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ABSTRACT

Multivariate methods are being used with increasing frequency in

educational research, because these methods control

sexperimentwise" error rate inflation, and because the methods best

honor the nature of tha reality to which the researcher wishes to

generalize. This paper (a) explains the basic logic of canonical

analysis; (b) illustrates that canonical analysis is a general

parametric analytic method subsuming other methods; and (c)

provides an example of one strategy that can be employed to

investigate the generalizability of multivariate results. Actuai

data available from the widely known Holzinger and Swineford (1939)

study are emplyed to make the discussion concrete.
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Hinkle, Wiersma and Jurs (1979/ p. 415) noted that "it is
becoming increasingly important for behavioral scientists to
understand multivariate procedures even if they do not use them in
their own research." And recent empirical studies of research
practice confirm that multivariate methods are employed with some
rkAimlarity in behavioral research (Elmore & Woehlke, 1988).

There are two reasons why multivariate methods are so
important/ as noted by Fish (1988). First, multivariate methods

. Most
researchers are familiar with "testwise" alpha, which refers to the
probability of making a Type I error on a given hypothesis test.
"bvperimentwise" error rate refers to the probability of having
made a Type I error anywhere within the study. For example, if a
researcher conducts a balanced three-way, factorial ANOVA, testing
eadh of the three main effects, the three two-way interaction
effects/ and the single three-way interaction effect at the
testvise .05 alpha level, the experimentwise error rate for the
study will be:

alphaTw = 1 - (1 - .05)7 = 30.2%.
The same difficulty can occur when multiple dependent variables are
tested in a given study. The problem is that the researcher will
know that an "experimentwise" error is like3y, but will not know
which of the statistically significant results are errors and which
are not.

But an even more important reason to use multivariate methods
is that multivarlate methods pest_ honor the reality to whicp the
researcher is purportedly trying to generalize. Most researcherslive in a reality "in which the researcher cares about multiple
outcomes, in which most outcomes have mult1ple causes, and in which
most causes have multiple effects" (Thompson/ 1986, p. 9). We must
use analytic models that honor our view of reality, or else we will
arrive at interpretations that actually distort reality (Eason,
1991; Tatsuoka, 1973, p. 273).

Just as independent variables can interact to change results
in ways that would go unnoticed if these interactions were not
analyzed (Benton, 1991), so too dependent variables can interact
with each other to create effects that would go unnoticed absent a
multivariate analysis. Only multivariate analyses simultaneously
consider the full network of variable relationships, and honor a
reality in which all the variables can and often do simultaneously
interact and influence each other. Thus, multivariate analyses canyield results that would remain undetected if univariate analyses
(e.g., ANOVA, regression) were employed, as both Fish (1988) and
Maxwell (in press) demonstrate using actual examples.

Canonical correlation analysis is a multivariate analyticmethod that subsumes other parametric methods (e.g., I-tests,
ANOVA, ANCOVA, regression, discrAminant afialyais, MANOVA) asspecial cases (Knapp, 1978). Some researchers have found canonical
analysis to be useful. For example, Wood and Erskine (1976)identified more than 30 published applications of these methods.More recently, Thompson (1989a) cited roughly 100 canonical
applications reported during the last decade.
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Althvugh multivariate methods have enjoyed fairly widespread
subs4amtive usage (Thompson, 1989a; Wood & Erskine, 1976) since
computers and statistical software became widely available,
multivariate methods also have been used in intriguing ways in
measurement and assessment contexts. For example, Merenda, Novack
aMBonaventure (1976) reported a sultivariate reliability analysis
involving subtest scores from the California Test of Mental
Maturity. Similarly, Sexton, McLean, Boyd, Thompson and McCormick
(1988) reported results involving a multivariate concurrent
validity analysis.

Unfortunately, as Nunnally (1978, p. 298) notes, "one tends to
take advantage of chance in any situation where something is
optimized from the data at hand." In fact, this capitalization
occus in all classical parametric methods, because All these
methods (e.g., I.-tests, ANOVA, regression, MANOVA) are least
squares procedures that implicitly or explicitly (a) use weights,
(b) focus on latent synthetic variables, and (c) yield effect sizes
analogous to x2, i.e., All classical anAVtiM MObOds are
correlational (Knapp, 1978; Thompson, 1988a).

But the problem of capitalizing on sampling error when
multivariate methods are used is particularly acute, because the
models being tested involve a larger system of parameter estimates.
For example, the problem is particularly acute when factor analytic
methods are employed, because "one has numerous possibilities for
capitalizing on chance. Most extraction procedures, inclueing
principal factor solutions, reach their criterion by such
capitalization. The same is true of rotational procedures,
including those which rotate for simple structure" (Gorsuch, 1983,
p. 330).

The purposes of the present article are (a) to explain the
basic logic of canonical analysis in a concrete and accessible
fashion; (b) to illustrate that canonical analysis is a general
parametric analytic method subsuming other methods; and (c) to
illustrate one method that can be employad to investigate the
stability or the generalizability of results.

The Basic Logic of Canonical Calcitastions
Thompson (1984) notes that canonical correlation can be

presented in bivariate terms. This conceptualization is appealing,
because most researchers feel very comfortable thinking in terms of
the familiar bivariate correlation coefficient. Table 1 presents a
small data set that will be employed to illustrate the basic logic
of canonical correlation analysis (CCA). Appendix A presents the
SAs computer program used to analyze the data; readers may find it
useful to replicate these analyses and to examlne other results
reported in the output but not presented here, given space
limitations.

INSERT TABLE 1 ABOUT HERE.

