate normal distributions for each group in such a way to meet the following goals:

1. Introduce a specified amount of group difference between target ability distributions.

2. Require the test to measure the target ability well, as would be true for any “good”
test.

3. Introduce a specified amount of potential for bias into the distributions.

4. In the case of 2-dimensional studied items (bias case), require that examinee nuisance
abilities be influential in determining the response to the item, e.g., that target and
reference group examinees have moderate nuisance abilities.

17
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Each goal is elaborated upon separately below. The bivariate distributions for group g

(9 = R or F) is denoted
(o1a)~~[Ceen)-[5 2] )

where p = Corr(©,n | G = g) is taken to be the same for both groups (p taken to be
different across group tends to introduce bidirectional bias, where marginal IRFs in 6 for
the two groups cross; see Shealy (1989)). Note that o?(© | g) and ¢2(n | g) are taken to
be 1 in our study.

Goal 1. We first define target ability difference. We need some notation; let ap =
the proportion of the entire (conceptual) population of examinees who are referece group
members, and ap = 1 — az be the corresponding proportion for the focal group. (Note:
as Jp and Jp both increase to 0o, conceptually, y28— — ap and 325~ — af. Here J,
denotes the number of sampled Group g examinees.) Define

Hor — K
dT — GRa 6F (29)
opP

to be the target ability difference between the focal and reference groups, where
o3p = apo’(@ | R) + apa?(© | F). (30)

Note that when (28) holds ¢2, = 1 and thus that dy = pgg — per. dr is a quantity
specified in the simulations.

Goal 2. The criterion used to ensure good measurability of § by the test, is that the
average difficulty () of the valid subtest should be close to the average target ability over
the pooled groups. Specifically, ugr and pyp are chosen so that

b= E[O) = agpgp + appgp. (31)

b is taken from Table 1. pgp and pyp are completely determined by specification of dp.
and (31).

Goal 3. We use a more restrictive version of Definition 1 to define potential for bias: set
Cy(6) = Eln | © =6,G = R}~ E[n | © = 6,G = F]. (32)

C5(6) > 0 is defined to be the potential for bias against the focal group. When (28) holds,
(32) becomes

Cﬂ(e) = Cﬂ = HyR = PHer — (#,,F ~ PlgF)

(33)
= (yr = Bor) — P(kor — Hor) = (Byr — H,F) — PdT,
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9 dropping out because the ability correlation (p) is equal for both groups. Note that
because Cj is constant for all §, unidirectional bias is being introduced. For a specified
amount of Cg, p,p and p, r are determined partially. The reader should note that potential
for bias can hold even though u,p = p,F unless pgp = pgp.

Goal 4. The criterion used to ensure nuisance determinant influence is the following. The
nuisance difficulties for all studied items were chosen to be 0. For an arbitrarily chosen
target ability (say 6 = 0) we thus want the average nuisance ability to be near 0 as well.
Thus we choose

E['l|@=0,G=R]=—E[ﬂ|9=0aG=F] (34)

i.e., the conditional nuisance expectation at © = 0 is to.be centered around the average
studied item nuisance difficulty of 0, for the reference and focal groups. Our intent in this
study was to introduce bias against the focal group, so Z(n | 6, R] > 0 in (34) and thus we
get

0 < pyr = PHor = —(Hyp — PHeF); (35)

this will specify 4,5 and g, r, along with specification of g in (33).

There is an additional issue here: how large should Cy be chosen to introduce a
“moderate” or “severe” amount of bias into the 2-dimensonal studied items of Table 27
This is treated below, in the experimental design of the study.

Goals 1-4 now completely specify (28): wor, Hgrs Hyrs and pyp can be found by
solving (29), (31), (33), and (35) simultaneously for them. p, 02(8 | g), and o*(n | g) are
chosen: p = .5, and all ¢’s are 1.

