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Abstract

Tests of statistical significance are widely used in educational

and psychological research to facilitate interpretation of

findings. But such tests do not reflect the degree of stability

of findings across samples, and in multiple regression where

resulting predictive equation effectiveness is subject to

"shrinkage", it is especially important to evaluate result

replicability. Indeed, since all parametric analytic methods are

special cases of regression (just as all univariate and

multivariate methods are special cases of canonical correlation

analysis), evaluating result replicability is important in all

sorts of studies. Double cross-validation is an empirical method

by which an estimate of invariance or stability can be obtained

from research data in hand. This paper discusses the procedure

for double cross-validation using both a heuristic data set and

an actual research data set to illustrate both a nongeneralizable

outcome and a generalizable outcome.
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Double Cross-Validation in Multiple Regression:

A Method for Estimating the Stability of Results

A growing trend in educational and psychological research

has been the recognition that sole reliance upon statistical

significance testing presents insufficient evidence to determine

the importance of research findings (Carver, 1978; Craig, Eison,

& Metze, 1976; Thompson, 1989). The most compelling argument

against statistical significance testing addresses the issue of

sample size effects on the outcome of the null hypothesis test.

More specifically, the larger the sample size, the greater

is the likelihood that a null hypothesis will be rejected

(Carver, 1978). As a result, if one's sample size is sufficient,

then even the most trivial research findings will become

statistically significant and thereby seen "important. on the

other hand, it is likely that results based or small sample sizes

may hot be statistically significant, but may nevertheless reveal

noteworthy results. Since the null hypothesis in social sciences

research is seldom, if ever, exactly true, a sufficiently large

sample size will almost always yield a statistically significant

result (Fish, 1986; Sandler, 1987).

An even more compelling problem with statistical

significance testing is that it offers the researcher no

indication of the replicability of the results, that is, the

likelihood that such results would be reproduced in the future

(Thompson, 1989). In essence, relying only on statistical

significance in determining the merits of research findings

"represents a ..;orrupt form of the scientific method" (Carver,
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1978, p. 378).

Given the limitations of statistical significance testing in

determining the stability of research results, certainly the best

predictor of result generalizability, or stability across

samples, would be to conduct replications on as many samples as

possible, thereby empirically validating result stability. But

given that in educational and psychological research such a

solution is often impractical, the stability of research results

across samples can be estimated by using invariance techniques

(Fish, 1986). As described by Englehard (1989), "invariance can

also be viewed more broadly as the quest for generality in

science" (p. 32). Borrowing from Englehard/s discussion on the

history of invariance, the concept of invariance within social

sciences research is best described by Stevens (1951):

The scientist is usually looking for invariance

whether he knows it or not . . . The quest for

invariant relations is essentially the asp3ration

toward generality, and in psychology, as in physics,

the principles that have wide applications are those

we prize. (p. 20)

Because methods of invariance investigation depend to a

large extent upon the analytic method used, the number of

invariance procedures is quite large. The scope of the present

papers focuses upon invarianc, procedures used with multiple

regression analysis, and more specifically, double cross-

validation. However, given that all statistical analytic methods

al-e interrelated, the logic illustrated in the present paper can

ceriainly be generalized to other amaytic methods.

2
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Result Stability in Multiple Regression

'Me Prolllekcit ShrinkAge

In multiple regression analysis, the researcher seeks to

find those independent variables (and their respective weights)

that correlate most highly with the dependent variable. The

analysis produces weights that can be applied to the predictor

variables to yield a predicted score, YHAT, for each subject.

When the variables are all in z-score form these weights are

called beta weights, and when the variables are unstandardized

the weights are called b weights.

The weights are developed subject to the restriction that

the YHAT scores must come as close as possible to the 11 scores in

the sample, for the sample as a whole. The deviation of a given

subject's YHAT from the subject Y is the subject's e score.

Thus, the weights are derived to minimize the e scmces, nr, more

specifically to minimize the sum of the squared e scores, also

called SoS error or SOS within.

