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ABSTRACT

Computerized adaptive testing (CAT) is a procedure for administering tests which arc
individually tailored for each examinee. Although the majority of CATs are based on
dichotomous item response theory (IRT) models, some researchers have explored the use of
polytomous IRT models, such as the graded response model and partial credit (PC) model.
in CAT. This study investigated the robustness of a PC model-based CAT's ability
estimation to items which did not fit the PC model. Results showed that for the PC CAT,
reasonably accurate ability estimation (rgeT .1 0.921) may be obtained despite adaptive
tests which, on average, contained up to 45% misfitting items. Furthermore, the inclusion
of misfiuing items did not appear to increase the PC CAT test lengths. The benefits of
polytomous model-based CATs were presented.

One important and very promising application of item response theory (1RT) is

computerizei adaptive testing (CAT). Unlike the conventional paper-and-pencil test in

which an examinee is administered all test items. CAT is a procedure for administering

tests which are individually tailored for each examinee. The advantage of IRT-bascd CAT

over paper-and-pencil testing have been well documented (e.g.. W-iss, 1982). Although

not necessary (cf., De Ayala, Dodd, & Koch, 1990), a CAT system typically uses an 1RT

model in combination with test item characteristics to estimate the examinee's ability..

Typically, either the three-parameter logistic or Rasch models (e.g., McBride & Martin,

1983; Kingsbury & Houser, 1988) have been used in CAT. Despite resoarch which has

demonstrated the existence of partial knowledge of the correct answer (e.g., Levine &

Drasgow, 1983; Thissen, 1976), dichotomous models and dichotomous model-based CATs

operate as if an examinee either knows the correct answer or randomly selects an

incorrect alternative.

Some research has explored the benefits and operating characteristics of CATs based

on polytomous IRT modelr (e.g., De Ayala, 1989; Dodd, Koch, & De Ayala, 1989; Koch &

Dodd, 1989; Sympson, 1986). In general, these studies have shown that item pools smaller

than those used with dichotomous model-based CATs have led to satisfaci 3ry estimation,

that the use of the ability's standard error of estimation for terminating the adaptive test

is preferred to the minimum item information termination criterion, and the use of a

variable stepsize instead of a fixed stepsize tends to minimize nonconvergence of trait

estimation. In addition, it should be noted that polytomous model-based CAT may be

used not only with polytomously scored items, but with solely dichotomously scored

items, or with a combination of the twn (i.e., some items are scored polytomously while

others are scored dichotomously).



Polytomous graded models have been used for the assessment of the clinical

competence of physicians (Julian & Wright, 1988), the construction and analysis of

writing tests (Ackerman, 1986; Pollitt and Hutchinson, 1987), educational diagnosis

(Adams, 1988), and in CAT for the administration of Likert-type attitude questions and

personality inventories (Koch & Dodd, 1985; Dodd, 1985; Koch, 1983). Given that, a

number of aptitude test items have traditionally been scored in a graded fashion it is

reasonable and desirable to expect that CAT implementations in these subjects to

incorporate a graded scoring system. For instance, statistics, chemistry, and physics

exams are typically graded by giving partial credit for some incorrect answers.

Therefore, it wu,..ld appear reasonable to expect that the use of partial credit scoring for

some incorrect answers would enhance the acceptance of CAT in these area. Three

polytomous graded models whose properties for CAT have been studied are Samejima's

(1969) graded response model, the rating scale model (Andrich, 1978), and Masters'

(1932) parf.al credit (PC) model (e.g., Dodd, Koch, & De Ayala, 1989; Koch & Dodd, 1989:

Dodd, Koch. & De Ayala, in press).

To obtain the advantages of the PC model (and 1RT models in general) there must be

satisfactory model-data fit. To the extent that there is low model-data fit, some or all of

the advantages of the roodel may be lost. Although the assessment of model-data fit may

be approached via a number of different techniques (cf., liambleton & Rogers, 1986;

Ludlow, 1986; Kingston & Dorans, 1985; Wright & Nasters, 1982; Yen, 1981), one common

approach is to use fit statistics.

The Rasch perspective inyolves retaining only those items which arc found to fit the

model. Suictly speaking, items which do not fit the model are examined to determine the

cause of misfit and may still be retained if it is felt that the misfit is due to a few large
residuals. Calibration programs for the Ranh family of models traditionally output a

number of fit statistics, as well as information from other model-data fit approaches.

Although Koch and Dodd (1989) and Dodd, Koch. and De Ayala (1989) have investigated

various facets of adaptive testing with the PC model (i.e., 'tem pool size, stepsizes,

information functions), one factor which has not been addressed and which is crucial for

any implementation is the robustness of the PC model-based CAT to violations of data fit.

