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ABSTFACT
Multivariate methods are being used with increasing frequency in
educational research, because these methods control
"experimentwise" error rate inflation, and because the methods best
honor the nature of the reality to which the researcher wishes to
generalize. This paper (a) explains the basic logic of canonical
analysis; (b) illustrates that canonical analysis is a general
parametric analytic method subsuming other methods; and (c)
provides an example of one strategy that can be employed to
investigate the generalizability of multivariate results. Actuai
data available from the wideiy known Holzinger and Swineford (1939)

study are emplyed to make the discussion concrete.



Hinkle, Wiersma and Jurs (1979, P- 415) noted that "it is
becoming increasingly important for behavioral scientists to
understand multivariate procedures even if they do not use them in
their own research.” And recent empirical studies of research
practice confirm that multivariate methods are employed with some
rugularity in behavioral research (Elmore & Woehlke, 1988).

There are two reasons why multivariate methods are so
important, as noted by Fish (1988). First, \ ate met

pf TyDpE "experimen 2" ¢
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researchers are familiar with "testwise” alpha, which refers to the
prodability of making a Type I error on a given hypothesis test.
"Bxperimentwise™ error rate refers to the probability of having
macie & Type I error anywhere within the study. For example, if a
researcher conducts a balanced three-way, factorial ANOVA, testing
each of the three main effects, the three two-way interaction
effects, and the single three-way interaction effect at the
testwise .05 alpha 1level, the experimentwise error rate for the
study will be:

B

alphan, = 1 - (1 - ,05)7 = 30.2%.
The same difficulty can occur when multiple dependent variables are
tested in a given study. The problem is that the researcher will
know that an "experimentwise" error is likely, but will not know
which of the statistically significant results are errors and which
are not.
But an even more im

portant reason to use multivariate methods
is that nmu B -

hods he 2 D which the
to generalize. Most researchers
live in a reality "in which the researcher cares about multiple
outcomes, in which most outcomes have mult -ple causes, and in which
most causes have multiple effects® (Thompson, 1986, p. 9). We must
use analytic models that honor our view of reality, or else we will
arrive at interpretations that actually distort reality (Eason,
1991; Tatsuoka, 1973, p. 273).

Just as independent variables can interact to change results
in ways that would go unnoticed if these interactions were not
analyzed (Benton, 1591), so too dependent variables can interact
with each other to create effects that would go unnoticed absent a
multivariate analysis. Only multivariate analyses simultaneously
consider the full network of variable relationships, and honor a
reality in which all the variables can and often do simultaneocusly
interact and influence each other. Thus, multivariate analyses can
yield results that would remain undetected if univariate analyses
(e.g., ANOYA, regression) were employed, as both Fish (1988) and
Maxwell (in press) demonstrate using actual examples.

Canonical correlation analysis is a multivariate analytic
method that subsumes other parametric methods (e.g., t-tests,
ANOVA, ANCOVA, regression, discr.minant analycie, MANOVA) as
special cases (Knapp, 1978). Some researchers have found canonical
analysis to be useful. For example, Wood and Erskine (1976)
identified more than 30 published applications of these methods.
More recently, Thompson (1989a) cited roughly 100 canonical
applications reported during the last decade.
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Although multivariate methods have enjoyed fairly widespread
substantive usage (Thompson, 1889a; Wood & Erskine, 1976) since
computers and statistical software became widely available,
multivariate methods also have been used in intriguing ways in
measurement and assessment contexts. For example, Merenda, Novack
ana Bonaventure (1976) reported a 4
involving subtest scores from the California Test of Mental
Maturity. similarly, Sexton, McLean, Boyd, Thompson and McCormick

(1988) reported results involving a nmultivariate concurrent
validity analysis

Unfortunately, as Nunnally (1978, p. 298) notes, "one tends to
take advantage of chance in any situation where something is
optimized from the data at hand.” 1In fact, this capitalization
occurs in all classical parametric methods, because all these
methods (e.g., L-tests, ANOVA, regression, MANOVA) are least
squares procedures that implicitly or explicitly (a) use weights,
(b) focus on latent synthetic variables, and (c) yield effect sizes
analogous to x?, i.e., all classical analvtic me
correlational (Knapp, 1978; Thompson, 1988a).

But the problem of capitalizing on sampling error when
multivariate methods are used is particularly acute, because the
models being tested involve a larger system of parameter estimates .
For example, the problem is particularly acute when factor analytic
methods are employed, because "one has numerous possibilities for
capitalizing on chance. Most extraction procedures, inclucding
principal factor solutions, reach their criterion by such
capitalization. The same is true of rotational procedures,
including those which rotate for simple structure” (Gorsuch, 1983,
pP. 330).

The purposes of the present article are (a) to explain the
basic logic of canonical analysis in a concrete and accessible
fashion; (b) to illustrate that canonical anzlysis is a general
paranetric analytic method subsuming other methods; and (c) to
illustrate one method that can be employad to investigate the
stability or the generalizability ofiresults.

BAaS ] 3 aNonic 2lCR13ACIONS

Thompson (1984) notes that canonical correlation can be
presented in bivariate terms. This conceptualization is appealing,
because most researchers feel very comfortable thinking in terms of
the familiar bivariate correlation coefficient. Table 1 presents a
small data set that will be employed to illustrate the basic logic
of canonical correlation analysis (CCA) . Appendix A presents the
SAS computer program used to analyze the data; readers may find it
useful to replicate these analyses and to exarine other results
reported in the output but not presented here, ¢iven space
limitations.

1 DQ D 8

INSERT TABLE 1 ABOUT HERE.

