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L. INTRODUCTION

As the United States begins to experience the effects of the "baby bust" and an increased
emphasis on college training, rather than vocational, the labor pool from which to draw
workers decreases. In addition, computer skill levels required for these jobs are increasing,
thus further reducing the number of potentially qualified applicants. As more businesses
become automated, persons with little computer experience are suddenly thrust into a virtual
"computer world". Given this scenario, an effort must be made to determine those elements
of training which will aide in the acquisition of skill on computer-based tasks.

In general, at least three primary factors exist, related particularly to the individual, which
can impact productivity in cognitive-oriented work: previous learning (including training),
present knowledge of the task and individual differences. While externally determined
factors, such as work schedule and compensation are important, the present paper focuses
on the internal factors.

It appears certain that the mental representation of the system one holds is a determining
factor in the ability to solve complex problems. For example, Kieras and Bovair (1984)
performed a study concerned with the importance of mental models in learning to operate
an unfamiliar piece of equipment (a basic control panel). It was shown that the group
trained with the mental model learned and executed the procedures more quickly, had
superior retention and simplified inefficient procedures more often than the group trained
without the model. In the realm of computer programming, Mayer (1989) suggests that the
presentation of a concrete model early in a novice programmer’s training program may have
beneficial effects on his or her encoding and use of new technical information. Adelson
(1981) demonstrated that expert programmers reorganize randomized computer code in a
hierarchial structure, while novices group code according to its syntactic similarity. Likewise,
McKeithen, Reitman, Reuter and Hirtle (1981) studied the memory strategies of novices and
experts. In the reproduction of a computer program, novices used general mnemonic
strategies, such as an alphabetic strategy, while experts used a more specific strategy of
grouping the words according to their functions. While the results of Mayer’s study would
tend to favor the incorporation of a concrete model in training a novice programmer, the
results of Adelson and McKeithen et al would suggest the use of more hierarchial
representations for attaining higher levels of skill.

Rather than focus on a single training style, recent research has suggested the need to
tailor training programs to individual differences. Sein and Bostrom (1989), for example,
have found that people with an "abstract" learning style will perform significantly better when
provided a training program which emphasizes the abstract features of the domain, while
those with a "concrete" learning style perform almost twice as well when given an analogical
(concrete) training program compared to the abstract training program. Some researchers
have attempted to train expert and novice programmers to form a particular mental
representation. For example, Adelson (1984) showed that novices could be forced into a
semantic representation (as opposed to their preferred syntactic representation), and experts
could be forced into a syntactic representation (as opposed to their preferred semantic
representation). However, these representations proved unstable, and both groups
eventually switched back to their more "natural”" representation. It would appear that, as
implied by the results of Kolodner (1983), Murphy and Wright (1984), Novick (1988), and
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Koubek and Salvendy (1989), this "change-over" from a concrete mental representation of
the novice to an abstract representation of the expert will occur over time, only as the novice
gains additional experience in a particular task domain.

Others have shown the importance of a breadth-first, compared to a depth-first training
style for final performance on troubleshooting tasks. Zeit and Spoehr (1989) concluded that
the degree of hierarchial structure within a learning tool is reflected in the structure of the
learner’s knowledge representation. In addition, a hierarchically organized knowledge base,
along with applied practice, will lead to procedural representations, while subjects who lack
a hierarchial kncwledge base will not develop procedural representations. In support of the
interplay of one’s knowledge structure and the performance level of a given task, Lambert
and Newsome (1989) studied the impact of question format and organization presented by
an intelligent system on the problem-solving performance of experts (high-skill employees)
and novices (low-skill employees). The results provide further evidence that experts and
novices organize conceptual knowledge of a problem in different manners. When questions
were posed by thz system requiring concrete information organization, low-skill employees
performed significantly faster than when the questions required abstract information
organization. Additionally, high-skill employees performed faster in response to questions
which required abstract information organization as compared to concrete information
organization. These findings may have far reaching implications in the development of
expert systems, as well as in training novices to program and debug efficiently.