The 12 cases of scores on each of two seta of scales ("CHA6"
to "OTH2") were randomly sampled from a data base generated in one
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ot the "Heart Smart" studies, an offshoot of the Bogalusa Heart
Study longitudinal examination of the origins of cardiovascular
disease during childhood. The first set of scores involves actual
values for these subjects on three scales, each with six items,
measuring children's perceptions of the sources of their health:
(a) Chance, i.e., random uncontrollable external factors ("CHA6");
(b) Internal, i.e., decisions or actions within one's own control
("INT6"); and (c) Powerful Others, i.e external factors under the
direct control of others, such as nurses or doctors ("OTH6"). The
second set of scores ("CHA2" to "INT2") involved responses on six
items (two par scale) from a different source, but purportedly
measuring the same three constructs. The example is elaborated by
Thompson, Webber and Berenson (1988), who prarent one of the
several related analyses conducted with the full database.

Thus, the small heuristic Table 1 data set involves a
concurrent validity context. A CCA invoked in an analytically
similar measurement context but with a data set with a realistic
sample size and different variables iL presented by Sexton, McLean,
Boyd, Thompson and McCormick (1988). Of course, CCA can be useful
in addressing either substantive or measurement issues, but the
latter context is perhaps more relevant to the focus of the
journal.

Various analytic methods yield weights that are applied tG
variables to optimize some condition--such weights include beta
weights, factor pattern coefficients, and diwtriminant function
coefficients. These weights are all equivalent (e.g., Thompson &
Borrello, 1985; Thompson, 1988), at least after A transformation in
metric, but in canonical correlation analysis the weights are
usually labelled standardized canonical function coefficients. It
is difficult to fathom why the equivalent weights used in the
various parametric methods are given different names, since the
primary result is confusion and the illusion that parametric
methods are different. The CCA function coeffic.ents are applied to
each individual's standardized data to yield the synthetic
variables that are the basis for canonical analysis.

In regression only one set of weights is produced, but in
canonical analysis several sets of weights and of the resulting
synthetic variables can be crested. These canonical functions are
related to principal components, are uncorrelated or orthogonal,
and can be rotated in various ways (Thompson, 1984; Thorndike,
1976). The number of functions that can be computed in a canonical
analysis equals the number of variables in the smaller of the two
variable sets. Ll the present example, since both sets of variables
consiste4 of three variables, three canonical functions were
extracted. Some of the computations utilized in this extraction are
explained elsewhere by Thompson (1984, pp. 11-24) and are
illustrated in the computer program, CANBAK (Thompson, 1982).

Table 2 depicts the computation of the synthetic variables
scores actually correlated in CCA. The computations for Function I
are presented here; readers may wish to themselves compute die
synthetic scores for Functions II and III. The weights for the
criterion variables on Function I were: (a) .6717, CHA6; (b) .3570,
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INT6; (c) .4214, OTH6. Thus, the weighted and aggregated criterion
Z-scores of subject 1 yield a synthetic criterion score for this
subject of .81896 ((.6717 x .5654) + (.3570 x -.2868) + (.4214 x
1.2852) m .3798 - .1024 + .5416). The weights for the predictor
variables on Function I were: (a) .4494, CHA2; (b) .7200, INT2; (c)
.2228, OTH2. Thus, the weighted and aggregated predictor Z-scoresof subject 1 yield a synthetic criterion score for this subject of.70814 ((.4494 x -.3317) + (.7200 x .9202) + (.2228 x .8738) =
-.1491 + .6625 + .1947).

INSERT TABLE 2 ABOUT HERE.

The bivariate correlation between the synthetic scores on
Function I is nothing more (or less) than the canonical correlation
coefficient (ac). Thus, for Function I, c = .932195 = AMITbspRED1This is graphically illustrated in Figure 1. The syntneticvariables are themselves Z-scores, the A intercept for the
regression line is at the 0,0 coordinate, end the slope of the
regression line is also Bc. Similarly, the ke /ariate correlation
between the two sets of synthetic scores on Function II is the Ecfor that function. The canonical function coefficients are
specifically computed to optimize the calculated relationshipsbetween the synthetic variables on each function.

INSERT FIGURE 1 ABOUT HERE.

Table 3 presents most of the results for the full canonical
analysis. The structure coefficients presented in the table havethe same meaning in a canonical analysis as in other analyses,
i.e., structure coefficients are always bivariate correlation
coefficients between observed variable scores (e.g., "CHA6","OTH6") and a synthetic variable (e.g., "CRIT1") created usingweights. For example, if regLession predictors are multiplied byregression weights and the products are summed for each individual,
the correlation between scores on a given observed predictor and
the synthetic variables scores (I) is the structure coefficient forthat predictor. Similarll, in the canonical case a structure
coefficient on a given function is the bivariate correlation
between a given criterion or predictor variable and the synthetic
variable involving the variable set to which the variable belongs.
For example, since 02CHA6" was a criterion variable in the Table 2
example, the correlation (+.8098) between "ZCHA6" and "CRIT10 isthe structure coefficient for "ZCHA60 on Function I.

INSERT TABLE 3 ABOUT HERE.

In terms of actual contemporary analytic practice, Eason,Daniel and Thompson (1990) found that in about one-third of thepublished canonical studies researchers only report and interpret
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function coefficients. But structure coefficients are vitally
important in interpreting results in other analytic cases, such as
factor analysis (Gorsuch, 1983, p. 207) and multiple regression
analysis (Cooley & Lohnes, 1971, pp. 54-55; Thompson & Borrello,
1985). Similarly, with respect to CCA it is important pot to
interpret results based solely on function coefficients (Kerlinger
& Padhazur, 1973, p. 344; Levine, 1977, p. 20; Meredith, 1964, p.
55), though Harris (1969) may disagree. The structure and function
coefficients for a variable set will be equal only if the variables
in a set are all exactly uncorrelated with each other (Thompson,
1984, pp. 22-23), as would be the case, for example, if the
variables in a set consisted of scores on orthogonally rotated
principal components.

It would be dangerous to conclude that consulting either
function or structure coefficients will always yield the same
interpretations for a given data set. For example, Sexton, McLean,
Boyd, Thompson and McCormick (1988) present a canonical analysis in
toiltirli one variable had a function coefficient of +0.02 on Function

but the same variable had a structure coefficient of +0.89 on
the same function. It is important to know when either set c:
coefficients suggests that a variable may be noteworthy.