The 12 cases of scores on each of two seta of scales ("CHAe"
to "OTH2") were randomly sampled from a data base generated in one
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of the "Heart Smart” studies, an offshoot of the Bogalusa Heart
Study longitudinal examination of the origins of cardiovascular
disease during childhood. The first set of scores involves actual
values for these subjects on three scales, each with six items,
measuring children's perceptions of the sources of their health:
(a) Chance, i.e., randor uncontrollable external factors (®CHA6");
(b) Internal, i.e., decisions or actions within one's own control
(*INT6"); and (c) Powerful Others, i.e., axternal factors under the
direct control of others, such as nurses or doctors {"OTH6"). The
second set of scores ("CHA2" to "INT2") involved responses on six
items (two per scale) from a different source, but purportedly
measuring the same three constructs. The example is elaborated by
Thompson, Webber and Berenson (1988), who prasent one of the
several rela‘ed analyses conducted with the full database.

Thus, the small heuristic Table 1 data set jinvolves a
concurrent validity context. A cCA invoked in an analytically
similar measurement context but with a data set with a realistic
sample size and different variables i: presented by Sexton, Mclean,
Boyd, Thompson and McCormick (1988). Of course, CCA can be uscful
in addressing either substantive or measurement issues, but the
latter context is parhaps more relevant to the focus of the
journal.

various analytic methods yield weights that are applied to
variables to optimize some condition--such weights include beta
weights, factor pattern coefficients, and di=~riminant function
coefficients. These weights are all equivalent (e.g., Thompson &
Borrello, 1985; Thompson, 1988), at least after a transformation in
metric, but in canonical correlation analysis the weights are
usually labelled standardized canonical function coefficients. It
is difficult to fathom why the equivalent weights used in the
various parametric methods are given different names, since the
Primary result is confusion and the illusion that parametric
methods are different. The CCA function coeffic.ents are applied to
each individual's standardized data to yield the synthetic
variables that are the basis for canonical analysis,

In regression only one set of weights is produced, but in
canonical analysis several sets of weights and of the resulting
synthetic variables can be created. These canonical functions are
related to principal components, are uncorrelated or orthogonal,
and can be rotated in various ways (Thompson, 1984; Thorndike,
1976). The number of functions that can be computed in a canonical
analysis equals the number of variables in the smaller of the two
variable sets. I:: the present example, since both sets of variables
consisted of three variables, three canonical functions were
extracted. Some of the computations utilized in this extraction are
explained elsewhere by Thompson (1984, pp. 11-14) and are
illustrated in the computer program, CANBAK (Thompson, 1982).

Table 2 depicts the computation of the synthetic variables
scores actually correlated in CCA. The computations for Function I
are presented here; readers may wish to themselves compute che
synthetic scores for Functions II and III. The weights for the
criterion variables on Function I were: (a) .6717, CHA6; (b) .3570,
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INT6; (c) .4214, OTH6. Thus, the welghted and aggregated criterion
Z-scores of subject 1 yield a synthetic criterion score for this
subject of .81896 ((.6717 x .5654) + (.3570 x -.2868) + (.4214 x
1.2852) = ,3798 - .1024 + .5416). The weights for the predictor
variables on Function I were: (a) .4494, CHA2; (b) .7200, INT2; (c)
-2228, OTH2. Thus, the weighted and aggregated predictor Z-scores
of subject 1 yield a synthetic criterion score for this subject of
-70814  ((.4494 x -.3317) + (.7200 x .9202) + (.2228 x .8738) =
~.1491 + .6625 + .1947).

INSERT TABLE 2 ABOUT HERE,

The bivariate correlation between the synthetic acores on
Function I is nothing more (or less) than the canonical correlation
coefficient (Rc). Thus, for Function I, Rc = .932195 = LCRITIXPRED] *
This is graphically illustrated in Figure 1. The syntf:egic
variables are themselves Z-scores, the a intercept for the
regression line is at the 0,0 coordinate, »nd the slope of the
regression line is alsc Rc. Similarly, the . rariate correlation
between the two sets of synthetic scores on Function II is the Rc
for that function. The canonical function coefficients are
specifically computed to optimize the calculated relationships
between the synthetic variables on each function.

INSERT FIGURE 1 ABOUT HERE.

Table 3 presents most of the results for the full canonical
analysis. The structure coefficients pPresented in the table have
the same meaning in a canonical analysis as in other analyses,
i.e., structure coefficients are always bivariate correlation
coefficients between observed variable scores (e.g., "CHAs™,
POTH6") and a synthetic variable (e.g., "CRIT1") created using
weights. For example, if reg.ession rredictors are multiplied by
regression weights and the products are summed for each individual,
the correlation between scores on a given observed predictor and
the synthetic variables scores (¥) is the structure coefficient for
that predictor. Similarly, in the canonical case a structure
coefficient on a given function is the bivariate correlation
between a given criterion or predictor variable and the synthetic
variable involving the variable set to which the variable belongs.
For example, since "2ZCHA6" was a criterion variable in the Table 2
example, the correlation (+.8098) between "ZCHA6"™ and "CRIT1" is
the structure coefficient for "ZCHA6® on Function 1.

INSERT TABLE 3 ABOUT HERE.

In terms of actual contemporary analytic practice, Eason,
Daniel and Thompson (1990) found that in about one~third of the
published canonical studies researchers only report and interpret
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function coefficients. But structure coefficients are vitally
important in interpreting results in other analytic cases, such as
factor analysis (Gorsuch, 1983, p. 207) and nmultiple regression
analysis (Cooley & Lohnes, 1971, pp. 54=-55; Thompson & Borrello,
1985). similarly, with respect to CCA it is important pot to
interpret results based solely on function coefficients (Kerlinger
& Pedhazur, 1973, p. 344; Levine, 1977, p. 20; Meredith, 1964, p.
55), though Harris (1949) may disagree. The structure and function
coefficients for a variable set will be equal only if the variables
in a set are all exactly uncorrelated with each other (Thompson,
1984, pp. 22-23), as would be the case, for example, 1f the
variables in a set consisted of scores on orthogonally rotated
principal components.

It would be dangerous to conclude that consulting either
function or structure coefficients will alwvays yield the same
interpretations for a given data set. For exanple, Sexton, McLean,
Boyd, Thompson and McCormick (1988) present a canonical analysis in
which one variable had a function coefficient of +0.02 on Function
I, but the same variable had a structure coefficient of +0.89 on
the same function. It is important to know when either set ¢’
coefficients suggests that a variable may be noteworthy.

