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Assessing Test Dimensionality Using An Index

Based on Nonlinear Factor Analysis

The numerous studizys dealing with Item Response Theory (IRT)
that have dominated the measurement literature in the past decade
attest to its importance in the development and analysis of tests
and items. Its many advantages, namely that it is sample free
and provides the test developer with information pertaining to a
wide range of examinee abilities, have generated considerable
interest in the area of educational testing. However, its
widespread application has been hindered by strong assumptions
underlying IRT models, especialiy the requirement that the
underlying trait be unidimensional. This assumption, however, is
often unreasonable in practical testing situations. A
mathematics test, for example, entails not only mathematical
ability but also the ability to read and understand the probliems
being preseated. 1In addition, authors that have estimated the
robustness of IRT item and ability parameter estimates obtained
from multidimensional data generally have shown that these values
are uhreliable, most notably, when several equally important
abilities are required to correctly answer an item (Ackerman,
1987; Ansley & Forsyth, 1985; Drasgow & Parsons, 1983; Reckase,
1979, 1986).

This important consideration has lead to the development of
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statistical techniques to assess test dimensionality or, more
realistically, departure from the assumption of
unidimensionality. The majority of the research in this field
has focused primarily on the evaluation and/or development of
indices based on principal components analysis(PCA)/common linear
factor analysis (LFA), the Holland-Rosenbaum procedure, Stout’s
essential dimensionality and residual covariance analyses.

The first group of studies typically has examined the extent
to which those indices derived from PCA/LFA based on phi and
tetrachoric correlation matrices (e.g., % of variance explained
by the first component, scree plots, ratio of first to second
eigenvalue, etc,.) could be helpful when assessing the
dimensionality of dichotomous data generated from a logistic
model. The results obtained in these studies diverged greatly
depending on the characteristics of examinees/items and were
generally quite unreliable in identifying the correct number of
dimensions underlying a simulated data set. Generally, these
indices tend to overestimate the number c¢f components/factors
underlying the items (Berger & Knol, 1990; De Ayala & Hertzog,
1989; Hambleton & Rovinelli, 1986; Hattie, 1984; Zwick & Velicer,
1986). 1In addition, factor analysis of phi matrices may lead to
spurious factors (Green, 1983; McDonald & Ahlawat, 1974). 1Ia
summary,'research in this area appears to discourage the use of
indices based on PCA or common LFA. These results are not

surprising given the misfit that is to b= expected when trying to
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fit a linear model to data which conform to a nonlinear
(logistic) model.

Rosenbaum (1984) states that if ICCs are monotone
nondecreasing functions of a single ability, the local
independence of item responses implies nonnegative conditional
covariance between all pairs of item responses. Rosenbaum’s
procedure (1984) therefore tests the assumptions of conditional
local independence and monotonicity of item response functions
using the Mantel-Haenzel z statistic. Results obtained by Zwick
(1987) and Ben-Simon & Cohen (1990) show that the procedure is
too conservative. However, the latter authors did obtain
encouraging results using a modified version of the procedure
that incorporated parallel analysis.

Stout’s procedure is based on a new definition of
dimensionality: essential dimensionalityv. He argued that it was
unrealistic to believe that a test could truly be unidimensional
(i.e., zero residual covariances between items aft.er fitting a
one-factor model). Essential dimensionality corresponds to the
number of dimensions necessary to satisfy the assumptions of
essential independence (i.e., the mean co..ditional residual
covariance which tends towards a minimum as the number of items
increases). A test consisting of items Uy (3=1,...,N) of length
N is said to be essentially vnidimensional if there exists a

latent trait O such that for all values of 6,
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b
— lcov(Uu,,U,l0) | = 0O, 1
N(N-1) “Z‘;‘, 1073 1)

The assumption of essential independence is then tested using the
T statistic (Stout, 1987). In addition, Nandakumar (1987)
proposed a correction method for the procedure used to calculate
the T statistic in order to reduce bics due to easy itens being
solely included in the first assessment test (ATl). Readers
interested in obtaining a more detailed description of Stout’s T
statistic and the bias correction method should refer to Stout
(1987) and Nandakumar (1987). Results indicate that the T
statistic appears to be accurate (Stout, 1987), especially when
Nandakumar’s modification is utilized (Nandakumar, 1987; 1988;
1989). However, the precision of the iindex seems to decrease as
the test length decreases. This procedure should not be used
with a small number of items (less than 25) (Nandakumar, 1987).
Another approach quickly gaining popularity is one that
treats IRT as a special case of nonlinear factor analysis (see
McDonald, 1967, for scme of the first work in this area. More
recent discussions of this topic can be found in Goldstein & Wood
(1989) and McDonald (1989)). Takane & De Leeuw (1987) have shown
that the models used in IRT and nonlinear factor analysis are
mathematically equivalent, a fact previously alluded to by

