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Abstract

A new approach to the ¢'2velopment of the item characteristic curve (ICC) is presented, in
which knowledge states, decision processes and other circumstances underlying responding to
objective tests receive a priori consideration. Earlier work on finite state models of objective
test performance provides the basis for deriving expressions for ICCs that directly account for
factors such as examinee willingness to guess, mode of test administration, number of options
per item, and the response strategy of the examinees. This approach utilizes a
parameterization of ability different from that used in conventional item response theory
(IRT) and yields ICCs that are polynomial functions of ability. The degree and coefficients of
these polynomials depend in part on psychological/circumstantial factors such as those just
mentioned or others that may readily be introduced. Examples are provided to show how
differing assumptions about objective test responding lead to variation in the shapes of the
resulting ICCs. The advantages that IRT could gain from adoption of these ICCs are
discussed, and the work that remains to be done before finite state polynomic ICCs can be
used in practice is outlined. Some possible extensions to the finite state approach are also
discussed.



Item Characteristic Curves: A New Theoretical Approach’

Miguel A. Garcfa-Pérez Robert B. Frary
Universidad Complutense Virginia Polytechnic Institute
de Madrid and State University

The item characteristic curve (ICC) is a key element of item response theory (IRT). Broadly
speaking, an ICC expresses the functional relationship between the level of performance on a
given task and an independent variable that is relevant to the task. As applied to ability or
achievement testing, where IRT emerged, the ICC expresses the probability of responding
correctly to an item as a function of the examinee's (unobservable) ability or knowledge.

Despite being a fundamental feature of IRT models, the true functional form of this relation-
ship must remain unknown. Nevertheless, application of IRT requires the adoption of some
mathematical form for the ICC. In Lord and Novick (1968, Section 16.8), some justification
is provided for the two-parameter normal ogive, with a derivation of sufficient if rather re-
strictive conditions for data to be consistent with this model. However, the conditions derived
are by ro means necessary ones, and Lord (1980, p. 30) stated a preference for considering
any particular ICC as representing a basic assumption in its own righi, which must be justi-
fied empirically. Replacement of the normal ogive with the logistic function was motivated by
its ability to mimic the ndrmal ogive while being more tractable mathematically (see Bim-
baum, 1968). The further development of the logistic function through the addition of the
pseudo-chance parameter, might be said to be theory driven; it was assumed that examinees
of very low ability would guess essentially at random on multiple-choice items, resulting in a
lower asymptote for the ICC at the probability of a correct guess under these conditions. No
further applications of psychological theory have yielded fundamental changes in the
mathematical form of ICCs adopted for large-scale IRT applications.

Hambleton and Swaminathan (1985, pp. 9-10) comment on the wide range of IRT models
that can be operationalized by simply changing the mathematical form of the ICC but do not
mention psychological considerations that might guide these changes. In keeping with Lord’s
philosophy, they only suggest testing the appropriateness of the choice by conducting good-
ness-of-fit studies. Samejima (1981, p. 230) pointed out some critcria for choosing among
various types of ICCs. However, her main conclusion was that the appropriateness of any of
the proposed models depends largely on the guessing behavior of the examinees. McDonald
(1982) approached this question more generally, proposing a framework from which many
models can be generated by varying the cumulative distribution function to represent the ICC.
He also offered no psychological criteria for deciding on the most realistic model, only point-
ing out the need for statistical tests leading to acceptance or rejection of any particular model.

The foregoing analysis led us to the conclusion that the logistic functions (or any other con-
ventional ICCs for that matter) do not embody psychological theory, in the sense that their a

'An expanded version of this paper has been accepted for publication in the British Joumal of Math-
cmatical and Statistical Psychology under the title, Finite State Polynomic Item Characteristic Curves.
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Item Characteristic Curves Garcia-Pérez and Frary

priori appropriateness as ICCs does not follow frem a formalization of the processes and vari-
ables that are involved in responding to test items. In fact, support for their use only comes a
posteriori, once they have been shown to describe data adequately (with the help of suitably
estimated parameters). This pragmatic approach to justifying the choice of logistic ICCs was
evident in Lord's (1980, p. 31) assertion that “justification of their use is to be sought in the
results achizved, not in further rationalizations. "

Contrary to prescribing the form of the ICC largely on the basis of expediency, we adopt
here an explanatory approach to the generation of mathematical expressions that can be used
as ICCs. Adopting a different parameterization of examinee ability and item difficulty, and
starting from (replaceable) assumptions about examinee behavior and item characteristics,
finite state theory allows the derivation of expressions for the probability of responding cor-
rectly to a test item, This approach produces ICCs that are primarily dependent on ability and
difficulty, just as is the case for conventional ICCs. However, certain aspects of their mathe-
matical expression also depend on other variables. These variables, not incorporated into
convertional IRT models, include the number of options per item, examinee willingness to
guess when uncertain, the response strategy followed by the examinees, the format of admin-
istration of the test, and poientially other item characteristics. This point is illustrated by
providing ICCs for different situations. All of these ICCs are polynomial functions of ability,
and we refer to IRT models built around them as finite state polynomic models.

The goal in this paper is to introduce these new ICCs and to compare them with logistic ICCs
from a number of points of view, with special attention to the different parameterizations
underlying each type of ICC and their theoretical foundations.

Finite State Theory and Finite State Polynomic ICCs

The assumptions and definitions underlying finite state modelling of objective test
performance have been thoroughly dealt with elsewhere (Garcfa-Pérez, 1987, 1989a, 1989b,
1990; Garc{a-Pérez & Frary, 1989). To avoid repetition, only a brief account of the theory
will be supplied here, which will suffice for the development to follow. However, a reading
of Garcfa-Pérez (1987) and Garcfa-Pérez and Frary (1989) will provide a more detailed
justification for some of the assumptions and definitions that wi'l now be introduced,

The term "statement” is central to the finite state approach. In the context of multiple-choice
testing, a statement is any sentence resulting from adding to the item stem one of its available
options. Finite state theory defines the level of knowledge of an examinee as the proportion
of statements about a subject matter whose truth value he/she knows. This characterization of
krowledge is akin to Falmagne and Doignon’s (1988) definition of a knowledge state with
respect to a body of information. In addition, the theory assumes that, when facing a multi-
ple-choice item, the examinee makes independent attempts to classify every single available
option as true or false. This process gives rise to a finite set of knowledge states about the
item, ranging from total ignorance through several degrees of partial knowledge to total
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knowledge. These states, in conjunction with the guessing strategy that the examinee adopts,
determine whether a conventional multiple-choice item will be answered correctly, answered
incorrectly, or left unanswered.