Long ago Cohen (1968, p. 426) noted that ANOVA and ANCOVA are
special cases of multiple regression analysis, and argued that in
this realization "1ie possibilities for more relevant and therefore
more powerful exploitation of research dats." However, Knapp (1978)
offered mathematical proofs that CCA subsunmes parametric methods,
including both wunivariate and multivariate analyses. This
realization is a basis for understanding how parametric methods are
interrelated, which students often find to be helpful.

Three important insights can be gained from this perspective,
All classical ps-ametric methods (t-tests » ANOVA, MANOVA, etc.) are
Procedures that either implicitly or explicitly (a) use least
squares weights, (b) focus on_synthetic variables, and (c) yield
effect gizes analogous to y?. put differently, all classical
analytic methods are correlational. As Keppel and 7edeck (1989)
repeatedly emphasize, the power to make causal inferences inures to
design features and not the analytic method selected, since
conventional parametric analyses are all correlational.

It is beyond the scope of the present treatment to explore all
the possible relationships among analytic techniques. Knapp (1978)
offers the mathematical proofs and additional concrete
illustrations have been offered elsewhere (Thompson, 1988).
However, a brief exploration of a couple of linkages may be useful
to the reader. The Appendix A SAS program can be run using the
Table 1 data to yield additional insights.

The 1linkage of CCA and multiple regression analysis is
particularly easy to see, si.ce both procedures are happily
explicitly named correlational procedures. Suppose that the
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researcher wanted to predict "INT6" with "CHA2®, "INT2® and "OTH2",
and did so using both regression and canonical correlation
procedures. When the Appendix A SAS program file was applied to the
Table 1 data to yield these analyses, PROC REG computed the squared
multiple correlation coefficient to be .4016 (F = 1.789, df = 3/8,
R = .2269); PROC CANCORR computed the squared canonical correlation
coefficlent to be .401566 (F = 1.7894, df = 3/8, p = .2269). _hese
results differ only as to the arbitrary number of digits used to
report the identical results.

The relationships between the beta weights produced by ©¥roC
REG and the function coefficients produced by PROC CANCORR are a
bit harder to see. These results are presented in Table 4. The
table also illustrates that weights are related, though they are
standardized using a different metric. Thompson and Borrello (1985)
provide more detail.

INSERT TABLE 4 ABOUT HERE,

The linkages between CCA and factorial ANOVA illustrate how
CCA subsumes OVA nmethods (i.e., ANOVA, ANCOVA, MANOVA, MANCOVA)
generally. For the 3 x 2 factorial ANOVA involving the IQ and
experimental group assignment data presented in Table 1, PROC ANOVA
yielded the following resul.s for the three omnibus hypotheses: (a)
IQ, E = 3.90; (b; experimental assignment, F = 1.85; (c) twvo-way
interaction, F = 1.08. The Appendix A program was used to test four
related canonical models, and the lambdas calculated from PROC
CAN§ORR'uere then expressed as F's, using the process summarized in
Table 5.

INSERT TABLE 5 ABOUT HERE.

These illustrative results correctly indicate that you can do
regression with CCA, though ycu can't do CCA with regression. You
can do factorial ANOVA with CCA, though you can't do CCA with
ANOVA. The same relationship holds with other parametric methods
(e.g., &L-tests, ANCOVA, MANOVA). In short, CCA is a general
parametric method subsuming other parametric methods as special
cases.

4 s a

It is very important to use use statistical formulas (e.q.,
Wherry, 1931) or (better yet) empirical methods to evaluats the
generalizability of the results in hand. The business of science is
formulating generslizadble irsight. No one study, taken singly,
establishes the basis for such insight. As Neale and Liebert (1986,
P. 290) observe:

No one study, however shrewdly designed and
carefully executed, can provide convincing support
for a causal hypothesis or theoretical statement...
Too many possible (if not plausible) confounds,
limitations on generality, and alternative
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interpretations can be offered for any one

observation. Moreover, each of the basic methods of

research (experimental, correlational, and case

study) and techniques of comparison (within- or

between-subjects) has intrinsic limitations. How,

then, does social science theory advance through

research? The answer is, by collecting a diverse

body of evidence about any major thecretical

proposition.
Evaluating the generalizability of canonical results to other
sanples of subjects or of variables is a difficult task, but a itask
which the serious scholar can ill-afford to shirk. It =must be
emphasized that statistical significance testing does not inferm
the resaarcher regarding the likelihood that CCA Ro* (i.e., effect
sizes) or other coefficients (e.g., function or structure
coefficients) will be replicable in future research (Carver, 1978).

With respect to the replicability of CCA effect sizes, these

estimates appear to be reasonably stable if the researcher uses at
least 10 subjects per variable (Thompson, 1990a). Furthermore,
several statistical corrections of the effect sizes can be invoked.
One might employ Wherry's (1931) correction formula to Rc?, as
suggested by Cliff (1987, p. 446). But as incisively implied by
Stevens (1986, pp. 78-84) with respect to the related regression
case, the correction suggested by Herzberg {(1969) may be especially
useful, though it is more conservative. For example, for the
Function I results reported in Table 3, the Wherry correction can
be evaluated as:

Rc? ~ ((1 - Rc?) # (VTot / (NTot - VTot - 1)))
.869 - ((1 - .B69) * { 6 [ (312 - 6 = 1)))
.869 - ( .131 * 1.2 )

.869 - .1572 = ,7118

Efforts to estimate the sampling specificity of coefficients
for specific variables are more difficult, or at least more
tedious. CCA function and structure coefficients appear to be less
stable than CCA omnibus effect sizes (Bcz's) , though both appear to
be equally unstable (Thompson, 1989b). Thus, it is especially
important to evaluate the generalizability of these coefficients.