Another emphasis in the literature suggests training to develop automatic processes (Fisk
and Gallini, 1989). This is supported by Wiedenbeck (1985) who found that, even in simple,
automated tasks, experts are significantly faster and more accurate than novices.
Automaticity states that as practice accrues on consistent task components, then the
processes associated with executing these consistent components become automated, and
automated processes require no cognitive resources. Non-consistent task components,
however, must be executed with controlled processes, which are resource intensive.
Therefore, if one were able to be trained to automatically process certain cognitive
information (i.e. computer code), thereby requiring less cognitive resources for the
performance of that particular cognitive task, the speed and efficiency of task performance
would increase. :

Cognitive style may also be a determining factor of one's asymptotic skill level for
computer-oriented tasks. For example, the cognitive style of field independence is "definable
in terms of degree of dependence on the structure of the prevailing visual field, ranging from
great dependence, at one extreme, to great ability to deal with the presented field
analytically, or to separate an item from the configuration in which it occurs, at the other"
(Witkin, Lewis, Hertzman, Machover, Meissner and Wapner, 1954). In a study which
examined student and professional programmers’ cognitive representations of software, Holt,
Boehm-Davis and Schultz (1987) found that the mental models formed (which were
examined while subjects performed either simple or complex modifications to a program)
were affected by problem structure, problem type, and ease of program madification.
Specifically, the mental models of the professionals were most affected by modification
difficulty, while the mental models of the students were most affected by the structure and
content of the programs. This suggests that the professionals may act in a “field
independent" manrer, since they were less influenced by the surface structure of the
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program. Conversely, it is possible that the students, who were primarily affected by the
surface structure and content of the programs, may be classified as "field dependent". While
evidence supports each of the above stated factors as performance determinants, it is
beginning to appear that a complex interaction exists between individual differences, training
and the current knowledge representation of the task.

Derivation of Hypotheses

From the above review, several factors have been studied extensively as influential in
producing cognitive-oriented task performance. The present research examines the role of
training, problem representation and individual differences on performance of both
automated (simple) and controlled (complex) process tasks. The following hypotheses are
proposed.

Hypothesis One: Training and cognitive style affect the representation developed.

Hypothesis Two: Training and cognitive style affect the development and performance of
automated processing.

Hypothesis Three: Training and cognitive style affect controlled process task performance.

Hypothesis Four. The task representation affects the development and performance of
automated processes.

Hvpothesis Five: The task representation affects controlled process task performance.

Il. METHOD

In order to test the above hypotheses, subjects of varying cognitive styles were trained in
either an Alphabetical or Hierarchial manner to use a word processor. Following training,
their task representation was assessed and they were required to perform both controlled
and automatic process tasks.

Task

Subjects were required to perform four tasks: cognitive style assessment, domain training,
representation evaluation and stimulus task execution. The cognitive style of Field
Independence (FI) - Field Dependence (FD) was used to categorize subjects with respect
to their individual differences. Based on the cognitive style theory mentioned previously, one
would predict that FI and FD subjects would tend to form conceptually different knowledge
representations depending on the structure of their training.

Following the administration of the Hidden Figures Test (Eksirom, French, Harman and
Dermen, 1976) to assess cognitive style, subjects werc trained to use a computer word
processor (Microsoft Word version 4). Subjects received traininy on the word processor in
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one of two ways. One group received the commands arranged alphabetically while the other
group received training in which the commands were arranged in a hierarchial manner,
based on their functional interrelationships. Each group was given the same commands and
examples from which to learn. The only difference was presentation order.

The third task required subjects to complete a representation evaluation form. This form
presented 17 learned word processing commands, paired with one another, to yield a total
of 136 items. Subjects were asked to rate the degree of similarity on a 5-point Likert-type
scale for each pair. This data was evaluated through clustering techniques to identify the
subject’s representation of the word processing domain.

The fourth experimental component required subjects to perform two text editing tasks
using the word processing skills learned in the second phase. In the first editing task,
subjects were presented a document and were asked to perform a centering task 30 times,
once each on evenly spaced lines. This task was relatively straightforward and the cognitive
process should have been easily automated. This is defined as the AP (automated process)
task. The second task required subjects to place two paragraphs side-by-side in the
document. The side-by-side procedure required a combination of several steps and was
relatively complex. Subjects were allowed 15 minutes to complete this task. The side-by-
side task is designated as the CP (controlled process) task.