When the process just described is translated into mathematical terms, expressions for the
probability of these observable response outcomes can be derived. A two-stage modelling pro-
cess accomplishes this goal. First, an expression is adopted for the probability that the truth
value of a statement will be known. Then, expressions are derived for the probability that any
given response outcome will occur. These two stages will now be dealt with separately.

Probability of Knowing the Truth Value of a Statement

Let A (0sA<1) be the true proportion of statements about the subject matter whose truth value
an examinee knows. This is the (unidimensional) latent variable representing the examinee’s
levei of knowledge or ability, and it is also the probability that he/she will know the truth
value of a randomly drawn sta‘ement in a multiple-choice item. We call it A instead of the
usual @ in IRT for the sake of consistency with our previous work and to stress the fact that it
is not in some sense interchangeable with 8. Not only do A and 0 span different ranges, they
also have different relationships to performance, as will be seen. While A is nor the probabili-
ty of answering an item correctly, it is clearly related to this probability, as will be shown.
Also influencing the probability of answering correctly is the presence of topics in the subject
matter of interest, represented by items on the test, that are easier or more difficult than oth-
ers. Therefore, it would seem an oversimplification to assume that an examinee has a proba-
bility A of knowing whether an option is true or false as applied to a given item stem, not
taking into consideration the difficulty of the question being asked. So let § (0< § <1) repre-
sent item difficulty with values ciaser to 1 the easier the item, as is the case for the classical
difficulty parameter. We call it § instead of b, as is usual in logistic ICCs, because this pa-
rameter does not have the same meaning nor the same effect as b, as will be seen below. Tr
take item difficulty into account, we let the probability, p, that an examinee with ability A
knows the truth value of an option in an item of difficulty § be

p = al&1 O

Figure 1a shows a three-dimensioral plot of this power function of the inverse of item diffi-
culty, and Figure 1b shows sections of this function for items of selected difficulties. Note
that, for any given A, p increases with decreasing item difficulty (increasing 6). Note also
that p> A when 6§>.5 and p<A if §<.5 while §=.5 makes p=A. Our choice of the func-
tional relationship of Equation 1 was limited to functions such that, as & increases from 0 to
1 (though not taking on these extreme values), p increases gradually and monotonically from
a value of 0, attaining the value A when §=.5, and the value 1 when é=1. It is similar to
the power functions that appear in psychophysics (Atkinson, 1982) and is consistent with
attempts to establish links between test theory and psychophysics (Mosier, 1940, 1941;
Hutchinson, 1977).

o
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Figure 1. (a) 3-D plot of Equation 1. The origin of coordinates is at the lower left comer of
the rhomboid over which the surface ascends. Examinee ability (A) increases from 0 to 1
along the horizontal axis. Item difficulty () increases from O to 1 along the 45° tilted
axis. The height of each point in the surface is the probability of correct classification of an
option in an item of difficulty § by an examinee of ability A as given by the plane coor-
dinates of its vertical projection. Reference grid lines are spaced at intervals of .2 units.

(b) 1-D cuts of the probability surface at several item difficulty values. From top to
bottom, the curves represent the probability of correctly classifying an option within an
item as a function of ability for items of difficulties §=.9, .8, .7, .6, .5, .4, .3, .2, and .1.
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It may be noted that Equation 1 is actually the ICC for a very simple type of item to which
examinees respond under very restricted conditions, namely, true-false items at which they
never guess. As such, this function was chosen arbitrarily (but in conformity with the criteria
just outlined). If true-false responses with omissions in the absence of knowledgs could exist
in reality, there is then the question of how well they would fit the ICC of Equaiion 1. It is
possible that they would fit some other function better, for example, a bilinear function, such
as those used in Frary (198S5) and in Garcfa-Pérez and Frary (1989). We leave open the
question of the appropriateness of Equation 1 but will adopt it for further developmen in this
paper, because it is plausible, mathematically tractable, and not at all critical to our main
argument. Any other function meeting the criteria outlined above could be used and would
be preferable if it led to a better fit of real data. What Equation 1 (or a substitute for it) 1ep-
resents is a prototypical ICC. We will show how it may be used as a "building block” in tie
production of ICCs accounting for various sets of circumstances associated with multiple-
choice testing, circumstances that go beyond the simple case for which Equation 1 might be
appropriate.

Probability of Each Response Category to a Multiple-Choice Item

To demonstrate that application of Equation 1, we will assume a set of conditions associated
with a multiple-choice test. These assumptions were chosen to specify a rather comprehensive
set of testing circumstances. However, to facilitate preliminary development, the assumptions
are basically simple. (As a result, some of them may not seem highly plausible, though they
are by no means impossible.) Foliowing development of the ICC for these preliminary as-
sumptions, various ones will be modified in tum in the next section, and the resulting ICCs
will be derived. The preliminary assumptions are as follows:

i  local independence across items.

ii  independence of options. This means that options within an item must be independently
classifiable by examinees as if they actually were independent true-false items. Thus,
correct classification of fewer than all of the distractors must not lead the examinee to
infer what the correct answer is if he/she does not know it. Unavoidably, of course, cor-
rect classification of the answer must lead to classification of previously unclassified
.options as distractors, but this situation is handled appropriately by our procedure, as
will be seen.

jili  test with three-option items.

iv  distractors that are equally attractive as the correct answer to each item. This means
that, for a given examinee, the probability of being able to classify a randomly chosen
correct option is the same as for a randomly chosen distractor.

v examinee behavior such that the occurrence of (random) guessing among unclassified
options is determined only by each examinee's individual (overall) willingness to do so
irrespective of the number of distractors that he/she has identified on a particular item,
Individual differences exist in willingness to guess at random, so let y (0<y<1) refre-
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sent this willingness as the probability that a (specific) examinee will guess at random
when the correct answer is not known.

vi conventional administration of the test, i.e., asking examinees to maik the alternative
believed to be comrect for each item, but without advice as to how the test will be scored
or regarding the guessing strategy required for score optimization. (This lack of infor-
mation would be consistent with the guessing behavior assumed in Assumption v.)

As a consequence of all of the above assumptions, an examinee of ability A has a probabi!it;’
p of knowing whether each of the options of an item of difficulty & is true or false. Thus,
he/she will be able to classify the answer and some number of distractors for the item depend-
ing on A and &, as is clear from Equation 1. But it may happen that this knowledge will be
insufficient to permit marking the correct answer with assurance. In this case, the examinee is
free to guess at random among the unclassified options.

