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Robust approximations to the non-null distribution

of the product moment correlation coefficiert I: The Phi coefficient

Abstract

Correlation coefficients are ;requently reported in educational and psychological research.

The robustness properties and optimality among practical approximations when p 0 with

moderate sample sizes are not well documented. Three major approximations and their

variations arel!xamined: a normal approximation of Fisher's Z, NI (Fisher, 1915); a Student's

t based appradmation, ti (Kraemer, 1973; Samiuddin, 1970), which replaces for each sample

size the population p with p*, the median of the distribution of r, a normal approximation, N6

(Kraemer, 1980), which incorporates the kurtosis of the X distribution; and five variations (t2,

ti', N3, N4, N4') on the aforementioned approximations. N I was found to be most appropriate,

though N6 always produced the shortest confidence intervals for a non-null hypothesis. All

eight approximations resulted in positively biased rejection rates for large absolute values of p

but for some conditions with low values of p with hetemscedasticity and nonzero kurtosis

resu3ted in the negatively biased empirical rejection rates.

Key words: Pearson Correlation, Phi coefficient, Robustness, Non-null distribution
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Introduction

The distribution of the product moment correlation has been widely investigated. In

particular, the mathematical and empirical properties of the null distribution (p = 0) and its

robustness have been extensively investigated (Duncan & Layard, 1973; Edge 11 & Noon,

1987; Fisher, 1915; Gayen, 1951; Kowalski, 1972; Kraemer, 1980; Pearson, 1931, 1932;

Ramussen, 1987; Zimmerman, 1986).

Let r be the product moment correlation coefficient between two random variables X and Y

with v degrees of freedom. Then, the test statistic for Ho: p = 0 is

T(r10, v) = v112 r(1 - r2)-1/2 . [1)

When the parent distribution is bivariate normal, [1} distributes exactly as Student's t with v

= n - 2 degrees of freedom, and as N (0,1) for large sample sizes.

The general consensus for p 0 is that the normal approximation is robust even with small

sample sizes when the parent distribution is bivariate nonnormal (Gayen, 1951; Havlicek &

Peterson, 1977; Norris & Hjelm, 1961; Pearson, 1931, 1932; Zimmerman, 1986) provided that

p = 0 implies independence between the two variables (Duncan & Layard, 1973; Edgell &

Noon, 1987; Kowalski, 1972). The exception is given to the contaminated normal variables

where p = 0 does not imply independence between the two variables. As an alternative to

applying the normal-r theory to the correlations obtained from bivariate nonnormal

distributions, Duncan and Layard (1973) have proposed a bootstrapping method for testing p =

0. Ramussen (1987), however, has shown that the normal approximation based on Fisher's Z

transformation using in testing non-null correlatiens is superior to the bootstrapping in testing

p = 0 for a nonnormal distribution satisfying the indep ,dence condition.

Compared to the extensive research on the null distribution of r, the studies on the non-null

distribution are comparatively few (Fowler, 1987; Gayen, 1951; Haldane, 1949; Kraemer, 1973,

1980; Samiuddin, 1970). Gayen (1951) has derived the mathematical expression for the

approximate sampling distribution of r for nonnormal distributions by incorporating the

information up to the 4th joint moments between X and Y. Although Gayen has shown that a
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simpler approximation to his derivation is satisfactory, his approximation is of little practical

value because it is still computationally cumbersome and it requires the specification of the

population joint moments, which are rarely known to a researcher.

The most frequently adopted strategy for p 0 is Fisher's Z transformation, which is

defined as

Zr = 1/2 ln [(1 + r) /(1 - r)], [2]

and is approximated by NI when sample sizes are large. NI is a normal distribution with

= 1/2 ln [(1+p)/(1 - p)]+ p/(2(n-1)) (1 + (5 + p2) /4(n-1)), and [3]

a2 = (1/(n-1)){ 1 + (4 P2)/2(n 1) + (22 - 6p2 - 3p4)/[6(n-1)2]). [4]

A simpler but less accurate approximation, N3, is again a normal distribution with

p.= 1/2 1n [(1+p)/(1 - p)], and [51

a2 = 1/(n-3). [6]

Gayen has reported that rsli considerably influenced by nonnormality when p 0 and the

normal approximation shows a satisfactory fit only for very large sample sizes. As an

alternative to Fisher's Z, Samuiddin (1970) and Kraemer (1973) have proposed another

transformation, T.

