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ABSTRACT

Using computer simulated data, the Type I error rate
and statistical power are empirically estimated for several
pairwise multiple comparison strategies for situations where
population variances differ. Twenty-four different
combinations sample sizes and variance patterns are examined
for the single factor four group design. The results
indicate that all eight contrast procedures considered
controlled the familywise Type I error rate under the
nominal .05 level. 1In terms of statistical power, the
Games-Howell procedure generally provided the greater power
in identifying at leact one significant difference. The
magnitude of the any-pair power difference however was very
small. Shaffer’s (1979) enhancements to the Bonferroni
ar oroach provided greater average power per contrast as well
as in identifying all significant pairwise differences. The
results of the present study ‘ndicate that previous
recommendations on the selection of a multiple comparison
procedure when population variances differ should be
reconsidered and the adoption of the new strategies for

multiple comparisons is recommended.
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Interest in contrast analysis has a long history in the
statisiical literature with work dating back to Fisher in
1935. Since then, the number of alternative procedures that
have been developed has increased steadily, reflecting the
continued interest in these techniques. Most of the
procedures that have been developed and studied extensively,
assume that the population variances to be equal. An
excellent review of many of these alternatives can be found
in Jacrcard, Becker, and Wood (1984). A much more limited
list of alternatives is available for situations were
population variances differ (Kirk, 1990; Olejnik, 1990).
Among the valid procedures for situations involving unequal
populaticn variances, the procedures developed by Games and
Howell (1976) and Dunnett (1980' are the most frequently
recommended. These procedures compute the test statistic by
taking the ratio of the difference between group means to
the standard error of the contrast, where the standard error
is computed using separate variance estimates:
X '-)E,' [ (sl/n; + st/n)'2.
Where: X and X, are the sample means from groups i and j
respectively; s; and s, are the standard deviations for group

i and j respectively; and n; and n; are the sample sizes from

groups i and j respectiv_.ly. The procedures differ in



identifying the critical test statistic. Games-Howell (GH)
uses q,xvy / \/3 Where:

g, is the studentized range distribution for the a
centile; k is the number of groups in the family of
contrasts; and V; are the approximate degrees of freedom
from Satterthwaite (1947) :

(si/n, + 532/n3)2

vﬁr. .

s!/nl(n-1) + sj‘/njz(nj-l)
Dunnett {1980) suggested two solutions: one based
Cochran's (1964) solution (C) to the Behrens-Fisher problem

and uses Q. w; / ¢Ei Where:

2 2
Qukmt S /0 + Quga S/

sl/n, + sl/n
and terms are defined as above.

The second solution (T3) suggested by Dunnett uses A ..,
as the critical test statistic. Where:

A, is the Studentized maximum modulus distribution at

the a centile; C is the number of contrasts in the

family of comparisons; and V; is defined as above.

Data analysts differ in their recommendation as to the
"best" approach. While several stud.ies have shown the
Games-Howell (GH) procedure to be robust to variance
inequality (Keselman and Rogan, 1977; Games, Keselman, and
Rogan, 1981)), Dunnett (1980) has provided some evidence to

indicate that the Games-Howell procedure can be liberal in a

limited set of situations. Wilcox (1987) in studying



factorial designs also found the Games-Howell procedure to
be liberal when sample sizes are small.

In discussing statistical power, Dunnett considered the
width of confidence intervals to conclude that the T3 method
would provide a narrower interval width than the C approach
when limited degrees of freedom were available but the C
method would provide a narrower interval range if sample
gize was large. Other indicators of statistical power such
as: a) the probability of identifying at least one
significant contrast, any-pair power, b) the average power
per-contrast, per-pair power, or c) the probability of
identifying all significant contrasts, all-pairs power
(Ramsey, 1978, 1981; Einot & Gabriel, 1975) were not
considered.