With these considerations in mind, our task is to derive a mathematical expression for the
probability of getting the correct answer to such an item as a function of 4, y, and §. Use of
a tree diagram to describe the possible sequences of events when responding to that multiple-
choice item facilitates this task. The tree diagram for three-option items responded to under
the directions in Assumption vi has been presented and described in detail in Garc{a-Pérez
and Frary (1989, Figure 1) for the special case in which the probability of being able to clas-
sify each option is simply A. Figure 2 is an adaptation, in which we have replaced A with p
in accordance with the development above. Note that assumptions ii-vi have been taken into
account in constructing this diagram. (Local independence across items is only needed to
collapse data from all items in the test.) Independence of options is necessary in order that the
links of the tree diagram signifying classification of options within a path be statistically in-
dependent. The three options in the item give rise to the eight-branch structure that is repre-
sented by the first three links. Four possible states of knowledge regarding the item arise
from this branching: correct classification of all three options (total knowledge), correct clas-
sification of two options onlv (high partial knowledge), correct classification of a single
option (low partial knowledge), and correct classification of no option (total ignorance). In
case of total knowledge, the examinee always gives the correct answer to the item. In case of
partial knowledge, Assumption iv leads us to apply a probability of k/n that the correct an-
swer to an n-option item is among k (0 <k<n-1) classified options. If exactly n-1 options are
classified, then the correct answer is always given since it is either included among the classi-
fied options or it is the only option that is not identified as a distractor, which means that it is
the answer (disregarding the possibility of misinformation). If the correct answer is not
known in other cases of partial knowledge or in the case of total ignorance, the examinee,
according to Assumption v, may either guess at random (succeeding or failing) or leave the
item unanswered. Finally, Assumption vi results in these states of knowledge leading to three
possible response outcomes: correctly answered item, wrongly answered item, or unanswered
item, as shown to the right of each path by C, W, and U, respectively. Also shown to the
right of each path is the probability of that particular sequence of events, which is the product
of the probabilities of each link within that path. Since there are several sequences that result

©
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in the same outcome, the sum of all probabilities of paths with the same result is the actual
probability of that outcome. Then, we get

c=p +3pXl-p) + p(l-p)2 + p(1-py*y + (1-p)’y/3, (2a)
w = p(l-py*y + 2(1-p)’ 7/3 (2b)
u = 2p(i-p)(1-y) + (1-pY(1-y), (2¢)
Link #
1 2 3 4 5 6 Outcome
P Cc:p’
C: p¥(1-p)
C: p¥(1-p)
I-X/ s C: pl1-p)/3
1}/ Y2 C: p(1-p)*/3
-../\)/ 1i~——— W p(1-p)%y/3
™~ U 26(1-p)1-1)/3
}/ C: p*(1-p)
; 1/3 C: p(1-p)¥/3
AN l'-k/ 12— C: p(1-p)*y/3
"‘/X.) 1/~ —— W p(1-p)2y/3
k* U: 2p(1-p)*(1-v)/3
1/8 C: p(1-p)t/3
. /20— C: p(1-p)/3
1-p /u\)’ 1/i~———— W p(1-p)*y/3
] % U:2p)1-p)*(1-v)/3
1\ USo—m—— C: (1-p)%/3
N> W 20-p)/3
} U: (1-p)%(1-Y)

Figure 2. Tree diagram describing the possible sequences of events when responding to a test
item when Assumptions i-vi in the text hold. The first three links represent attempts at
classifying each option as right or wrong. In the paths where they appear, the fourth links
represent inclusion of the correct answer among the classified options, the fifth links repre-
sent decisions as to guessing, and the sixth links represent the outcomes of those guesses.
Each path results in a responce outcome that is represented to the right of the path by either
C, W, or U. Also shown to the right of these letters is the probability of the sequence in
each path.
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in which ¢, w, and u denote the probabilities of the response outcomes designated by the cor-
responding uppercase letters. Note that Equation 2a expresses the probability of responding
correctly to an item as an explicit function of ability and item difficulty (and, also, guessing
propensity). Therefore, like Equation 1, it is an ICC. Note also that Equation 2a embodies
Assumptions ii-v, since they were used in the construction of the tree diagram from which
this equation comes. These assumptions cover the icst administration format (Assumption v),
the number of options per item (Assumption iii), the guessing behavior of examinees (As-
sumption v), and other item characteristics (Assumptions ii, and iv). To illustrate the appear-

(a) (b)

(c) (d)

S S { A VS 2
A A Benadh. 2 A 'y Al

o L ZNNNED e JENNED BN M SIS Smmn mmnmen s 0 e T N Ty Y-

A A

o
<

Figure 3. Finite state polynomic ICC given by Equation 2a. In each plot, curves represent,
from top to bottom, ICCs for items with §=.9, .7, .5, .3, and .1. (@) y=0. (b) y=.33.
©) y=.67. (d) y=1.

ance of this ICC, Figure 3 shows plots of ¢ as a function of A for items of various difficulties

and examinees of differing guessing propensities. Note that the probability of a correct answer
to the item increases with increasing guessing propensity and increases too with decreasing

1
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item difficulty (increasing &). Interestingly, not oniy does this procedure produce ICCs tai-
lored to the test format and the testing situation under consideration; it also gives rise to other
functions relating ability (A) to the probability of a wrong response or the probability of leav-
ing the item unanswered. These functions could have important theoretical implications for
polychotomous response models. In the next section, we further illustrate the flexibility of
finite state modelling to derive proper ICCs by considering items for which different varia-
tions on Assumptions i-vi hold.

Finite State Polynomic ICCs for other Situations

While not aiming to produce an atlas of polynomic ICCs, we explore here the consequences
of varying the assumptions that led to Equations 2a-2c in the previous section. Our main goal
is to show how various assumptions representing characteristics of the testing situation can be
incorporated into this procedure to derive matching IC/;. In order to make clear what these
effects are, we will modify each assumption in turn and produce corresponding ICCs for the
new situations. However, we will skip Assumptions i and ii. Local independence across items
is retained because, as noted earlier, it is required for collapsing data across all items in the
test. Assumption ii concerning independence of options might be removed. As mentioned
above, this assumption implies that correct classification of fewer than all of the distractors
must not lead to correct classification of the answer when it is not known. Violation of this
assumption could easily be handled by the model, but we will not consider this case here be-
cause test items with this characteristic would be considered logically defective both by
examinees and by score users.