T(r1p, v) (r p) [(1 - r2) (1 p2)]112, [71

and it is approximately distributed as t with v = n - 2 degrees of freedom. The approximation

ti replaces p in [7] with p*, the median of the distribution of r, ( David, 1938; Kraemer, 197;),

T(rIp*, v)= y1/2 (r p*) [(1 - r2) (1 - p*2)]-1/2 . [8]

Kraemer (1973) has reported that ti is most accurate for I pI 5 .7, while N1 is most

accurate when p is near unity (Ipl .80) by showing the maximum deviations of the

approximate cumulative distribution from the actual cumulative distribution. When p* is

replaced with r, t2 approximation is obtained. The t2 approximation is reportedly satisfactory

for n > 25 (Kraemer, 1973).

Yet another derivation, which is a large sample approximation of tl, is N4. N4 is

approximately normal with the following mean and variance:

5



Non-Null Correlation

5

p. = 112 ln [(11-0)/0 09], ana [9]

o2 = (1/(n-1))+[ 2/{(n - 1)(n + 1))] + [23 /[3(n-1)(n + 1)(n + 3))]. [10]

Kraemer (1980) has examined yet another large sample approximation, N6. N6 is a large

sample approximation of [7] which incorporates the kurtosis, x (p.4/ o2x - 3) of the X-

distribution. The T statistic distributes approximately normal as

T(rlp, v) N (0,1 + p2 k/4). [ 11]

An optimal approximation for p 0 for bivariate =normal distributions has not been

determined because a direct comparison among ti, NI, and N6, has not been conducted. The

optimality conditions reported in Kraemer (1973) are focused on the maximum discrepancy for

the entire area of the sampling distribution and not on the tails or on the confidence intervals

for frequently chosen coverages. Consequently. #he approximation with the largest maximum

error in her study may not necessarily be the worst approximation in terms of the test sizes

and the typically used confidence intervals.

Because NI, ti, N4, t2, N3,and N6 require the knowledge of the population parameter p,

they can be used in testing an assigned value of p. However, the size of p is rarely known to

the msearcher, therefore, these are not practical in setting the confidence intervals for the

unknown p unless the variance is independent of the parameter. For N4, and N3, a confidence

interval can be derived for an unknown p because their variance estimates depend on the

sample size alone.

For Li and N4, it is also possible to derive a correction factor for p which does not depends

on the size of p. The median of the p', p', which is the median of the medians obtained from the

sampling distributions of r for a set of given p and n, was derived for the current study. The

values of p* are dependent on both p and n, but the values of p` are independent of the

population p and they can be determined for each sample size. A table of the correction

factors, p' - p are presented in Table 1. The researcher, based on the sample size, for example,

n = 12, can tell that the confidence limits for p should be adj..isted by 0.0138 from the confidence

6
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limits set for p'. The procedures using p' are ti' and N4', each corresponds to ti and N4,

respectively. As stated before, the procedure t2 uses p in place of p* in the equation for tt.

n gorreciion factor

12 0.0138

22 0.0069

32 0.0501

42 0.0039

52 0.0028

102 0.0015

202 0.0007

Gayen (1951) reported that Fisher's Z transformed variable was considerably influenced

by the non-normality if poO. The relative efficiency and robustness of these eight

approximations is not well known. The results reported in Kraemer (1973) are based on

normal distributions where t1 was found to be the optimal approximation as long as p was not

too large; for p> .80, Fisher's Ni approximation showed a better fit to the empirical

distribution of r than ti. Again, these results did not compare all eight procedures, nor were

they concerned with typically selected test sizes or confidence interval coverages.

Furthermore, the results are not well cumulated for the product moment correlation for discrete

variables, namely, the Phi coefficient.

The Phi coefficient

Given X and Y are discrete variables taking on 0 and 1, let p be the probability of 1 in X

variable and q be the probability of 1 in Y. The range of the product moment coefficient, which

is called the Phi-coefficient will be limited by the values of p and q.

7
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Kraemer (1980) examined the robustness properties of the asymptotic normal chstribution

theory based on three assumptions: linearity, homoscedasticity, and zero kurtosis. The Phi

coefficients were presented as an example nonnormal distribution with linearity trivially

satisfied and for p = q = 0.5, the homoscedasticity condition is also met. The kurtosis of the X

distribution is reflected in the variance of N6 as (1 + p2 )/4), where x. =1.14/a4 - 3 in general,

and is equal to [1 - 6p(1 p)j/4p(1 p) when X is discrete. She showed that for p # 0, even

with both linearity and homoscedasticity being satisfied, the normal approximation, N6,

showed sizable deviations from the empirical distribution of r and that this trend became

pronounced as p increastd. FurthemAcre, her Monte Carlo study indicated that N6, which

incorporates the kurtosis of the X-distribution, was extremely discrepant from the sampling

distribution of the 9-coefficient when p q, where heteroscedasticity also existed. The

performance of the other seven approximations nor the performance of N6 with respect to test

sizes and confidence intervals are not yet known.