A popular multiple comparison procedure not considered
by bunnett is the Bonferroni adjustci t-test (B). When
population variances differ the computed test statistic is
calculated as above but uses t_,, as the critical test
statistic. ‘Where t, is the Student t distribution at the aof
centile; and V; is defined above. This approach is
generally considered relevant when a subset of all possible
coritrasts are of interest and can specified before data are
collected. But the procedure is not limited to those
situations and can be used to test all contrasts providing
that an appropriate adjustment is made to control Type 1

error rate familywise. The Bonferroni approach for



controlling the overal} Type I error rate is to divide the
desired familywise significance level equally among the c
contrasts. Each contrast is then tested for statistical
significance using an adjusted alpha level equal to a'= a/c.

Recently, several researchers (Holim, 1979; Holland and
Copenhaver, 1988) have developed strategies to improve the
statistical power for the Bonferroni technique by modifying
the criteria used for statistical significance. Holm (H)
suggested that the adjusted significance level ke based on
rank ordering of the mean differences and the significance
level for a contrast be based on its ranking (r;), where the
largest mean difference is given a rank of 1 and the
smallest mean difference is given a rank of ¢. The
significance level for the r; contrast is set equal to: o'
= af/(c-r+1). Alternatively, Holland and Copenhaver (HC)
(1987) suggested setting the siynificance for a contrast
equai to &' = 1-(1-q)fernh

When ali pairwise contrasts are of interest, the
Bonferroni and liolm criteria for significance for the
largest contrast is the same but for the remaining c-1
contrasts Holm's criteria (ao;', i= 2 to c) is consistently
larger, thus facilitating the rejection of the null
hypothesis. Holland and Copenhaver's criteria (g,') for the
largest contrast is always larger than the Bonferroni and
Holm's procedures and slightly larger than Holm's criteria

for the next c-2 contrasts but is identical for the smallest
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2
contrast where both criteria are equal to a. Thus there is
a slight power advantage associated with Holland and
Copenhaver’s approach. Shaffer (197¢%, 1986) suggested
modifications to multiple-range procedures like Holm’s
adjustment to the Bonferroni approach that would lead to a
further enhancement in statistical power. shaffer pointed
out that the rejection of one ccntrast in a family of
contrasts often has a logical consequence for some or all of
the remaining contrasts of interest. For example, if all
pairwise contrasts among three populations are of interest
and one contrast is rejected, then at least one other
contrast must also be rejected. By taking into
consideration the logical interrelation among the contrasts
the statistical power can be improved. Shaffer showed that
the enhancement in statistical power does not come as a
consequence of an increased risk of the overall familywise
significance level. When examining all pairwise contrasts
Shaffer (S) suggested the largest contrast can be tested for
significance with the criteria set equal to a/c and the
remaing c-1 contrasts set equal to a/t, where t is set egqual
to the number of the remaining contrasts that could possibly
be true. Seaman, Levin, Serlin and Franke (1990) have
developed an algorithm for determining t when all pairwise
contrasts are of interest and provide a table of t values
when all pairwise contrasts are of interest among 3, 4, or 5

populations. Following this procedure the criteria for



significance for the largest contrast equals a'= a/c, the
same criteria used in the Bonferroni and Holm's procedures.
The smallest contrast is tested using the same crit-~ria as
Holm and Holland's. Shaffer's criteria is always as large
or larger than Holm's criteria but can be smaller tha.
Holland and Copenhaver's criteria. Thur Shaffer's procedure
can never be less powerful than Holm's procedure but could
be less powerful than Holland and Copenhaver's.

An alternative to focusing exclusively on the
contrasts, Shaffer (S1) (1979) showed that a preliminary
omhibus test could be used in lieu of the contrast between
the largast and smallest means and given that the overall
test was rejected pairwise contrasts could proceed as with S
except the largest contrast would use as the significance
level the same criteria as the second largest contrast.

Thus if the omnibus test was significant S1 would be more
powerful than S unly for the largest contrast.