Assumption iii: Number of Options per Item

Let us assume that ihere are four rather than three options per item but that the other assump-
tions listed above remain the same. This change has one consequence in the tree diagram,
namely, that there are four rather than three links corresponding to options. The resulting tree
diagram has 48 paths instead of the 19 paths of the diagram in Figure 2. We do not show it
here due to its complexity, but, nevertheless, upon constructing it, it can easily be seen that

¢ = p* + 4p’(Lp) + 3p°(1p + 3p2(1-pY'y/2 + p(1p) + p(1-p)’y + (1p)'y/4,  (3a)
w = 3p*(1-p)*y/2 + 2p(1-p)’y + 3(1-p)'y/4, (3b)
u = 3p*(1-p)’(1-y) + p(1-p)’(1-y) + (1-p)*(L-y). (3¢)

Figure 4 shows plots of Equation 3a for the same values of y and § as in the corresponding
plots for Equation 2a in Figure 3. Comparing Figures 3 and 4, it can be readily seen that any
curve for 4-option items is always below the corresponding curve for 3-option items. That is,
other things being equal, increasing the number of options in the item has the effect of lower-
ing the probability of an examinee's correctly responding to it.

12
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Figure 4. Finite state polynomic ICC given by Equation 3a. In each plot, curves represent,
from top to bottom, ICCs for items with §=.9, .7, .5, .3, and .1. (a) y=0. (b) y=.33.
() y=.67, (d) y=1.

Assumption iv: Identifiability of Distractors

Items are sometimes found one of whose distractors is much more readily classifiable than the
other options. Finite state modelling can easily accomodate items of this sort by assuming that
if a single option is classified, then it is a distractor. In the tree diagram of Figure 2, this as-
sumption means that the pmbability that a single classified option is the correct answer is
zero, while the probability of the correct answer being among k (1 <k<n-1) classified options
remains k/n. When three-option items are considered (i.e., for n=3), only the first part of
this statement applies (since there is no integer k such that 1 <k<2), and it results in branch-
es with probability % at the fourth link in Figure 2 being changed to 0 and branches with

0 13
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probability 34, also at the fourth link, being changed to 1. After these modifications, including
the deletion of paths one of whose links has been assigned a probability of zero, we get

c =p* + 3p*(1-p) + 3p(1-p)y/2 + (1-p)°y/3, (4a)
w = 3p(1-p)*y/2 + 2(1-p)*y/3, (4b)
u = 3p(1-p)(1-y) + (1-p)’(1-y). (4c)

Figure 5 shows plots of Equation 4a for the same values of y and & as above. There are a
number of different assumptions regarding the identifiability of distractors that can be used in
place of either of the two we have considered here. An example of another can be found in
Garc{a-Pérez (1990),

(a) (b)

o
o

(c) (d)

........... O o e

o
o

Figure 5. Finite state polynomic ICC given by Equation 4a. In each plot, curves represent,

from top to bottom, ICCs for items with §=.9, .7, .5, .3, and .1. (8) y=0. (b) y=.33.
(©) y=.67. d) y=1.
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Assumption v: Response Behavior

Now we will assume that the examinees take the test under directions to answer every item
regardless of knowledge. This practice will serve to eliminate a construct-irrelevant contami-
nant, namely, y. If the examinees comply with these directions, all of them will behave as if
y=1 regardless of anyone's particular willingness to guess. Under these circumstances, the
tree diagram is a simplified version of that in Figure 2 with y=1 everywhere. There, only
two possible response outcomes remain, whose associated probabilities can be shown to be

c = p* + 3p*(1-p) + 2p(1-p)* + (1-p)/3, (5a)
w = p(1-p)* + 2(1-p)/3. (5b)

Equations Sa and 5b are the same as Equations 2a and 2b when y=1. (Also, y=1 makes
u=0 in Equation 2¢.) Therefore, the ICCs described by Equation 5a for sclected values of &
are the same as those arising from Equation 2a for examinees with y=1 (see Figure 3d).
Note that the ICC represented in Equation 5a is the only one throughout this paper that ap-
plies to a dichotomous response model. As another example of how different response behav-
iors can be modelled using finite state methods, response behavior appropriate for formula
scoring has been considered in Garc{a-Pérez and Frary (1989).

Assumption vi: Format of Administration

When the administration format varies, the main structure of the tree diagrams remains basi-
cally the same, since it represents knowledge and behavior that are largely independent of the
administration format. The only difference is in the assignment of paths to the response cate-
gories that are possible under the particular format under consideration. We will illustrate this
point by considering a test administered under answer-until-correct (AUC) directions. In this
case, examinees continue selecting options until th- correct answer is chosen (see Hanna,
1975). Figure 6 shows the tree diagram for this situation. It differs from the diagram in Fig-
ure 2 in that the guessing link has been omitted, since examinees behave as if y=1. Also,
paths formerly leading to correct responses continue to do so as correct responses at the first
attempt (C,). Some of those formerly leading to wrong responses now result in correct
responses at the second attempt (C,), and some others result in correct responses at the third
attempt (C;). Finally, all formerly unanswered items result now in C,, C,, or C; (a correct
response on the first, second or third attempt). Therefore, from Figure 6,

¢, = p° + 3p*(1-p) + 2p(1-p)* + (1-p)'/3, (6a)
¢, = p(1-p)* + (1-p)°/3, (6b)
¢; = (1-p)*/3, (6¢c)

in which ¢,, ¢,, and c; denote the probabilities of the response outcomes designated by the
corresponding uppercase letters. Note that Equation 6a is the same as Equation 5a. This is
because examinees make their first attempt under AUC directions under the same circum-
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Item Characteristic Curves Garcf{a-Pérez and Frary

stances as under conventional directions, with answer-every-item behavior, regardless of the
number of options per item. The curves in Figure 3d apply in this case too. However, Equa-
tions 6b and 6¢ are also relevant, providing relationships between ability and probability of a
correct response on the second and third attempts. Thus, AUC directions give rise to
polychotomous response models, while answer-every-item behavior under conventional ad-
ministration of the test results in a dichotomous response model. This fact has a substantial
bearing on parameter estimation; the outcome of a second attempt at answering a three-option
item provides information beyond that which is available when the test is administered under
answer-gvery-item directions. And, clearly, the number of additional sources of information
that can be used in parameter estimation increases with the number of options per item when
the AUC format of administration is considered instead of the conventional one,

Link %
] 2 3 4 5 Outcome
] P Ci: A
V 1-p C, : P(1-p)
\y C, : P¥(1-p)
1-p\, . 2
p l-p -g /2 C,: p1-p)2/3
1/2 C,: p(1-p)?/3
y C1 : Pz(l"P)
] 1/8 C,: p(1-p)?/3
1}./ ‘2 , R
1-p\ »p %'< Cy: p(1-p)*/3
1/2 C,: p(1-p)?/3
:L3/ C1 : P("P)z/3
’ 1/2 C,: p(1-p)?/3
l-p y%. 1 p( p)z/
y 1/2 G, p(1-p)%/3
l\ 1/3 C,: (1-p)3/3
~F 1/ . 3
—_— e, (1-p)Y/3
1/3 Cy: (1-p)3/3