Purpose of the Study

The purpose of this study is to examine robustness of the three approximations, tl, N1, N6,

and their five variations, ti', t2, N3, N4, and N4`, to the non-null distribution of the product

moment correlation coefficient, the Phi coefficient, when the parent distribution is bivariate

nonnormal. This research extends the work on the effect of heteroscedasticity and kurtosis by

Kraemer (1980) for the Phi coefficient. It may be argued that a Chi-square distribution is often

applied to a function of the Phi-coefficient in testing 9= 0 and not a normal approximation to

the Phi-coefficient itself, therefore, a direct normal approximation may not be needed in testing
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non-null hypotheses either. However, as we recall that a Chi-square is the squared normal

distribution, they are both rooted from the same asymptotic assumptions.

An investigation in this area is most useful in applied research, because (1) a researcher

rarely encounters a perfectly bivariate normal distribution; (2) a researcher cannot always

secure a large enough sample size to depend on the large sample normal-r them; and (3) a

researcher in a substantive area is likely to be dealing with p 0 rather than p = 0 and acctui.:,e

confidence intervals are indispensable in cumulating research efforts in the field.

Method

A computer simulation method is used to investigate robustness of eight approximations

when p 0. Random numbers are generated using the International Mathematical Subroutine

Libraries (IMSL, 1989). A computer program for this study was benchmarked against the

tabled data reported by Kraemer (1980, pp.173-174) for the 9-coefficient. All experimental

conditions had 1000 replications for each of the following conditions: two nominal a levels :

0.05, 0.01; four sizes of p: .2, .4, .6, and .8; and six sample sizes: 12, 22, 32, 52, 102, and 202 .

The distribufions with p = q = 0.5, p = q 0.5 ( p = q = 0.25 and p = q = 0.75), and p q ( p =

0.25 q = 0.75 and p = 0.50 q = 035) were generated using the definitions for 2 x 2 cell

probabilities presented by Hamden (1949) and Kraemer (1980). The values of p and q limit

the range of possible p, therefore, certain combinations were not examined because it was

impossible to generate.

Results

Along with the confidence limits, the length of the confidence interval, empirical test size

for testing p = AO (P07'0) at a = 0.05, the sample rmax and rmin value (Caroll, 1954; Guilford,

1949) which indicate the range of the sampling distribution of r, are reported in the tables.

Because the 1% results were very similar to the 5% counterparts in their trend, the selected

results for the 5% are summarized in Tables 2 to 4.

As the sample sizes reached over 30, all eight approximations were practically the same.

For low r values with p = q = 0.5, all approximations were equally good except for N6, which

9
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consistently showed a positive test size bias. In general, N6 showed the shortest confidence

intervals followed by NI; and N6 showed the largest test size of all eight approximations. For

0 with p = q = 0.5, basically all eight approximations except N6 behaved similarly for the

conditions tested (Table 2). N6 showed a decisive positive bias in its test size which did not

diminish until n > 40 in testing (13 = .20. Once .40, all eight approximations started to

increase their test sizes. As reported in Kraemer (1980), N6 did not well behave when

became large. From this study, it is also clear that any other approximations cad not behave
well for (I) .80 (Table 3). When pq, tj and NI both increased their test sizes but they were

still favorable to N6. N6 seems to show the inflated Type I errors and the tendency becomes

worse for certain conditions of p7tq (p = 0.50 and q = 0.75) with n < 30. However, for some

other heterogeneity condition such as p = 0.25 and q = 0.75, all eight approximations showed

negatively biased test sizes (Table 4).

Discussion

Although uncritical extrapolation of the preliminary simulation results should be avoided,
all eight approximations were very close even for small sample sizes. N6 consistently showed

the shortest confidence intervals fQr all conditions, however, it also showed a larger positive
bias in its test size in comparison to the immediate competitor, NI. The unexpected result

was that N6 consistently showed its poor performance. Even the simplest approximation, N3,

seemed to be more robust and accurate than N6. Another surprize was that even with p = q =

0.5, thus, the homoscedastic condition is Inet, all eight approximations were not satisfactory
for the large absolute value of 9. A practical guidance may be to adopt N3 in general but there

is no optimal approximation so far for large absolute values of (P. Currently we are

investigating several alternative approximations for the conditions with relatively high values
of 9.