Choice of C

The amount of potential for bias Cj in each simulation model was chosen so that the
actual level of bias 8 produced was such that the power behavior of the statistic caa be
well assessed for the given examinee sample sizes, valid subtest used (recall Table 1), and
biased items used (recall Table 2). These f;; values {rounded to two significant figures)
are shown in Table 3. The governing equations determining Cy from §;, were

By = /o (Ta(6) - Tr(6))fr(6)d8

where
N
T,(6)= Y E[P(©,n)|©=6,G=g] (36)
i=n+1

with P;(6,7) defined in (27) and the item parameters in (27) defined in Table 2, and the
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place table 3 about here

parameters of the (©,n) distribution determined from (29), (31), (33), and (35). One
standard often used to interpret from a practitioner’s viewpoint the magnitude of the bias
is that the bias is “moderate” if 0.5 < Ay < 1 while it is “large” if Ay = 1, where
Ay is the theoretical index based on use of the Mantel-Haenszel log odds ratio proposed
by Holland and Thayer (1988). The rationale for A,y and 8y, are different, but for n, = 1
and unidirectional bias, they tend to be highly correlated and are crudely related by

Bu = Ay /10.

Thus, roughly, 0.05 £ 8y < 0.1 would constitute moderate bias while 8;; 2> 0.1 would
constitute large bias. Thus in the n, = 1 case, referring to Table 4, the amount of bias
being simulated is actually either (low) moderate or small. Examination of (36) shows that
By is a measure of how much lower the probability of getting the biased item right is for
an average focal group examinee as compared with an average reference group examinee
of the same target ability. Thus 8 has a natural and useful empirical interpretation. In
our context, A, 4, by contrast, is a measure of horizontal distance between Tg(6) and
Tr(6) at y = 32 (i.e., the value of TR ((1 +€)/2) — T*((1 + €)/2)), where & is defined
in Table 1.

place table 4 about here

Experimental design

The design is as follows. For the case of no test bias (Cy = 0), for each test type
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(ASVAB Auto Shop or ACT Math) the following simulations are done:
1 0.0 3000/3000
nb={3}XdT= 0.5 XJR/JF= 3000/1000
1.0 1500,/1500
5 guessing
no guessing |

Here “guessing” means that the estimated ACT and ASVAB guessing parameters are used
in the model and “no guessing” means that all ¢cs are set to zero; that is, 2PL modeling
is used. Also, “D” means that this guessing “factor” is randomly assigned within the
36 levels produced by crossing the other factors.

For the case of test bias (Cs > 0) the following simulation are done for each test type:

1 00 0 3000/3000

1500/1500
5 guessing
no guessing |

For n), = 1, the nuisance discrimination ay,, of the studied item is .8; for n, = 3, the
nuisance discrimination of each of the 3 studied items is .4. These discriminations were
chosen so that the power of the procedure could be well assessed (i.e., so that it would not
be too close to 1). It is informative to note in passing that the power of the procedure
is expected to be greater when n, is increased from 1 to 3 unless each item individually
displays less bias in the n, = 3 case. Thisis why the g;, (1 = N —2, N — 1, N) was chosen
to be .4 in the n, = 3 case, ; of that used in the n, =1 case.

There are therefore 48 simulation models that incorporate bias. Thus, a total of
84 simulation models were used in the simulation study.

RESULTS OF THE SIMULATION STUDY
The results of the simulation stidy are given in Tables 5-8 and 9-12, with Tables 5-8

summarizing the no test bias simulations and Tables 9-12 summarizing the simulations
having test bias present. The ¢ column indicates whether the model has guessing present
or not. In all n, = 1 case<. the Mantel-Haenszel rejection rate for the hypothesis of no item
bias (based on 100 trials) is reported in the MH column. In all cases the SIB rejection rate
is reported in the SIB column. In all cases where test bias is present (Tables 9-12), the
Cj column presents the amount of potential for bias present (recall (33)); the Sy column
presents our index of the amount of bias present against the focal group in the model
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(recall (6)); 5,, is the average of the estimates 8, of B over the 100 trials; the Ay y
column presents the amount of bias present against the focal group in the model from the
Mantel-Haenszel perspective.

