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Abstract

A multidimensional non-parametric IRT model of test bias is presented, providing an explanation
of how individually-biased items can combine through a test score to produce test bias. The
claim is thus that bias, though expressed at the item level, should be studied at the test level.
The model postulates an intended-to-be-measured target ability and nuisance determinants whose
differing ability distribations across examinee group cause bias. Multiple nuisance determinants
can produce item bias cancellation, resulting in little or no test bias. Detection of test bias requires

a valid subtest, whose items measure only target ability. A long-test viewpoint of bias is also

developed.

Keywords: latert trait theory, item response theory, item bias, test bias, DIF, long-test theory,
essential unidimensionality, item bias cancellation, target ability, nuisance .eterminants, valid sub-
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1 Introduction

The purpose of this paper is to present an Item Response Theory (IRT) based conceptualization
of test bias for standardized ability tests. By “test bias” we mean a formalization of the intuitive
idea that a test is less valid for nne group of examinees than for another group in its attempt to
assess examinee differences in a prescribed latent trait, such as mathematics ability. It will be seen
that test bias is the result of individually-biased items acting in concert through a test scoring
method, such as number correct, to produce a biased test. In a subsequent paper of ours, this new
conceptualization of test bias is used to undergird a new statistical test for psychological test bias
(Shealy and Stout, 1990) Also, a large-scale simulation study (Shealy, 1989) has been conducted of
the performance proper-ies of this statistical procedure, in particular as compared with the Holland
and Thayer (1988) moclification of the Mantcl-Haenzel test.

We mention three distinct features of the conceptualization of bias presented herein. First, it
provides a mechanism for explaining how several individually-biased items can combine through a
test score to exhibit a coherent and major biasing influence at the test level. In particular, this
can be true even if each individual item displays only a minor amount of item bias. For example,
“word problems” on a “mathematics test” that are too dependent on sophisticated written English
comprehension could combine to produce pervasive test bias against English-as-a-second-language
examinees. A second feature, possible because of our multidimensional modeling approach, is that
the underlying mechanism that produces bias is addressed. This mechanism lies in the distinction
made between the ability the test is intended to measure, called the target ability, and other
abilities influencing test performance that the test does not intend to measure, called nuisance
determinants. Test bias will be seen to occur because of the presence of nuisauce determinants
possessed in differing amounts by different examinee groups. Through the presence of these nuisance
determinants, bias then is expressed in one or more items. A third feature, also possible because of
our multidimensional mode'ing approach, is that a careful distinction is made between genuine test
bias and non-bias differences in examinee group performance that are caused by examinee group
differences in target ability distributions. It is important that the latter not be mistakenly labeled
as test bias.

The novelty of our approach to bias lies not so much with its recognition of the role of nuisance

determinantsin the expression of test bias, but rather in the explicit multidimensional IRT modeling



of bias, which in turn promises a clear and thorough understanding of bias.

2 An Informal Description of Test Bias

We begin with an informal definition of test bias.

Definition 2.1. Test bias occurs if the test under consideration is measuring a quantity in addition

to the one the test was designed to measure, a quantity that both groups do not possess equally. O

It is important to note that this notion of test bias grows out of the traditional non-IRT notion of
test bias based on differential predictive validity. Papers by Stanley and Porter (1967), Temp (1971),
and in particular Cleary (1968), exemplify this classical predictive view of bias. These studies used
standardized tests to predict performance on a particular task; if the predictive link from test to
task was different for the two studied groups, then test bias was suspected. Cleary (1968), in a
seminal paper on test bias, studied bias in the piediction of college success of black and white
students in integrated colleges, using SAT verbal and math scores. Her intent was to determine if
the expected first year GPA (grade point average) for Whites was different from that for Blacks,
after the two groups had been matched on SAT score; hence, the linear regression of first year GPA
on SAT verbal (or math) score was separately fit for both groups and compared. If the expected
criterion (GPA) for those examninees attaining a particular test score (e.g., SAT combined score)
were different across group, the test score was considered a biased predictor of rerformance and test
bias was deemed to be present. The purpose of the Cleary study was predictive; the regressions of
criterion on test score therein were compared across group to see if the test score equitably predicts
the performance measured by the criterion.

Our focus shifts hereafter to regressing test score on criterion. The purpose of the reversed
regression is to corroborate that the prediction of a criterion by a test is equitable across group,
thereby exposing the conceptual underpinning for IRT modeling of test hias — in particular our
modeling of test bias. The regressions of test score on criterion are compared to answer the
following question: are the uverage test scores for both groups the same after the groups have been
matched on criterion performance?

This shift to a corroborative point of view brings us again to the informal definition above.
The difference across group in the regressions of test score on criterion (other than that caused

[ J
by statistical error) is due to an undesirable causative factor other than the criterion; that is, at
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least some of the test questions must be measuring something in addition to what the criterion
measures. Furthermore, this difference is due only to the undesirable factor, because the criterion
has been held equal in the two groups.

If in addition to the reversal of the regression variables just described, the criterion is now
chosen as internal to the test instead of external to it, the concept of the internal assessment of
bias results. This internal criteria becomes the “yardstick” by which the test is judged biased or
not; it is a portion of the test itself. The implicit assumption is that the “yardstick” portion of the
test consists of items known to measure only what they are supposed to be measure.

An example adapted from Shepard (1982) clearly illustrates this internally-assessed bias: a
verbal analogies test is used to compare reasoning abilities of German and Italian immigrants
to the United States, the two populations matched on English fluency. However, 20% of the test
items are based on words with Latin origins, whereas the remainder have linguistic structure equally
familiar to both groups. Here, the items with Latin origin words are possibly biased. A reasonable
internal criterion with which to assess this bias would be a score based on the responses to the
linguistically neutral items; for, it is assumed that these items are validly measuring what the test
is intended to measure.

The internal assessment viewpoint of test bias can be clarified by noting two distinctions between

it and the classical test theory based differential :egression conceptualization of Cleary and others:

(A) The “yardstick” (criterion), which was a measurement of task performance (e.g., 1st year
GPA in the Cleary study), is now a score internal to the test (e.g., score on the linguistically
neutral items in the Shepard example). This internal criterion is most often an aggregate

measure of a portion of the test item responses (typically number right).