The multiple correlation, R, is the correlation between the

predicted scores, i.e., the YHAT scores, and the observed

criterion scores, i.e., the Y scores. R2 represents the

proportion of variance of the dependent variable that is shared

with the independent variables as a set, the set being

represented by the YHAT scores (Pedhazur, 1982).

It should be noted, however, that R2 is the maximum

mathematical value for the given sample due to "overfitting," or

the capitaliza'Aon on sampling error in the derivation of the

"optimal" weights for the sample data (Mitchell & Klimoskit
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1986). Mosier (1951) describes this chance factor as involving

the idiosyncratic characteristics of the sample. Pedhazur (1982)

explains that such overfitting is due to the treatment of zero-

order correlations as being error-free, which is never true.

Pedhazur further contends that the degree of overestimating R is

affected by the ratio of the 'lumber of independent variables to

sample size and that as the number of independent variables

approaches the sample size, the likelihood of overestimating R

(and R2) gets larger.

These difficulties pose problems in applying the regression

equation to other samples. If the derived sample weights were

applied to the predictor scores of another sample, the resulting

multiple correlation between the predicted scores and the

criterion scores of the second sample would almost always be less

than the original multiple correlation (Pedhazur, 1982). In

other words, shrinkage of R is certain to occur when the

regression equation is applied across samples, and in fact,

predictor variables that prove to be statistically significant in

the derivation sample may "shrink" to nonsignificant values in

the second sample. In this context, if invariance represents

stability across samples, then it can be viewed as inversely

related to the degree of shrinkage. The smaller the degree of

shrinkage, the greater is the invariance, and th.ls the more

generalizable is the regression equa;ion.

The izquble Cross-Validation Procedure

"Double cross-validation" is an empirical invariance

procedure used in multiple regression that essentially involves
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the use of two samples or subsamples to produce two pairs of

regression equations from which respective shrinkages can be

determined. Double cross-validation offers a greater level of

confidence in generalizability when applied to Wo separate

samples than when applied to two subsamples creating by splitting

a single sample; however, if the sample size is sufficiently

large, then two randomly assigned subsamples can provide a fair

estimate of result reproducibility. And using some estimate of

result stability or invariance is almost always better than

failing to conduct any empirical evaluation of result

replicability.

Because educational and psychological researchers often

encounter problems in obtaining data from more than one sample,

the use of two random subsamples derived by splitting a sample

may be a useful procedure. For this reason, the procedure for

double cross-validation described in the present paper is offered

in the context of comparing two subsamples rather than two

separate samples.

If a single sample is used, the first step in double class-

validation requires that the sample be divided randomly into two

subsamples (e.g., 50% + 50%; 51% + 49%; 75% + 25%). Fish (1986)

contends that the subsamples should be unequal, for if the

results of a disproportionately smallnr subsample (e.g., 25%)

prove to be replicable, one might be willing to vest even more

confidence in the generalizability of the results. However, such

"acid" tests may be counterproductive or overconservative. Some

researchers will want to use subsamples of more nearly equal

size, to provide greater likelihood that invariance will be
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found.

After creating the two subsamples, the variables within the

two sets are converted to z-scores. The z-scores are

standardized with the means and SDs of subsample 1 for the

subsample 1 data, and with the means and SDs of subsample 2 for

the subsample 2 data. Separate regression analyses are also

performed with each subsamples' data. As a result, separate beta

weights are derived for each subsample's set of z-scores. The

resulting betas are then used to compute predicted Y values, YHAT,

for the cases in each subsample, such that:

YHAT = beta z + beta z + beta z +... beta z
11 11 11 12 12 13 13 lj lj

YHAT = beta z + beta z + beta z +... beta z
22 21 21 22 22 23 23 2j 2j

In this notation, the first subscript for the YHATs indicate

which sample's z-scores were used to calculate the YHATs, while

the second subscript for YHAT indicates which sample's beta

weights were employed. The first subscript for the beta weights

and for z-scores indicate which sample yielded the weights or the

z-scores, while the second subscript indicates the sequence

number of the predictor, ranging from 1 through the jth predictor

variable.