Tables 5-8 indicate that both the SIB statistic and the MH statistic display reasonable
adherence to the nominal level of significance of 0.05. There appear to be situations of
no bias, which have a target ability difference and which depart from the Rasch model,
where the Mantel-Haenszel procedure displays inflated Type 1 error. (See Zwick (1990),
for a discussion of this problem and an illustrative example.) There is evidence that
in such situations (Shealy (1989)), the SIB statistic adheres closely to the nominal level
of significance. On the other hand there are likely portions of the “parameter space”
of realistic IRT models where our linear regression correction is stressed and hence the
MH would likely display better Type 1 error performance. More study is required before
it can be claimed that either MH or SIB displays superior Type 1 error performance.
The striking fact is that both procedures seem to be quite robust against the inflating
Type 1 error effect of differing target ability distributions. In this regard, dp = 1 from the
practitioner : perspective is certainly a large amount of target ability difference.

Tables 9 and 11 indicate that both the SIB statistic and the MH statistic are quite
powerful against moderate amounts of bias and fairly powerful against small amounts of
bias in a single biased item. Untabulated simulation studies for larger amounts of bias
produced rejection rates of essentially unity for both the SIB and MH procedures.

Tables 10 and 12 indicate that the SIB procedure is quite powerful against moderate
amounts of bias resulting from several (3 here) items producing bias in the same direction.
The reader should recall that the amount of bias/item was lowered for the n, = 3 case by
reducing the discrimination in the nuisance dimension from a, ) = 0.8 to a,; = 0.4 for the
studied items. In both the ny = 1 and n, = 3 cases, the potential for bias as measurcd
by C4 was kept the same (Cy = 0.2 or 0.3). These two table show, as claimed, that the
SIB procedure can successfully detect simultaneous item bias, even if the amount of bias
present per item is small.

Tables 9 and 11 show, for the particular bias inodels of the simulation study, that SIB
is somewhat more powerful than MH, averaging 0.07 higher for those models for which
rejection rates are < 0.9. We do not know whether this greater SIB power generalizes to
other models of bias.

Tables 9-12 provide evidence about the ability of »éu to estimate f;;, our measure of
the amount of bias present. For each case ﬁu is an indicator of the amount of statistical
bias one might expect in using Bu- Clearly statistical bias of roughly +0.01 is present.
The estimated standard errors for By are not recorded, but averaged (roughly) about 1/3
of Bu- Thus if BU = (.05 there is likely a bias of 0.01 and a standard error of 0.017. Thus,
crudely, a 95% confidence interval (if asymptotic normality is a good approximation) would
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be given by 0.04 & 0.028. Here 0.04 = 0.05 — 0.01 is the correction for statistical bias. It
would seem that BU provides a useful empirical index of the amount of bias present in a
statistical subtest of items; more work is planned in studying its theoretical and empirical

properties.

SUMMARY AND CONCLUSIONS

The SIB procedure was designed to test for unidirectional test bias residing in one or
more items, using the conception that test bias is incipient within the two groups’ ability
distributions (in terms of a difference in conditional nuisance ability distributions). By
means of the regression correction presented here, the inflation of the SIB test statistic
due to target ability difference (one group having a stochastically larger distribution of ©)
is extracted. This correction represents a conceptual link between conditional-on-observed-
score methods and IR I-based methods, just as the practice of including the studied item
in the comparable examinee criterion in the Mantel-Haenszel procedure of Holland and
Thayer (1988) does. The correction adjusts the studied subtest scores for the two groups so
that they are now estimates of the same latent IRT ability in the case of no test bias, even if
group target abilities exist. It is useful to note that the adjustment, although conceptually
based upon multidimensional IRT modeling, is in fact computed using a classical approach
and hence does not depend on IRT ability or item parameter estimation.