In an extensive examination of these modifications to
the Bonferroni procedure in situations where population
variances were equal Seaman, Levin, Serlin and Franke (1990)
recommended Shaffer's (S1) modification of Holm's procedure
using the preliminary ANOVA F-test. Although it was not the
most powerful procedure from those considered, it was the
most powerful procedure studied that was reasonably easy to
implement. The most powerful procedure examined in that

study was a strategy which examined all possible partitions
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of k means. This procedure while controlling the familywise
error rate at the nominal level and maximizing the
statistical power is computationally intensive and thus not
likely to be accepted by the applied researcher without
supporting computer software.

These enhancements to the Bonferroni adjustment have
not been applied to situations involving unequal population
variances and have not been compared to the Games-Howell,
the T3 or the C techniques. When population variance differ
ordering the contrasts by mean differences is not meaningful
but the ranking necessary for the enhancement of the
Bonferroni approach can be achieved by ordering the observed
probability values from the smallest p-value to the largest.

Contrasts can be rejected when p«<e,'.

PURPOSE

The purpose of the present study is compare the
familywise Type I error rate and statistical power of the
Games—Howell (GH), Dunnett T3, Dunnett C, Bonferroni (B),
Holm (H), Holland-Copenhaver (HC), Shaffer, S, and Shaffer
S1 for pairwise contrasts when population variap~es diffeved
in balanced and unbalanced one factor designs. Since there
is some evidence to indicate that the Games-Howell procedure
can be liberal we were particularly interested in comparing
the modified Bonferroni procedures with the Dunnett's

solutions. We were also interested in determining whether
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10
Shaffer’s suggestion of using the omnibus test (S1) would
work when population variances differed. Wwhen population
variances differ the omnibus suggested by Welch (1951) and
Brown and Forsythe (1974) are often recommended. These
procedures however can be liberal (wilcox, Charlin, and
Thompson, 1986) when population variances differ greatly.
Thus Shaffer’s preliminary F-test solution may not be
appropriate when variances differ. 1In the present study we
use Broén and Forsythe’s (1974) adjustment to the parametric
F~test when population variances d.ffer. The test statistic

is computed as:

Z(1-n,/N)s/]

The critical test statistic is found in the central F-
distribution with a-1 and f degrees of freedom. Where f is
computed as:

f = {£[c}/ (n~-1) "

£(1-n,/N)s?
METHOD
The study is carried out using computer generated data.
Three factors were manipulated: 1) sample size, 2) variance
heterogeneity, and pattern of population mean differences.
The study is limited to a single factor four group design

and it is assumed the researcher is interested in all

11
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pairwise contrasts (c=6). Table 1 summarizes the patter=ns of

sample size and variance conditions studied. For each of

Insert Table 1 about here

these patterns we considered situations where all population
means vere equal to study Type I error rates. To study
statistical power we considered two patterns of mean
differences: (1) u,>p,=u;=p, and (2) p,>p,>4;>4,. For the
second pattern we included two levels of mean differences.
Data are ganerated using SAS-Proc Matrix (1985). Unricr
each of the conditions outlined above data are generated for
the following linear model: ¥, Mu + ES, + E,. Where Mu is
the grand wmean set equal to 10 for the study; ES is the
effect size equalling 0 for the null condition. For pattern
1 p, was set equal to 1 and the other groups were set equal
to 0. For pattern 2 the four means were set equal to 1.5,
1.0, .5, 0 and 1.0, .5, .25, 0 for groups one to four
respectively. The random error component E, was normally
distributed with a mean equalling 0 and variance set equal
to the patterns presented in Table 1. To generate the
random error component the SAS normal random generating
function, RANOR, is used. For each condition studied 5000
replications were generated and the proportion of times the
contrasts were rejected at the .05 level is recorded. To

evaluate the results under the complete null and partizl
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null conditions, if the proportion of null hyvpotheses
rejected experimentwise exceeds .056 (two standard errors
above the .05 level) it is concluded that the procedure is
liberal. To evaluate power, difference in rejection rates
for any of the three definitions of power greater than .03

will be interpreted as of practical importance.

RESULTS
Type I Error Rates.