With two composite scores, YHAT11 and YHAT22, thus

determined, the next procedure is to "cross" beta weights and

compute tWo new sets of predicted YHAT values, namely YHAT12 and

YHAT21, by the same methods. In computing YHAT12, the betas from

the regression of subsample 2 are applied to the z-scores of

Subsample 1. Conversely, the betas of subsample 1 are applied to
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the z-scores of Subsample 2 in order to calculate YHAT21. Thus,

thele estimates take the form:

YHAT = beta z + beta z + beta z +... beta z
12 21 11 22 12 23 13 2j lj

YHAT = beta z + beta z + beta z +... beta z
21 11 21 12 22 13 23 lj 2j

Upon completing the computation of the four sets of YHAT

scores, two for subjects in each of the two subsample groups,

various combinations of the scores can be correlated. The

correlation of YHAT11 with the Y scores of subjects in subsample

1 will yield the R for that subsample. The correlation of YHAT22

with the Y scores of subjects in subsample 2 will yield the R for

that subsample.

The invariance of the results can be evaluated in either of

two wcys. First, the shrinkage can be evaluated for each group

as:
2 2

INV = R R
1 11 12

2 2
INV = R - R

2 22 21

The more closely these two shrinkage estimates approach zero, the

greater is the degree of stability across the subsamples, and

hence the more confidence tive researcher can vest in the

replicability of the results. It should be noted that R211 and

R2 22 will almost certainly be greater than R2 12 and R2 21,

respectively, since the first two R2's are the mathematical

optimums for their respective subsamples.

one aspect of this method of evaluating shrinkage, however,

is that the result has no set metric. For example, shrinkage



from an R of 70% to one of 60% is not the same as shrinkage from

an R2 of 10% to one of 0%, since the former result is still quite

noteworthy, while the latter is not. These difficulties can be

overcome by comparing the r2 of Y with YHAT11 (i.e., the actual

R2 of subsample 1) aaainst the r2 of Y with YHAT12, and by

comparing the r2 of Y with YHAT22 (i.e., the actual R2 of

subsample 2) against the r2 of Y with YHAT21. These two

correlation coefficients can be called invariance coefficients.

The more closely these invariance r's approach one, the greater

is the degree of confidence obtained in the stability of the

regression equation across different configurations of subjects.

$umerical Examples_of Double gross-yalldation

In order to illustrate the double cross-validation

procedure, two numerical examples will be presented. The first

example uses a smaller heuristic data set (n = 20) of 5

predictors to illustrate an invariance situation in which the

weights appear to be different across subsamples, but in fact

yield reasonably equivalent results across at least one

subsample. This example is utilized to drive home the point that

(Thompson, 1989).

In the second example, the data are drawn from an actual

study of life satisfaction in elderly nursing home residents. In

this study, 200 nursing home residents were administered a life

satisfaction inventory which consisted of 8 subscales. These 8

subscales were used as independent variables to predict overall

nursing home satisfaction as measured on a self-report Likert

scale.
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Unple 1. The first step in the cross-validation procedure

requires that the data be randomly sorted into two relatively

equal subsamples. In this example, Subsample 1 contains 11

subjects, and Subsample 2 has 9 subjects. The hypothetical data

are presented in Table 1. The SAS program used to analyze the

data is presented in Appendix A.

Insert Table 1 about here

In the second step, the scores within each subsample were

converted to z-scores by first computing means and variances of

the independent variables, X1-X5, in an initial computer run.

These results were then used in the second computer run to obtain

z-scores, Z3_Xl-Z1_X5 and 22_,X1-Z2_X5, for both samples. In

addition, separate regression analyses were conducted within each

subsample in order to generate each subsample's respective beta

weights. These results are presented in Tables 2 and 3.