McDonald (1967). Using this IRT-Factor analysis relationship,



IFI Test of Dimensionality
S

some authors have suggested that the only legical method of
assessing dimensionality would have to be based on an analysis of
the residual covariance matrix aftzr some type of nonlinear
factor analysis (Hambleton & Rovinelli, 1986; Hattie, 1984;
McDonald, 1989). 1Indeed, local independence and
unidimensiorality of the latent trait would theoretically imply
zero residunl covariances between all pairs of items at fixed
ability levels (i.e., the single ability would account for
covariations between items). Results obtained by Hambleton &
Rovinelli (1986) as well as Hattie (1984) show that various
indices such as the sum of absolute residual covariances and the
mean standardized residual correlation tend to be related to the
number of dimensioiis underlying a set of test items. Recently,
in keeping in line with Stout’s philosophy of essential
dimensionality (see equation 1), the mean absolute residual
covariance, has beeén investigated by Berger & Knol (1990) in a
simulation study with quite promising results. From a practical
perspective, however, the unrealistic test length of Lue data
sets generated (15 items) as well as the small number of
replications (10) indicate that the authors’ conclusions should
be interpreted cautiously and that the index should be assessed
in more varied situations before any definite judgment is made
about its effectiveness. Also, another possible wéakness is that
the mean absolute residual covariance is not based on the

criterion minimized in the unweighted least-squares estimation
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which is used in the nonlinear factor analysis program, NOHARMII
(Fraser, 1983).

A new index that is based on the sum of squares of the
residual covariances (SSRes) is investigated in this study. The
SSges 18 the criterion minimized in the ULS estimation procedure
used in NOHARMII (Fraser, 19R3). Specifically, the index
proposed in this study is an incremental fit index (IFI). 1In the
context of assessing the dimensionality of a set of test i.ems,

we can define the IFI as:

SSpe, (m-factor) - SSp,, ((m+1) -factor)

2
SSp,, (m-factor) )

IFI, -

The IFI calculates the proportion of the sum of squares of
the residual covariances from the m-factor solution that is
accounted for by the (m+l)-factor. If the (m+l)-factor) is
important in explaining the structure of the items, then the IFI
should be quite large.

The theoretical auvantages to this procedure are twofold:
(1) The assessment of dimensionality is made using a model on
which IRT is based and, (2) The measure of model misfit is
directly related to the func.ion minimized in the estimation
procedure. From a practical perspective, the procedure is
relatively inexpensive and fast (using ULS), and one does not

encounter non positive-definite matrices common with the analysis
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of tetrachoric correlation matrices (Hattie, 1984).

The main weakness in the technique is that there is no
statistical significance test of the misfit of the model In
order to use the procedure, it is necessary to have some
indication of approximate values on which to make decisions of
fit or misfit. Studies should consider a variety of factors such
as different test lengths, sample sizes, distribution of item
parameters, etc,.

Therefore, the purposes of this study were to:

(1) Examine the distiribution of the IFI in the null situation,

(i.e., when the data are truly unidimensional);

(2) Examine the rejection rate of the IFI under various
simulation conditions of a two-dimensional test structure;

(3) Compare the performance of the IFI with the T-statistic.

Methods

There were two parts to the study. The first part examined
the distribution of the IFI, with randomly generated
unidimensional data. The IFI, corresponding to the 95th
percentile for each condition was determined and used as the
critical value in the second part of the study. The purpose of
the second part of this investigation was to determine the level
of accuracy of the IFI; in detecting multidimensionality. In

both sections of this study, data were randomly generated using

e
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the general 2-parameter compensatory multidimensional model

specified in equation 3.