The Type I error rates for the eight pairwise multiple
comparison procedures and the omnibus parametric and Brown
and Forsythe's (BF) adjusted F-test for the 24 patterns are

reported in Table 2. Both the parametric and adjusted

Insest Table 2 about here

omnibus F-tests have Type I error rates that are seriously
affected by the unequal variance and unequal sample size
patterns. Even with relatively small variance differences
BF's adjustment did not control the overall Type I error
rate (see patterns 4, 7, 19, 20). The problem is more
severe when -rariance differ greatly (see patterns 12, 13,
14, 15, 16, 23, 24). These results are consistent with the
findings reported by Wilcox, Charlin and Thompson (1986).
All of the multiple comparison procedures considered
here however, controlled the familywise Type I ~2rror rate

under the nominal level. Thus although the omnibus Brown-

13
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Forsythe adjusted F-test had Type I error rates greater than
the nominal level, the Type I error rate of Shaffer's
modification of the Bonferroni following this omnibus test
never exceeded the nominal level. The empirical Type I
error rate for S1 appears to be in the same magnitude as
Dunnett's T3 procedure.

The empirical Type I error rate for the Games-Howell
procedure ranged between .040 and .055. Thus for the four
group design the Games-Howell procedure does not appear to
be liberal. This result is consistent with the findings
reported by Dunnett (1980) for the four group design he
considered.

As was found in Dunnett's (1980) study Cochran's
solution to the Behrens-Fisher problem resulted in the
smallest rejection rate when sample sizes were small. With
small samples then the C procedure appears to be very
conservative.

Finally, the Bonferroni, Holm's modifice* on, and
Shaffer's (S) procedures all had the same Type I error rate.
This result was expected since all three procedures use the
same criteria for rejecting the contrast with the largest p-
value.

For the pattern of means where pl > p2 = u3 = p4 we
also examined the Type I error rz 2 for the contrasts
involving equal population means (u2 = u3 = u4). All eight

of the procedures studied had partial Type I error rates

14
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less than .05. That is for the three null contrasts (u2 =
p3, w2 = u3 and u3 = ud), none of the procedures rejected at
least one of these contrasts more than 5% of the time.
sta c owe

Based on the two non-null patterns, p,>u,=/1,=H, and
B> 1,> 4>, the any pail:i power, per-pair power and all pair
power were estimated for the 24 patterns identified in Table
1. Some of the results for the any-pair and all-pair power
were discarded because the miaagnitude of the mean differences
studied gave the any-pair power estimates close to 1 for all
of the procedures studied and close to 0 for all prozedures
when all- pair power was estimated. The results are
presented below by definition of power since the conclusions
vary as a functior of the definition.

Any-Pair Power.

Table 3 presents a rank ordering of the any-pair power
estimates for the eight multiple comparison procedures when
population means were 1, 0, 0, 0 and 1, .5, .25, 0. For the
any-pair power definition the Bonferroni, Holm and Shaffer
(S) have the same power estimate so the table only includes
a column for S. A comparison of the five highest ranked
procedures is summarized in Table 4. Values in the table
indicate the proportion of conditions that the procedure
providing the column label had any-pair power greater than a
procedure identified by the row label. For example the GH

(Games-Howell) procedure always had greater any-pair power
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than the T3 procedure. These comparisons were made across

all three population mean difference conditions. These

Insert Tables 3 and 4 abcut here

results indicate that for the 24 patterns studied, the
Games-Howell procedure generally provided the most
statistical power for identifying at least one pairwise
difference. Shaffer's procedure preceded by the omnibus
adjusted F-test however did provide the greater power when
the group with the largest mean also had the largest
variance. Tables 5 anu 6 providn estimates of the
magnitude of the any-pair power differences between selected

contrast procedures. These results

Insert Tables 5 and 6 about here

indicate that the power differences were generally small
with over half being less than three percent.