Insert Tables 2 and 3 about here

At this point in the analysis z-scores and betas have been

computed for subsample 1 and subsample 2. From these values,

estimates of Y can be predicted for each of the subsamples:

Let YHAT_11 = predicted I scores for Subsample 1

YHAT_22 = predicted Y scores for Subsample 2

therefore:

YHAT_11 = (0.99311 x + (-0.17191 x Z1_X2)

9
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+ (0.25976 x Z1..X3) + (-0.30172 x Z1_X4)

+ (0.07974 x Z1_X5)

YHAT_22 = (-0.47831 x Z2_,X1) + (0.39201 x Z2_,C2)

+ (0.74884 x Z2.X3) + (0.68759 x Z2._X4)

+ (0.60224 x Z2..20)

The third step is to "cross" the betas in subsample 2 with

the z-scores in subsnmple 1 !n order to compute the invariance

coefficient for the subsample 2 weights. Likewise, the betas in

subsample 1 are crossed with the z-scores in subsample 2 in order

to calculate the invariance for the subsample 1 weights, as

follows:

Let YHAT_12 = invariance composita scores for Subsample 1

YHAT_21 = invariance composite scores for Subsample 2

therefore:

YHAT_12 - (-0.47831 x Zl_X1) + (0.39201 x Z1_X2)

+ (0.74884 x Z1_,C3) + (0.68759 x Z1_,C4)

+ (0.60224 x Z1_,C5)

YHAT_21 = (0.99311 x Z2_X1) + (-C.17191 x Z2_,C2)

+ (0.25976 x U_X3) + (-0.30172 x Z2_X4)

+ (0.07974 x Z2_X5)

As a result of these computations, each subsample has two

sets of predicted YHAT scores, namely YHAT_11 and YHAT_12 for

subsample and YHAT_21 and YhAT_22 for subsample 2. These values

are then correlated to yield the invariance coefficients. The

results for the example are presented in Table 4.

Insert Table 4 about here



The resulting correlation of YHAT_11 with YHAT_12 revealed

an invariance estimate of .95, indicating that the weights from

the two subsamples yield very similar estimates of YHAT. At

first pale this result may seem surprising, since the beta

weights ("STANDARDIZED ESTIMATEs") presented in Tables 2 and 3

appear to be very different, e.g., +.079 for ZX5 in subsample 1

versus +.602 for ZX5 in subsample 2.

However, the invariance correlation of YHAT_22 with YHAT_21

was .54, indicating that the sets of weights were not equally

effective when they were both to the data for subsample 2. This

finding illustrates the utility of "doubly" cross-validating,

both ways. The discrepancy between these two invariance

estimates would contraindicate stability of predictor weights

across saAples.

Example 2. Regarding the nursing home satisfaction example,

the nursing home data were randomly sorted into two relatively

equal subsamples. Subsample 1 contained 101 subjects, and

Subsample 2, 99 subjects. Subsequ4ntly, within each subsample,

z-scores and beta weights were obtained. The results for the two

subsamples are presented in Tables 5 and 6.

Insert Tables 5 and 6 about here

From these values, nursing home satisfaction (NH_SAT) can be

predicted for each of the subsamples:

Let NH_SAT11 = predicted NH_SAT for Subsample 1

NH_SAT22 id predicted NH_SAT for Subsample 2

therefore:

11
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NH_SAT11 = (.80567 x Z1_MBAN) + (-.09939 x Zl_GOAL)

+ (-.01853 x ZLSOCL) + (.10754 x Z1_YEAR)

NH_SAT22 = (.74817 x Z2 MEAN) + (-.03272 x Z2_GOPL)

+ (-.13812 x Z2_50CL) + (.04420 x Z2_YEAR)

The cross-validation YHATs were computed as:

Let NH_SAT12 = invariance composite scores for Subsamplk. 1

NH_SAT21 =a invariance composite scores for Subsample 2

therefore:

NH_SAT12 = (.74817 x Z1_MEAN) + (-.03272 x Zl_GOAL)

+ (-.13912 x Z1_SOCL) + (.04420 x Z1_YEARN

NH_S)'1T21 = (.80567 x Z2_MEAN) + (-.09939 x Z2_GOAL)

+ (-.01853 x U_SOCL) + (.10754 x Z2_YEAR)

As a result of these computations, each subsample has two sets of

predicteu NH_SAT scores, namely NH_SAT11 and NH_SAT12 for

subsample 1 and NH_SAT22 and NH_SAT21 for subsample 2.

The invariance coefficients for this analysis are presented

as a part of Table 7. The correlation of NH_SAT11 with NH_SAT12

yielded an invariance estimate of .98, indicating that the

weights from the two subsamples were very stable. Similarly, the

correlation of NH_SAT22 with NH_SAT21 yielded an invariance

estimate of .98, thus indicating that weights in the second

cross-validation performed very well also. Such a high degree of

stability yields a large degree of confidence that the original

rcoession equation for the full sample is an accurate predictor

of nursing home satisfaction in this sample and that the equation

is fairly stable across samples.

Insert Table 7 about here



And it is always the equation based on the full sample that

is ultimately the basis for interpretation. The subsample

analyses are conducted to get a feel for the stability of the

full sample results/ and not to provide a basis for direct

interpretation.

Conclusion

Double cross-validation is a method by which investigators

using multiple regression analyses can simultaneously conduct two

estimeces of invariance either across two separate samples or twc

subsamples drawn from one sufficiently large sample. The

advantage of using double cross-validation is that it provides a

second "replication" of the results which is useful in comparing

to the first set of results.

In educational and psychological research, the importance of

a study is typically determined by some test of statistical

significance. Whereas these statistical significance tests are

widely accepted as measures of importance, they are not very

dependable indicators of result reproducibility. A much more

accurate estimation of generalizability would be to empirically

test the findings across samples and to determine the degree of

stability across these samples rather than relying solely upon

tests of significance to indicate reproducibility.
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Table 1
Hypothetical Data for Example 1 (n=20)