Figure 6. Tree diagram for the same situation as in Figure 2, except that the test is now
responded to under AUC directions. The only differences between this diagram and that in
Figure 2 are that the guessing link has been removed here since y=1 and that responding
with total ignorance may result in one among three response outcomes. Note, however,
that the response outcomes are different from those in Figure 2.
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Comparison with Conventional ICCs

As shown in the foregoing development, finite state polynomic ICCs follow naturally from a
mathematical description of objective test performance that starts from a parameterization
different from that implicit in logistic ICCs. As a consequence, the number of parameters and
their meanings differ substantially in logistic ICCs in comparison with those arising from
finite state modelling. Although the two types of ICC should eventually be <ompared empiri-
cally, this section is devoted to a theoretical analysis of the differences between the item and
examinee parameters of each type of ICC.

Polynomic & versus Logistic b and a

The difficulty parameter in logistic ICCs is the point on the ability scale at which an exam-
inee has a probability of answering the item correctly that is half-way between the lower
asymptote and 1. It is clear, however, that § does not have this interpretation, as revealed by
inspection of the plots in Figures 3-5. Further, variation in the logistic difficulty parameter
mercly produces a horizontal displacement of the ICCs along the ability scale, while variation
of & in finite state polynomic ICCs also varies the steepness of the curves (see Figures 3-5).
Therefore, & in finite state polynomic ICCs accomplishes the same effects as both b and 4
together in logistic ICCs.

This characteristic of § can best be appreciated if one considers the different meanings assign-
ed to item difficulty and discrimination parameters in classical test theory as opposed to IRT.
In classical theory, item difficulty is defined as the ratio of the number of examinees who
answer the item correctly to the number of examinees who attempt it, and item discrimination
is related to the number of distinctions that can be made among examinees based on responses
to the item. Obviously, these two parameters are not independent, and there is a well-known
inverted-U-shaped relationship between them: the number of distinctions that can be made in-
creases as item difficulty approaches a medium value, and it rapidly decreases as difficulty
approaches either of its extreme values. Although very easy or very difficult items have low
discriminating power from this point of view, it is also true that a fairly easy (alternatively,
difficult) item, which will not serve to distinguish among examinees of high (alternatively,
low) ability, can nonetheless be useful to distinguish among examinees of low (alternatively,
high) ability. The classical item discrimination parameter is deficient in this sense, since it
fails to capture the fact that items may have the same discrimination capability, but at differ-
ent ability levels. Conventional IRT attempted to remedy this situation by adopting different
definitions for difficulty and discrimination that made these parameters independent of each
other. The difficulty of an item was redefined as the ability needed to have a 50% chance of
answering that item correctly, and item discriminating power was redefined to reflect the ac-
curacy with which two examinees can be distinguished when they have abilities sughtly above
and below the ability designated as item difficulty. These two parameters are krown to be
related to the point of inflection and to the slope at this point on a conventional ICC, and
either of these two values can be varied independently of the other.
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Unlike the way either clarsical theory or IRT handles difficulty and discrimination, finite state
modelling implicitly assumes that the ability of an item to distinguish among examinees (i.c.,
its discriminating power) is a consequence of the interaction between the difficulty of the item
and the ability of the examinees who respond to it. As can be seen it Figures 3-5, the inflec-
tion points of finite state polynomic ICCs move to higher positions on the ability scale as item
difficulty increases (6 decreases). Thus, for these ICCs, items discriminate (in an IRT sense)
at ability levels that are directly related to their difficulty. At the same time, the slopes of the
inflection points are such that the inverted-U-shaped relationship between the classical diffi-
culty and discrimination indices will hold.

Polynomic y versus Logistic ¢

As Thissen and Steinberg (1986, Equation 5) show, the third parameter in logistic ICCs re-
sults from assuming that the probability of guessing correctly is a fraction of the probability
of really not knowing the answer. This fraction is nominally regarded as an item characteris-
tic, with, for very low ability examinees, a maximum equal to the inverse of the number of
options. However, lower values are often assigned to obtain better fits of the data. The need
for this lowering in an item parameter has been assumed to reflect an examinee characteristic,
namely, being misinformed or gullible with respect to certain distractors. Departures from the
inverse of the number of options have also been attributed to differences in guessing propen-
sity on the part of the examinees by Mislevy and Bock (1982, pp. 727-728) who wrote that,
owing to these differences, "the Bimbaum three-parameter model for dichotomous items,
which posits for each item a guessing probability that is constant over all examinees, will be
in error.” As they point out immediately afterwards, application of that model tends to over-
reward frequent guessers and under-reward examinees who tend to refrain from guessing. As
far as a comparison with the parameterization underlying finite state polynomic ICCs is con-
cerned, the important point is that the third parameter of logistic ICCs is forced to contain
both item and examinee components, despite being regarded nominally as only an item para-
meter.

Finite state modelling treats these two influences separately. Willingness to guess is incorpor-
ated as a second examinee parameter, y, which converts the polynomic ICC into an item
characteristic surface. The polynomic ICC lower asymptotes are then determined for every
particular y, with the lower asymptote reaching its minimum at 0 when y=0 and reaching its
maximum at the inverse of the number of options (see Figures 3-5) when y=1. Actually, it
makes little sense to speak about lower asymptotes at dimensional cuts of two-dimensional
functions, although any cross-sectional profile of the item characteristic surface at a selected y
will render a true ICC, and it is helpful to keep this in mind.

Because finite state polynomic ICCs have y as a second examinee parameter, the effects of
variations in guessing propensity on the part of the examinees can be removed from ability
and item parameter estimates. However, in two of the examples above, the contribution of the
second examinee parameter to the item characteristic surface was removed by assuming com-
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pliance with instructions to answer every item. Accordingly, the item characteristic surfaces
were reduced to curves, and, at the same time, the possible effects of differing guessing pro-
pensities were eliminated.

Polynomic A versus Logistic 8

The finite state parameter A represents ability in a metric that is directly interpretable in a
psychological sense, namely, as the amount of knowledge or ability that the examinee has.
More specifically, the use of A is consistent with the remarks of Glaser (1981, p. 935) sup-
porting the use of criterion-referenced testing and expressing "concern for making test scores
informative about behavior rather than about relative performance on poorly specified dimen-
sions” (italics added). Indeed, the suitability of A for use in criterion-referenced testing has
been addressed in Garc{a-Pérez (1989b), where the number of items required for arriving at
a mastery decision was determined as a function of examinee response strategy, number of
options per item, and test administration format.