Subjects

While 20 subjects volunteered for the experiment, one was eliminated due to her
experience with the stimulus task. The remaining 19 (9 male and 10 female) were
undergraduate university students, from a variety of academic majors with little or no general
word processing experience and no prior experience with the present system. Based on their
Hidden Figures Test score, subjects were classified as either FI or FD. The national average
score on this test, 16, is used as the criterion for placement into groups. Ten subjects had
scores below 16 (FD) while nine had scores of 16 or above (FI). These subjects were
randomly divided into the training conditions, yielding nine trained alphabetically and ten
hierarchically.

Variable Definition and Experimental Design

The independent variables for this study were cognitive style and training method. As
described above, the representation was elicited through cluster analysis of similarity ratings.
This analysis provided insight into the manner in which subjects group various commands
and can suggest evidence regarding the accuracy and completeness of their mental
representation. From the cluster analysis, the representation was characterized by the
variables listed in Table 1.



TABLE 1. Description of Representation Variables.

VARIABLE

DESCRIPTION

Maximum Distance Between Clusters

Total Number of Clusters

Number of Horizontal Layout Commands Misclassified

Number of Vertical Layout Commands Misclassified
Number of Font Commands Misclassified

Purity of Horizontal Layout Cluster

Purity of Vertical Layout Cluster
Purity of Font Cluster

Overall Cluster Purity

Number of Commands Not Clustered

Provides overall rating of the
differentiation between clusters. Low
values indicate little distinction
between commands.

Calculated by counting the number of
separate clusters that exceed one-half
the maximum distance between
clusters. Clusters which exceed this
value can be considered prominent
and significant.

Three conceptual clusters exist in the
task: horizontal page layout
commands, vertical page layout
commands and font commands. This
variable indicates- the number of
horizontal layout commands which
were incorrectly classified into vertical
layout or font clusters.

See above.

See above.

Binomial variable which indicates
whether subjccts had a single cluster
which included all the horizontal
layout commands and no others.
Impure=0 and pure=1.

See above.

Sce above.

Composite value which is computed by
summing the individual purity values.

Provides an indication of domain
representation completeness.
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Three variables were derived to characterize automation: alpha, Ty and T For the AP
task, performance was described by the log-linear function T,=T,n**, In this equation,
alpha represents the rate of learning and T, is the time for completion of the first trial.
These parameters were derived directly from the data. Using these values, the time for the
1000th trial, Ty was calculated as an estimate of asymptotic performance. CP task
performance was characterized by whether the subject completed the task in the allotted
time. Therefore, the dependent variables are TO, T1000, alpha (for the AP task) and
whether the CP task was completed. In addition, the representation oriented variables serve
as either dependents or independents as a function of the analysis.

A 2x2 MANOVA design was used to test the first two hypotheses. The independent
variables were cognitive style (FI versus FD) and training (Alphabetical versus Hierarchial).
The dependent variables for each analysis were those derived from the representation and
automated process tasks respectively. Due to sample size restrictions, the third hypothesis
was tested with a Chi-Square procedure. The fourth hypothesis, designed to examine the
relationship between task representation and automation, was performed with canonical
correlation and multiple regression procedures, while the fifth hypothesis was tested with
Chi-Square and discriminant analysis techniques.

Procedure

Prior to the training phase, subjects were administered the Hidden Figures test to
determine their cognitive style and assigned to the appropriate training group. An attempt
was made to evenly distribute FI and FD subjects into the training conditions. In the second
phase, subjects received their respective training modules. During training, subjects read
hard-copy descriptions of each command and were required to practice each command with
the actual system before proceeding. Subjects were allowed as much time as necessary.

Upon completion of training, subjects were given the representation evaluation form and
asked to bring the completed form back the next day, when they would perform the stimulus
tasks. On the day following training, subjects were allowed to re-familiarize themselves with
the system and then perform the AP and CP tasks in that order. The subjects were
provided with a keyboard and a mouse as their computer interface for the two tasks. Their
training manuals were also furnished for assistance. A concurrent verbal report was required
of the subjects throughout the CP task. Each subject was allowed 15 minutes to complete
the CP task. The testing session was videc taped for later analysis. Following testing, a
second representation evaluation form, identical to the first, was completed to identity any
possible changes in knowledge representation.