Per-Pair Power. Table 7 summarizes the ranking
ordering of the eight contrast procedures using the average
power per contrast definition. Table 8 reports the

proportion of conditions that a procedure identified by the

Insert Table 7 and 8 about here

column heading had greater power than a procedure identified

by the row label. These results indicate that Shaffer's

16
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procedures generally alternate in identifying the greatest
average power per contrast. Tables 9 and 10 indicate the

magnitude of the power difference. These results indicate

Insert Table 9 and 10 about here

that in general the modifications to the Bonferroni
procedure provide a substantial increase in average power
per contrast than either the Games-Howell or Dunnett's T3
procedures. The magnitude of the difference in power
between Shaffer's procedures was small but generally favored
S1.

All-Pair Power. To identify all significant
differences among the four populations the results indicate
that shaffer's modifications to the Bonferroni strategy
provided the greatest power. Table 11 presents the rank

ordering of the contrast procedures based on the all-~pair

Insert Table 11 about here

definition of power. Shaffer's S1 procedure using the
omnibus adjusted F-test generally provided the most powerful
approach but Shaffer's alternative S was consistently ranked
second. Table 12 provides estimates of the magnitude of

the power differences and the results

Insert Table 12 about here
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indicate a very small difference in all-pairs power between
the two procedures suggested by Shaffer. Holland's
procedure was generally ranked third and also consistently
offered greater power than Games-Howell or Dunnett's T3

procedures.

CONCLUSIONS

The present study only considered the single factor
four group design with a limited number of sample size and
variance combinations. As a result broad generalizations
cannot be made. However the conditions that were studied
included many of the situations frequently encountered by
the applied researcher. The results of this study are
probably best viewed as an indication of the relative merits
of the alternative approaches to multiple comparisons when
variances differ. with these limitations in mind, the
following conclusions seem justified:

1) When all pairwise contrasts among four populations

are of interest and the nominal familywise Type I error

rate is set at .05, all eight of the multiple

comparison procedures considered in this study had

empirical Type I error rates that did not exceed two

standard errors of the nominal significance level.

16
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2) Although the Brown-Forsythe omnibus adjusted F-test
was shown to be liberal for many combinations of sample
size and variance heterogeneity, the Shaffer's
enhancement to the Holm's modification of the
Bonferroni procedure, which relies on the results of
the omnibus test, is not liberal at least for the

conditions we studied.

3) The identification of the most powerful multiple
comparison procedure for the unequal variance case
depends on the definition of power. To identify at
least one significant difference the Games-Howell
procedure typically will provide the most sensitive
test. However the difference in power between
Shaffer's procedure using the omnibus adjusted F-test

and the Games-Howell procedure is very small.

4) To maximize the average power per contrast or to
identify all significant pairwise differences, either

of Shaffer's procedures can be recommended.

5) Dunnett's alternatives generally had lower power
across all definitions of power than the Games-Howell
procedure or any of the modifications of the Bonferroni

approach.
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Table 1.

Patterns of sample size and variance differences examined.
n, n, n;, n o o0 o8 o Patterrn
7 7 7 7 1 1 1 1 1