(B) The differential regression approach used regressions of the external criterion on test score in
a predictive context. In internally-assessed bias studies, the responses of one or more items
suspected of bias are regressed on the internal criterion as a corroborative statistical test that

these “suspect” items are measuring the same thing that the interral criterion is measuring.

This brings us to an essential question: what is the internal criterion measuring? It is mea-
suring a theoretically postulated psychometric construct that is intended to be ger.eralizable to

a variety of possible future tasks: i.e., a latent ability of an IRT model. Thus IRT modelling of



bias becomes appropriate. An example will illustrate: the SAT math test is designed to measure a
construct, “mathematical ability”, which is intended to predict an examinee’s future success in a
set of quantitatively-oriented college courses that require a component of such ability. Rather than
assessing the SAT test against the corresponding set of criterion measures of performance in these
courses, we wish to assess the test against the construct itself; to do so we turn to the test itself to
verify that the proper measurement of mathematical ability is being done. The internal criterion
measures this ability construct, and internal test bias is defined with respect to this construct.

The generalizability of performance measurements on a variety of tasks to a single construct, as
described above, provides one motivation to shift to internally assessed bias studies. An additional
motivation is the practice in recent years of creating item pools, large numbers of items that are
to be used in forming multiple versions of a standardized test (see, for example Hambletor and
Swaminathan, 1985, Ch. 12). A newly constructed set of items intended for inclusion in the item
pool can be tested for bias, relative to the ability construct that the pool is supposedly measuring,
by employing internal bias detection techniques.

Internally assessed bias studies with a variety of test populations have been done: Cotter and
Berk (1981) attempted to detect bias in the WISC-R test with white and minority children. Dorans
and Kulick (1983), in a series of studies done at Educational Testing Service, scudy the possible
effect of differential mastery of written English between native born Americans and English-as-a-
second-language Oriental students on scores of selected items on a mathematics “word problem”
test.

Item bias studies such as the ones above usually focus on single item at a time; if several items
in these studies are simultaneously found to be biased, it is a result of statistical bias procedures
conducted for each item separately, which iaises delicate questions about simultaneous statistical
inference. Moreover, in a modeling sense, no causative reasons for the observed simultaneous bias
are explored by item bias studies. This paper studies a form of test bias relative to an internal
criterion; this kind of test bias considers the set of test items acting as a unit (via a common causal
mechanism) and combining through a test scoring method. The precise formulation of test bias
and a contrast of it to item bias is presented in Section 4.

We now consider the question of test bias relative to an internal criterion more carefully. Con-

sider a situation where a single verbal analogy item is embedded in two different tests, tests M and
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Vsay. Test V is composed of verbal analogy items, as intended, and Test M consists of mathematics
calculation items, as intended, except for the single embedded item. Assume that each item in Test
Y does not contain any culture-dependent material that may favor one group. The embedded verbal
item is not biased in Test V, but the potential for bias of this item is large in Test M, because the
item measures something other than the intended-to-be-measused mathematical calculation skill.
This illustrates a key component of test bias, aptly stated by Mellenbergh (1983, p. 294): “An
item can be biased in one set of items, whereas it is unbiased in another set.” Shepard (1982) also
points out this relativity feature: “... if a test of spatial reasoning inadvertently included several
vocabulary items, they would be biased indicators of the [ability being measured)” and “... in a
test composed equally of two types of items reflecting...two different [ability] constructs, it will
be a dead heat to decide statistically which set defines the test [ability] and which set becomes a
biased measure of it.”

Implicit in the above discussion is the assumption that a portion of the test defines the internal
criterion by which the remainder is measured for the presence of bias. A collection of items defining
the internal criterion will be called a valid subtest. An informal definition of a valid subtest can
now be given: A subtest is valid with respect to a specified “target” ability if Jhe subtest score
is judged to be measuring only the intended target test ability, i.e., it stands as a “proxy” of the
ability one intends to measure. More precisely, if all of the items of the subtest measure only the
intended ability then the subtest is said to be valid.

There is a point about this definition that needs mentioning. Primarily, the existence and
identification of a valid subtest is an empirical decision based on expert opinion or data at least
in part external to the data set in question. Subtest validity cannot be established based on the
test data set alone nor can it be theoretically deduced. The “burden of proof” is an empirical one
and lies with the test constructor. If all the items of a test depend on a second determinant (for
example, if the responses to all items depend on familiarity with standardized tests) then a valid
subtest will not exist. Note that this is true even if the two groups are not differentially penalized
by this dependence of test items on familiarity with standardized tests. Thus, the actual presence
of test bias is logically independent of the existence of a valid subtest to be used for the assessment
of test bias.

In our framework, it must be assumed that there is a valid subtest if we are to internally detect '



test bias; otherwise, it is intrinsically nondetectable internally. The responses to the valid subtest
are used to tackle the central problem in the identification of test bias: the need to distinguish
between group differences attributable to the ability construct intended to be measured and that
due to unwanted ability determinants. Because the valid subtest is assumed to measure only the
desired ability, then no measures external to the test are required to assess that ability, although
to improve accuracy it may be beneficial to also use external data, especially if the valid subtest is
short or if the assumption of its validity is at all suspect. Matching examinees using a valid subtest
score controls for group differences in the intended-to-be-measured ability and isolates differences
due to the unwanted determinants. A more rigorous formulation of “valid subtest” is set out in
Section 4.

In these discussions of test bias relative to an internal criterion, multidimensionality has implic-
itly been invoked; it is impossible to discuss test bias without invoking it. The informal definition
of test bias stated above emplcys multidimensionality: there is mention of the quantity the “test
was designed to measure” and one “in addition to” this quantity. Lord (1980, p. 220) “ecognized
this in his discussion of item bias: “if many of the items [in a test] are found to be seriously biased,
it appears that the items are not strictly unidimensional®.