Long ago Cohen (1968, p. 426) noted that ANOVA and ANCOVA are
special cases of multiple regression analysis, and argued that in
this realization "lie possibilities for more relevant and therefore
more powerful exploitation of research data." However, Knapp (1978)
offered mathematical proofs that CCA subsumes parametric methods,
including both univariate and multivariate analyses. This
realization is a basis for understanding how parametric methods are
interrelated, which students often find to be helpful.

Three important insights can be gained from this perspective.
All classical pe-ametric methods (t-tests, ANOVA, MANOVA, etc.) are
procedures that either implicitly or explicitly (a) see least
squares weights, (b) focus on synthetic variables, and (c) yield
effect sizes analogous to K2. Put differently, all classical
analytic methods are correlational. As Keppel and 7edeck (1989)
repeatedly emphasize, the power to make causal inferences inures to
design features and not the analytic method selected, since
conventional parametric analyses are all correlational.

It is beyond the scope of the present treatment to explore allthe possible relationships among analytic techniques. Knapp (1978)
offers the mathematical proofs and additional concrete
illustrations have been offered elsewhere (Thompson, 1988).
However, a brief exploration of a couple of linkages may be useful
to the reader. The Appendix A SAS program can be run using the
Table 1 data to yield additional insights.

The linkage of CCA and multiple regression analysis is
particularly easy to see, slalce both procedures are happily
explicitly named correlational procedures. Suppose that the
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researcher wanted to predict "INT6" with "CHA2", "INT2" and "OTH2",
and did so using both regression and canonical correlation
procedures. When the Appendix A SAS program file was applied to the
Table 1 data to yield these analyses, PROC REG computed the squared
multiple correlation coefficient to be .4016 m 1.789, sit, m 3/8,

.2269); PROC CANCORR computed the squared canonical correlation
coefficient to be .401566 ( E m 1.7894, a m 3/8, R m .2269). _hese
results differ only as to the arbitrary number of digits used to
report the identical results.

The relationships between the beta weights produced by ?P0C
REG and the function coefficients produced by PROC CANCORR are a
bit harder to see. These results are presented in Table 4. The
table also illustrates that weights are relatedc though they are
standardized using a different metric. Thompson and Borrello (1985)
provide more detail.

INSERT TABLE 4 ABOUT HERE.

The linkages between CCA and factorial ANOVA illustrate how
CCA subsumes OVA methods (i.e., ANOVA, ANCOVA, MANOVA, MANCOVA)
generally. For the 3 x 2 factorial ANOVA involving the IQ and
experimental group assignment data presented in Table 1, PROC ANOVA
yielded the following resul,s for the three omnibus hypotheses: (a)
IQ, m 3.90; (b) experimental assignment, r = 1.85; (c) two-way
interaction, Elm 1.08. The Appendix A program was used to test four
related canonical models, and the lambdas calculated from PROC
CANCORR were then expressed as L's, using the process summarized in
Table 5.

INSERT TABLE 5 ABOUT HERE.

These illustrative results correctly indicate that you can do
regression with CCA, though you can't do CCA with regression. You
can do factorial ANOVA with CCA, though you can't do CCA with
ANOVA. The same relationship holds with other parametric methods
(e.g., t-tests, ANCOVA, MANOVA). In short, CCA is a general
parametric method subsuming other parametric methods as special
cases.

Evaluating Result qeneralizability
It is very important to use use statistical formulas (e.g.,

Wherry, 1931) or (better yet) empirical methods to evaluate the
generalizability of the results in hand. The business of science is
formulating generalizable insight. No one study, taken singly,
establishes the basis for such insight. As Neale and Liebert (1986,
p. 290) observe:

No one study, however shrewdly designed and
carefully executed, can provide convincing support
for a causal hypothesis or theoretical statement...
Too many possible (if not plausible) confounds,
limitations on generality, and alternative
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interpratations can be offered for any one
observation. Moreover, each of the basic methods of
research (experimental, correlational, and case
study) and techniques of comparison (within- or
between-subjects) has intrinsic limitations. How,
then, does social science theory advance through
research? The answer is, by collecting a diverse
body of evidence about any major theoretical
proposition.

Evaluating the generalizability of canonical results to other
samples of subjects or of variables is a difficult task, but a task
which the serious scholar can ill-afford to shirk. It must be
emphasized that statistical significance testing does not We=
the researcher regarding the likelihood that CCA Itc2 (i.e., effect
sizes) or other coefficients (e.g., function or structure
coefficients) will be replicable in future research (Carver, 1978).

With respect to the replicability of CCA effect sizes, these
estimates appear to be reasonably stable if the researcher uses at
least 10 subjects per variable (Thompson, 1990a). Furthermore,
several statistical corrections of the effect sizes can be invoked.
One might employ Wherry's (1931) correction formula to Bc2, as
suggested by Cliff (1987, p. 446). But as incisively implied by
Stevens (1986, pp. 78-84) with respect to the related regression
case, the correction suggested by Herzberg (1969) may be especially
useful, though it is more conservative. For example, for the
Function I results reported in Table 3, the Wherry correction can
be evaluated as:

Rc2
.869
.869
.869
.869

Efforts to estimate the sampling specificity of coefficients
for specific variables are more difficult, or at least more
tedious. CCA function and structure coefficients appear to be less
stable than CCA omnibus effect sizes (lic2's), though both appear to
be equally unstable (Thompson, 1989b). Thus, it is especially
important to evaluate the generalizability of these coefficients.