Some researchers randomly split their sample data, conduct
separate analyses for the two subgroups, and then
compare the results to determine if they appear to be similar. Two
points need to be emphasized about such an approach. Such
procedures almost always overestimate the invariance or
generalizability of results, as Thompson (1984, p. 46) explains.
Also, it is emphasized that inferences regarding replicability must
be made empirically rather than subjectively. Crowley and Thompson
(1991) explain one strategy for making such comparisons. Functions
that appear to be gquite different may in fact yield quite similar
syntaetic variable scores--apparent differences in functions
yielding comparable values for the synthetic variables actually
related in canonical analysis are not very noteworthy (Thompson,
1989¢c). Cliff (1987, pp. 177-178) suggests that such cases involve
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"insensitivity” of the weights to departures from least squares
constraints.

Empirical methods for evaluating the generalizability of CCA
coefficients are explored by Thompson (1984, pp. 41-47; 1990c). A
sophisticated logic called the "bootstrap,® popularized by Efron
and mors recently by Lunneborg (e.g., 1987) may be especially
useful. The bottom line is that in all studies, CCA or not, results
from a single study must be interpreted with some caution.

The data reported by Holzinger and Swineford (1939, pp. 81-
91), wused with some frequency to illustrate multivariate
statistical analyses (e.g., Gorsuch, 1983, passinm; J8reskog &
sSrbom, 1986, pp. IIX.106~I1I1,122), are used here to illustrate one
strategy for evaluating yeneralizability of multivariate results.
Crowley and Thompson (1991) illustrate some alternatives. These
data were selected for use in the examples because they are widely
available, and interested readers can therefore readily replicate
the analyses described here. Table 6 presents results from a
canonical analysis relating the five verbal test scores from the
Holzinger-Swineford (1939) data to scores on the four visual
perception tests.

INSERT TABLE 6 ABOUT HERE.

The strategy illustrated here invokes a modelling procedure.
First, a population of 10,000 cases were generated subject to the
restriction that means, SDs, and correlation coefficients be the
same as those in the Holzinger-Swineford (1939) data. This was done
using the program written by Morris (1975).

Next, random samples of size p=301 were drawn from the
population to explore the effects of sampling error. For
illustrative purpose, five samples were drawn in the present paper.
These results are presented in Table 7.

INSERT TABLE 7 ABOUT HERE.

In order to compare apples with apples, the functions must be
examined to determine (a) whether the functions need to be
"reflected” so that they are oriented in the same direction, and
(b) whether the functions change orders across samples. In the
present axample, function and structure coefficients for sample #1,
Function 1, and for samplcs #1, #3, #4, and #5, Function 1I, were
reflected by multiplication by negative one. such "reflection" is
always available to the researcher, whenever it facilitates
interpretation, and is perfectly legitimate (Gorsuch, 1983).

Examination of the results suggested that at least the first
two functions appeared in the same order across sanples. This is
important to check when canonical correlation coefficients are
homogeneous, since function order may arbitrarily fluctuate in such
cases.

Finally, descriptive statistics for parameter estimates are

8
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computed. These are presented for the present example in Table 8.
The SDs from such analyses are analogous to standard errors, and
are of particular interest. The present example makes clear that
(a) the Rc? effect size is inflated somewhat by sampling error
(e.g., 19.2% versus the mean of 25.1%); (b) estimates of
coefficients at the variable level are more subject to sampling
error; and (c) results are more stable for functions with larger
effect sizes. These results are consistent with previous research
(cf. Thompson, 1990a, 1950c).

INSERT TABLE 8 ABOUT HERE.

sSumnary

As Stevens (1986, p. 373, emphasis omitted) notes, CCA "is
appropriate if the wish is to parsimoniously describe the number
and nature of mutually independent relationships between the two
[variable] sets... Since the [function] combinations are
uncorrelated, we will obtain a very nice additive partitioning of
the total between association.” The present article has explained
the basic logic of canonical correlation analysis. It was noted
that all parametric analytic methods are correlational, and that
all parametric tests can be conducted using canonical analysis,
since canonical analysis subsumes parametric methods as special
cases. Canorical analysis is potent because it does not require the
researcher to discard variance of any of the variables, and because
the analysis honors the complexity of a reality in which var.ables
interact simultaneously.
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ID CHA6 INT6 OTH6 CHA2 INT2 OTH2 IQ IQGRP EXPERGRP CIQGRP1 CIQGRP2 CEXGRP1 CI

20
21
17
16
20
14
14
14
21
19
24
18

WOJOVEWNR

17
20
15
14
20
21
19
23
14
12
24
18

19
15
20
13
i5
15
14
10
12
10
19

S

AUV NOANNNODIO

ANV AUVONdONAN

VMO LHEDAARAIN NN ]

Variables in 2Z-score

@)
w
/2]

VOO LN

ZCHA®6

. 5654
.8738
-.3598
-.6682
.5654
-1.2849
-1.2849
-1.2849
.8738
2570
1.7989
-.0514

ZI.TH
-.2868
.5075
-.8164
-1.0811
.5075
7722
.2427
1.3018
-1.0811
-1.6107
1.5665
-.0221

68
89
50
85
90
109
102
lo8
111
140
120
i43

Form and Synthetic Composite Scores

ZOTH6
1.2852
.2029
1.5558
-.3382
. 2029
.2029
-.0676
-1.1499
-.6088
=-1.1499
1.2852
~1.4205

WWWWNNNNM PR

Table 1
Random Sample (p=12) of Health lLocus of Control Data
with Hypothetical IQ and Experimental Group Assignments

1 -1
1 -1
2 -1
2 -1
1 0
1 0
2 0
2 0
1 1
1 1
2 1l
2 p
Table 2
ZCHA2 ZINT2
-.3317 .9202
. 9950 .9202
-.3317 -.0837
.9950 -1.0875
.9950 .9202
-.3317 -1.0875
-.3317 =-1.0875
~1.6583 -.0837
.9950 -~1.08B75
-.3317 -.08137
- 9950 1.9240
-1.6583 -.0837
14