ID GROUP Y
YHAT_11

X1
YHAT_12

X2
YHAT_21

X3
THAT_22

X4 X5

1 1 1.4494 2.6535 1.6129 1.4791 0.8249 1.3615
1.6706 2.8344

2 1 0.1235 0.9332 1.0165 -0.4782 0.3678 0.0549
0.0358 -0.0791

3 1 -0.1411 0.5796 -0.9072 0.3909 0.9591 -0.5203
0.2184 0.2745

4 1 -0.6855 -0.7859 0.4845 -0.9226 -1.7435 -0.7351
-0.5731 -2.0287

5 1 1.1238 1.2541 0.7067 0.4088 0.4282 0.6427
0.6294 1.0881

6 1 0.3943 -0.5134 -0.4392 0.7841 -1.1065 0.6111
0.2953 0.6620

7 1 -2.2715 -1.7856 -1.5240 -0.3698 -0.6803 -0.6170
-0.9373 -1.1105

8 1 -1.7230 -1.0883 -0.6883 -1.5188 -1.1091 0.7939
-0.8318 -1.5652

9 1 -1.5258 -0.8672 -1.2947 -0.1193 0.6647 -1.9800
-0.8131 -1.1258

10 1 1.0084 0.9381 -1.1084 0.5831 1.7002 0.7223
0.4423 1.5776

11 1 -0.5916 -0.4931 -1.3715 -0.3252 -0.4884 0.4942
-0.1362 -0.5275

12 2 -1.8914 -0.5908 -0.0792 -0.7090 -1.6626 0.2773
-0.2533 -1.1022

13 2 -0.5829 0.2041 0.1175 0.0811 0.8644 -0.6684
0.1969 0.0285

14 2 1.3889 0.3041 -0.2253 -0.4971 0.3586 2.0554
0.6474 0.5248

15 2 -1.4594 -1.3000 0.0148 -1.1782 -0.4230 -0.5962
-1.7938 -0.4300

16 2 2.8002 1.3113 2.3249 1.5848 0.9300 0.0506
1.5619 1.6242

17 2 -0.6989 -0.5218 -0.4050 1.2660 -1.3866 -1.3967
0.0817 -0.9846

18 2 0.8433 -0.2492 -0.5100 0.9812 0.3150 -0.1616
0.0437 0.3601

19 2 0.5183 0.8607 0.1861 -0.0563 0.3345 1.1504
1.3755 0.1125

20 2 -0.0161 -0.7832 0.5174 -2.1399 1.2817 -1.0705
-1.8595 -0.1332

Note,. Y is the dependent variable. X1 to X5 are the predictor
variables. GROUP is the hypothetical variable randomly created
to divide the sample into two subsamples. The YHAT values for
each case are also presented.



Table 2
SAS Results for Subsample 1 in Example 1

CORRELATION FOR GROUP 1
X1 X2 X3 X4 X5

1.00000 0.89693 0.61959 0.75530 0.51278 0.61643
X1 0.89693 1.00000 0.70185 0.70028 0.66596 0.54554
X2 C.61959 0.70185 1.00000 0.28096 0.03819 0.41411
X3 0.75530 0.70028 0.28096 1.00000 0.59227 0.33971
X4 0.51278 0.66596 0.03819 0.59227 1.00000 0.07339
X5 0.61643 0.54554 0.41411 0.33971 0.07339 1.00000

REGRESSION OF GROUP 1
DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SOURCE DF

MODEL 5
ERROR 5
C TOTAL 10

ROOT MSE
DEP MEAN
C.V.

SUM OF
SQUARES

13.22347310
1.89135420
15.11482730

0.6150373
-0.2581

-238.294

MEAN
SQUARE

2.64469462
0.37827084

F VALUE

6.992

R-SQUARE 0.8749
ADJ R-SQ 0.7497

PARAMETER ESTIMATES
PARAMETER STANDARDIZED

VARIABLE DF ESTIMATE ESTIMATE

INTERCEP 1 -0.40105606 0
X1 1 0.93953203 0.99311254
X2 2. -0.19418815 -0.17190653
X3 1 0.37886145 0.25975559
X4 1 -0.34675263 -0.30172221
X5 1 0.10282402 0.07973646

PROB>F

0.0262



Table 3
RAS Results for Subsample 2 in Example 1

CORRELATION FOR GROUP 2
X1 X2 X3 X4 X5

1.00000 0.78854 0.60199 0.47657 0.63885 0.40768
X1 0.78854 1.00000 0.58245 0.56626 0.44290 0.51467
X2 0.60199 0.58245 1.00000 0.22532 0.47329 -0.00927
X3 0.47657 0.56626 0.22532 1.00000 -0.11255 -0.02053
X4 0.63885 0.44290 0.47329 -0 11255 1.00000 0.10272
X5 0.40768 0.51467 -0.00927 -0.02053 0.10272 1 00000

REGRESSION OF GROUP 2
FOR CROSS-VALIDATION
DEP VARIABLE: Y

ANALYSIS OF VARIANCE
SUM OF

SOURCE DF SQUARES

MODEL
ERROR
C TOTAL

5 15.48388211
3 1.71140563
8 17.19528774

MEAN
SQUARE F VALUE PROB>F

3.09677642
0.57046854

ROOT MSE 0.7552937 R-SQUARE
DEP MEAN 0.1002222 ADJ R-SQ
C.V. 753.619

5.428 0.0972

0.9005
0.7346

PARAMETER ESTIMATES
PARAMETER STANDARDIZED

VARIABLE DF ESTIMATE ESTIMATE

INTERCEP 1 -0.08466587 0
X1 1 -0.8444S003 -0.47831374
X2 1 0.67590502 0.39200759
X3 1 0.90571977 0.74884287
X4 3. 0.98266984 0.68758602
X5 1 0.80860873 0.60223747