P(i-1!8) gi7\eh %) (3)
(iw1 ! - 1 + gt 7 (a8 edp

In the unidimensional case this model reduces to the usual
logistic IRT model. Correlations between the latent abilities
were set to be equal to 2ero in the generation of the two-
dimensional data.
Unidimensional Data

In order to carry out the first part of this study,
unidimensional data sets were generated with a modified version
of M2PLGEN (Ackerman, 1987; modification by Gessaroli, 1990), a
program designed to simulate binary response strings based on a
two parameter logistic medel. Two sample sizes were used (N=500
and N=1000). Discrimination parameters for the items were
randomly generated from a Normal distribution with a mean and
standard deviation of 1.0 and .25, respectively. By doing this,
most of the item discrimination values fell between 0.4 and 7.6.
Item difficulties were normally distributed (N(0,1)). The item
difficulties were restricted to be between +2.0. Test length was
set to be either 15 or 45, Finally, data sets in each cell in
this 2 x 2 design (sample size by test length) were replicated

100 times for a total 6f 400 unidimensional data sets. Each of

10
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the 400 data sets was analyzed with both a l1-factor and 2-factor
specification. In every case the IFI was calculated. The IFI
corresponding to the 95th percentile in each cell was calculated
and used as the critical value in the second part of the study.
Iw -dimensiopal Data

In the second part of the study, two-dimensional data were
generated and the unidimensionality was tested by calculating
IFI, using the 1-factor and 2~factor SSg,. These values were
compared to the critical values determined in the first part of
the study. Specifically, item difficulty =nd discrimination
parameters similar to those considered by Berger & Knol (1990)
were used to generate the multidimensional data sets. Again, as
in the first part of the study, test lengths of 15 and 45 items
were used as well as sample sizes of 500 and 1000. Two test
structures were utilized reflecting different dimension
strengths. The discrimination parameters used are shown irnr Table

1.

Insert Table 1 about here

The "weak" two-dimensional structure is designated by W2 whereas
the "strong" two~dimensional structure is identified as SZ.
These patterns were repeated 5 times for the 15-item test length
and 15 times for a test having 45 items. Item difficulty

parameters of -2, -1, 0, 1, 2 were evenly distributed across the

11
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different combinations of a, and a,.

The IFI was calculated using NOHARMI! (Fraser, 1983), a
program based on McDonald’s polynomial approximation to a normal
ogive model. Because adequate starting values for the parameters
to be estimated are essential for the minimization of the fit
function, factor loadings obtained from a linear factor analysis
of the matrix of phi-correlations among the items were uéed as
these starting values. Stout’s T statistic (Nandakumar, 1987)
was computed using a program written by Junker (1988).
Unidimensionality of the data sets was tested using the .05 level

of significance.

Results

Unidimensional data_ sets
Descriptive statistics obtained for the IFI with various
test lengths and sample sizes for the unidimensional data sets

are presented in Table 2.

Insert Table 2 about here

As would be expected, the mean IFI for the 15 item data sets
are larger than for the 45 item sets. There is more information
available in the longer test resulting in a better estimation

(i.e., smaller residual ccovariances) of the unidimensional

12
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structure when estimating a l-factor model. Thues, theére is more
information left to explain in the residual covariances with the
shorter test length.

It aprears as .hough the IFI, values corresponding to the
95th percentile do not differ appreciably with different sample
sizes. However, the cutoffs are much smaller for the 45 item
sets than for tests comprised ol 15 items.

Table 3 displays the number of false rejections of

unidimensionality using Stout’s T statistic.

Insert Table 3 about here

it is clear from these results that the actual Type I error
rate is close to the nominal a in all conditions simulated.

The results for both indicies, however, should be
interpreted with caution given that they were based on only 100
replications and are specific to the simulation conditions used.

Multidinensional data sets

Table 4 shows the frequency of rejection rates of the
assumption of unidimensicnality for both the IFI and Stout’s
corrected T statistic when the data conformed to a "weak" two-

dimensional structure.

Insert Table 4 about here

13
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It appears that the IFI is fairly consistent in its ability
to reject unidimensionality across sample sizes. Furthermore,
its rejection rates are much more stable across test lengths
compared to the T statistic, although, it does seem possible that
longer tests will increase the rejection rate of the IFI.

The rejection rates of the T statistic, however, does seem
to be very strongly influenced by both sample size and
test length. Consistent with Nandakumar’s (1987) results, the T
scatistic does not perform well with the 15 item test length. Its
accuracy in rejecting unidimensionality does increase somewhat
with the 45 item tests. However, the rejection rate in data sets
having 1000 subjects is approximately twice that of data sets
having sample sizes of 500. The rejection rates of the T
statistic and the IFI are approximately equal in the 45 item
tests having 1000 cases.

Table $§ presents results obtained with the "strong" two-

dimensional data structures.