22 22 22 22 1 1 1 1 2

14 18 24 28 1 1 1
7 7 7 7 .5 1.5 1.5 1.5 4

22 22 22 22 .5 1.5 1.5 1.5 5

14 18 24 28 .5 1.% 1.5 1.5 6

28 36 48 56 .5 1.5 1.5 1.5 7
7 7 7 7 .6 .8 1.0 1.2 8

22 22 22 22 .6 .8 1.0 1.2 9

14 18 24 28 .6 .8 1.0 1.2 10

28 36 48 %6 .6 .8 1.0 1.2 11
7 7 7 7 1 4 .8 1.6 12

22 22 22 22 1 4 .8 1.6 13

44 44 44 44 1 4 .8 1.6 14

14 18 24 28 1 4 .8 1.6 15

28 36 48 56 1 4 .8 1.6 16
7 7 7 7 2.2 6 .6 .6 17

22 22 22 22 2.2 6 .6 .6 i8

14 18 24 28 2.2 .6 .6 .6 19

28 36 48 56 2.2 6 .6 .6 20

14 18 24 28 1.2 1.0 8 6 21

28 36 48 56 1.2 1.0 8 .6 22

14 18 24 28 1.6 .8 .4 .1 23

28 36 48 56 1.6 .8 .4 .1 24

23
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Table 2.
Type I errors for ANOVA F-ratio and alterpative multiple
comparison proc £ loLs S e size and i e
patterns.
Pattern GR T3 C B H HL S S1 F Fl
1 053 042 023 033 033 032 032 034 050 047
2 052 043 041 042 042 043 042 046 050 050
3 053 045 040 042 042 043 042 046 051 052
4 053 042 026 033 023 035 033 037 070 057
5 052 043 040 040 040 041 040 046 054 053
6 051 041 038 039 039 040 039 044 043 056
7 054 044 049 045 045 046 045 051 045 058
8 055 043 024 032 032 033 032 039 052 046
9 046 039 037 037 037 038 037 041 047 046
10 047 040 035 037 037 039 037 042 037 050
11 051 040 043 041 041 042 041 048 040 051
12 050 042 032 034 034 035 034 036 073 059
13 040 034 035 032 032 032 032 035 066 061
14 045 036 042 036 036 037 036 040 070 066
15 053 042 042 039 039 040 039 046 039 066
16 Q44 036 040 036 036 037 036 043 034 667
17 049 041 025 032 032 034 032 038 066 055
18 0492 041 039 039 029 040 039 044 052 051
19 053 042 040 039 039 040 039 039 110 067
20 048 039 042 638 038 038 038 039 106 068
21 047 040 038 038 038 039 038 043 067 051
22 052 042 044 041 041 042 041 050 072 056
23 047 040 041 037 037 037 037 038 132 064
24 045 037 040 036 036 036 036 041 127 068
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GH T3 Holland Shaffer Shafferl
GH 0 .02 0 .45
T3 1.0 .07 .04 .58
Holland .98 .93 .05 .69
Shaffer 1.0 .96 .89 .69
Shafferl .55 .40 .31 .31

* Total of 54 conditions
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Table 5

Any-pair Power difference between two procedures. ul> u2 = u3 = ud (1>0=0=0).

A =GH-T3;B = GH - Hjlland; C = GH - Shaffer; D = GH - Shafferl: E = T3 - Holland; F = T3 - Shaffer;

G = T3 - Shafferl: H = Holland - Shaffer; 1 = Holland - Shaffecl; J = Shaffer - Shaffer!.

Pattern A B C D E F G H I ]

1 .04 .07 .07 + 03 .03 + + -.06 -.06
2 + + + - + + - + - -
3 + .03 .03 - + + -.03 + -.04 -.04
4 .04 .08 .09 A1 .04 04 .07 + .03 +
5 + + + .04 + + + + + +
6 + + + A3 + + Al + 11 A1
7 + + + + - - + 0 + +
8 04 08 09 .07 04 04 + + - -
9 + + + + + + 4 + + -
10 + + + .03 + + + + + +
11 0 0 0 0 0 0 0 0 G 0
12 04 .08 .09 .28 .05 05 .24 + 29 .20
13 NA
14 NA
15 NA
16 NA
17 + .05 .03 - + + .06 + -.07 -.08
18 + .04 .04 -.006 + + -.09 + -.09 -.10
19 .03 .05 .05 .07 3 + -.10 + -11 -11
20 + + + -.05 + + -.06 + -.07 -.07
21 .03 .04 04 -.04 ¢ + -.08 + -.07 -.07
22 + + + - + + - + - -
23 .08 .06 .07 -.00 + + -.16 - - 12 -~ 12
24 + + + + + + -.03 + -.03 -.04

+ = positive difference but less than .03;
- = negative difference but large than -.03;
NA = not availabe, all power value are equal.
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Table 6

Any-pair Power difference between two procedures. pl> 42 > u3 > «4(1 > .5 > ,25 > 0.