III. RESULTS

Training and Individual Difference Effects

Representation Development. Hypothesis 1: Training and cognitive style affects the
representation developed. The potentially complex interactions of various representation
variables warrant multivariate analysis procedures, therefore, a 2X2 MANOVA was
performed with cognitive style and training as the independent variables. (Vertical
commands, horizontal commands and font purity were not included in this analysis due to
their non-normality). The dependent variables were derived from the cluster analysis as
described previously. No significant effects were found for training, cognitive style or the
interaction. Therefore, Hypothesis One is not supported.

Automated Task Performance. Hypothesis Two: Training and cognitive style affect
the development and performance of automated processes. As described above, the
variables used to characterize automated task performance are alpha, Ty and Typ As might
be expected, these variables are all significantly correleted with each other at the p<.02
level. For the purposes of this experiment, each variable is examined independently through
a 2x2 ANOVA procedure with training and cognitive style serving as the independent
variables.

Regarding initial performance, Ty, while no main effects occur, a significant interaction
between training and cognitive style is evident (F(1,15)=7.04; p<.018). See Table 2 for
these results. With regard to learning rate (Table 3), once again, a significant interaction
occurs (F(1,15)=6.45; p<.023). The highest values (or fastest learning rate) are found for
FD subjects with Alphabetic training (significantly different from all other means at p<.05)
while the lowest learning rate occurs for FD subjects with Hierarchial training. There
appears only a slight trend for FI subjects to acquire automated processes more quick'y with
a hierarchial representation (see Figure 1).

From Figure 1, it appears that FD subjects perform better initially when presented with
hierarchial training (p<.05 level; Newman-Keuls test). After practice, however, the
computed T,gy value indicates that final performance for FD subjects is best served with the
Alphabetic training rather than Hierarchial training (p<.05). Neither main effects nor the
interaction were statistically significant for T,

Apparently, the hierarchial representation training allows D subjects to more quickly
orient to the problem. As expected by the definition of Fie'd Independence, performance
of subjects classified into this group appear unaffected by the training style. Further
research is needed to examine this issue more clearly.

16



TABLE 2. ANOVA results for the effect of training and cognitive style on the
develdpment and initial performance (T,) of automated processes.

Sum of Mean
Source df Squares Square F p-value
Training 1 0.3709 0.3709 3.20 0.094
Cognitive Style 1 0.1929 0.1929 1.66 0.217
Interaction 1 0.8162 0.8162 7.04 0.018
Error 15 1.7393 0.1159

TABLE 3. ANOVA results for the effect of training and cognitive style on the
development of automated processes.

Sum of Mean
Source df Squares Square F p-value
Training 1 0.0381 0.0381 3.94 0.066
Cognitive Style 1 0.0091 0.0091 0.94 0.348
Interaction 1 0.0624 0.0624 6.45 0.023
Error 15 0.1453 0.0097

11
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Figure 1. Automatized task performance: Ty and Tye completion times.
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Controlled Task Performance. Hypothesis Three: Training and cognitive style affect
controlled process task performance. On the CP task, six of the 19 subjects found the
correct solution within the allotted time of 15 minutes. Due to the limited number of those
completing the task, the effect of training and cognitive style on CP task completion were
analyzed separately using Chi-Square procedures. The statistic was identical for both
variables: { 2=.693; p<.405. Therefore, hypothesis three cannot be confirmed.

Representation Effects

Automated Process Task Performance. Hypothesis Four: The task representation
affects automated processes. To evaluate hypothesis four, a canonical correlation was first
performed on the representation variables (excluding overall cluster purity since it is a linear
combination of existing variables) and the automation variables listed previously. This
multivariate procedure determines the relationship between two sets of variables (SAS
Institute, 1988). Results indicate a statistically significant correlation between the two groups.
The Squared Canonical Correlation is 0.82, which is significant at the p<.02 level. It is
therefore suggested that a relationship exists between the representation subjects possess and
their performance on automated tasks, supporting hypothesis four.

In an effort to examine this relationship in more detail, three stepwise multiple regression
analyses were performed on alpha, T, and T« respectively, using the representation
variables as independent variables. From this analysis, the rate of learning (alpha) can be
predicted by the Maximum Distance Between Clusters and the Purity of Font Cluster
variables (using 0.15 as the entry and removal criterion). 'With these two independent
variables, 31.55 percent of the variance in alpha can be predicted (F(2,16)=3.69; p<.043).