Sone researchers randomly split their sample data, conduct
separate analyses for the two subgroups, and then puiljectiyel,y
compare the results to determine if they appear to be similar. Two
points need to be emphasized about such an approach. Such
procedures almost always overestimate the invariance or
generalizability of results/ as Thompson (19841 p. 46) explains.
Also, it is emphasized the inferences regarding replicability must
be made empirically rather than subjectively. Crowley and Thompson
(1991) explain one strategy for making such comparisons. Functions
that appear to be quite different may in fact yield quite similar
synthetic variable scores--apparent differences in functions
yielding comparable values for the synthetic variables actuany
related in canonical analysis are not very noteworthy (Thompson,
1989c). Cliff (1987, pp. 177-178) suggests that such cases involve

((1
- ((1
- (

- (

-

Rc2)
- .869)
.131
.131
.1572

*
*
*
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(VTot
( 6 /

( 6 /

1.2
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5

-
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"insensitivity" of the weights to departures from least squares
constraints.

Empirical methods for evaluating the generalizability of CCA
coefficients are explored by Thompson (1984, pp. 41-47; 1990c). A
sophisticated logic called the "bootstrap," popularized by Efron
and more recently by Lunneborg (e.g., 1987) may be especially
useful. The bottom line is that in all studies, CCA or not, results
from a single study must be interpreted with some caution.

The data reported by Holzinger and Swineford (39391 pp. 81-
91), used with some frequency to illustrate multivariate
statistical analyses (e.g., Gorsuch, 1983, passim; Jöreskog &
Sörbom, 1986, pp. 111.106-111.122), are used here to illustrate one
strategy for evaluating generalizability of multivariate results.
Crowley and Thompson (1991) illustrate some alternatives. These
data were selected for use in the axamples because they are widely
available, and interested readers can therefore readily replicate
the analyses described here. Table 6 presents results from a
canonical analysis relating the five verbal test scores from the
Holzinger-Swineford (1939) data to scores on the four visual
perception tests.

INSERT TABLE 6 ABOUT HERE.

The strategy illustrated here invokes a modelling procedure.
First, a population of 10,000 cases were generated subject to the
restriction that means, SDs, and correlation coefficients be the
same as those in the Holzinger-Swineford (1939) data. This was done
using the program written by Morris (1975).

Next, random samples of size n=301 were drawn from the
population to explore the effects of sampling error. For
illustrative purpose, five samples were drawn in the present paper.
These results are presented in Table 7.

INSERT TABLE 7 A&OUT HERE.

In order to compare apples with apples, the functions must be
examined to determine (a) whether the functions need to be
"reflected" so that they are oriented in the same direction, and
(b) whether the functions change orders across samples. In the
presmft example, function and structure coefficients for sample #11
Function 1, and for samplc.s 11, #31 #4, and 15, Function II, were
reflected by multiplication by negative one. Such "reflection" is
always available to the researcher, whenever it facilitates
interpretation, and is perfectly legitimate (Gorsuch, 1983).

Examination of the results suggested that at least the first
two functions appeared in the same order across samples. This is
important to check when canonical correlation coefficients are
homogeneous, since function order may arbitrarily fluctuate in such
cases.

Finally, descriptive statistics for parameter estimates are
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computed. These are presented for the present example in Table 8.
The SDs from such analyses are analogous to standard errors, and
are of particular interest. The present example makes clear that
(a) the Rc2 effect size is inflated somewhat by sampling error
(e.g., 19.2% versus the mean of 25.14); (b) estimates of
coefficients at the variable level are more subject to sampling
error; and (c) results are more stable for functions with larger
effect sizes. These results are consistent with previous research
(cf. Thompson, 1990a, 1990c).

INSERT TABLE 8 ABOUT HERE.

ttitunary

As Stevens (1986, p. 373, emphasis omitted) notes, CCA "is
appropriate if the wish is to parsimoniously describe the number
and nature of mutually independent relationships between the two
[variable] sets... Since the [function] combinations are
uncorrelated, we will obtain a very nice additive partitioning of
the total between association." The present article has explained
the basic logic of canonical correlation analysis. It was noted
that all parametric analytic methods are correlational, and that
all parametric tests can be conducted using canonical analysis,
since canonical analysis subsumes parametric methods as special
cases. Canonical analysis is potent because it does not require the
researcher to discard variance of any of the variables, and because
the analysis honors the complexity of a reality in which var..ables
interact simultaneously.

9
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ID CHA6 INT6 OTH6

Table 1
Random Sample (n=12) of Health Locus of Control Data

with Hypothetical IQ and Experimental Group Assignments

CHA2 INT2 OTH2 IQ IQGRP EXPERGRP CIQGRP3. CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2
1 20 17 19 7 7 7 68 1 1 -1 -1 1 -1 -1
2 21 20 15 8 7 5 89 1 1 -1 -1 1 -1 -1
3 17 15 20 7 6 7 50 1 2 -1 -1 1 1
4 16 14 13 8 5 5 85 1 2 -1 -1 1 1
5 20 20 15 8 7 5 90 2 1 2 1 2
6 14 21 15 7 5 109 2 1 2 1 2
7 14 19 14 7 5 6 102 2 2 0 2 -1 -2
8 14 23 10 6 6 6 108 2 2 0 2 -1 -2
9 21 14 12 8 5 2 111 3 1 1 -1 1 1 -1

10 19 1.2 10 7 6 4 140 3 1 3. -1 3. 1 -1
11 24 24 19 8 8 8 120 3 2 1 -1 -1 -x 1
12 18 18 9 6 6 5 143 3 2 1 -1 -1 -1 1

Variables in Z -score Form and
Table 2

Synthetic Composite Scores on Function I

OBS ZCHA6 ZI:4T6 ZOTH6 ZCHA2 ZINT2 ZOTH2 CRIT1 PRED1
1 .5654 -.2868 1.2852 -.3317 .9202 .8738 .81896 .70814
2 .8738 .5075 .2029 .9950 .9202 -.3598 .85358 1.02950
3 -.3598 -.8164 1.5558 -.3317 -.0837 .8738 .12251 -.01460
4 -.6682 -1.0811 -.3382 .9950 -1.0875 -.3598 -.97730 -.41598
5 .5654 .5075 .2029 .9950 .9202 -.3598 .64644 1.02950
6 -1.2849 .7722 .2029 -.3317 -1.0875 .8738 -.50189 -.73735
7 -1.2849 .2427 -.0676 -.3317 -1.0875 .2570 -.80495 -.8747,.L
8 -1.2849 3.3018 -1.1499 -1.6583 -.0837 .2570 -.88295 -.74822
9 .8738 -1.0811 -.6088 .9950 -1.0875 -2.2101 -.05561 -.82823

10 .2570 -1.6107 -1.1499 -.3317 -.0837 -.9766 -.88697 -.42585
11 1.7989 1.5665 1.2852 .9950 1.9240 1.4905 2.30918 2.16449
12 -.0514 -.0221 -1.4205 -1.6583 -.0837 -.3598 -.64101 -.885E3
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Table 3
Canonical Solution for the Table 1 Data

Variable/
Qftf.i..