A=GH-T3 B = GH - Holland; C = GH - Shaffer; D = G ;
G = TJ - Shafferl; H = Holland - Shaffer; I = Holland - Shaffer: J = Sbétkr;ﬁhﬂg&_

Pattern A B c D E F G H | b}
1 .03 .06 .07 + + .03 - + -.04 -.04
2 + .03 .038 - + + . -.03 + -.04 -.04
3 03 04 043 - + + -.04 + -.05 -.06
4 .03 .06 .07 .08 + .03 05 + + +
5 ; + .03 08 + + .05 + .05 .05
6 + .03 .03 15 + + 12 + 12 11
7 + + + .03 + + 03 + .03 .03
3 .04 .07 07 04 .03 .04 - + -.03 -.04
9 + + + + + + - + - -
10 + + .03 t ¢ + - + - -
11 + + + + - - - 0 - -
12 .04 09 10 13 .05 .06 .09 + .04 +
13 + + + .04 4 + .03 + .03 .03
14 NA
15 + - + .07 + + .07 + .07 .07
16 NA
17 ‘ .04 05 + i + - + - -
18 .03 .03 .04 - + + -.06 + -.06 -.07
19 .04 .05 .05 + + + - + -.03 -.03
20 + + + - + + - + - -
21 .04 .05 .05 - + + -.06 + -.07 -.08
22 + + + - + + - + - -
23 .04 .06 .06 + + + -.03 + -.05 -.05
24 + + + + - + - + - -

= positive difference but less than.03;
- = negative difference but large than -.03;
NA = not available, all power value are equal.
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C B H HL § s1

By > By=H=H
(1.0,0,0,0)

Rank crdexrings of contrast procedures for per-pair power.

Pattern GH T3
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Percent of time that procedures identified by the column label

a r-pai owe eater than a tiv b e
row label.
GH T3 Holland Shaffer Shafferl
GH 0 .64 .82 .88
T3 1.0 .78 1.0 <97
Holland .33 .22 .90 .83
Shaffer .18 0 .08 .56
Shafferl .10 .03 .15 .33

* Total of 72 conditions
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Table 9
Per-pair Power difference between two procedures. ui> u2 = 43 = pé (1>0=0=0).

A = GH-T3; B = GH - Holland; C = GH - Shaffer; D = GH - Shafferl; E = T3 - Holland; F = T3 - Shaffer;

G = T3 - Shafferl; H = Holland - Shaffer; I = Holland - Shafferl; J = Shaffer - Shafferl.

Pattern A B Cc D E F G H [ ]
1 + .03 + - + - -.03 - -.04 -
2 + - -.04 -.05 - -.06 -.08 -.03 -.05 -
3 .03 + - - - -.06 -.08 -.04 -.06 .
4 + 04 + .08 + - .05 - .04 .05
5 + - -.04 -.04 -.04 -.03 -.04 -.03 +
6 + - -.04 + -.03 -.06 - -.03 + .05
7 + - . . . - - . - +
8 + .04 + + + - - . -.03 -
9 + - - - - -.05 -.05 - - -
10 + . -.03 - - -.06 -.05 - - +
11 + - . . - . - +
12 04 .06 + .09 + . .06 -.04 .03 .08
13 + - - - - - - - - +
14 + - - - - - - - - 0
15 + . -.03 -.03 -.03 -.05 .05 - . +
16 + - - - - - - - 0
17 + + . - + - -.04 - -.04 -.03
18 .03 + - .07 -.08 -10 -03  -07  -40
19 .03 - - -.06 - -.04 -.09 - -.08 -0
20 + + - -.05 - - -.08 - -.06 -.03
21 .03 + - -.06 - -.08 -.09 -.03 -.07 -.04
22 + - - - - -.03 -.04 - - -
23 04 + - -.00 - -.04 -. 10 - -.09 -.06
24 + - - -.04 - -.04 -.05 - -.04

+ = positive ditference but less than .03;
- = negative difference but large than -.03;

NA = not available, all power value are equal.
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Table 10

Per-pair Power difference between two procedures. ul> u2 = 43 = 44 (1>.5>.25>0).