A moderate (84 models) simulation study shows that both MH and SIB display good
adherernice to the nominal level of significance, even for large (dr = 1) target ability differ-
ences. In the case of a single biased item, both MH and SIB display good power with SIB
displaying slightly higher power. As designed, the SIB statistic displays good power in the
case of several biased items (3 here), even when the amount of bias/item is fairly small.

A large scale simulation study is in progress with the goal of obtaining a better un-
derstanding of the performance characteristics of both the SIB and the MH statistics with
particular emphasis on investigation of statistical power and adherence to the nominal
leve] of significance. Based upon the completed portion of this simulation study reported
herein, we would recommend that practitioners use the SIB and MH statistics simultane-
ously. Both are extremely easy to compute and for moderate sized data sets run quickly on
a typical PC configuration. Carefully checked code with a user oriented driver is available
from the authors for running both the SIB and MH statistics on real data sets and also
for doing simulation studies of performance. '
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APPENDIX

1. Derivation of 179(k), the estimated regression of true on observed valid
subtest score, for k=0,...,n.

Recall that V, (k) = E[P(O) | k,g] needs to be estimated in order for S (V) of (23)
to be estimated. Suppressing g for simplicity, we need to estimate V(k) at k= 0,1,... ,n.
Although V' (k) is not necessarily linear in k (see Shealy (1989), p. 87ff for a discussion),
as an approximation we assume nV (k) is linear in &; i.e.,

nV(k) = a + k.
To estimate V (%), we consider the true score model for the valid subtest score X:
X=T+e (A1)

where
E(e) =0, cov(T,e) =0 (A2)

is assumed and the true score T has the latent variable representation T = nP(®). Thus
nV(k) = E[T | k).

Standard regression theory for E(T | k) yields

V(k) = ;11- (ET + %(k - EX)) . (A3)

But, for the true score model given by (A1) and (A2),

PxTOT _ 4 _ 9%(¢) \
o 1 0’2(X)’ (A4)

is well known (see page 61 of Lord and Novick (1968). Using (A1) and (A2), ET = EX
holds. Thus, by (A3) and (A4),

V(k) = % [EX + (1 - ::&%) (k - EX)] (A5)

holds.
Clearly EX = E[X | g can be estimated by the average valid subtest score X ¢

of all Group g examinees taking the test. Thus it remains to estimate o?(e)/o2(X).
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0%(X) = 02(X | g) can clearly be estimated by the usual sample variance estimate of all
Group g examinees taking the test

Js
X1 9 gy K~ X, (A6
=

where J; denotes the number of Group g examinees taking the test and X; is the valid
subtest number correct score of the jth such Group g examinee. It remains to estimate
o2(e); denote this estimation by 62(e). Then the desired estimation of 0?(e)/o?(X) will be
given by 62(e)/62(X). A standard conditioning formula yields, indexing the valid subtest
items by ¢ = 1,2,... ,n, and setting X, = X | g, ©, = O | g as a reminder that sampling
here is from Group g only,

0¥ (X | g) = 0*(X,) = o*(E[X, | ©,]) + E[*(X, | ©,)]

C PO+ 3 ERO,) 1~ PO, D
i=1

using the standard item response theory assumption of local independence of items, given O.
Also, by (A2) it is trivial that

o?(X | g) = a*(nP(©) | g) + o*(e | 9)-
Thus, by (A7),
o¥(e|g) =Y E[P(0,)1- Fi(O,)))

1=1

This suggests
6%(el9) =) U1 =Ty, (A8)
i=1

where U,-g is the proportion correct for Group g examinees for valid subtest item 7. Thus,
using (A5), we will estimate V (k) by

V) = - [X, + (1 - _—;2&"99 ))) (k - Xg)] . (A9)

2. The complete procedure to detect test bias, using the proposed regres-
sion correction.

The SIB procedure in its entirety is presented here. First we set some basic notation.
Group g (g9 = R or F) has J, examinees taking the test of /V items. The response to item :
of the jth group g examinee is Uy;;. The subtest scores are

n N
Xy = Z Uyi; (valid subtest score), Y= Z U,; (studied subtest score).