The importance of these features of A (and of finite state polynomic ICCs) can be rca'ized by
considering the extent to which 8 can be interpreted as a ratio or even interval measure. Lord
and Novick (1968, p. 369) point out that "whenever any single item characteristic curve is a
monctonic increasing function of 6, i is always possible to transform 6 monotonically so that
the characteristic curve becomes a normal ogive." The transformed  is then uninterpretable
in any direct psychological sense. Moreover, it is important to realize that this transformation
is implicitly and unavoidably made whenever parameters are estimated by fitting data to the
normal ogive (or the logistic function). The Os that then result from transformations
constrained only to be monotonic can only be interpreted with assurance in an ordinal sense.

Additional Berefits of Using Finite State Polynomic ICCs

As shown in the two precedins, sections, finite state polynomic ICCs incorporate characteris-
tics of the examinees, the itzms, and the format of administration of the test in a realistic
manner. Also, finite state polynomic models give rise to a measure of ability that is directly
interpretable psychologically. But psychological realism and interpretability of A are not the
only practical advantages that can be gained from using finite state polynomic ICCs in place
of logistic ones. It is these additional advantages that we consider in this section,

Appilicability of IRT Methods to Any Format of Administration of the Test

The mathematical expressions derived using finite state theory are tailored to match any poss-
ible specification of the factors represented in Assumptions ii-vi above as they apply to a
given test, thus allowing IRT methods to be used with tests administered under any format.
One advantage of this fact can be illustrated in the context of the concern with parallel tests
on the part of classical test theorists, and the solution privided by IRT to cope with nonparal-
lel test forms. Suppose the same test were administerv¢ under two different formats to the
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same examinees. Then the tvvo administrations would be strictly parallel (disregarding learn-
ing during the test), but two different score distributions would result. The discrepancies
between them would result only from the differences in the format of administration, since the
same examinees and items were involved in both cases. Obviously, these score distributions
do not provide direct information about the abilities of the examinees in the group. This is be-
cause each format of administration of the test (potentially) gives rise to different and
noncomparable response outcomes that are differently related to ability. Under such circum-
stances, being able to recover the abilities from either of these two score distributions depends
on the availability of an appropriate theoretical framework that conveniently accounts for the
differences between the administration formats and that prescribes procedures to estimating
those abilities from either of the score distributions.

Conventional IRT would apply the same type of ICCs in both cases, which would require
changes in either the examinee or the item parameters, despite the fact that the same
examinees and items are involved in both cases. Unlike this approach, finite state theory of-
fers the needed theoretical framework and supplies the (different) ICCs that should be used in
each case to armrive at the same characterization of examinees and items in terms of their pa-
rameters. That scoring methods derived from finite state theory are capable of accomplishing
this goal has been confirmed in a dual administration of a test to the same examinees under
both conventional and Coombs-type directions (Garc{a-Pérez, 1987).

One other advantage of finite state theory as a tool for deriving ICCs is that it yields equa-
tions for polychotomous response models as readily as for dichotomous models. This charac-
teristic greatly facilitates the application of IRT to new and varied test administration formats.
It also provides a new methodology for the study of the interaction between test format and
examinee behaviors with the goal of increased accuracy in the estimation of ability.

Simplified Parameter Estimation

A thorough discussion of parameter estimation for finite state polynomic IRT models would
require a separate and lengthy paper. Therefore, in what follows, only major points character-
izing these models are presented.

The first of these is that the metric of A provides unambiguous ability estimates in the case of
perfect and zero scores. Unlike what happens with the unbounded 0 in logistic ICCs, these
scores will result directly in A=1 and A =0, respectively.

The adaptation of conventional IRT algorithms to the estimation of item and examinee para-
meters in finite state polynomic models has not as yet been addressed. Nevertheless, this work
should not be difficult to carry out, as only a replacement of the mathematical expression to
represent the ICC is involved. Moreover, Riefer and Batchelder (1988) have shown how easy
it should be to obtain maximum likelihood point estimates and confidence intervals for the
parameters of any finite state model.
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These concems aside, very simple methods for the estimation of A are already available that
have proven to yield accurate estimates (see Garcfa-Pérez, 1989a; Garcfa-Pérez and Frary,
1989). Taking the set of expressions for the probability of every response outcome that arises
in a given situation as a system of nonlinear equations, these methods merely involve solving
for A once every probability has been replaced with the empirical proportion of items an-
swered by the examinee in the corresponding response category. In practice, this amounts to
finding the single root in the interval [0,1] of what Garc{a-Pérez and Frary (1989) called a
"scoring polynomial® that is derived from the set of equations under consideration.

Regardless of the approach that is adopted for the estimation of parameters, it is also clear
that those procedures will have to be adapted to every particular ICC that finite state theory
produces, with special consideration of dichotomous versus polychotomous models. As was
pointed out in the last paragraph of the previous section, the properties of the estimates ob-
tained in each case could be taken as a basis for deciding on the optimal administration format
for the maximization of accuracy in parameter estimation.

Avoidance of ICCs that Cross

An important side effect of the way polynomic ICCs handle difficulty and discrimination is
that any two with the same c-intercept will not cross. This may be verified by noting that p
in Equation 1 is an increasing function of § and that all of those ICCs are increasing func-
tions of p. Hence finite state polynomic ICCs increase monotonically with increasing & (i.e.,
the probability of success decreases monotonically with increasing item difficulty). In the
case of logistic ICCs, it has been shown analytically by Sijtsma (1988, p. 64) that any two
with differing discriminating power must cross. This crossing often occurs at extreme values
of 6, but, even if the crossing occurs at a 8 within, say, [-2,2], it is often the practice to
adopt such two- or three-parameter logistic ICCs when they fit the data better than one-pa-
rameter logistic ICCs.