Bias in one or more items has typically been attributed to special knowledge, unintended to
be measured, that is more accessible to one of the test-taking groups. Ironson, Homan, Willis
and Signer (1984) performed a bias study that involved planting within a mathematics test math-
ematics word problems that required an extremely high reading level to solve them. They state
their conclusion that “... bias is sometimes thought of as a kind of multidimensionality involving
measurement of a primary dimension and a second confounding dimension”. Qur viewpoint here
is that bias is always the result of multidimensionality.

The “primary dimension” is referred to in this paper as target ability, because this is the ability
the test intends to measure. The “confounding dimension” is referred to as a nuisance determinant.
In the Shepard verbal analogies example above, the target ability is reasoning ability, which 80% of
the items solely measure, while the nuisance determinant is familiarity with Latin linguistic roots.

The full formulation of test bias is set out in Section 4-it involves certain subtleties not djs-
cussed here. The group differences in ubility level of a latent nuisance determinant provide a

common causative mechanism for bias in any collection of items on a test contaminated with such
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a determinant. This is the single most important conceptual difference between the test bias model
developed in this paper and previous item bias work: the existence of a postulated common latent

cause for the manifestation of bias across a group of test items.

3 The IRT Model for Test Responses

Herein we present the nonparametric multidimensional IRT model underlying our modeling of test
bias. Consider a group of G of examinees; the sample of examinees to take a test is considered to
be drawn at random from this population. A test is simply a collection of items; a test response of
‘length N is the corresponding set of responses, for a randomly-chosen examinee from G, denoted
by '

U= (l,...,UN) (3-1)
where the U; are random variables taking on

U = 0 ifresponse to item i is incorrect;
' 1 if response is correct.

The IRT model is composed of two components that generate [/: (1) a d-dimensional exami-
nee ability parameter and (2) a set of item responses functions (IRFs), one for each item, which
determine the probability of correct response for the items. The IRT model is usually conceived as
a unidimensional (d = 1) model; here, a multidimensional (d > 1) model will be presumed.

Let us now further set notation. The ability vector is
Q.=(01)""0d) (3_2)

for an arbitrary examinee from G. A distribution of § over G is induced by choosing examinees at

random from §; the multivariate random variable is designated
0 =(0y,...,04) (3-3)
Ezaminee independence is assumed; i.e., J examinees from G have ability parameters
{0():5=1,....,J}

independent and identically distributed (iid) in 7. Item t's IRF, which is interpreted as the proba-

bility that an examinee with ability § will answer item ¢ correctly, is denoted:

Pi(8) = P[Ui = 1|1Q = §] = P[U; = 118].
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Our interpretation of F;(8) is the sampling one: among all examinees having ability 8, the expected
proportion of them getting item i correct is P;(8).

The basic philosophy of the IRT model is that a latent distribution of abilities in a Group G
drives the manifest distribution of item responses. The fundamental identity relating the responses
U to the examinee group ability variable Q is

" PlU=4u] = f, PIU = 1|0 = g]dF(6),

for ally_:(ul,,,,,uN), (each u;i =0or 1), (3—4)

where F(-) is the cumulative distribution function (cdf) of @. There are two fundamental assump-
tions on the conditional test response probability P[U = u | 8] = P[U = u | @ = §] usually
assumed in IRT modeling. To introduce these, recall two standard definitions about ordering in
d-dimensional Euclidean space: (i) Let z and z’' be vectors. Then z < 2/ if z; < 2/ fori =1,...d
and for at least one i, 2 < 2]. (ii) Let z and z’ be vectors. The real valued function f(2) is strictly
n.onoiune if for any z < 2/, f(2) < f(2).

The fundamental IRT assumptions are:

Assumption 3.1. Local independence in §: for every §,

N
PU=ulf)=][P[Vi=w|8) forallu=0orl;i=1,..,N. (3 -5)
=1

Assumption 3.2. Strict monotonicity of IRFs: The item IRFs {P;(8) :i=1,...,N} are strictly
monotone in §. That is, for any ¢, Pi(8') > Pi(8) if § > 8 in the sense of (i) above.

It is convenient to combine {3-4) and Assumption 3.1 in the following manner:
Pl = = / H Pi(8)"(1 = P:(8))*"*dF(g) (3-6)

for all u.

The notion of the dimensionality d of / can be mathematically formalized but for the purposes

of this paper it is unnecessary to do so.

Definition 3.1. Let [ be a test response as in (3-1). An IRT representation of I/ is the structure
{d.Q,F(8),{P:i(8 i=1,...,N}} (3-7)
where (3-4), Assumption 3.1. and Assumption 3.2 hold. 0

0L



In this paper we often want to consider a test item’s operating characteristic with ruspect tc a
specific single component of § (say ;). This is accomplished by “marginalizing out” the remaining
components in the §-vector from the item’s IRF, resulting in the marginal item response function
(marginal IRF). Conceptually, this IRF is a unidimensional reduction of the original one and can

be considered as a unidimensional IRF for the unidimensional ability 6;. The following definition

is due to Stout (1989).

Definition 3.2. Let P(§) be an IRF. The marginal IRF T(6,) of P(8) with respect to Q1 is defined
by
T(6,) = E[P(9)|01 = 6,]. U

The marginal IRF is essential in the discussion of modeling test bias in Section 4, where a single
component 8, of § designated as the target ability will be considered. Because target ability is the
ability the test designer desires to measure using the items, the marginal IRF with respect to this
ability is a useful concept.

In order for T'(6;) to be an IRF it must be strictly monotone; this does not follow for the
marginal IRFs of a test from the assumptions of our IRT representation (3-7). However, very mild
regularity conditions suffice to produce strict monotonicity, as has been shown by Stout (1989). To

this end, we need the concept of stochastic ordering.
Definition 3.3. Let Z be a random vector with distribution indexed by a parameter v. Z is
strictly stochastically increasing in v if for every z in the range of Z
PIZ>z7] < PIZ > ziv'] ify < 7.
Strict monotonicity of the marginal IRF with respect to 8, follows under the reasonable as-
sumption of stochastic order in Oy:

Theorem 3.1. (See Stout, 1989). If @0, = 6y is strictly stochastically increasing in 6; in the
sense of Definition 3.3 and the IRF P(8) is strictly monotone in (6;,...,64) then the marginal IRF

of P(@) with respect to 0, is strictly monotonic.
Remark. Note in Theorem 3.1 that P(f) is not assumed to be strictly monotone in 8, the first
compcnent of 8§ = (8,,6,,....04).