ZOTH2
.8738
-.3598
.8738
-.3598
-.3598
.8738
.2570
. 2570
-2.2101
-.9766
1.4905
-.3598

1
1
-1
-1

QBYEX1 CIQBYEX2

p |
1

R+ PHROOOOMM

on Function I

CRIT1
.81896
.85358
.12251
-.97730

. 64644
-.50189
~.80495
-.88295
-.05561
-.88697
2.30918
-.64101

PRED1
.70814
1.02950
-.01460
-.41598
1.02950
-.73735
-.8747_
-.74822
-.82823
-.42685
2.16449
-.885¢€)

-1
-1
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Table 3
Canonical Solution for the Table 1 Data

Variable/____TFunction I Function II _Function III

Coef, Func, Str, str.? Func, Str., Str.” Func, Str., Str,” p?
CHA6 .6717 .8D98 65.6% ~-.8174 -.5633 31.7% ~-.0266 .1643 2.7% 100.0%%
INT6 .3570 .4428 19.6% .2433 .3901 15.2% -.9253 -.8073 65.2% 100.0%
OTH6 .4214 .7071 50.0% .7837 .5673 32.2% .6099 .4220 17.8% 100.0%
Adequacy 45.1%P 26.4% 28.6%

Rd 39.2%°¢ 21.8% 4.6%

Rc? 86.9% 82.5% 16.2%

Rd 38.3% 20.7% 5.0%
Adequacy 44.0% 25.2% 30.8%

CHA2 .4494 .5564 31.0% .1669 -.2017 4.1% .9721 .8061 65.U% 100.0%
INT2 .7200 .9082 B82.5% -.6422 ~.1324 1.8% -.6576 -.3971 15.8% 100.0%
OTH2 .2228 .4314 18.6% 1.1368 .8345 69.6% .1307 -.3427 11.7% 100.0%

8canonical communality (h?) coefficients are directly analogous to tke factor analytic
coefficients of the same name, and indicate how much of the variance of an ..served variable
is contained within the set of synthetic variables. For example, the commur.ality coefficient
for “CHA6” equals 65.6% + 31.7% + 2.7%.

PAn adequacy coefficient indicates how adequately the synthetic scores on a function do at
reproducing the variance in a set of variables, and equals the mean of the squared structure
coefficients on the variable. Thus, the adequacy coefficient for the criterion variable set
onn Function I eguals (65.6% + 19.6% + 50.0%) / 3 = 135.2 / 3 = 45.1%.

®A redundancy (Rd) coefficient equals an adequacy coefficient times Rc?, e.g., 45.1% times
86.9% equals 39.2%.
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Table 4
The Relationship Between
Regression beta Weights and CCA Function Coefficients

Function
variable beta Coefficients
CHA2 -0.07129038 / R = -0.1125
INT2 0.28335280 / R = 0.4471
OTHZ2 0.45229076 / R = 0.7137

Note. R = Rc = 0.633692. The weights are reported to the same
number of decimal places produced on the SAS output.

Table 5
Three Steps to Convert CCA Results to Factorial ANOVA F's

Step #1: Get CCA lambda for 4 sets of orthogonal contrast

variables.
Model Predictors lambda
1 CIQGRP1 CIQGRPZ2 CEXGRP1 CIQBYEX1 CIQBYEX2 .33717579
2 CEXGRP1 CIQBYEX1 CIQBYEX2 .77521614
3 CIQGRP1 CIQGRP2 CIQBYEX1 CIQBYEX2 .4409221%
4 CIQGRP1 CIQGRP2 CEXGRP1l .45821326

Step #2: Convert lambdas to ratios for each effect.
Full Model lambda

Effect Ratio lambda w/o Effect Ratio

IQ 1/ 2 «33717579 [/ .77521614 = .434944
Exp. Assignment 1/ 3 .33717579 / .44092219 = ,764705
IQ x Exp. Interaction 1 / 4 .33717579 / .45821326 = .735849

Step #3: Convert ratios to ANOVA F's, by the algorithm, F =
((1 - effect ratio) / ratio) x (df error / df effect)

IQ (() - .434944) /7 .434944) x (6 } 2)
( .565055 / .434944) x 3
1.299145 x 3

3.897435

Exp. Assignment ((1 - .764705) / .764705) x (6 [ 1)
( .235294 J .764705) x 6
.3076%2 x 6

1.846153

1Q x Exp. Interaction ((1 - .735849) / .735849) x (6 / 2)
( .264150 / .735849) x 3
358974 x 3

1.076923
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Table 6
Canonical Results for the Holzinger and Swineford (1939) Data

(N=301)

I II III Iv

F S S*2 F S S*2 F S 5~2 F s 5”2
T5 0.06 -0.72 51.9% 0.81 0.49 24.3% 1.01 0.45 20.1% ~1.00 ~-0.19 3.7%
T6 -0.51 -0.86 74.7% 0.05 0.32 10.3% ~1.23 ~0.35 12.0% -0.85 =0.16 2.6%
T7 0.34 -~0.69 47.0% 1.16 0.59 35.2% ~-0.23 0.00 0.0% 1.17 0.38 14.2%
T8 -0.47 -0.80 64.5% ~0.58 0.11 1.1% 0.16 0.18 3.1% 0.59 0.37 13.6%
T9 -0.53 -~0.87 75.9% ~1.09 0.04 0.1% 0.42 0.23 5.1% 0.20 0.05 0.3%
Adequacy 62.8% 14.2% 8.1% 6.9%
Rd 12.1% 0.4% 0.1% 0.0%
Rc*2 19.2% 2.7% 0.7% 0.2%
Rd 8.5% 0.5% 0.1% 0.0%
Adequacy 44.1% 18.7% 18.4% 18.8%
T1 -0.78 =0.95 89.8% 0.51 0.08 0.7% -0.70 =~-0.31 9.4% 0.08 0.01 0.0%
T2 ~-0.17 ~0.48 22.8% 0.03 =-0.16 2.7% 0.56 0.49 24.2% 0.91 0.71 50.3%
T3 ~0.25 -0.60 35.4% 0.18 0.03 0.1% 0.80 0.63 39.8% -0.68 -0.50 24.7%
T4 -0.05 =-0.53 28.3% ~-1.13 -0.84 71.3% -0.16 -0.03 0.1% ~0.19 =0.06 0.3%
22 17