1 0
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Table 2. Eight approximations for the non-null correlation coefficient with p = 0.2 and p = q = 0.5

sample size
(rmin r, rmax)

N1 t 1 N6 t2 ti` N3 N4 N4'

N = 12

( -.719, .208, .751)

95% Confidence limits (-.357, .667) (-.377, .664) (-.353, .665) (-.367, .674) (-.381, .660) (-.365, .672) (-.368, .659) (-.372, .655)

[Length of CI] [1.024j [1.041] [1.018] [1.041] [1.041) [1.037] [1.027] [1.027]

Rejection rates at 5%a 0.061 0.057 .084 .057 .057 .057 .061 .061

N = 22

(-.789, .198, .808)

95% Confidence limits (-.222, .558) (-.230, .556) (-.217, .555) (-.225, .561) (-.231, .554) (-.223, .560) (-.227, .554) (-.229, .552)

[Length of CI] [.780] [.786] [.773] [.7851 [.785] [.783] [.781] [.781]

Rejection rates at 5%a .046 .046 .070 .046 .046 .049 .046 .046

N = 32

( -.808, .202, .845)

95% Confidence limits (-.144, .506) (-.150, .504) (-.141, .504) (-.146, .507) (-.151, .502) (-.145, .507) (-.148, .503) (-.150, .501)

[Length of CI] [.650] [.6541 [.645] [.653] [.653] [.652] [.651] [.651]

Rejection rates at 5%a 0.068 .068 .078 .068 .0650 .068 .068 .065

a 95% SE of simulation = .0135, providing (.0365, .0635) as a Cl for the nominal level of 5%.

1 3
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Table 3. Eight approximations tor the non-null correlation coefficient with p = 0.8 and p = q = 0.5

sample size N1 tl N6 t2 tl' N3 N4 N4'

(rmin , 1, rmax)

N = 12

(-.676, .875, .800)

95% Confidence limits (.501, .935) (.473, .924) (.531, .929) (.487, .938) (.473, .924) (.489, .937) (.480, .923) (.480, .923)

[Length of CI] [.434] [.451] [.397] [.451] [.451] [.4481 [.443] [.443]

Rejection rates at 5%a 0.320 .320 .342 .318 .320 .318 .320 .320

N = 22

(-.752, .795, .900)

95% Confidence limits (.584, .908) (.574, .903) (.606, .901) (.580, .909) (.573, .902) (.581, .909) (.575, .902) (.575, .902)

[Length of CI] 1.3241 [.329] [.295] [.329] [.329] [.328] [.327] [.327]

Rejection rates at 5%a 0.154 .154 .389 .145 .154 .145 .154 .154

N = 32

(-.775, .800, .915)

95% Confidence limits (.637, .896) (.631,

[Length of CI] [.259]

Rejection rates at 5%a 0.253

.893) (.654, .890) (.636, .897) (.630, .892) (.636, .897) (.631, .892) (.631, .892)

[.262] [.236] [.261] [.261] [.261] [.261] [.261]

.253 .266 .228 .253 .232 .253 .253

a 95% SE of simulation = .0135, providing (.0365, .0635) i" - CI for the nominal level of 5%.

1 5
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Table 4. Eight approximations for the non-null correlation coefficient with p = 0.2 and p = 0.25 q = 0.75

sample size
(ram r, rmax)

N1 t 1 N6 t2 tl' N3 N4 N4'

N = 12

(-.698, .194, .334)

95% Confidence limits

[Length of CI]

Rejection rates at 5%a

N = 22

(-.741, .205, .331)

(-.392, .668)

11.060]

0.026

(-.412, .665)

[1.078]

.020

(-.390, .667)

[1.058]

.034

(-.403, .675)

[1.078]

.020

(-.416, .661)

[1.078]

.020

(-.400, .673)

[1.073]

.020

(-.403, .660)

[1.063]

.026

(-.408, .656)

[1.063]

.026

95% Confidence limits (-.228, .564) (-.237, .562) (-.226, .562) (-.231, .567) (-.238, .560) (-.230, .566) (-.234, .560) (-.236, .558)

[Length of CI] (.793] [.799] [.788] [.798] [.798] [.796] [.794] [.794]

Rejection rates at 5%a 0.023 .023 .027 .015 .023 .015 .023 .023

N = 32

(-.777, .196, .330)

95% Confidence limits (-.156, .504) (-.154, .503) (-.157, .505) (-.162, .500) (-.156, .505) (-.160, .501) (-.161, .500) (-.162, .500)

[Length of CI] [.660] [.663] [.656] [.663] [.663] [.661] [.661] [.661]

Rejection rates at 5%a 0.018 .017 .021 .017 .018 .017 .018 .018

395% SE of simulation = .0135, providing (.0365, .0635) as a CI for the nominal level of 5%.
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