A}
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A note on IRT model assumptions should be emphasized here. IRT models are commonly pa-
rameterized; that is, the IRFs and ability distribution are members of parametric families. Typical
assumptions are that © is unidimensional with a standard normal distribution and that a two or
three parameter normal ogive model or a one, two, or three parameter logistic model is assumed
for the IRFs. In this paper, we assume only that the IRFs {P;(8)} are continuous, with 8 usually

multidimensional.

4 Test Bias in the IRT Model

In this section our multidimensional IRT based aotion of t-st bias using the IRT model of Section 3
is developed. Section 4.1 provides a brief presentation on IRT item bias as currently usually defined
in the psychometric literature. Section 4.2 sets up the multidimensional IRT framework for test
bias modeling; target ability and nuisance determinants are defined. Section 4.3 develops test bias
in terms of its components: potential for bias, ezpressed bias, and the combining of expressed
item biases through a test scoring method. Section 4.4 considers item bias cancellation when the
nuisance determinants are multidimensional. Finally, Section 4.5 formally considers the notion of

a valid subtest.

4.1 Existing IRT Item Bias Definition

In this section the concept of IRT-modeled item bias (in some contexts called DIF, for differential
item functioning) currently in widespread use is presented as a backdrop for the development of
multiple-item test bias, which is treated in Sections 4.2 and 4.3. An item is biased, according
to Hambleton und Swaminathan, (1985, p. 285) if its (necessarily unidimensional) item response

functions across groups are not identical. A formal definition is given below.

Definition 4.1. Item bias. Let two groups of examinees be indexed by g = 1,2. For each g, denote

U, = (Vg Uny) (4-1)

to be the test response from an N-item test for a randomly chosen examinee from Group g. Assume
that a unidimensional IRT model fits each group, with IRT representation for {Ugig = 1,2} (recall
Definition 3.1):

{d=1,00, F,(0).{P0): j=1....i=1i+1...,N;Py(0)}.g=12]} (4 -2)



where Fy(8) denotes the cdf of ©,. (Noie, as the subscript notation indicates, that all items except
the ith item have group invariant IRFs while item i has un IRF that possibly differs for the two
groups.)

(i) Item bias occurs in item i at 8 if the group specific probabilities of correct response at 8 are

different; i.e., the group IRFs are different at §:
Piy(8) = P[Uiy = 1| 0y = 8] # P[Uip = 1|02 = 9] = Pi2(6).

(i) Item bias occurs in item i if there exists some value 8 for which item bias occurs at 6. o

It is important to observe that the “bias” of item i is defined relative to the other N — 1 items,
which are assumed invariant and hence “unbiased” with respect to the two groups.

Item bias models have traditionally been parametric. Wright, Mead and Draba (1976) and Hol-
land and Thayer (1988) consider a biased item generated by Rasch IRFs with the IRF difficulties
(b’s) different for the 2 groups. The more general 2FL and 3PL models, with different discrim-
inations (a’s) and guessing parameters (c’s) across group, have been studied by Hulin, Drasgow
and Komocar (1982), Linn, Levine, Hastings, and Wardrop (1981), and Thissen, Steinberg, and
Wainer (1988), among many otherz.

Item bias addresses differential performance across group for a single item at a time. If several
items display bias relative to the retnaining assumed group invariant items according to Defini-
tion 4.1- modified to allow several IRFs to possibly differ across group-there are no components in
Definition 4.1 that provide the facility to explain simultaneous item biasing due to a single under-

lying reason. This provides the motivation for an IRT framework that explains such pervasiveness

of item bias.

4.2 The IRT Framework for Multidimensional Test Bias

In our treatment, test bias is modeled using the nonparametric multidimensional IRT framework
describad in Section 3. The multidimensionality of the underlying latent abilities for the two groups
provides the environment from which bias expresses itself in one or more items. A crucial component
in this test bias model is the modeling of a pervasive nuisance determinant, which contaminates a

significant portion of the test items. This modeling viewpoint is an attempt to retain the view that
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bias originates at the test question level yet to allow for the possibility of bias expressed throngh a
test score as in the classical differential regression approach discussed above in Section 2.

The setup of the multidimensional IRT model for a test administration to two groups is as
follows. The IRT representation (3-7) is assumed to hold for the combined two-group population

of examinees. This representation induces a separate IRT representation of the form of (3-7) for

each of the two groups:
{daggaFg(Q)){Pig(Q.): i::la-"sN}}ag:l 2, (4’:'3)

where @ here denotes @ restricted to Group g, Fy(8) denotes the cdf of @, and P;(8) denotes the
ith IRF for a randomly selected examinee from the subpopulation of Group g examinees of ability
8. Note that the distribution of @, will in general be different from that of ©,. It is convenient to

denote the combined two group IRT representation by
{da.@.gaFg(Q),{Rg(.Q): i=11---N}: g=112}' (4-4)

The IRT representation (4-4) will be assumed throughout the remainder of Section 4 (with (3-4),
Assumption 3.1, and Assumption 3.2 assumed to hold within each group of course). Implicit in
(4-4) is the assumption that the test measures the same psychometrically-defined ability construct
8 in both groups.

Two basic assumptions acditional to Assumption 3.1 and 3.2 about the IRT representation (4-4)
are necessary: (1) common multidimensional IRFs in for each of the two groups in the representation
(4-4) (i.e., IRF invariance across group) and (2) the capability of the test to measure (possibly with

contamination) “he intended-to-be-measured ability (target ability):

Assumption 4.1. In the assumed IRT representation (4-4) assume IRF group invariance, that is
Pu(8) = Pa(8) = Pi(8) (4-5)
for all 6. 0

This first additional assumption states that the usual IRT item parameter invariance assumed
in unidimensional IRT modeling is assumed to hold for our multidimensional IRT model, where §
includes all the abilities influencing test performance (hence the assumption of IRF group invariance

ts appropriate in this context). Such invariance does not necessarily hold for any subset of the
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components of 8, in particular not for the target ability alone. Indeed if invariance with respect to
target ability held for all items it is intuitively clear there could be no bias. For example, in the
usual definition of item bias (Definition 4.1) invariance is not assumed for the biased item. (4-5) is
assumed throughout the rest of the paper.