Because the creation of the item pool involve, the interaction of the subjective

interpretation of model-data fit as well as logistical and administrative factors, the item

pool will consist of items which will vary in their degree of fit (or misfit). For instance,

items may be included in an item pool for reasons of content validity (although the items

may not ..t well). Therefore, this study addressed how robust was the PC model-based

CArs ability estimation to the use of items which did not fit th- models.



MODEL

The PC model is appropriate for items with ordered responses, such as aptitude and

achievement test items whose alternatives are inherently ordered or have been ordered

according to degree of correctness (e.g., through partial credit scoring). In addition,

attitude questionnaires and ratings data may also be fined by the model.

The PC model provides a direct expression of the probability of an examinee with

ability B responding in a particular category. In the PC model the examinee-item

interaction is modeled as :

Pxi (0) =

xi
1(0- bxi)

ej4

DO- bici)
Ekm=i)c j=°

where 0 is the latent trait, bxi is the difficulty parameter of the step associated with the

category score xi; item i has mi categories and xi=1..mi. A category score reflects thc

number of successfully completed steps. A "step" is simply a stage required to complete

an item. For instance, the problem ((6/3)+2)2 is considered to contain three steps

because there are three separate stages which must be completed (in a specific order, to

correctly answer the problem (i.e., step 1 : 6,13. step 2 : the addition of 2 to the quotient.
and step 3 : the squaring of the quantity). For notational convenience £(0 - bxi) where j=0

is defined as being equal to zero.

Because the PC model is an extension of the Basch model it assumes that all items are

equally good at discriminating among examinees. In addition, as a member of the Basch

family, the PC model's item and person parameters may be estimated on the basis of the

existence of sufficient statistics. Specifically, an examinee's test score contains all the

information for estimating his or her ability and the items' difficulties may be estimated

from a simple count of the number of persons completing each "step" of an item. The PC

model requires that the steps within an item be completed in seclence, although the steps

need not be equally difficult nor fe ordered in terms of difficulty. If an item consists of

only two categories, then the PC model reduces to the Basch model.

METHOD

Programs: A CAT program was written based on the PC model (PC CAT). The program used

maximum likelihood estimation (MLE) of ability and item selection was on the basis of

information. The adaptive testing simulation was terminated when either of two criteria
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were met : a maximum of thirty items was reached or when a predetermined standard error

of estimate (SEE) was obtained (SEE termination criteria of 0.20, 0.25, 0.30 were used).

Previous research with polytomous model-based CATs has shown that SEE results in better

CAT performance than does the minimum item information criterion (e.g.. Dodd, Koch, &

De Ayala, 1989). The initial ability estimate for an examinee was the population's mean

and a variable stepsize was used for ability estimation when MLE was not possible.

Data : One thousand simulees were randomly selected from a N(0,1) distribution (the z-
scores were considered to be the simulees' true ability, ei). The examinees' responses to

150 5-alternmive items generated according to a linear factor analytic model (Wherry,

Naylor, Wherry, & Fa His. 1965) in which :

2zij = ajzi + 1 - hi zeii (2),

where zi was examinee i's randomly selected z-score (i.e., OT), aj was item j's factor

loading, hi2 was item j's communality, zeij was a z-score random number that was generated

specifically for the error component of item j and examinee i. Subsequent to the

calculation of zij, zij was compared to pre-specified category boundaries to determine the

category response for examinee i to item j. All factor loadingF .tre uniformly high and

ranged from 0.62 to 0.85. The category boundaries used may Ix: founi in Dodd (1985).

The use of a linear factor analytic approach for data generatity allowed item

discriminations to vary and the responses to be a nonogival function of ability (i.e., a

violation of a fundamental IRT assumption).

Calibration: MSTEPS (Wright, Congdon, & Schultz, 1989) was sed to obtain item parameter

estimates and fit statistics for the PC model.

Fit Analysis: For the purpose of this study the weighted total fit statistic ww, chosen for

identifying item misfit for the PC model; the weight is the information function and is

used to reduce sensitivity to outliers (.3alith, 1988).

The original 1000 x 150 data matrix was calibrated and fit statistics were obtained.

After the elimination of items deemed to show "significant" misfit, the data set was

recalibrated without the misfitting items. Fit was then reexamined and items found to fit

were retained; their item parameter estimates were used for the item pools. Because

model-data fit is a matter of degree, various critical values (CV) were used to determined

whether an item was exhibiting significant misfit. For the PC model the CVs used were

±2.0, 13.0, 14.0, 15.0 (roughly corresponding to a values of 0.046. 0.003, less than

0.0001, less than 0.0001, respectively) and the CVs = j (i.e., all items were considered

to fit and included in the item pool).

6



Summary: A 1000 examinee by 150 item data matrix was generated and calibrated.

Critical values (5 levels) were used for identifying misfitting items. Subsequent to the

elimination of misfiuing items, the data were rec'Jibrated and reexamined for misfit.