A =GH-T3; B = GH - Holland; C = GH - Shaffer; D = GH - Shaflerl; E = T3 - Holland; F_= T3 - Shaffer;
G = T3 - Shafferl; H = Holland - Shaffer; ]| = Holland - Shafferl; J = Shaffer - Shaffer].

Pattern A B Cc D E F G H I J
1 + + + - + - - - - -
2 + - - -.03 - -.04 -.05 - -.03 -
3 + + - -.03 - -.03 -.05 - -.03 -
4 + + + + + - + - - +
5 + + - - - -.04 - - - +
6 + + - + - - - - + +
7 + - -.04 .03 -.04 -.06 -.05 . - +
8 + + + - + - - - - +
9 + . . . .04 - -05  -.05 - .
10 + - - - - -.04 -.04 - - -
it + -.03 -.04 -.04 -.05 -.06 -.06 - - -
12 + + + + + - + - - +
13 + - -.04 -.03 -4 -.06 -.05 - - +
14 + -.04 -.03 -03 -.05 -.08 -.05 + + 0
15 + - -.04 - -.04 -.06 -.03 - + +
16 + -.04 -.04 -.04 -.06 -.06 -.05 + + +
17 + + + - + - - - - -
18 + . -.04 . + .04 .05 - -.03 -
19 + + . . - -.03 -.04 - . .

20 + - -.04 -.05 -.05 -.07 -.07 . . -
21 + + - -.03 . -.04 -.05 - -.04 .
22 + - -.04 -.05 -.05 -.07 -.07 - - -
23 + + - -.03 - -.04 -.05 - -.03 +
24 + -.04 -.06 -.06 -07 -.08 -.08 - - -

+ = positive difference but Jess than .03;
- = negative difference but large than -.03;
NA = not available, all power value are equal.
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Table 11.
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Table 12

A =GH -T3; B = GH - Holland; C = GH - Shaffer; D = GH - Shafferl; E = T3 - Holland; F = T3 - Shaffer;
G = T3 - Shaffer]l; H = Holland - Shaffer; | = Holland - Shaffer1; ] = Shaffer - Shafferl.

Pattern A B Cc D E F G H 1 J
1 + + . . . - - - . -
2 03 .03  -08  -08 -07 -11 -1l  -05  -0§ .
3 .03 - -.08 -.08 -.06 -.10 - 11 -.05 -.05 -
4 + . . . . . . . . .
5 03 -.03 -.09 -.09 -.07 13 <13 -.06 -.06 -
6 04 -.03 ~.07 -.07 -.Q7 - 11 - 10 -.04 -04 +
7 + - -.03 -.03 -.03 -.05 -.08 - ~ +
8 + + - . - - - - - -
9 04 - -.06 -.06 -.06 -.10 -.10 -.04 -.04 -
10 03 03 .08  -08  -06 -11 -}  -05  -.04 +
1 + ; ) . : . . . . 0
12 + + . . . . ] ; . ;
13 03 - 05  -05 .05 .08  -08  -04  -.04 0
14 + . . . . - . . . 0
15 + - - - - - - - - +
16 + ; . . i . ) ; d
17 + - - - - - - - - -
18 03 - -.06 -.38 -.05 -.0% -.10 -.04 -.04 -
19 . - -.04 -.05 -.04 -.07 -.08 -.03 -.04 -
20 .03 - -.06 -.06 -.05 -.09 -.09 -.04 -.04 -
21 .03 - -.06 -.07 -.05 -.10 -.10 -.04 -.05 -
22 + - -.04 -.04 -.04 -.06 -.07 - - -
23 .03 - -.08 -.06 -.04 -.08 -.09 -.03 -.04 -
24 + - -.05 -.06 -.05 -.08 -.08 -.03 -.04 -

+ = positi ‘e difference but less than ,03:
- = negative Jifference but large than -.03;
NA = not available, ali power value are equal.
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