Function I Funqtion II _Function III
b2Func. "tr. Str.2 Func. Str. Str.2 Func. Str. Str.2

CHA6 .6717 .8098 65.6% -.8174 -.5633 31.7% -.0266 .1643 2.7% 100.0%a
INT6 .3570 .4428 19.6% .2433 .3901 15.2% -.9253 -.8073 65.2% 100.0%
OTH6 .4214 .7071 50.0% .7837 .5673 32.2% .6099 .4220 17.8% 100.0%
Adequacy 45.1%b 26.4% 28.6%
Rd 39.2%c 21.8% 4.6%
Rc2 86.9% 82.5% 16.2%
Rd 38.3% 20.7% 5.0%
Adequacy 44.0% 25.2% 30.8%
CHA2 .4494 .5564 31.0% .1669 -.2017 4.1% .9721 .8061 65.0 100.0%
INT2 .7200 .9082 82.5% -.6422 -.1324 1.8% -.6576 -.3971 15.8% 100.0%
OTH2 .2228 .4314 18.6% 1.1368 .8345 69.6% .1307 -.3427 11.7% 100.0%

aCanonical communality (h2) coefficients are directly analogous to tte factor analytic
coefficients of the same name, and indicate how much of the variance of an :.:...glerved variable
is contained within the set of synthetic variables. For example, the commur.ality coefficient
for RCHA6N equals 65.6% + 31.7% + 2.7%.

bAn adequacy coefficient indicates how adequately the synthetic scores on a function do at
reproducing the variance in a set of variables, and equals the mean of the squared structure
coefficients on the variable. Thus, the adequacy coefficient for the criterion variable set
on Function I equals (65.6% + 19.6% + 50.0%) / 3 = 135.2 / 3 = 45.1%.

cA redundancy (Rd) coefficient equals an adequacy coefficient times Rc2, e.g., 45.1% times
86.9% equals 39.2%.
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Table 4
The Relationship Between

Regression beta Weights and CCA Function Coefficients

Function
Variable beta Coefficients

CHA2 -0.07129038 / R = -0.1125
INT2 0.28335280 R = 0.4471
0TH2 0.45229076 / R = 0.7137

Note. ;3 = Ep = 0.633692. The weights are reported to
number of decimal places produced on the SAS output.

the same

Table 5
Three Steps to Convert CCA Results to Factorial ANOVA f's

Step #1: Get CCA lambda for 4 sets of orthogonal contrast
variables.

Model Predictors lambda
1 CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2 .33717579
2 CEXGRP1 CIQBYEX1 CIOYEX2 .77521614
3 CIQGRP1 CIQGRP2 CIQBYEX1 CIQBYEX2 .44092219
4 CIQGRP1 CIQGRP2 CEXGRP1 .45821326

Step 12: Convert lambdas to ratios for each effect.

Full Model lambda
Effect Ratio lambda w/o Effect Ratio
IQ 1 / 2 .33717579 / .77521614 = .434944
Exp. Assignment 1 / 3 .33717579 / .44092219 = .764705
IQ x Exp. Interaction 1 / 4 .33717579 / .45821326 = .735849

Step /3: Convert ratios to ANOVA f's, by the algorithm, f =
((1 - effect ratio) / ratio) x (df error / df effect)

IQ ((1 - .434944) / .434944) x (6 / 2)
.565055 / .434944) x 3

1.299145 x 3

3.897435

Exp. Assignment ( (1 - .764705) / .764705) x (6 / 1)

.235294 / .764705) x 6
.307692 x 6

1.846153

IQ x Exp. Interaction ((1 - .735849) / .735849) x (6 / 2)
.264150 / .735849) x 3

.358974 x 3

1.076923
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Table 6
Canonical Results for the Holzinger and Swineford (1939) Data

(N=301)

1

r S SA2
II
F S SA2

III
F S 5A2

IV
F S 5A2

T5 0.06 -0.72 51.9% 0.81 0.49 24.3% 1.01 0.45 20.1% -1.30 -0.19 3.7%
T6 -0.51 -0.86 74.7% 0.05 0.32 10.3% -1.23 -0.35 12.0% -0.85 -0.16 2.6%
T7 0.34 -0.69 47.0% 1.16 0.59 35.2% -0.23 0.00 0.0% 1.17 0.38 14.2%
T8 -0.47 -0.80 64.5% -0.58 0.11 1.1% 0.16 0.18 3.1% 0.59 0.37 13.6%
T9 -0.53 -0.87 75.9% -1.09 0.04 0.1% 0.42 0.23 5.1% 0.20 0.05 0.3%
Adequacy 62.8% 14.2% 8.1% 6.9%
Rd 12.1% 0.4% 0.1% 0.0%
RcA2 19.2% 2.7% 0.7% 0.2%
Rd 8.5% 0.5% 0.1% 0.0%
Adequacy 44.1% 18.7% 18.4% 18.8%
T1 -0.78 -0.95 89.8% 0.51 0.08 0.7% -0.70 -0.31 9.4% 0.08 0.01 0.0%
T2 -0.17 -0.48 22.8% 0.03 -0.16 2.7% 0.56 0.49 24.2% 0.91 0.71 50.3%
T3 -0.25 -0.60 35.4% 0.18 0.03 0.1% 0.80 0.63 39.8% -0.68 -0.50 24.7%
T4 -0.05 -0.53 28.3% -1.13 -0.84 71.3% -0.16 -0.03 0.1% -0.19 -0.06 0.3%
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Table 7
Canonical Results for Five Samples (n=301) from a Population of 10,000