N=301 SAMPLE #1

TS5
T6
T7
T8
T9

Adequacy

Rd

Rc*2

Rd

Adequacy

T1
T2
T3
T4

N=301 SAMPLE #2

T5
T6
T7
T8
T9

Adequacy

Rd

Rcn2

Rd

Adequacy

T1
T2
T3
T4

24

I

F
-0.490
-0.557

0.594
-0.323
-0.284

~0.804
-0.147
~0.363

S
-0.853
~0.647
-0.782
-0.816

-0.929
-0.481
~0.686

0.176 =-0.381

I

F

0.016
-0.378
-0.044
-0.344
-0.395

-0.918
0.012
~0.277
0.104

S
-0.754
-0.893
-0.826
~0.826
-0.897

-0.965
-0.337
~0.541
-0.305

IX
s~2 )
72.7% 1,211
75.1%-0,232
41.8% 0.844
61.2%-0.708
66.6%-1.008
63.5%
18.8%
29.6%
12.7%
42.8%
86.3% 0.091
2302%"0-»431
47.0% 0.661
14.5%~-0.867

II
52 F
56.8%-0.140
79.8%-1.073
68.2% 1.665
68.3%-0.196
80.5%~0.166
70.7%
16.4%
23.2%
8.3%
35.8%
93.2% 0.044
11.3% 0.246
29.3% 0.362
9.3%-1.056

Table 7
Canonical Results for Five Samples (n=301) from a Population of 10,000
Modelled on the Holzinger and Swinaford (1939) Data

S
0.487
0.051
0.352

=0.050
~0.113

-0.195
~0.484

0.278
-0.721

0.169
-0.170
0.519
0.081
0.042

-0.146
0.094
0.158

-0.877

IIX

s5~2 F
2108%-00 054
0. 3*-10 494
12.4% 0.644

0.3% 0.056
1.3% 1.078

7.2%

0.5%

6.7%

1.5%

21.7%
3.8%~0.829
23.4%~0.047
7.7% 0.835
52.0% 0.578

III

§*2 F
2.9% 0.932
2.9% 0.930
26.9% 0.202
0.7%-0.574
0.2%-1.366

6.7%

0.3%

4.6%

0.9%
20.6%

2.1% 0.602
0.9% 0.073
2.5%-0.968
76.9%-0.267
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§
0.230
-0.212
0.308
0.187
0.451

-0.211
0.054
0.671
0.462

0.316
0.328
0.202
-0.134
-0.207

0.214
-0.088
-0.825
~-0.295

v

§+2 F
5.3% 0.017
4.5%-0.473
9.5%~0.014
3.5% 1.319

20.4%-0.770
8.6%

0.4%
4.3%
0.8%

17.8%
4.5%-0.410
0.3% 0.992

45.0% 0.137

21.4%-0.502

Iv

542 F

10.0%~0.097

10.8% 0.015
4.1%-0.073
1.8% 1.209
4.3%-0.979
6.2*

0.1%
1.2%
0.2%

20.5%
4.6%-0.279
0.8% 1.058

68.1%~0,228
8.7% 0.120

S
0.032
-0.181
0.010
0.528
-0.282

-0.232
0.729
0.051

-0.348

-0.115
-0.091
-0.043

0.521
-0.365

0.030
0.933
0.026
0.228

25

"2
0.1%
3.3%
0.0%
27.9%
8.0%
7.9%
0.0%
0.4%
0.1%
17.7%
5.4%
53.1%
0.3%
12.1%

s"2
1.3%
008%
0.2%
27.1%
13.4%
8.6%
0.0%
0.5%
0.1%
23.1%
0.1%
87.0%
0.1%
5.2%



N=301 SAMPLE #3

I

F
T6 -0.106
T7 0.308
T8 ~0.594
T9 -0.430
Adequacy
Rd
Rc*2
Rd
Adequacy
T1 -C.870
T2 -0.237
T3 -0.089
T4 0.053
N=301 SAMPLE #4

I

F
TS5 0.366
T6 -0.523
T7 0.741
T8 -0.454
T9 -0.€26
Adequacy
Rd
Rc*2
Rd
Adequacy
T1 -0.4774
T2 0.027
T3 -0.304
T4 -0.497

26

)
-0.832
-0.731%
-0.664
-0.86%
-0.827

-0.972
-0.578
-0.480
-0.478

S
-0.531
-0.733
-0.427
-0.661
~0.831

-0.816
~0.372
-0.685
-0.834

I

8~2 F
69.2%~2.454
50.9%-0.298
44.1% 1.638
74.9%~0,220
68.3%-0.371
61.5%
16.5%
26.8%
11.6%

43.5°
94.5% 0.258
33.4% 0.710
23.0%-0.571

II
S~2 F

28.2% 0.859
53.7% 0.100
18.2% 0.963
43.7%-0.216
69.0%-0.961
42.6%
11.4%
26.8%
13.2%
49.2%
66.6% 1.061
13.8%-0.019
46.-%-0.348
69.6%-0.744

8
0.062
0.204
0.720
0.223
0.113

-0.06.
0.299

-0.555

-0.602

0.719
0.552
0.796
0.473
0.351

0.576
-0.121
-0.252
-0.402

III

5~2 F

0.4% 41.150
4.2%-0.783
51.9% 0.186
5.0% 0.237
1.3%-0.880
12.5%

0.7%

5.4%

1.0%

19.1%

0.4%~0.723
8.9% 0.789
30.8% 0.628
36.2%~0.113

IIX

52 F
51.7% 1.020
320.5%-1.137
63.4%-0.450
22.4% 0.250
12.3% 0.384
36.0%

2.6%

7.2%

1.0%

14..5%
33.2%-0.084
1.5% 0.945

6.4% 0.343
16.1%-0.621

19

S
0.303
-0.403
0.144
-0.355

-0 225
0.649
0.539
0.117

S
0.415
-0.3686
-0.101
0.162
0.196

0.006
0.811
0.356
-0.179

Iv
s~2 F
9.28% 0.852
16.2% 0.010
0.3% 0.271
2.1%-1.213
12.6% 0.186
8.1%
0.1%
1.4%
0.3%
19.4%
5.1% C.281
42.1%-0.352
29.1% 0.730