We now define target ability.

Definition 4.2. Target ability is the unidimensional latent ability the test intends to measure.
The target ability component is denoted by 8, and the target ability random variable for Group g
is denoted Q.

Remark. Oy is not to be confused with @, as defined in (4-4).

If a discussion of test bias is appropriate in a test administration, then it must be the case that
the test is designed so that it is in fact ineasuring 6, as well as possibly some nuisance components
inadvertently. We thus informally make the second additional assumption that all items of the
test in fact do measure target ability 6 and possibly nuisance components 5 as well. That is, all
IRFs P;(8,n) are assumed strictly increasing in @ throughout the paper. In Shealy (1989), this
assumption is formalized and it is then proved that the existence of a representation (4-4) in turn
implies the existence of an analogous representation in terms of (8, n); that is ir terms of target
ability and nuisance components. Here we bjpass presentation of this formalism and instead assume

an IRT representation of the form (4-4) with
9, = (05,1,) (4-6)

where O, denotes target ability and 1 denotes nuisance ability for a randomly chosen group g
9 g n,

examinee. That is, the two group IRT representation

{d,(0g,m,), Fy(6,1),{Pi(8,p). i=1,...,N}: g=1,2} (4-1)

where the P;'s are the group invariant IRFs guaranteed to exist by Assumption 4.1, is assumed

throughout the remainder of the paper.

4.3 A Multidimensional Formulation of Test Bias

Iten bias postulates that examinees scaled on a univariate latent § (as in Definition 4.1) display

differing item response probability across group for the biased item. We w.ll take the postulated
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ability 8 to be the target ability to create an IRT-based definition of test bias.

As in item bias studies, test bias of this sort is an entity studied at the “micro level” of each
fixed value of 6; so one may speak of “test bias at ”. Test bias at the “macro level” may be defined
to exist if it exists at one or more single -values; important aspects of this micro/macro duality are

considered in Section 6. The following formulation of test bias is composed of three components:

(a) The potential for bias, if it exists, resides within the multidimensional target/nuisance ability

distributions in two groups;

(b) potential for bias is ez ressed .n items whose responses depend on one or more nuisaince

determinants; and

(c) the scoring method of the test, to be viewed as an estimate of target ability, transmits expressed

item biases into test bias.

4.3.1 Potential for test bias

Before the concept of “potential for test bias” can be developed, it is necessary to introduce con-
ditions postulating stochastic ordering of ability distributions.
Consider a nuisance ability #,, assumed unidimensional for simplicity of explication, for two

groups g,¢ = 1,2. Either the distribution is the same for both groups or, by definition, there exists

some 7 for which
Pny > n) # Plny > n].

Say that, as psychometricians, we believe that Group 1 has “more” of this a'bility. Likely the most

natural way to mathematize this belief is to assume stochastic ordering, that is to assume
P[0y > 0] > Pln, > n]

for all 7. For m; and 7, that possess densities, the graphical intuition is given in Figure 1. For
example, as Figure 1 suggests, the densities might be identical except for translation. Of course,
if twe, groups differ in ability distribution, it does not follow logically that one or the other group
has “more” ability. For example, a situation where the variances of 7, and 7, are not equal can

produce

Plny>n<Pmy>n forn>0
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and

Plny <) < P[ny <n] for n>0.

In particular, 7, and 7, might be symmetrically distributed about 0 with 9, having the larger
variance, as displayed in Figure 2. Nonetheless, for many psychometric applications, it seems
plausible to assume stochastic ordering whenever ability distributions are not equal, as we will do
below.

The potential for test bias is modeled via one or more determinants that simultaneously cause
bias in a collection of items. In particular, this cause is rooted in the conditional distributions of
n, | O = 6 (note that 7, can be multidimensional here). For a fixed 8, we assume stochastic

ordering for the distributions ofﬁg | Oy = 0(g = 1,2) when they are not equal:

Assumption 4.2, Let (Og,g_g) be as in (4-7) and fix a target ability value 8. If the conditional

distributions 1, (01 = 6 and n, | ©2 = 8 are different, then the assumption is that either

(1,101 =0)< (1,102 =) or (1,01 =8) > (n,]0; = ) (4-8)

stochastically;, i.e., either

Pln, >n[01=0]< Pln,>1n|0; =6 (4-9)
for all n or

Pln, >n|01=86]> P[n, >n|0; =46 (4-10)
for all n. O

For example, let 8 be mathematical ability and n = n be verbal ability. Then (4-9) says among all
examinees of Mathematical Ability 8 that, stochastically, Group 2 examinees are verbally superior
to Group 1 examinees.

With the above preparation, potential for test bias can be defined.

Definition 4.3. Let two groups have ability distributions (01,1m,) and (@2,_7_]_2). Potential for test
bias exists with respect to nuisance determinant n at target ability level 8 if either (4-9) or (4-10)

holds. If (4-9) holds a potential disadvantage exists against Group 1 at target ability 6. m]

Definition 4.3 implies that a potential disadvantage can exist only if there is a nuisance deter-

minant as a component of the latent ahility vector.
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4.3.2 Expression of test bias potential

In order for test bias to occur, its potential must be ezpressed in one or more items. The concept of
expressed bias, detailed in Definition 4.5 below, is similar to the item bias concept of Definition 4.1.

It is stated in terms of the marginal IRFs with respect to target ability:

Definition 4.4. Refer to (4-7). The marginal IRF
£ Tyl8) = EIPi(85,n,)0, = 0

W

s = PlU;=1|0, =] i=1,...,N
is called the target marginal IRF for item i, Group g. Q

We can now define expressed bias in item ¢ at target ability 4.