Modelled on the Holzinger and Swineford (1939) Data
N=301 SAMPLE 01

IV
S*2 F S 5*2 F S S*2 F S*2

T5 -0.490 -0.853 72.7% 1.211 0.467 21.8%-0.054 0.230 5.3% 0.017 0.032 0.1%
T6 -0.557 -0.867 75.1%-0.232 0.051 0.3%-1.494 -0.212 4.5%-0.473 -0.181 3.3%
T7 0.594 -0.647 41.8% 0.844 0.352 12.4% 0.644 0.308 9.5*-0.014 0.010 0.0%
T8 -0.323 -0.782 61.2%-0.708 -0.050 0.3% 0.056 0.187 3.5% 1.319 0.528 27.9%
T9 -0.284 -0.816 66.6%-1.008 -0.113 1.3% 1.078 0.451 20.4%-0.770 -0.282 8.0%
Adequacy 63.5% 7.2% 8.6% 7.9%
Rd 18.8% 0.5% 0.4% 0.0%
Rc*2 29.6% 6.7% 4.3% 0.4%
Rd 12.7% 1.5% 0.8% 0.1%
Adequacy 42.8% 21.7% 17.8% 17.7%
T1 -0.804 -0.929 86.3% 0.091 -0.195 3.8%-0.829 -0.211 4.5%-0.410 -0.232 5.4%
T2 -0.147 -0.481 23.2%-0.431 -0.484 23.4%-0.047 0.054 0.3% 0.992 0.729 53.1%
T3 -0.363 -0.686 47.0% 0.661 0.278 7.7% 0.835 0.671 45.0% 0.137 0.051 0.3%
T4 0.176 -0.381 14.5%-0.867 -0.721 52.0% 0.578 0.462 21.4%-0.502 -0.348 12.1%
N=301 SAMPLE #2

III IV
S*2 F S*2 F S*2 F S*2

T5 0.016 -0.754 56.8%-0.140 0.169 2.9% 0.932 0.316 10.0%-0.097 -0.115 1.3%
T6 -0.378 -0.893 79.8%-1.073 -0.170 2.9% 0.930 0.328 10.8% 0.015 -0.091 0.8%
T7 -0.044 -0.826 68.2% 1.665 0.519 26.9% 0.202 0.202 4.1%-0.073 -0.043 0.2%
T8 -0.344 -0.826 68.3%-0.196 0.081 0.7%-0.574 -0.134 1.8% 1.209 0.521 27.1%
T9 -0.395 -0.897 80.5%-0.166 0.042 0.2%-1.366 -0.207 4.3%-0.979 -0.365 13.4%
Adequacy 70.7% 6.7% 6.2% 8.6%
Rd 16.4% 0.3% 0.1% 0.0%
Rc*2 23.2% 4.6% 1.2% 0.5%
Rd 8.3% 0.9% 0.2% 0.1%
Adequacy 35.8% 20.6% 20.5% 23.1%
T1 -0.918 -0.965 93.2% 0.044 -0.146 2.1% 0.602 0.214 4.6%-0.279 0.030 0.1%
T2 0.012 -0.337 11.3% 0.246 0.094 0.9% 0.073 -0.088 0.8% 1.058 0.933 87.0%
T3 -0.277 -0.541 29.3% 0.362 0.158 2.5%-0.968 -0.825 68.1%-0.228 0.026 0.1%
T4 0.104 -0.305 9.3%-1.056 -0.877 76.9%-0.267 -0.295 8.7% 0.120 0.228 5.2%
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N=301 SAMPLE #3

8
II

342 F 842
IV

842 F SA2
T5 -0.312 -0.032 69.2*-2.454 0.062 0.4% 1.150 0.303 9.2% 0.852 0.444 19.7%
T6 -0.106 -0.733 50.9%-0.298 0.204 4.2%-0.783 -0.403 16.2% 0.010 0.187 3.5%
T7 0.308 -0.664 44.1% 1.638 0.720 51.9% 0.186 -0.051 0.3% 0.271 0.177 3.1%
T8 -0.594 -0.86$ 74.9%-0.220 0.223 5.0% 0.237 0.144 2.1%-1.213 -0.420 17.6%
T9 -0.430 -0.827 68.3%-0.371 0.113 1.3%-0.880 -0.355 12.6% 0.186 0.339 11.5%
Adequacy 61.5% 12.5% 8.1% 11.1%
Rd 16.5% 0.7% 0.1% 0.1%
Rc42 26.8% 5.4% 1.4% 0.8%
Rd 11.6% 1.0% 0.3% 0.2%
Adequacy 43.5' 19.1% 19.4% 18.1%
T1 -C.870 -0.972 94.5% 0.258 -0.06. 0.4%-0.723 -0 225 5.1% C.281 0.027 0.1%
T2 -0.237 -0.578 33.4% 0.710 0.299 8.9% 0.789 0.649 42.1%-0.352 -0.394 15.5%
T3 -0.089 -0.480 23.0%-0.571 -0.555 30.8% 0.628 0.539 29.1% 0.730 0.413 17.1%
T4 0.053 -0.478 22.9%-0.809 -0.602 36.2%-0.113 0.117 1.4%-0.877 -0.629 39.6%