=1 t=n+l
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The classical group item difficulties are U,; = (1/J )E Ugij- Let E( ) denote summa-
tion over those group g examinees j with L correct on the valid subtest. '

1. Compute Jy;, the number of group g examinees with & correct on the valid subtest.

' 2. Compute
- 1 (k)
v, =— Y.
gk Jgk PR
1 (k)
2
Sok = = —3 ( ) :

If Jg =0, set Yy, = 0; if J,, <1, set Sgk = 0. Y;, is the sample average studied
subtest score of group g examinees attaining X, =k, and S 21: is the sample variance.
3. Compute Isg(k) = J,/ J,, for both groups and all k. P (k) is the estimate of the his-
togram of X |G = g. Then compute P (k), the MLE of the unimodalized histogram
of X | G = g, over the class of all possible unimodal MLE of the histograms with n+1
possible values (X | G = g is assumed to have a unimodal distribution and hence its
estimate {Pg'(k), k > 0} should also be unimodal). For details of this procedure, using
the up-and-down-blocks algorithm, see Barlow et al. (1972; pp. 72-73; pp. 223-231).
4. Set I(k) =1 for all k unless either
(a) k=0orn,

(b) SRk—Oorszk—O .
(c) JrPp(k) < Jy, or JePp(k) < J;, where J_;. is set by user, usually around 30,
or

(d) k £ ney, where ¢y 2> 0 is the user-specified global guessing parameter for the
test. (It is assumed that there is a relatively constant level of guessing across
item, and that there is at least partial knowledge of this guessing value.)

I(k), k = 0,...,n, is the ezaminee inclusirn indicator; it is 1 if examinees with

X =k are to have their responses included in the test statistic. (a) excludes the two

extreme valid subtest scores because of their poor estimation of target ability. The

(b) exclusion is obvious. The (¢) exclusion is done to assure that each valid subtest

score category has enough examinees to make Y, and Yy, approximately normal; the

unimodal mass function is used so that only extreme valid subtest score catagories are
excluded. As for (d), all valid scores below that expected by guessing are excluded.
5. Compute the regression of true score on valid subtest score:

(a) U 1_7;_-& If the result is < 0, set it to 0 (adjustment for guessing).
(b) Xy = ’JL ji XyJ

(c) 6%(X |g)= 5T =P, ,_1(X X,)?

(d) .2(8 I g Zl-l t(l gt)

() i’g = o1 (1 . 2((;'-:‘]99)_))




(f) V,(k) = 1(X, +b,(k — X,)) for both g and k=0, ... , .
6. Make the regression correction:

(a) k, = min{k: I(k) = 1}, k, = max{k: I(k) = 1}.

(b) Vi = 3(Vr(k) + Vp(k)), for ky S & < &,.

(¢) For k, < k < k,, compute

AA{ — }-”glk‘{'l - Yglk-l
;T Y k+1) -V (k-1)
g g

Then compute l-’g‘k = }_’gk + Mgk(?k - ig(k))
(d) For k = k, and k = k,,, compute Y} in-the following.way.

i, Define
(1= a)¥, oy +a¥y if V, (k) Sv< V,(k+1)
.§g(v) = -gO if v< Vg(O)
Yyn if v 2 V,(n),
and

_ v — f/g(k)
V,(k+1) =V, (k)

(o4

S'g(v) is the linear interpolation of {}_’go, e ,f’gn}.
ii. Compute
Yon=85,V)
for k=k,and k = F,.
7. Compute the bias statistic.
(a) Compute J; =3 7_o I(k)Jy;, the number of included group g examinees
(b) Compute
koo $ (Phe — VRI(K)

n J? 1/2 '
(Zhoo (5% + SEII(R))

(c) Reject H : By = 0 in favor of By > 0 at level a if B > z,, where P[N(0,1) >
z,] = a defines z,,.
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stochaslically ordered , not stochaslically ordered

Figurc 1. Stochastically ordered and unordered pairs of distribulions
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Table 1: Means and sds for the ASBAB and ACT item parameters used in the study.