Definition 4.5. Let {Ti;(8):i =1,...,N} be Group g’s target marginal IRF's for a test with IRT

representation (4-7).

(i) Ezpressed bias in item i exists at target ability 8 if item i’s target marginal IRF for Group 1

is not equal to the corresponding target marginal IRF for Group 2 at 6:
Tir(60) # Ti2(6).

(i) Expressed bias in item i exists if there is some value 8 for which expressed bias for item 1 exists

at 6.
Item i is biased against Group 1 at 8 if T;1(8) < Tia(9). o

Definition 4.5 (our multidimensional IRT expressed item bias definition) is equivalent to Defi-

nition 4.1 (the usual IRT item bias definition) if
(i) the IRT models represented by (4-2) and (4-7) are both IRT representations of {U, : g = 1,2},
(ii) the ability 6 of (4.2) is the target ability 8 of Definition 4.2, and

(iii) the group-dependent IRF Pjy(-) from (4-2) is taken to be the target marginal IRF Tjy(-) from
Definition 4.4.

Henceforth in the paper, “item bias” will refer specifically to the expressed item bias of Defini-
tion 4.5.

The link between potential for bias and expressed bias for an item is the heart of test bias. The

following theorem is fundamental in establishing this link.
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Theorem 4.1. Assume IRT representation (4-7) and fix the number 8. If Py(6,n) is strictly
increasing in 1 and a potential disadvantage exists against Group 1 at § then item i is biased

against Group 1 in the sense of Definition 4.5.

Proof. The result is an immediate corollary of Theorem 3.1.

Remark. In a sense, Theorem 4.1 formalizes the obvious; dependence of an item on nuisance
determinants with respect to which one group is disadvantaged causes expressed item bias.

4.3.3 Transmission of expressed item biases into test bias

Until now the discussion has focused on a single item; we shall see that a test can consist of many
items simultaneously biased by the same nuisance determinant. In this case, items can cohere and
act through the prescribed test score to produce substantial bias against a particular group even if
individual items display undetectably small amounts of item bias.

This is the final component of our formulation of test bias mentioned at the beginning of this

section. We consider the large class of test scores of the form

h(L) (4 - 11)

where h(u) is real valued with domain all u = (uy,...,un) such that u; =Qorlfori=1,...,N
and h(u) is coordinate wise non-decreasing in u. This class contains many of the standard scoring
procedures for many standard models; for example, number correct, linear forinula scoring of the
form Zfil,a;U;, with a; > 0, maximum likelihood estimation of ability for certain logistic models
with item parameters assumed known, etc. One is surely willing to restrict attention to test scores
of the form (4-11), if the test’s IRF's are known to be increasing. Following Rosenbaum (1985), test
scores of the form (4-11) will be called non-decreasing item summaries.

Test bias is defined with respect to a specific test scoring method h(w).

Definition 4.6. A test U with target ability @ and test score h({) displays test bias against
Group 1 at 8 if

E[h(U,) | 01 = 0) < E[A(L3) | ©2 = ). (4-12)

v 22



If
E[hMI,) |01 = 8] = E[h(U2) | ©2 = 6] (4 -13)

then no test bias exists at 8. a

The psychometric interpretation of Definition 4.6 is as follows. The left side of (4-13) is the
expected test score for a randomly chosen Group 1 examinee with target ability 8 while the right
hand side is the same for a randomly chosen Group 2 examinee with target ability 8. In order to
assess the appropriateness of Definition 4.6, consider a large number of Group 1 and a large number
of Group 2 examinees taking the test, all of target ability 6. Then (4-13) says that the average
score of these Group 1 examinees will be approximately the same as that of the Group 2 examinees.

Thus, on average, neither group is favored in the attempt to estimate target ability using A(U,).

4.3.4 A fundamental relationship

We now elucidate how the three conceptual components of our formulation interact to produce test
bias. For ease of interpretation we restrict ourselves to the case of a unidimensional 7; however,
the following results hold if a vector-valued nuisance determinant 7 is assumed.

The basic test bias result is given in Theorem 4.2, namely the precise mecharism by which
potential for bias is transmitted into test bias. First a variation of a well-known lemma is needed,

which for convenience is specialized to the present setting.

Lemma 4.1. Let f(n) be strictly increasing in n and let stnchastic ordering in the sense of (4-9)

hold for each fixed 8. Then for each fixed ©
E[f(m)|©1 = 8] < E[f(n,)|02 = 6].

Proof. Fix 6 and let Fy(n) denote the cdf of f(n,) | ©, = 8. Assume, for simplicity of argument
and without loss of generality, that F;(0) =0 for ¢ = 1,2 Then

Ef(n,)] 0, = 6] = [~ 2dFy(z).

Integration by parts yields

/0 :z:ng(x)=/0 (1 = Fy(z))dz. (4 = 14)
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But (4-9) and f(7) strictly increasing implies that

R(z) > Fy(z) for all z > 0.

Using (4-14) and noting that

/0°°(1 _ Fy(2))dz < f’u _ Fy(z))dz,

the desired result follows. O
The theory of associated random variables is helpful in establishing the basic test bias result.

As defined by Esary, Proschan, and Walkup (1967), a random vector X is associated if, and only
if, for all nondecreasing f(z), g(z), it follows that

cov(f(X),9(X)) 2 0. (4-19)

The main result of Esary, Proschan, and Walkup (1967) that we wish to use is that a vector of

independent random variables is associated. The basic result can now be stated and proved.

Theorem 4.2. Assume IRT representation (4-7) with n = n being unidimensional. Fix the number
0 and assume the test scoring method of the form (4-11). Suppose for some i that h(w) is strictly
increasing as u; = 0 increases to u; = 1 and that P;(6,n) is strictly increasing in 1. Assume

potential for bias at 6 against Group 1, i.e., that (4-9) holds. Then test bias at 8 against Group 1
holds.