N=101 SAMPLE O4
II

S42 F
III

S42
IV

S*2 F
T5 0.366 -0.531 28.2% 0.859 0.719 51.7% 1.020 0.415 17.2% 0.515
T6 -0.523 -0.733 53.7% 0.100 0.552 30.5%-1.137 -0.366 13.4% 0.641
T7 0.741 -0.427 18.2% 0.963 0.796 63.4%-0.450 -0.101 1.0%-0.950
T8 -0.454 -0.661 43.7%-0.216 0.473 22.4% 0.250 0.162 2.6% 0.907
T9 -0.36 -0.831 69.0%-0.961 0.351 12.3% 0.384 0.196 3.9*-1.128
Adequacy 42.6% 36.0% 7.6%
Rd 11.4% 2.6% 0.1%
Rc42 26.8% 7.2% 1.9%
Rd 13.2% 1.0% 0.4%
Adequacy 49.2% 14.J% 20.4%
T1 -0.474 -0.816 66.6% 1.061 0.576 33.2%-0.084 0.006 0.0%-0.047
T2 0.02, -0.372 13.8*-0.019 -0.121 1.5% 0.945 0.811 65.8%-0.554
T3 -0.304 -0.685 46.2%-0.348 -0.252 6.4% 0.343 0.356 12.7% 0.998
T4 -0.497 -0.834 69.6%-0.744 -0.402 16.1%-0.621 -0.179 3.2%-0.526

19
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S 842
-0.015 0.0%
0.041 0.2%

-0.314 9.9%
0.274 7.5%

-0.385 14.8%
6.5%
0.1%
0.9%
0.2%

16.0%
-0.049 0.2%
-0.434 18.9%
0.583 34.0%

-0.332 11.0%
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N=301 SAMPLE 15

S*2 F S"2 F
IV

SA2 r S S*2
T5 -0.117 -0.759 57.6% 0.019 -0.042 0.2% 0.955 0.574 33.0%-0.710 -0.113 1.3%
T6 -0.515 -0.874 76.4*-0.434 -0.232 5.4%-0.971 -0.139 1.9%-0.992 -0.345 11.9%
T7 0.124 -0.761 57.9% 0.783 0.168 2.8% 0.'77 0.361 13.0%-0.376 -0.099 1.0%
T8 -0.492 -0,842 70.9% 0.696 0.454 20.6%-0.,.,24 -0.020 0.0% 0.806 0.272 7.4%
T9 -0.181 -0.777 60.3%-1.052 -0.431 18.6% 0.076 0.323 10.4% 1.306 0.247 6.1%
Adequacy 64.6% 9.5% 11.7% 5.5%
Rd 12.3% 0.2% 0.1% 0.0%
RcA2 19.0% 2.0% 0.6% 0.2%
Rd 7.5% 0.5% 0.1% 0.0%
Adequacy 39.5% 22.8% 19.9% 17.8%
TI -0.8E3 -0.961 92.3%-0.412 -0.173 3.0% 0.513 0.004 0.0%-0.360 -0.216 4.7%
T2 -0.119 -0.366 13.4% 1.007 0.907 82.3% 0.280 -0.043 0.2%-0.273 -0.202 4.1%
T3 -0.260 -0.560 31.3% 0.123 0.212 4.5%-0.123 -0.263 6.9% 1.052 0.757 57.2%
T4 0.082 -0.459 21.0%-0.091 0.121 1.5%-1.149 -0.851 72.4%-0.313 -0.227 5.1%
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Table 8
Descriptive Statistics Across the Five Samples

***MEANS

S*2 F SA2
III

SA2
IV
F 8 842

T5 -0.107 -0.746 0.569 0.299 0.275 0.154 0.801 0.368 0.149 0.115 0.047 0.345
T6 -0.416 -0.816 0.672 -0.388 0.081 0.086 -0.691 -0.158 0.094 -0.160 -0.078 0.039
T7 0.345 -0.665 0.461 1.178 0.511 0.315 0.272 0.144 0.056 -0.229 -0.054 0.028
T8 -0.442 -0.795 0.638 -0.129 0.236 0.098 -0.131 0.068 0.020 0.606 0.235 0.175
T9 -0.457 -0.829 0.689 -0.712 -0.008 0.067 -0.142 0.082 0.103 -0.277 -0.090 0.107
Adequacy 0.606 0.144 0.084 0.079
Rd 0.151 0.009 0.002 0.000
Rc*2 0.251 0.052 0.019 0.006
Rd 0.107 0.010 0.004 0.001
Adequacy 0.422 V.197 0.196 0.185
T1 -0.790 -0.929 0.866 0.208 0.000 0.085 -0.104 -0.042 0.028 -0.163 -0.088 0.021
T2 -0.093 -0.427 0.190 0.302 0.139 0.234 0.408 0.277 0.218 0.174 0.126 0.357
T3 -0.258 -0.590 0.355 0.045 -0.032 0.104 0.143 0.096 0.324 0.538 0.366 0.217
T4 -0.016 -0.491 0.275 -0.713 -0.496 0.365 -0.314 -0.149 0.214 -0.420 -0.262 0.146

***SD
1 11 III Iv
F S S*2 F S 5*2 F S SA2 F S 5*2

T5 0.292 0.114 0.156 0.630 0.280 0.199 0.434 0.119 0.098 0.536 0.207 0.076
T6 0.166 0.077 0.123 0.385 0.282 0.110 0.843 0.262 0.054 0.546 0.182 0.042
T7 0.290 0.136 0.169 0.391 0.232 0.230 0.431 0.18/ 0.049 0.415 0.160 0.037
T8 0.100 0.072 0.110 0.455 0.205 0.097 0.388 0.124 0.011 0.928 0.346 0.090
T9 0.283 0.039 0.065 0.368 0.259 0.074 0.878 0.310 0.061 0.914 0.315 0.033
Adequacy 0.095 0.110 0.018 0.019
Rd 0.028 0.009 0.001 0.000
Rc42 0.037 0.019 0.013 0.003
Rd 0.023 0.003 0.002 0.000
Adequacy 0.045 0.030 0.010 0.024
T1 0.162 0.058 0.104 0.481 0.292 0.124 0.598 0.163 0.023 0.254 0.115 0.024
T2 0.100 0.090 0.083 0.511 0.463 0.306 0.392 0.377 0.273 0.701 0.584 0.304
T3 0.092 0.082 0.097 0.452 0.321 0.104 0.642 0.561 0.223 0.502 0.289 0.217
T4 0.244 0.182 0.216 0.328 0.345 0.265 0.571 0.438 0.264 0.326 0.279 0.128
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Appendix A:
SAS Program for the Table 1 Data