1.4%--0.877
IV
5~2 F

17.2% 0.515
13.4% 0.641
1.0%-0.950
2.6% 0.907
3.9%-1.128
7.6%

0.1%

1.9%

0.4%
20.4%
0.0%~0.047
65.8%-0.554
12.7% 0.998
3.2%-0.526

s
0.444
0.187
0.177

-0.420
0.339

0.027
-0.394
0.413
-0.629

-0.015
0.041
-0.314
0.274
-0.385

-0.049
~-0.434

0.583
-0.332

s~2
19.7%
3.5%
J.1%
17.6%
11.5%
11.1%
0.1%
0.8%
0.2%
18.1%
0.1%
15.5%
17.1%
39.6%

52
0.0%
0.2%
9.9%
7.5%
14.8%
6.5%
0.1%
0.9%
0.2%
16.0%
0.2%
18.9%
34.0%
11.0%
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N=301 SAMPLE #5

TS5
Té
T7
T8
T9

Adequacy

Rd

Rc*2

Rd

Adequacy

T1
T2
T3
T4

I

F
-0.117
-0.515

0.124
-0.492
-0.181

-0.8E3
-0.139
~0.260

0.082

S
-0.874
-0.761
-0.842
-0.777

-0.961
~-0.366
-0.560
-0.459

IX
§~2 F
57.6% 0.019
76.4%-0.434
57.9% 0.783
70.9% 0.696
60.3%~1.052

64.6%
12.3%
19.0%

7.5%
39.5%
92.3%-0.412
13.4% 1.007
31.3% 0.123
21.0%-0.091

S
~-0.042
~-0.232

0.168
0.454
-0.431

-0.173
0.907
0.212
0.121

IIX
S5~2 F
0.2% 0.955
5.4%-0.971
2.8% 0.777
20.6%-0..24
18.6% 0.076
9.5%
0.2%
2.0%
0.5%
22.8%
3.0% 0.513
82.3% 0.280
4.5%-0.123
1.5%~-1.149

20

s
0.574
-0.139
0.361
-0.020
0.323

0.004
-0.043
~-0.263
-0.851

Iv

s~2 F

33.0%-0.710
1.9%~0.992

13.0%-0.376
0.0% 0.806

10.4% 1.306

11.7%
0.1%
0.6%
0.1%

19.9%
0.0%~0.360
0.2%-0.273
6.9% 1.052

72.4%-0.313

S
-0.113
-0.345
-0.099

0.272
0.247

-0.216
-0.202

0.757
-0.227

29

5~2
1.3%
11.9%
1.0%
7.4%
6.1%
5.5%
0.0%
0.2%
0.0%
17.8%
4.7%
4.1%
57.2%
5.1%



*2 *MEANS

I

F
T5 -0.107
T6 -0.416
T7 0.345
T8 -0.442
TS ~0.457
Adequacy
Rd
Rc*2
R4
Adequacy
T1 -0.790
T2 -0.093
T3 ~0.258
T4 -0.016
wk%SD

I

F
T5 0.292
T6 0.166
T7 0.290
T8 0.100
T9 0.283
Adequacy
Rd
Rc*2
Rd
Adequacy
T1 0.162
T2 0.100
T3 0.092
T4 0.244

s
-0.746
-0.816
=0.665
-0.795
-0.829

-0.929
-0.427
-0.590
~0.491

0.114
0.077
0.136
0.072
0.039

0.058
0.090
0.082
0.182

§*2
0.56%
0.672
0.461
0.638
0.689
0.606
0.151
0.251
0.107
0.422
0.866
0.190
0.355
0.275

52
0.156
0.123
0.169
0.110
0.065
0.095
0.028
0.037
0.023
0.045
0.104
0.083
0.097
0.216

II

F

0.299
-0.388

1.178
-0.129
-0.712

0.208
0.302
0.045
-0.713

II

0.630
0.385
0.391
0.455
0.368

0.481
0.511
0.452
0.328

Table 8

S
0.275
0.081
0.511
0.236
-0.008

0.000
0.139
-0.032
~0.496

0.280
0.282
0.232
0.205
0.259

0.292
0.463
0.321
0.345

5~2

0.154
0.086
0.315
0.098
0.067
0.144
0.009
0.052
0.010
0.197
0.085
0.234
0.104
0.365

572

0.199
D.110
0.230
0.097
0.074
0.110
0.009
0.019
0.003
0.030
0.124
0.306
0.104
0.265

21l

III
F
0.801
-0.691
0.272
-0.131
-0.142

-0.104
0.408
0.143

~0.314

III

0.434
0.843
0.431
0.388
0.878

0.598
0.392
0.642
0.571

s
0.368
-0.158
0.144
0.068
0.082

-0.042
0.277
0.096

-0.149

0.119
0.262
0.187
0.124
0.310

0.163
0.377
0.561
0.438

Descriptive Statistics Across the Five Samples

s°2
0.149
0.094
0.056
0.020
0.103
0.084
0.002
0.019
0.004
0.196
0.028
0.218
0.324
0.214

542
0.098
0.054
0.049
0.011
0.061
0.018
0.001
0.013
0.002
0.010
0.023
0.273
0.223
0.264

IV
F
0.115
-0.160
-0.229
0.606
-0.277

=-0.163
0.174
0.538
-0.420

IV

0.536
0.546
0.415
0.928
0.914

0.254
0.701
0.502
0.326

S
0.047
-0.078
-0.054
0.235
~0.090

-0.088
0.126
0.366

-0.262

0.207
0.182
0.160
0.346
0.315

0.115
0.584
0.289
0.279
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542
0.945
0.039
0.028
0.175
0.107
0.079
0.000
0.006
0.001
0.185
0.021
0.357
0.217
0.146