Test a Os b oy ¢ o | N
. ASVAB auto/shop | 1.22| 0.7 | 0.09 [ 6.72 | 0.20 [ 0.06 | 25
[ ACT math 1.09]0.35] 0.5 [ 0.61]0.14 | 0.04 | 40

Table 2: Item parameters for 2-dimensional stvdied in the bias case,

ny | tem No. | a;p | bia| @i | by | &

1 | N 10]) 000800 ¢

3 |N=2 06]-03]04(00]|¢c— 30
N-1 08] 00]04]0.0]c¢
N 10| 0.3]04]0.0 | c+ 20,

Table 3: Equivalence table for bias potential and actual test bias.

Cﬂ ayn ﬁU
00| - 0
0.2]10.8]0.03
0.3]10.810.05
00| - 0
0.2]0.4}0.06
0.3]10.4]0.08

3
o

W W] G| o] t—a] p—s

Table 4: Equivalence of Ay and Sy when ny = 1, using item parameters of Table 2.

—Ep c's used AMH ﬁu
0.0 - 0 0
02| 0.0 27 1 C.054
0.2 | actual ¢’s .27 1 0.026
0.3 0.0 .40 | 0.051
0.3 | actual ¢'s .39 1 0.039

o
91|
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Table 5: No bias, ACT, n, =1, a = 0.05.

Jr | Jr | ¢| dr | ME[SIB ]
1500 | 1500 0| .0| .03 | .07
1000 [ 300010 .0| .00 .02
3000 | 3000 ¢| .0] .09| .06
1500 | 1500 | 0| .5| .04 .04
1000 [ 3000 | c| 5| .10 .10
5000 | 3000 [ ¢| .5] .05] .03
1500 | 1500 | ¢ | 1.0 | .02 | .05
1000 [ 3000 [ c|1.0| .05 .10
3000 | 3000 0[1.0| .06 .09

Table 6: No bias, ACT, ny =3, a = 0.05.

_jp JR c a'r SIB
1500 | 1500 0| .0} .05
1000 | 3000 {0} .0} .02
3000)3000fc| .0 .07
1500 ] 1500 {0} .5} .08
1000} 3000 je| .5| .07
3000 | 30000 .5{ .05
1500 | 1500 | ¢ | 1.0 | .06
1000 | 3000 ¢ 1.0 | .16
3000 {3000 {0 1.0} .09

Table 7: No bias, ASVAB, n, =1, a = 0.05.

Jr | Jr |c| dr | MH | SIB
1500 | 1500 | 0| .0 | .08 | .07
1000 [ 3000 [O[ .0 .04 | .04
3000 [ 3000 [c| .0| .06 .06
1500 [ 1500 [0 | .5 .13 | .14
1000 | 3000 [ c¢| .5 .04 .03
3000 {3000 | .5| .05| .04
1500 | 1500 [ ¢ [ 1.0 | .07 | .02
1000 [ 3000 [c¢[1.0 | .15] .09
3000 {3000 [0[1.0| .11 [ .01
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Table 8: No bias, ASVAB, ny = 3, a = 0.05.

JF J}! c dg ﬁE—

1500 | 1500 { 0| .0 .07

1000 | 3000 [ 0| .0| .04

30001 3000 | ¢| .0| .03

1500 | 1500 [0 | .5 .07

1000 | 3000 [ ¢ | .5 .06

' 30001309010 .5| .05
' 1500 | 1500 | ¢ | 1.0 | .15

1000 | 3000 | ¢ | 1.0 | .07

3000 | 3000 | 0| 1.0 | .04

Table 9: Bias, a, = 0.8, ACT, ny =1, a = 0.05.