In many cases, however, the ubiquitous (so-called "empirical”) ICCs that cross may be only
the result of applying very powerful curve-fitting techniques to obtain two- or three-parameter
logistic functions with differing values of 4, which, therefore, must cross. In other words, it
is the decision to fit the data to a mathematical function permitting the curves to cross that
makes estimated ICCs actually cross, sometimes at a 8 within [-2,2]. To see how this might
happen, suppose that the polynomic ICCs in Figure 3a hold and that responses to the items
with &s of .5 and .9 are collected. From the shape of the true ICCs, it is clear that fitting
these data to logistic curves will yield much poorer results for the one-parameter function than
for the two-parameter function. This is because the true ICCs differ somewhat in slope, which
will in tum allow a two-parameter function-fitting algorithm that capitalizes on chance to
yield different values of @ for each item. As a result, their estimated two-parameter ICCs
must cross. Hence, artifactually, these items would be considered as evidence that "empiri-
cal® ICCs do cross, but in a situation in which the true ICCs do nor cross.
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Apart from this concern, the question of whether to model data with functions that are or are
not allowed to cross is theoretical and by no means empirical in nature. We believe that there
are strong reasons to prefer as ICCs functions that do not cross. As Wright (1977, p. 103)
pointed out in support of the Rasch model, "...we want to think that the probability of suc-
cess on the harder of two items should always be less than the probability of success on the
easier, no matter who attempts the items.” This property is ensured only when ICCs do not
cross. At the same time, only an item difficulty parameter arising from a framework that
yields noncrossing ICCs is well suited to conveying quantitative information about item loca-
tion in a body of knowledge whose structure can be described by a quasi order, such as that
considered by Falmagne and Doignon (1988),

Garcia-Pérez and Frary

Proper Treatment of Omissions, Guessing, and Partial Knowledge

Conventional ICCs only provide an expression for the probability of getting an item right,
which tends to deemphasize the fact that nonright responses can occur in at least two response
categories: wrong responses and omissions. As a result, in practice, the treatment of omis-
sions in conventional IRT is limited to categorizing them as either wrong responses or as
partially correct responses valued at the inverse of the number of options. Situations exist for
which neither treatment would be appropriate. For example, many standardized tests of edu-
cational achievement are administered under instructions which indicate that examinees should
guess when uncertain regardiess of their perceived knowledge. Yet numerous omissions oc-
cur, presumably due to lack of examinee motivatiun or failure to attend to the instructions. To
assume that all (or almost all) such omissions reflect total ignorance is certainly questionable.
Yet this assumption is required to value omissions at the inverse of the number of options. On
the other hand, treatment of omissions as wrong responses would penalize examinees refrain-
ing from guessing. Although Lord (1983) proposed a model incorporating a true guessing
parameter to account for omissions, available computer programs such as LOGIST
(Wingersky, Barton, & Lord, 1982) or PC-BILOG (Mislevy & Bock, 1986) still limit the
treatment of omissions to the two choices mentioned above.

Unlike this approach, finite state theory provides an expression for the probability of omitting
at the same time that it gives expressions for the probability of getting an item right or
wrong, save in cases where omissions do not occur. Hence, finite state theory provides for a
proper treatment of omissions under a polychotomous response model. The reason that this is
so is that finite state theory models the response behavior appropriately, establishing the con-
tribution of each knowledge state to the probability of each possible response outcome. This
can easily be seen by inspection of the right-hand sides of Equations 2-4, where omissions are
shown to be the result of failures to guess in cases of total ignorance and partial knowledge.
Also, correct and wrong responses resulting from guessing (with various degrees of partial

‘knowledge) occur with the probabilities given by the addends in which y is a factor, and cor-

rect responses resulting from total or partial knowledge have the probabilities given by the
remaining addends. Thus, finite state theory allows a distinction to be made between two
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different events and their associated probabilities: knowing what the correct answer to an item
is, and getting a correct response (by either knowledge or guessing).

Although the distinction between these events and the different cases of partial knowledge
underlying them is not usually considered in the use of conventional ICCs, it should be noted
that Waller (1989) suggested that the three-parameter logistic ICC can be decomposed into
two components which, in turn, can be interpreted as carrying information about the probabil-
ity of a correct response based on knowledge or as a result of guessing. Under this interpre-
tation, the probability of a correct response with assured knowledge will be provided by a
two-parameter logistic ICC, while the probability of a correct response from guessing with
partial knowledge may be obtained as the difference between this two-parameter ICC and a
three-parameter ICC. Finite state polynomic ICCs, instead, model this decomposition explic-
itly, as specified by the additive terms representing these cases in the functions themselves.

Provision for Independent Tests of Fit

In the introduction, we referred to the suggestion that an ICC should be considered a basic as-
sumption to be tested through goodness-of-fit studies. In this context, it is worth noting that
the finite state theory approach to deriving ICCs provides the means for tests of fit in a way
that is basically different from the conventional curve-fitting strategy used with logistic ICCs.

Testing the fit of a conventional ICC to data as indicated by a convenient goodness-of-fit sta-
tistic raises a fundamental contradiction, since the goodness of the fit is measured after para-
meters have been estimated under the assumption that the model is actually correct. One may
wonder to what extent these artifactual estimates force the fit, since it is well known that a
good fit can be found even when the source model has nothing to do with the fitted model
(see Wood, 1978). Put another way, conventional ICCs cannot really be tested against data,
but only fitted to them, since there is no possibility of testing the adequacy of a logistic ICC
independently of estimating model parameters. The main reason that this is so is that there are
no derivable predictions from logistic ICCs against which empirical data can be contrasted by
measuring their agreement with the theoretical expectations.

In contrast, finite state polynomic ICCs can be tested independently. This is true because
finite state theory provides expressions for the probability of every possible response outcome
to an item. It is this fact that results in testable predictions regarding the relationships among
the proportions of responses falling into each response category, predictions that can be tested
without recourse to estimating model parameters. Thus, finite state polynomic ICCs have an
advantage over conventional ones with respect to Marascuilo’s (1988) complaint that models
are more often fitted to data than tested against data, since they lead to goodness-of-fit studies
and parameter estimation algorithms that are independent of each other.

Further, a major and hard-to-avoid pitfall in the application of conventional IRT to practical
problems is the need to discard items that do not fit the assumed model. The fit of logistic
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ICCs to a range of empirical data is accomplished by varying the parameters of a single func-
tional expression. In assessing model-data fit, the underlying question is: can reasonable para-
meters be found such that most of the items pass a goodness-of-fit test? To answer this ques-
tion, very powerful curve-fitting algorithms are applied in a huge parameter space. Under
these circumstances it is not surprising that relatively few items happen to fail the goodness-
of-fit test. Nevertheless, even though the goodness-of-fit test nominally pertains to the ade-
quacy of the ICC as an assumption in its own right, it is common practice to discard the item
rather than the ICC when the fit is poor. This practice risks producing a test in which items
selected on the basis of a statistical critsrion may be educationally or psychologically inappro-
priate (see Goldstein, 1979), This potential outcome occurs as a result of using the same
mathematical expression for the ICC of every item in the test, a practice which, in tum, re-
sults from being able to employ only a very restricted set of parameters in tailoring conven-
tional ICCs to account for differences among items. Indeed, it simply may not be possible to
account for these differences in terms of thuse parameters.