Whftn no items were found to misfit, the item parameter estimates were used to create a

CAT item pool; five item pools for 'he PC CAT were created (one corresponding to each CV

level for each model). The design consisted of the crossing of the SEE factor (3 levels :

0.20, 0.25, 0.30) by the CV factor. For each of the 1000 examinees an adaptive test was

simulated using each item pool for the PC CAT.

Analysis: The CAT simulations were analyzed by comparing each CAT's estimated ability
(g) with OT through correlational analysis (Pearson product-moment correlation

coefficients: 1g91), average absolute differences (AAD), standardized root mean zquared

differences (SRMSD) and standardized differences between means (SDM) (Doody-Bogan and

Vert, 1983) where :

AAD=

N

err
i=1

N

Lei eT)2
SRMSD

T=

2 2

sg + eT
2

SDM=

2

(3)

(5),

A
where 0j was the ability estimate for examinee j, OTi was the known true ability for

A
examinee j, N was the number of examinees, OT was the mean 0T, 0 was the mean of 0, st)

A 2 A
was the variance of 0, seT was the variance of 0T. The differences between 0 and 0T as a

function of OT were graphically examined (a.k.a., difference plots). Further, descriptive

statistics were calculated on the number of items administered, the item pools, the

proportion of misfitting items administered relative to the use of the most conservative CV

was obtained (i.e., CV = j2.0), and the item pools' estimated information functions was

inspected.
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RESULTS

Celibration and Fit Analysis

For the PC calibration 33, 51, 63, and 78 items were found to fit the PC model using

the CVs of 12.0. *3.0. ±4.0, 15.0, respectively. The nomenclature for the corresponding

item pools is : model + the number of items in the pool (e.g., PC 33 is the pool for the PC

model containing 33 items and based on CV = ±2.0).

The PC 33-, 51-, 63-, 78-, and 150-item pools had step difficulty estimates which

ranged from -2.50 to 3.03, -2.38 to 3.14, -2.35 to 3.13, -2.44 to 2.97, -3.0 to 3.31.

respectively. Figure 1 shows the total item pool infcnnation for the PC 33,-, 51-, 63-. and

78-item pools.

Insert Figure 1 about here

CAT Simulations
A

For the PC CAT simulations the correlation coefficients between 0 and OT increased as

the SEE termination criterion decreased (see Table 1). All correlation coefficients were

equal to or greater than 0.87 and the corresponding scatterplots showed strong linear

associations. As can be seen even with the 33 itcm pool there was a strong linear
A

association bctween 9 and OT. Becoming less conservadve with respect to the magnitude of

the CV (up to about i4.0) produced rgeTs of more or lets comparable magnitudes to those

obtain with CVs of 12.0 and an increase in the number of examinees whose ability

estimates were considered reasonable.

Insert Table 1 about here

r
Difference plots (i.e., e - OT as a function of 0T) for selected PC CATs arc presented in

Figure 2; these plots arc typical of all the PC CAT plots. As can be seen the PC CATs did
not tend to either underestimate or overestimate OT in a systematic way. In general, as

SEE termination criterion decreased the points tended to become less variable about the

baseline of 0.

Insert Figure 2 about here

AAD and SRMSD provide an assessment of the accuracy of estimation across examirees.

while SDM assesses the overall bias between the (Is and OTs. The SRMSD and SDM for the

PC CATs are presented in Table 2. As can be seen, compared to the use of the ±2.0 CV,

overall accuracy increased when the CVs of j3.0 and ±.4.0 were used. Regardless of the

item pool used, the minimal bias exhibited by the PC CAT may not be considered
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meaningful by some. Although SRMSD and SDM are aggregate indices and therefore,

compensation may occur, the difference plots and the AAD indices showed that this was

not the case. The AAD indices reflected the SRMSD/SDM pauern, that is, CVs of 1.3.0 and

14.0 resulted in the smallest AAD.

Insert Table 2 about here

Table 3 contains descriptive statistics on the PC adaptive tests. As would be expected,

decreasing the SEE termination criterion produced an increase in 87 .age and median test

lengths. Similarly, decreasing the SEE termination criterion resulted in an increase in

the proportion of misfitting items administered. Comparing Tables 1 and 3. one sees that
A AreaT = 0.963 and reeT = 0.959 were obtained (based on 98.8% and 99.0% of the examinees,

respectively) despite the administration of tests containing, on average, 35.4% (CV = ±.3.0)

and 45.5% (CV = i4.0) misfitting items. Inspection of plots of the proportion of misfiuing
items administered versus ST showed no systematic relationship.