Jr | JR |eldr|Csl| Bu B: Ayy | MH | SIB
1500 [ 1500 | e O] .2].026 | .032 27 46| .88
1000 {3000 [0} O] .2}.032].042 27| 64| .70
3000{3000{0] O| .2].032].035 271 91 .95
1500 | 1500 | e | .5| .2].029].035 271 .51 .60
1000 [ 3000 [0} .5| .2|.034].044 271 65 .72
3000|3000 (0| .5] .2].034].038 271 91| .94
1500 [ 1500 [0 | O] .3{.048 ] .052 40] .84 .90
1000 {3000 {e| O] .3}.042].053 401 .87} .91
3000 {3000 {ec| O .3].042].045 401 .97} 1.00
1500 [ 1500 |0 | .5| .3|.050 ] .047 40 99| .99
1000 {3000 e .5 .3|.042.054 40 .SO| .84
3000 (3000 |c| .5] .3].042|.064 40 .91} .92

Table 10: Bias, a, = 0.4, ACT, ny = 3, a = 0.05.

‘ Jp JR c dr Cg ﬂu E: SIB
1500 {1500 0| O} .2].063}|.069] .70
1000 | 3000 ¢ | Of .2|.053|.067| .68
3000|3000} O .2|.053].053| .80
1500 | 1500 ¢ | .5 | .2].055].071 .60
1000 {30000} .5| .2].065].083 72
30001300010 .5 .2].065].074 ] .96
1500 15001 0| O] .3}.093].095]| .91
1000 {30000 O .3}7.093( .11 .89
3000]3000fec| O .3].080].081 .99
1500 y150010{ .5| .3).097 | .12| .97
100013000 ¢ | 5| .3].084]| .11 .89
30003000 c| .5] .3].083] .09] 1.00

Full Tt Provided by ERIC.
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Table 11: Bias, a, = 0.8, ASVAB,my =1, a = 0.05.

Je | Jr lcldr|Cs| Bu | Bu | Amn | MH | SIB
1500 11500 || O] .2|.026.029| .27 42| .50
1000 13000 [ 0| O] .2|.094|.039| .27] .63] .79
3000130000 0| .2|.034]|.084] .27] 90| .95
1500 | 1500 || 5| .2].027]|.085] .27| .63 | .66
100013000 | 0| .51 .2|.034 .08 .27] .63| .70
30001300000 5| .2|.034].036] .27 .89 .91
1500 | 1500 [0 | 0| .3].051].052] 40] .85| .92
1000|3000 [c| O .3|.042|.044| .40| 77| .84
3000 | 3000 [c| ¢! .3|.042]|.046] .40 99| .99
1500 | 1500 |0 | .5 | .3|.051 |.057| .40] .91 | .98
1000 | 3000 [c| 5] .3].038 |.048] .40] .77 | .82
3000 | 3000 |c| 5| .3].039|.045] .40[ 94| .97

Table 12: Bias, a, = 0.4, ASVAB, ny = 3, a = 0.05.

2,

Jr | Jr | eldri{Csl| Bu | B. | SIB
1500113500 0| O .2].065|.067 10
1000 {3000 ¢ O .21.052|.056 .93
30003000 c| O] .21.052].053 .85
1500 {1500} ¢ | .5| .2|.052 | .068 .63
1000 /30001 0| .5] .2|.064|.083 13
3000/3000|{01| .5] .2].0641.072 92
1500 | 15000} O} .3].098| .10 .94
1000}3000j0) Of .3.097 ]| .10 97
3000{3000| ¢| O} .3].079].079 98
1500 {1500} 0| .5| .3|.097}.011 98
1000 | 3000] ¢ | .5] .3|.076|.098 87
300013000| ¢ .5 .31.0781.090 .99
38
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