Insert Table 5 about here

It appears, from Table 5, that both the corrected T
statistic and the IFI have a high degree of accuracy in rejecting
the assumption of unidimensionality. Again, as with the weak
two-dimensional structure, the T statistic is influenced by the

length of the test. However, in this instance, sample size does

14
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not seem to be an issue. The IFI rejected unidimensionality for
every data set in all simulated conditions (available at the

present moment) with the strong dimensionality structure.

Discussion

Results obtained for the T statistic parallel those from
previous studies (Nandakunmir, 1987; 1988; 1989; Stout, 1987).

The accuracv of the statistic is greatly affected by test length
and sample size. The utility of the T statistic increases as the
length of the test increases. Again, these results support
Nandakumar (1987) who states that the statistic should not be
used when the test contains less than 25 items.

The IFI appeared to perform adequately in detecting
multidimensionality of the test in all conditions simulated in
the study.

There are several issues relating to the potential use of
the IFI to assess test dimensionality. First, although the IFI
did apvear to perform quite well in this study, it is necessary
to “est the .ndex under different conditions.

The IFI is based on the minimum of the fit function in the
estimation procedure (ULS) used in NOHARMII. Although the sum of
squares of the residual covariances is not the same as the mean

absolute residual covariance used by Berger & Knol (1990), and is

15
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the basis of Stout’s essential dimensjonality, it does, in

principle, address the same issue. In keepirg with the
philcsophy of essential dimensionality, however, the influence of
a only a few multidimensional items on the IFI does need to be
investigated. Berger and Knol (1990) indicate concerns that the
mean SSg, 18 Sensitive to outliers. One would expect that this
sensitivity, if it does exist, should decrease as the length of
the test increases. However, an assessment of the "robustness"”
of the IFI to unimportant dimensions or items does seem
necessary.

The IFI has the disadvantage of not having a statistical
test of significance. Establishing a proper criterion by which
to make a decision is somewhat arbitrary. Hopefully, the results
of this study can, at least, provide some indication of the
approximate magnitude of the IFI to be expected. Further
examination of the IFI with different test lengths, sample sizes
and dimension strengths would provide further insight into this
problem. A scree plot of the IFI indices for subsequent
dimensions, similar to those presented by Berger & Knol (1990)
for the mean absolute residual covariances, might be useful.
However, this approach also has the weakness of subjectivity in
its interpretation. The scree plots were not examined in this
study given that only estimates of one- and two-dimensional

structures were examined and thus, only one IFI was calculated.

16
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Summary

The IFI based on the SSg, Of the one and two-dimensional
non-linear factor analyses of dichotomous test data did, in all
cases, show fairly high rejection rates of unidimensionality when
two-dimensional data were generated. Based on theses results it
appears that this statistic has the potential to be used.in the
assessment of unidimensionality of test data and, more generally,
in the determination of the number of dimensions underlying a
test. Further studjes investigating alternate test lengths,
sample sizes and dimensionality structures, including those
typifying essential dimensionality, must take place to provide a
better understanding of the utility of the IFI.

Stout’s T-statistic performed as expected. Its number of
false rejections of unidimensionality was close to that predicted
by the nominal significance level of the test. The T statistic
seems best suited for long tests having large sample sizes. In
these conditions, based on the results of this study, one would
recommend the use of the T statistic. However, for smaller test
lengths or smaller sample sizes, alternate indices such as the
mean absolute residual covariance (Berger and Knol, 1990) or the

IFI might be preferable.

17
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Table 1
Item Discriminati Parameters Defini Two~ i
Structures
w2 S2
a, a2 1 a,
0.0
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Table 2
Descripti S isti For IFI : Unidimension
Test Length 15 Items 45 Items
Sample Size 500 - 1000 500 " 1000
Mean .253 .273 .114 .099
SD .076 .075 .021 .027
Skewness .154 .629 .756 .863
Kurtosis .100 .664 1.352 1.154
PRy .363 .400 .159 .149

24
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Table 3
Number of Rejections of Unidimensionality Using the T Statistic
r 1l rials: Unidimensional D s
Test Length Sample Size T Statistic
500 2
15
1000 3
500 2
45
1000 4
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Table 4
f Re n f unidimensionali er 1 Tx S
"Weak" Two-Dimensional Data Sets
Test Length Sample Size IFI T Statistic
500 65 4
15
1000 67 4
500 74 38
45
1000 79 77

26 -
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Table 5
Number of Redections of Unidimensionality per 100 Trials:
"Strong" Two-Dimensional Data Sets
Test Length Sample Size IFI T Statistic
500 100 71
15
1000 100 77
500 N/A 100
45
1000 N/A 100
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