Table 4
Invariance Results for Example 1

Y YHAT 11 YHAT_12 YHAT_21 YHAT_22
1.00000 0.93137 0.87360 0.63737 0.93282

YHAT_11 0.93137 1.00000 0.94721
YHAT_12 0.87360 0.94721 1.00000
YHAT_21 0.63737 1.00000 0.53884
YHAT_22 0.93282 0.53884 1.00000

rote. The r between Y and YHAT_11 is the R for subsample 1; the r
between Y and YHAT_22 is the R for subsample 2. The rts between
YHAT_11 and YHAT_12 and between YHAT_22 and YHAT_21 are the
invariance coefficients.



Table 5
Regression Results for Subsample 1

CORRELATION FOR GROUP 1
NH SAT MEANING GOALS SOCIAL

in Example 2

YEARS
NH SAT 1.0mo 0.75018 0.34277 0.25527 0.17272
MEENING 0.75018 1.00000 0.56846 0.34327 0.06857
GOALS 0.34277 0.56846 1.00000 0.15091 -0.12116
SOCIAL 0.25527 0.34327 0.15091 1.00000 0.11374
YEARS 0.17272 0.06857 -0.12116 0.11374 1.00000

REGRESSION FOR GROUP 1
BETAS USED IN ESTIMATING NH_SAT
FOR CROSS-VALIDATION

DEP VARIABLE: NH_SAT
ANALYSIS OF VARIANCE

SUM OF
SOURCE DF SQUARES

MODEL 4
ERROR 96
C TOTAL 100

ROOT MSE
DEP MEAN
C.V.

PARAMETER

150.39325
107.05230
257.44554

MEAN
SQUARE F VALUE

37.59831128 33.717
1.11512812

1.055996 R-SQUARE
5.366337 ADJ R-SQ
19.67816

ESTIMATES

0.5842
0.5668

PARAMETER STANDARDIZED
VARIABLE DF ESTIMATE ESTIMATE

INTERCEP 1 -0.97756288 0
MEANING 2. 0.41552367 0.80566633
GOALS 1 -0.06019197 -0.0993907F
SOCIAL 1 -0.009329782 -0.01852470
YEARS 1 0.03907011 0.10754426

19

22

PROB>F

0.0001



Table 6
Regression Results for Subsample 2 in Example 2

CORRELATION FOR GROUP 2
NH SAT MEANING GOALS

NH_SAT 1.0.6000 0.68295 0.26892
MEANING
GOALS
SOCIAL
YEARS

0.68295
0.26892
0.13953
0.10225

1.00000 0.46981
0.46981 1.00000
0.38664 0.36867
0.08048 0.02391

REGRESSION FOR GROUP 2
BETAS USED IN ESTIMATING NH_SAT
FOR CROSS-VALIDATION

DEP VARIABLE: NH_SAT

ANALYSIS OF VARIANCE
SUM OF

SOURCE DF SQUARES

MODEL 4

ERROR 94
C TOTAL 98

ROOT MSE
DEP MEAN
C.V.