Finite state polynomic ICCs are not limited in this way. Finite state theory accomodates em-
ploying a variety of (valid) assumptions that could permit keeping educationally or
psychologically relevant items in a test by properly accounting for their peculiarities. Appli-
cation of IRT only requires that each item be described by an ICC, with no need for all of
them to have the same mathematical forin. Although this variation within a test may compli-
cate the estimation procedures, adoption of finite state theory will serve the more critical goal
of providing a technique for handling the items that have been chosen to assess the desired
educational objectives. By supplying a framework within which the concept of poor-fitting
items can be replaced by the more plausible one of inappropriate ICCs, adoption of finite
state methods can provide test practitioners with a tool for accomplishing Goldstein’s (1979,
p. 220) recommended shift of emphasis "towards a development of quantitative assessment
techniques which are firmly rooted in qualitative educational objectives."

Discussion

Behind the surface aspects of any psychometric model! lies the underlying philosophy of its
proponents about how models should be constructed and what should be demanded of them.
As for ourselves, what we seek in a model of performance on objective tests is that it be psy-
chologically realistic and directly account for the processes involved in responding to an item
(as opposed to those involved in arriving at the response itself). This position motivates the
following discussion of the theoretical foundations of finite state polynomic versus logistic
ICCs in the context of recently expressed concern about the psychological realism of mathe-
matical models and about the explanatory role of mathematics in psychology.

Perhaps the most appealing feature of polynomic ICCs as compared with their conventional
counterparts is that the former are derived from an operational definition of knowledge level
and a set of realistic assumptions about how test items are constructed and how examinees be-
have in responding to them, whereas the latter lack this underpinning. At the core of this
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difference is the distinction made by Coombs (1983, p. 15) between the descriptive and ex-
planatory role of mathematics in psychology: “The descriptive use of mathematics does not
seek to explain an empirical generalization by deducing it from basic (axiomatic) properties of
the empirical system. In its explanatory role, mathematics can be used to show that an empiri-
cal generalization must necessarily hold." Further advantages of finite state modelling of
psychological processes have been discussed in Riefer and Batchelder (1988).

This theory-based approach to developing ICCs is consistent with the recommendations of
several authors who have discussed the shortcomings of other approaches. It is clearly in line
with Molenaar’s (1981, p. 228) request that the role of psychology be dominant over mathe-
matics and statistics in the development of models for achievement testing. Similarly, it con-
forms with the preference expressed by several authors (e.g., Loftus, 1985; Freedman, 1985,
1987; Marascuilo, 1988) for mathematical models connected to a theoretical framework.
rather than simply consisting of a set of equations that data are conveniently found to fit.
Indeed, there is more to constructing a psychological mode! than just getting a good fit.

Extensions to the Finite State Approach

The finite state approach we have dealt with in this paper is a general framework capable of
some further improvements in the direction of increased psychological realism or comprehen-
siveness, three of which we will now outline briefly.

First, as is the usual practice with conventional ICCs, we have not considered the possibility
that examinees are misinformed. However, an assumption to this effect would be easy to
incorporate realistically into the finite state framework. Toward this end, the options in the
item pool would have to be divided into three sets: those whose truth value the examinee
knows, those whose truth value the examinee ignores, and those about which the examinee is
misinformed. This leads to considering a third examinee parameter, u, to represent the proba-
bility of being misinformed about a given option. In this case, the constraints on these param-
eters are Osus] and 0sSA<1-u. As a result, a third branch would arise from the nodes repre-
senting each option in the tree diagrams, the branches now having base probabilities of u, 1,
and 1-A-u. This additional parameter will result in somewhat more complicated parameter-
estimation procedures. Nonetheless, as is the case with the fourth parameter in four-parameter
logistic functions, s may often have such a small value that its use in finite state polynomic
ICCs may not be worth the trouble.

Second, we have thus far assumed that § applies to an item and, hence, to each of its options.
An alternative view, possibly resulting in increased realism, would be to regard each option
as having its own distinct difficulty level. Then each option within an item might have a dif-
ferent value of §, which in turn would result in different ps for each option. This extension of
the model would have two different, but related, theoretical implications: it would allow the
model to account realistically for the fact that some options are more easily recognized as di-
stractors and, hence, less frequently chosen than others, and it would allow irem option char-
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acteristic curves to be derived for every distractor in an item administered under conventional
response directions (as opposed to allowing only the derivation of curves reflecting the proba-
bilities of answering correctly, answering incorrectly or omitting). Thus, as is the case in
conventional IRT with the work of Bock (1972) and others, finite state theory is capable of
producing IRT models for the nominal response case.

Third, the finite state approach can be extended in the context of speeded tests by the straight-
forward addition of a speed parameter. An illustration of how this could be accomplished can
be found in Link (1982), who used a finite state approach to deriving methods for analysing
response times to correct and wrong responses in experimeats involving yes-no questions.
This framework, either with or without the addition of difficulty parameters, can be directly
applied to true-false tests, and it can be further combined with finite state theory to yield
models in which both the type of the response and the time it takes the examinee to give it
are considered.

A Research Agenda for the Development of Finite State Polynomic IRT models

The main goal of this paper was to present a new kind of ICCs that arise as an extension of
finite state theory, a methodology that has already proven useful in modelling performance in
objective tests. To make finite state polynomic ICCs usable in practice, the first tning to do
is to make procedures available for the estimation of model parameters from responses to
objective tests meeting any particular set of conditions. Although, as noted above, this prob-
lem has largely been solved with respect to A (Garc{a-Pérez, 1987, Garc{a-Pérez and Frary,
1989, 1991), the estimation of § still has to be addressed.

There are 2 number of statistics available for measuring the goodness of the fit of a data set to
a multinomial model. From the conventional approach to assessing model-data fit in IRT, it
has been shown that some of them are more adequate than others (see McKinley & Mills,
1985). As finite state polynomic ICCs allow addressing the issue of model-data fit differently,
it remains to be seen which statistics are better for that purpose. Another important line of
work will have to do with the empirical comparison of finite state polynomic versus logistic
ICCs, not only as to their capability of fitting data but also, and more important, with respect
to the predictive validity of the resulting scores.

In addition, and putting together parts of what was mentioned above, use of finite state poly-
nomic ICCs would require the development of a complete model for any situation at hand.
Development of a spectrum of models for differing objective testing situations (e.g., with
varying numbers of options per item and administered urder various formats) would allow a
comparison among them to be made with an eye toward maximizing the amount of informa-
tion about the examinees that is obtained when a set of items is administered.
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