Proof. It suffices to prove (4-12). By IRF invariance with respect to (8,7), it follows for all 7
and the fixed 8 that

Eh(U,) | ©1 = 8,m = n] = E[h(U3)|02 = 8,7, = n] (4 - 16)
Conditioning on Qg = 4, n, = n will be denoted by 8, 7. Let
f(n) = E[h(L,)|8,7],

Note that f(n) does not depend on g by (4-16), hence let = [/, throughout the remainder of the

proof. We first show that f(n) is strictly increasing in . Fix n’ > 1. Then, by local independence

o= PL=ul 6] T PO6r)(1 = P8, 7))~
© Pl= ol IS RB (L= Pifym)iee
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Thus, g(u) is strictly increasing as u; = 0 increases to u; = 1 because P;(6,7')/Pi(6,n) > 1. Now

E(h(U)|6,n") = E(h(LL)|6,n) ( )P [IL ul8,7] - P{U=u16,n)
u)o(w) - 1P =u 6,1 (4-17)
cov(h( ),q(U) - 116, 7).

Partition
= (U\U;, Ui) = (U, Ui)
where

Q\Ut = (Uly"')Ul'—I)UI'+1)"‘)UN)-

Let Ew and covw denote expectation and covariance over the distribution of W, respectively. By

a basic identity for covariance, stated here conditional on (4, 7),

cov(h(U),q(U) - 118,n) = Ep{covy, [h( ),q(Z) - 118,n] | 8,0}
+ CO‘le{EU| ) | 9,77),EU.(9(.Q) -1 | 0”7) l 0’17} .

Both h(u) and g(u) — 1 are strictly increasing as u; = 0 increases to u; = 1. Thus, for all possible
values of U’,

(4 —18)

covy, [MU),q(U) - 1/6,7] > 0.

Thins, the first term on the right hand side of (4-18) is strictly positive. Because of the association
of independent random variables and the fact that U’ given 6, n has independent components, it

follows that the second term on the right hand side of (4-18) is nonnegative, using also the fact
that

Ey,(h(U) | 8,n) and Ey,(q(U) - 1]8,n)

are nondecreasing in IJ'. Thus,

cov(h(L),q({) -1186,7) > 0.

But, recalling (4-17),
E(h(Z) | 6,n") - E(h(Z)|6,7) >0

that is, f(n) is strictly increasing in 7, as claimed. Then, applying Lemma 4.1 and (4-9) to f(n)
above, it follows that (4-12) holds, as required. O
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Remarks.

(i) It is important to reemphasize that Theorem 4.2 holds if a vector valued nuisance parameter
7 is assumed, provided (4-9), the potential for bias at 8, holds for n. That is, the nuisance

determinants 7;,...,74-1 must each create bias in the same direction, say against Group 1.

(ii) Stripped of its test bias context ard stated as a general theorem about IRT models, a mi-
nor variant of Theorem 4.2 with < replaced by < at appropriate places is due to Rosen-

baum (1985). For our purposes, strict inequality is needed. The proof of Rosenbaum’s result

is similar to our proof.

A final interesting relationship to note is that the presence of test bias implies the potential for

test bias:

Theorem 4.3. Suppose that test bias against Group 1 holds at 8 in the sense of (4-12). Then the
potential for bias against Group 1 at 6 exists in the sense that (4-9) holds.

Proof. Recall (4-16), replacing 5 by 7 there. Thus for g = 1,2, it holds that
E[h(U,) 10, = 6] = [ E[(L) | 01 = 0,1, = 1)dFy(1)6) (4-19)

where Fy(n | ) is the cdf of , | @4 = 6. Suppose (4-12). Thus, using (4-19) for g = 1,2 it follows
that

/E[h(Lf.l) |©1=6,n, =nldF(n]8) < /E[h(ﬁl) |©1=6,n, =nldR(n|9).

But this implies that the distributions of , | ©; = 6 and 1, | ©2 = 0 are different. Thus, invoking
Assumption 4.3, it follows that (4-9) holds. Q

4.4 Item Bias Cancellation

As discussed above, and epitomized by Theorem 4.2, items can combine to amplify bias at the test
level. In contrast, itemis displaying bias can also tend to cancel each other out, thus prodicing
little or no bias at the test level. This becomes possible only when the nuisance determinant n is
multidimensional with some of its components displaying potential for bias against Group 1 and
others displaying potential for bias against Group 2. The amount of expressed test bias will be

a result of the amount of cancellation at the test level and will be dependent on the particular
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test score h(x) used. The theme of cancellation has been presented by Humphreys (1986) and
Roznowski (1987) in the non-IRT classical predictive validity context.

The following example illustrates how cancellation can function to produce negligible test bias.

Example 4.1. A test of length N (N an even number for convenience) intended to measure

calculation skills has IRT representation

{{d=3,(9g,ﬂ19,7729),Fg(9,771,772),{Pi(9,771,7)2): i—":l,...,N}}, 9=1,2}

where 6 = mathematics skills, 7, = physics knowledge, and 7, = reading knowledge. Let S, be a

subtest with IRFs

(POm) =15
(subtest containing problems with a mathematical physics fiavor) strictly increasing in 71 for every
6 and S7 be a subtest with IRFs

N
7+1,...,N}

{Pi(6,m) :i=
(subtest containing mathematical “word proble: ) strictly increasirg in 7, for every §. Suppose
that the sth physics IRF is identical ta the ith word problem IRF, which is the (%’- + i)th item.
Necw, condition on a particular mathematics ability 8, and assume for examinees of ability 8 that
Group 2 has greater knowledge of physics and Group 1 has groater reading skill. So 7,2 |8 > nq,0
stochastically and 1,y | 8 > 744/8 stochastically for each choice of . Say that this holds for each
choice of 8. Furthermore suppose that as distributions, 7,9 | 8 =74, | 8 and 7y, | 8 = m,2 | 0 for
all 6. Then by Theorem 4.2, if subtest S; were the entire test, it would exhibit test bias against
Group 1 at 8 for every 8. By contrast if S, were the entire test, it would exhibit test bias against
Group 2 at § for every 8. But, for a large class of test scores-those giving approximately equal
weight to the §; items and to the S; items-almost total cancellation of the item biases could occur

thus producing an unbiased test. That is, for such a test scoring method h(u),
E[h(L;) | ©1 = 6] = E[h(U,) | ©2 = 6]

for every 0. Indeed if h(u) is number correct, then exact equality and hence total cancellation

results.
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Remark. Note that the concept of test bias compares groups, not individuals. For a particula
examinee, a test might be biased against her, even though the test is not biased against Group 1 of
which she is a member. This important aspect of bias is an unfortunate consequence of the multidi-
mensional nature of items in most tests. Moreover, it is also a consequence of the unfortunate (and
perhaps economically unavoidable) fact that only statistical (i.e., group-level) bias analysis is done,
as opposed to individual case-by-case analysis. The above discussed phenomenon of cancellation
could possibly alleviate the impact at the individual examinee level (as well, as just discussed, as
at group level).