1, seri Table 3 about here

DISCUSSION

Using a CV = 12.0 only 22% of the original items were found to fit the PC model. As

stated above, each of the 117 items which were found to have significant fit statistics

would have had to been analyzed separately to determine the cause of the misfit. For

instance, the 1000 examinees could be ordered by their ability and their responses

examined to see if individuals with abilities above and below the item's location were

behaving according to expectations. If the majority of the examinees were behaving

according to how the model would predict they should and the fit statistic's significance

could be attributed to discrepancies in the expectations of a few examinees, then the item

would be retained and the analysis would proceed to the next misfitting item. Of course,

with large numbers of examinees and a large number of misfitting items this procedure

would be arduous at best. However, the results showed that strong linear associations

could be obtained despite the inclusion items which did not fit the PC model at CV = 12.0.

In fact, when the entire item pool was used and with an SEE termination criterion of 0.20.

then a fidelity coefficient of 0.945 with comparatively low AAD/SRMSD and SDM values

was obtained. The tradeoff for being able to include a large number of misfitting items
A

was a substantial iricrase in the number of individuals whose Os were not considered
A A

reasonable (i.e., 8 -4.0 or 0 z 4.0),
Given the r88Ts, the difference plots. SRMSD, 5DM, and AAD results for the PC CAT. it

appears that item pools smaller than are suggested for dichotomous model-based CATs can
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be used with PC model-based CATs; this result replicates Dodd, Koch, & De Ayala (1989)

and Koch and Dodd's (1989) findings. It appears that reasonably accurate ability

estimation may be obtained despite adaptive tests which, on sverage, contained up to 45%

misfitting items (i.e., the use of CV = i 4.0 or less). Furthermore, the inclusion of

misfitting items did not appear to increase the PC CAT test lengths.

1 0
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Table 1: Pearson product-moment correlation coefficients between 8 and ST for PC CAT.

SEE 1.2.0

Fit

13.0
Statistics

1.4.0

0.30 0.919 0.923 0.921

0.25 0.944 0.943 0.943
0.20 0.963 0.963 0.959

Pool Size 33 51 63

Na 958 988 990

/5 0 All items

0.902 0.870

0.934 0.907

0.952 0.945

78 150

857 737

arefers to the number of cases whose ability estimates fell within the range j4.0

Table Z: SRMSD, SDM, and AAD for PC CAT

Fit Statistics SEE SRMSD SDM AAD

±.2.0 0.30 0.471 -0.199 0.345

0.25 0.419 -0.218 0.308

0.20 0.363 -0.212 0.269

13.0 0.30 0.405 -0.065 0.315

0.25 0.356 -0.071 0.273

0.20 0.295 -0.076 0.222

±4.0 0.30 0.406 -0.039 0.316

0.25 Z.353 -0.035 0.262

0.20 0.304 -0.045 0.225

±5.0 0.30 0.501 -0.136 0.343

0.25 0.437 -0.156 0.292

0.20 0.390 -0.166 0.259

All items 0.30 0.628 -0.114 0.351

0.25 0.528 -0.108 0.304

0.20 0.396 -0.076 0.232

1 3
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Table 3: Descriptive Statistics for PC CAT

Fit Statistics SEE Mean NIAa Median NIAa SD NIAa Range Proportionb

±.2.0 0.30 836 7 3.33 6-30 -

0.25 13.01 11 5.36 9-30 ,.

0.20 21.63 20 5.96 14-30 -

13.0 0.30 8.11 7 2.85 6-30 0.213

0.25 11.79 10 4.22 9-30 0.288

0.20 18.70 17 5.27 14-30 0.354

t4.0 0.30 7.89 7 2.65 6-30 0.375

0.25 11.23 10 3.53 9-30 0.426

0.20 17.88 16 4.77 13-30 0.455

t5.0 0.30 7.69 7 2.19 6-30 0.460

0.25 10.98 10 2.94 9-30 0.504

0.20 17.24 16 3.87 14-30 0.527

All items 0.30 7.98 7 2.53 6-26 0.637

0.25 11.20 10 3.24 9-30 0.655

0.20 17.31 16 3.83 13-30 0.671

aNumber of items administered

bProponion of misfitting items administered relative to the use of CV = ±.2.0

1 4



Figure 1, Information functien estimates: PC model 33-. 5 I-. 63-. id 78-item poois

100

90

80

70 -
.1

-

20

10 -

- 4 - 3 - 2 0

Thota

1 5

BEST COPY AVAILABLE

111111111101M01111.11

PC CAT 33 items

PC CAT 51 items

PC CAT 63 items

PC CAT 78 iterrs



Figure 2a, Difference plots (f3 - OT) for the PC CAT: 33-item pool, termination SEE = 030
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Figure 21% Difference plots 4 - 6T) for the PC CAT: 33-item pool, termination SEE = 0.20
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Figure 2c. Difference plots (6' - OT) for the PC CAT: 63-item pool, termination SEE = 0.20
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Figure 2d. Differ Lace plots (6` - eV for the PC CAT: 150-item pool, termina.ion SEE = 0.20
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