PARAMETER

VARIABLE

INTERCEP
MEANING
GOALS
SOCIAL
YEARS

NH_SAT
NH_SAT11
NH_SAT12
NH_SAT21
NH SAT22

109.26900
114.91282
224.18182

SOCIAL
0.13953
0.38664
0.36867
1.00000
0.00997

YEARS
0.10225
0.08048
0.02391
0.00997
1.00000

MEAN
SQUARE F VALUE

27.31724916
1.22247682

1.105657 R-SQUARE
5.242424 ADJ R-SQ
21.09056

ESTIMATES
PARAMETER

DF ESTIMATE

1 1.28855291
1 0.30692720
1 -0.02182330
1 -0.05702813
1 0.01538654

Invariance

NH SAT NH_SAT11
1.00000
0.76367
0.74721
0.68422
0.69785

0.76367
1.00000
0.97975

22.346

0.4874
0.4656

STANDARDIZED
ESTIMATE

0
0.74817030
-0.03272233
-0.13811796
0.04419563

Table 7
Results for

NH_SAT12 NH
0.74721 0
0.97975
1.00000

Example 2

_SAT21 NH_SAT22
.68422 0.69785

1.00000 0.98171
0.98171 1.00000

PROB>F

0.0001



Appendix A:
SAS Program to Analyze Table 1 Data

INF/LE ABC;
INPUT ID GROUP Y X1 X2 X3 X4 X5;

PROC REG;
MODEL Y m X1 X2 X3 X4 X5 / STB;
TITLE 'REGRESSION FOR ALL DATA';

PROC CORR;
VAR Y X1 X2 X3 X4 X5;
TITLE 'CORRELATION FOR ALL DATA';

DATA GROUP1;
SET STATS;

IF GROUP=1;
Zl_Xl = (X1 - 0.0750) / 1.6888;
Z3_X2 = (X2 + 0.3193) / 1.1845;
Z1X3 = (X3 + 0.0080) / 0.7105;
Zl_X4 = (X4 + 0.0166) / 1.1444;
Zl_X5 = (X5 - 0.0753) / 0.9089;

YHAT_11 = (.99311*Z1_Xl) (.17191*Z1X2) + (.25976*Z1_X3)
(.30172*Z1 X4) + (.07974*Z1_X5);

YHAT_12 =(-.47831*Z1=X1) + (.39201*Z1_X2) + (.74884*Z1X3)
+ (.68759*Z1_X4) + (.60224*Z1_X5);

PROC UNIVARIATE;
VAR Y X1 X2 X3 X4 X5;
TITLE 'UNIVARIATE STATISTICS FOR GROUP 1';

PROC REG;
MODEL Y = X1 X2 X3 X4 X5 / STB;
TITLE1 'REGRESSION OF GROUP 1';
TITLE2 'FOR CROSS-VALIDATION';

PROC CORR;
VAR Y X1 X2 X3 X4 X5;
TITLE 'CORRELATION FOR GROUP l';

DATA GROUP2;
SET STATS;

IF GROUP=2;
Z2_Xl = (X1 + 0.0850) / 0.6895;
Z2X2 = (X2 - 0.2157) / 0.7230;
Z2_X3 = (X3 + 0.0742) / 1.4693;
Z2_X4 = (X4 - 0.0680) / 1.0524;
Z223 = (X5 + 0.0400) / 1.1923;

YHAT_21 = (.99311*Z2_Xl) - (.17191*Z2_X2) + (.25976*Z2_X3)
- (.30172*Z2_X4) + (.07974*Z2_X5);

YHAT_22 =(-.47831*Z2_X1) + (.39021*Z2_X2) + (.74884*Z2_X3)
+ (.68759*Z2 X4) + (.60224*Z2_X5);

PROC UNIVARIATE;
VAR Y X1 X2 X3 X4 X5;
TITLE FUNIVARIATE STATISTICS FOR GROUP 21'

PROC REG;
MODEL Y = X1 X2 X3 X4 X5 / STB;



TITLE1 tPEGRESSION OF GROUP 2t;
TITLE2 "FOR CROSS -VALIDATION";

PROC CORR;
VAR Y X1 X2 X3 X4 X5;
TITLE 'CORRELATION FOR GROUP 2t;

DATA REGALL;
SET GROUP1 GROUP2;
PROC CORR;

VAR Y YHAT_11 YHAT_12 YHAT_21 YHAT_22;
TITLE 'INVARIANCE RESULTSt;

PROC PRINT;
VAR ID GROUP Y X1 X2 X3 X4 X5 YHAT_11 YHAT_12 YHAT_21 YHAT_22;