In addition to the above two independent variables, the regression equation to predict
initial time to perform the AP task, T,, includes the Number of Horizontal Commands
Misclassified. This is logical since the AP task dealt primarily with horizontal page layout.
With these three variables, the computed statistics are as follows: R?=.593, F(3,15)=1.28,
p<.003. No variables met the 0.15 significance level for entry into the model for predicting
estimated final performance, Ty From the above results, hypothesis four is supported and
it can be concluded that the knowledge representation impacts AP task performance, at least
in the initial stages of developing automaticity.

Controlled Task Performance. Hypothesis Five: The task representation affects
controlled process performance. For this analysis, subjects were divided into two groups
based on whether they successfully completed the task in the allotted time. From this, a
Chi-5quare analysis was performed using the variables Overall Cluster Purity (grouped as
0-1 and 2-3) and successful or non-successful task completion (see Figure 2). This analysis
reveals that there is a significant dependency between these variables (F=6.094; p<.025).

—
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In order to determine the utility of this finding for predicting performance on CP tasks from
knowing the knowledge representation features, a discriminant analysis was performed on
the 19 subjects. Using the computed discriminant function with Overall Cluster Purity, §9.13
percent of the subjects were correctly classified as successful or unsuccessful. More
specifically, one successful subject and three unsuccessful subjects were misclassified. With
only one variable, the accuracy of this discriminant function supports hypothesis five, that
representation significantly influences controlled task performance.

In order to determine the CP solution strategies of the subjects, a GOMS analysis was
performed on the verbal protocol data (selection rules were not obtained in this analysis).
A "master" GOMS solution containing a set of three goals and their coinciding methods and
operators to accomplish those goals was developed upon which to compare subject solution
strategies. From the analysis of the subjects’ solutions, three strategies became evident:
Direct, Single Branch and Multiple Branch.

Those subjects whose strategies contained no incorrect methods (that is, all methods
utilized led the subject closer to the task goal) were classified as Direct (D). The only
deviations of these subjects’ solutions from the master GOMS solution were individual
"operators" within the chosen methods. Four subjects were placed in this category, and of
these, three successfully completed the task.

A second strategy classification is Single Branch (SB). These subjects tended to follow a
single solution path, even when that particular path was not leading them closer to the task
goal. The classification criterion for this category required the subject to have performed
three successive methods (different by no more than one operator) that did not advance the
subject closer to the ultimate goal. This pattern may have occurred at any point within the
solution set. Five subjects were determined to be Single Branch, and none reached the
solution of the CP task.

The final strategy is Multiple Branch (MB). The remaining ten subjects moved from
method to method in search of the correct solution pattern (which three subjects located).
To be placed in this category, subjects must have implemented 2 or less incorrect methods
consecutively, while not following the Direct pattern. It should be noted that, in order to
ensure the correct placement of subjects into their respective solution strategy groups, the
classification process was performed independently by two raters.

Following the placement of subjects into their respective solution strategy groups, a
Wilcoxon’s Rank-Sum Test was performed, using Overall Cluster Purity as the ranked
variable, in order to determine if representation differences existed between the groups.
Purity scores were then tested for each solution strategy group against the purity scores of
the other groups independently. The overall purity scores in the Direct group were found
to be higher than those in the Single Branch group (W,(n;=4,n,=5)=11.5; p<.05), and those
in the Multiple Branch group (W,(n;=4,n,=10)=17; p<.05). The overall purity scores
appear to be slightly higher in the Single Branch group than in the Multiple Branch group,
but the result was not significant. Figure 3 shows the relationship among the group means.
From the previous results, it can be seen that subjects with high purity scores tend to utilize
a Direct solution strategy when performing a controlled process task, while subjects with low
overall purity scores follow a Multiple or Single Branch approach. It is noteworthy to
mention that 75% of those subjects with Direct strategies completed the task compared to
30% and 0% of the Multiple Branch and Single Branch Groups respectively.
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In summary of this section, it appears that task representation affects the solution strategy
employed in a complex cognitive task, which in turn is a determining factor of successful task
completion. A complete summary of the statistical analyses performed in this study is given
in Table 4.

IV. CONCLUSION

The first hypothesis of this study (training and cognitive style affects the representation
developed) was not supported. Similar to the results of Adelson (1984), the particular
training (Hierarchial versus Alphabetical) administered to the subjects, regardless of their
cognitive style, did not affect their developed representation. Again, it appears that subjects
will maintain their most natural representation.