DATA HLOCMECD; INFILE ABC;
INPUT ID 3-4 CHA6 6-7 INT6 9-10 OTH6 12-13 CHA2 15-16 INT2 18-19
OTH2 21-22 IQ 24-26 IQGRP 28 EXPERGRP 30 CIQGRP1 32-33 CIQGRP2 35-36
CEXGRP1 38-39 CIQBYEX1 41-42 CIQBYEX2 44-45;

PROC PRINT; VAR ID CHA6 INT6 OTH6 CHA2 INT2 OTH2 IQ IQGRP EXPERGRP
CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2; RUN;

Trru 11. DESCRIPTION OF RAW DATA';
PROC CORR; VAR CRA6 INT6 OTH6 CHA2 INT2 OTH2 IQ IQGRP EXPERGRP
CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2; RUN;

TITLE '2. THE LOGIC OF CCA';
PROC CANCORR ALL; VAR CHA6 INT6 OTH6; WITH CHA2 INT2 OTH2;
data hlocnew; set hlocmecd;
zcha6=(cha6 -18.166666667)/3.24270744;
zint6-(int6 -18.083333333)/3.77692355;
zoth6=(oth6 -14.250000000)/3.69582074;
zcha2=(cha2 -07.250000000)/0.75377836;
zint2=(int2-06.083333333)/0.99620492;
zoth2=(oth2 -05.583333333)/1.62135372;
crit1=(0.6717*zcha6)+(0.3570*zint6)+(0.4214*zoth6);
pred1=(0.4494*zcha2)+(0.7200*zint2)+(0.2228*zoth2);
crit2=(-.8174*zcha6)+(o.2433*zint6)+(0.7837*z0th6);
pred2=(0.1669*zcha2)+(-.6422*zint2)+(1.1368*zoth2);
crit3=(-.0266*zcha6)+(-.9253*zint6)+(0.6099*zoth6);
pred3=(0,9721*zcha2)+(-.6576*zint2)+(0.1307*z0th2);
proc print; var zcha6 zint6 zoth6 zcha2 zint2 zoth2

critl predl crit2 pred2 crit3 pred3; run;
title '2a AN r MATRIX WITH MANY REVELATIONS';
proc corr; vaz zcha6 zint6 zoth6 zcha2 zint2 zoth2

critl pred1 crit2 pred2 crit3 pred3; run;
title '2b THE 1ST FUNCTION IN GRAPHIC FORM';
proc plot; plot critl*pred1=id/ vaxis=-3 to 7 by 1 vref=0

haxis= -3 to 8 by 1 href=0; run;
TITLE '3. CCA SUBSUMES PEARSON CORRELATION';
PROC CORR; VAR OTH6 OTH2;
PROC CANCORR ALL; VAR 0TH6; WITH OTH2; RUN;
TITLE '4. CCA SUBSUMES T-TESTS & ONE-WAY ANOVA';
PROC TTEST; CLASS EXPERGRP; VAR 0TH6;
PROC ANOVA; CLASS EXPERGRP; MODEL OTH6=EXPERGRP;
PROC CANCORR ALL; VAR OTH6; WITH CEXGRP1; RUN;
TITLE '5. CCA SUBSUMES FIWTORIAL ANOVAI;
PROC ANOVA; CLASS IQGRP EXPERGRP;
MODEL CHA6=IQGRP EXPERGRP IQGRP*EXPERGRP;
PROC CANCORR; VAR CHA6; WITH CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2;PROC CANCORR; VAR CHA6; WITH CEXGRP1 CIQBYEX1 CIQBYEX2;PROC CANCORR; VAR CHA6; WITH CIQGRP1 CIQGRP2 CIQBYEX1 CIQBYEX2;PROC CANCORR; VAR CHA6; WITH CIQGRP1 CIQGRP2 CEXGRP1; RUN;
TITLE '6. CCA SUBSUMES MULTIPLE REGRESSION';
PROC REG; MOL,EL INT6=CHA2 INT2 OTH2/ STB;
PROC CANCORR ALL; VAR INT6; WITH CHA2 INT2 OTH2; RUN;
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TITLE '7. CCA SUBSUMES FACTORIAL MANOVA';
PROC ANOVA; CLASS IQGRP EXPERGRP;
MODEL CHAS INT6=IQGRP EXPERGRP IQGRP*EXPERGRP; MANOVA H=_ALLJSUMMARY;

PROC CANCORR ALL; VAR CHA6 INTS;
WITH CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2;

PROC CANCORR ALL; VAR CHAS INT6;
WITH CEXGRP1 CIQBYEX1 CIQBYEX2;

PROC CANCORR ALL; VAR CHA6 INT6;
WITH CIQGRP1 CXQGRP2 CIQBYEX1 CIQBYEX2;

PROC CANCORR ALL; VAR CHA6 INT6;
WITH CIQGRP1 CIQGRP2 CEXGRP1; RUN;

TITLE 'S. CCA SUBSUMES DISCRIMINANT1;
PROC CANDISC ALL; VAR CHAS INT6; CLASS EXPERGRP;
PROC CANCORR ALL; VAR CHAS INT6; WITH CEXGRP1;

Note. The bulk of the program was executed as the first of two rans. The
lower case commands required the results from the first run, since the
relevant coefficients were not yet known. These commands were then added
into the program, and the program was executed a second time. Of course,
since the required values used on the lower case commands are presented
here, for this particular example the reader can execute the full program
in a single step.
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