52
0.076
0.042
0.037
0.090
0.033
0.019
0.000
0.003
0.c00
0.024
0.024
0.304
0.217
0.128
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Figure 1
Plot of CRIT1 by PRED1
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Appendix A:
SAS Program for the Table 1 Data

DATA HLOCMECD; INFILE ABC;

INPUT ID 3-4 CHA6 6-7 INT6 9-10 OTH6 12-13 CHA2 15-16 INT2 18-19
OTH2 21-22 IQ 24-26 IQGRP 28 EXPERGRP 30 CIQGRP1 32-33 CIQGRP2 35-36
CEXGRP1 38-39 CIQBYEX] 41~42 CIQBYEX2 44-45;

PROC PRINT; VAR ID CHA6 INT6 OTH6 CHA2 INT2 OTH2 IQ IQGRP EXPERGRP
CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2; RUN;

TITLE '1. DESCRIPTION OF RAW DATA?;

PROC CORR; VAR CHA6 INT6 OTH6 CHA2 INT2 OTH2 IQ IQGRP EXPERGRP
CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYE¥2. RUN;

TITLE 2. THE LOGIC OF CCA’';

PROC CANCORR ALL; VAR CHA6 INT6 OTH6; WITH CHA2 INT2 OTH2;

data hlocnew; set hlocmecd;

zchaé=(cha6~18.166666667) /3.24270744;

zintSH(intS-IB.083333333)/3.77692355;

zoth6=(oth6-14.250000000)/3.69582074;

ZChaZ=(cha2-07.250000000)/0.75377836;

zintza(intz—os.083333333)10.99520492;

zoth2=(oth2-05.583333333)/1.62135372;

critlm(ﬂ.ﬁ?l?*zchaﬁ)+(0.3570*zint6)+(0.4214*zoth6);
predl=(0.4494*zcha2)+(0.7200*zint2)+(0.2228*zoth2);
crit2=(-.8174*zch36}+(0.2433*zint5)+(0.7837*zoth6);
pred2=(0.1669*zch32)+(-.6422*zint2)+(1.1368*zoth2);
crit3=(~.0266*zcha6)+(-.9253*zint6)+(0.6099*zoth6);
pred3=(0.9721%zcha2)+(-.6576*zint2)+(0.1307*zoth2) ;

Proc print; var zchaé zint6 zothé zcha2 zint2 zoth2
critl predl crit2 pred2 crit3 pred3; run;

title '2a AN r MATRIX WITH MANY REVELATIONS'® ;

Proc corr; vars zchaé zinté zothé zcha2 zint2 zoth?2
critl predl crit2 pred2 crit3 pred3; run;

title '2db THE 1ST FUNCTION IN GRAPHIC FORM!';

proc plot; plot critl*predi=id/ vaxis=-3 to 7 by 1 vref=0
haxis=-3 to 8 by 1 href=0; run;

TITLE *'3. CCA SUBSUMES PEARSON CORRELATION';

PROC CORR; VAR OTH6 OTH2;

PROC CANCORR ALL; VAR OTH6; WITH OTH2; RUN;

TITLE *4. CCA SUBSUMES T-TESTS & ONE-WAY ANOVA'®;

PROC TTEST; CLASS EXPERGRP; VAR OTHS;

PROC ANOVA; CLASS EXPERGRP; MODEL OTH6=EXPERGRP;

PROC CANCORR ALL; VAR OTH6; WITH CEXGRP1l; RUN;

TITLE '5. CCA SUBSUMES FACTORIAL ANOVA'! ;

PROC ANOVA; CLASS IQGRP EXPERGRP;

MODEL CHA6=IQGRP EXPERGRP IQGRP*EXPERGRP;

PROC CANCORR; VAR CHA6; WITH CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2;

PROC CANCORR; VAR CHA6; WITH CEXGRP1 CIQBYEX1 CIQBYEX2;

PROC CANCORR; VAR CHA6; WITH CIQGRP1 CIQGRP2 CIQBYEX1 CIQBYEX2;

PROC CANCORR; VAR CHA6; WITH CIQGRP1 CIQGRP2 CEXGRP1; RUN;

TITLE '6. CCA SUBSUMES MULTIPLE REGRESSION';

PROC REG; MOL'EL INT6=CHA2 INT2 OTH2/ STB;

PROC CANCORR ALL; VAR INT6; WITH CHA2 INT2 OTH2; RUN;

23

33



TITLE '7. CCA SUBSUMES FACTORIAL MANOVA';
PROC ANOVA; CLASS IQGRP EXPERGRP;
MODEL CHA6 INT6=IQGRP EXPERGRP IQGRP*EXPERGRP; MANOVA H=_ALL_/SUMMARY;
PROC CANCORR ALL; VAR CHA6 INT6;
WITH CIQGRP1 CIQGRP2 CEXGRP1 CIQBYEX1 CIQBYEX2;
PROC CANCORR ALL; VAR CHA6 INTé;
WITH CEXGRP1 CIQBYEX1 CIQBYEX2;
PROC CANCORR ALL; VAR CHA6 INTS;
WITH CIQGRP1 CIQGRP2 CIQBYEX1 CIQBYEX2;
PROC CANCORR ALL; VAR CHA6 INTS6; r
WITH CIQGRP1 CIQGRP2 CEXGRP1; RUN;
TITLE '8. CCA SUBSUMES DISCRIMINANT';
PROC CANDISC ALL; VAR CHA6 INT6; CLASS EXPERGRP;
PROC CANCORR ALL; VAR CHA6 INT6; WITH CEXGRP1;

Note. The bulk of the program was executed as the first of two runs. The
lower case commands required the results from the first run, since the
relevant coefficients were not yet known. These commands were then added
into the program, and the program was executed a second time. Of course,
since the required values used on the lower case commands are presented
here, for this particular example the reader can execute the full program
in a single step.
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