Significant results were obtained for the effect of training and cognitive style on the
development and performance of automated processes. The fastest learning rate was found
for Field Dependent subjects with Alphabetic training, while the slowest learning rate
occurred in Field Dependent subjects trained hierarchically. Initial AP task performance of
FD subjects was actually aided by hierarchial training, but the final performance was best
aided by alphabetic training. This result is related to previous findings which suggest a
switch from a concrete to an abstract representation as one becomes experienced in a
particular task domain. In particular, an individual is not necessarily an expert simply
because a particular task has been automated.

No evidence was found to support the effect of training and cognitive style on controlled
process task performance (that is, whether the subjects finished the CP task in the allotted
time). Further research is needed in this area.

Automated processcs were found to be affected by the task representation. More
precisely, the rate of learning, alpha, was predicted by two independent variables:
Maximum Distance Between Clusters and the Purity of Font Cluster. In addition, the initial
time to perform the AP task, T; could be predicted with the inclusion of a third
independent variable, the Number of Horizontal Commands Misclassified.

Controlled process task performance was also found to be affected by the task
representation. Simply by knowing the subjects’ task representations (based upon Overall
Cluster Purity), approximately 89% of the subjects were correctly classified as to whether
they finished the CP task. In addition, the particular strategy utilized to perform the CP task
was affected by the task representation. Overall Purity scores were highest for those subjects
who approached the task with a Direct strategy, and 75% of those subjects completed the
CP task successfully.
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TABLE 4. Summary of Results

L e ]
HYPOTHESFS STATISTIC SIGNIFICANCE
L e ]
1. Training & Cognitive Style 22 MANOVA N.S!
affect representation
developed

2 Training & Cognitive Style
affect development and
performance of automated
processes

(a) Initial Performance (Ty)

* Main Effects 22 ANOVA N.S.
* Interaction 22 ANOVA p<0.018
* Field Dependent Newman-Keuls p<0.05

subjects better

with Hierarchial
training than
Alphabetical training

(b) Final Performance (Tiu)

* Main Effects 2x2 ANOVA N.S.
* Interaction 22 ANOVA N.S.
* Field Dependent Newman-Keuls p<0.05

subjects better

with Alphabetical
training than
Hierarchial training

(c) Learning Rate (Alpha)
* Main Effects 22 ANOVA N.S.
* Interaction 22 ANOVA p<0.023
* Highest for Ficld Newman-Keuls p<0.05
Dependent subjects
with Alphabetical
training

3. Training & Cognitive Style Chi-Square N.S.
affect controlled process
task performance

4. Task representation affects Squared Canonical p<0.02
automated processes Corrclation
(a) Initial performance (To) Muitiple Regression p<0.003
(b) Final performance (1) Muitiple Regression N.S.
(c) Rate of lecamning (Alpha) Muiltiple Regression p<0.048

5. Task representation affects
controlled process performance

(a) Representation atfects Chi-Square p<0.025
probability of success

(b) Representation affects
solution strategy

* Higher overall purity Wilcaxon's p<0.05 v
scores in Direct group Rank-Sum
than in Single Branch
* Higher overall purity Wilcaxon's p<0.05
scores in Direct group Rank-Sum
than in Multiple Branch
L. e

IN.S. = Not significant at p<0.05 level.

_—y
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The above results support the view that a high level determinant of operator performance
on cognitive-oriented tasks exists: domain represeniation. Previously, it has been suggested
that training to develop automaticity and high level performance simply requires repetitive
practice. However, the present results appear to indicate that, depending on individual
operator characteristics, a higher level factor can significantly influence initial performance
and the rate of learning on mundane and straightforward tasks which are well suited for
automaticity. In addition, the task representation influences performance on more complex
tasks, including the strategy used to complete them. Since computer-oriented tasks may
require both types of performance from operators (automatic and controlled processes),
emphasis should be placed on selecting and reinforcing the correct representation for the
particular task requirements and individual operator characteristics. However, further
research is necessary to determine mechanisms for teaching and reinforcing these
representations. The present study did not identify factors which lead to the particular
representation developed. With this knowledge, training programs could be targeted to
develop representations most suited to the task and operator, thereby decreasing training
time and increasing task performance.

0
(W3
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