It is worthwhile to develop item bias cancellation in a formal manner.

Definition 4.7. Item bias cancellation at 8 is said to occur if the test consists both of items biased

against Group 1 at @ and items biased against Group 2 at 8.

Remark. It is theoretically possible that cancellation could occur within an item if the item
depends on at least two nuisance dimensions, as contrasted with the between item cancellation
of Definition 4.7. This source of cancellation, which seems less likely to occur in practice, is not

considered in this paper.

Intuitively, the presense of expressed item bias and no cancellation implies test bias. This is

the content of Theorem 4.4.

Theorem 4.4. Assume that at least one item displays expressed item bias at § in the sense of
Definition 4.5, and assume that no item bias cancellation occurs at §. Then test bias occurs at § in
all non-dacreasing item summary test scores h(u) (see (4-11)) provided h(x) is strictly increasing

in at ieast one coordinate corresponding to one of the biased items.

Proof. At the item level, each item is either biased only against one group (Group 1, say) or

displays no expressed bias by the assumption of no cancellation. Thus, for all 7,
P[Uil=1|®l=6]SP[U1'2=1|®2=0] (4 — 20)

with strict inequality for at least one i. Now, by item invariance. for all i,

PUa=1]0=0.n =n)=PlUa=1]0; = 6.1, = 1] = P(6,7).
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Recall Assumption 4.2. Note that, dencting the cdf of (-7-'-9 95 =0) by F5(n | 9),
PUi; = 1|0, = 8] = / Pi(8, m)dFy(n | 0)

where the integrand does not depend on g. It follows from Assumption 4.2 that strict inequality in
(4-20) for some ¢ implies that (9, | ©1 = 8) < (n,|02 = 8) stochastically. Thus using the monotone
~ condition for h(u) the conclusion follows from Theorem 4.2, noting the remark following the proof
of Theorem 4.2 concerning multiple nuisance determinants. 0

It is interesting to note, as Theorem 4.5 now states, that when there is no item bias cancellation
that test bias for number correct is equivalent to test bias for all nondecreasing item summary test

scores with strict increase for at least one coordinate of u.

Theorem 4.5. (a) If test bias at 8 occurs for the test score number correct (3_;—, ui) and there is
no item bias cancellation a. 8, then test bias occurs at 8 for every nondecreasing item summary test
score h(u) for which h(w) is strictly increasing in at least one coordinate of u. (b) If test bias at 6
holds for some nondecreasing item summary test score h(u) and there is no item bias cancellation

at 0, then test bias at 8 hold for h(u) = Y7, u,.

Proof. Note that

N n
E(S Uiy | 0, =6] = Z/ P:(8,1)dF,(1] ).

t=1 t=1
Then, obvious and minor modifications in the proof of Theorem 4.4 suffice to prove both (a) and
(b). Details are omitted. =
Intuitively, no test bias and no cancellation implies that none of the items display bias. This is

the content of Theorem 4.6.

Theorem 4.8. Assume that no test bias exists at 6 with respect to score h(1). Assume no item
bias cancellation at 8 in the sense of Definition 4.7. In addition, assume that there exists at least
one i such that both P,(6,n) is strictly increasing in 1 and h(u) is strictly increasing as u; = 0
increases to u; = 1. Then there is no potential for test bias and (hence) none of the items display

item bias.



Proof. By assumption of no test bias at 6,
E[h(Uy) | ©1 = 6] = E[h(U,) | ©2 = 6). (4-21)

By the strict increasing assumption for P;(6,7) and h(u), it follows that E[h(U,) | 6, 7] is strictly
increasing in 7. Recall (4-19). If either (4-9) or (4-10) were to hold, it would thus be impossible for
(4-21) to hold. Thus by regularity Assumption 4.2, it follows that (n, | ©1 = 6) = (n, | ©2 = 6)
stocliastically; i.e., there is no potential for test bias. Referring to Theorem 4.1, we see that none

of the items display item bias. O

Remarks.

(i) Assuming a scoring method really dependent on all items and that at least one of the items
actually depends on 7, Theorem 4.6 implies that if there is potential for bias, then either test

bias results or item bias cancellation results (and possibly both result simultaneously).

(ii) Theorem 4.2 and 4.6 can be together interpreted as stating a set of conditions under which

the potential for test Lias is equivalent to test bias.
4.5 Valid Subtest

Recall the informal definition of a valid subtest from Section 2. As mentioned therein, the reason
for requiring a valid subtest to exist is that it is statistically impossible to detect test bias using
only data from an ability test unless there exists an internal criterion measuring only the target
ability; i.e., a valid subtest. Here we formally define the validity of a subtest. Let 6 denote the

target ability. Recall from Section 4.2 that all IRFs are assumed strictly increasing in 6.

Definition 4.8. Let [ be a test response with IRT representation (3-7), let 8 = (8,7), and let §
be a subset of the items 1,...,N. S is a valid subtest if the IRFs of all items in S depend only on
8; i.e., Pi(0,n) = P;(8) for eachiin §.

Remarks.

(i) From a practical viewpoint one wants § to consist of as many of the items of the test as

possible; the statistical power of detecting test bias increases as the proportion of valid items

does.

N
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(ii) Consider a specified nondecreasing item summary scoring method h(x) for a test response U
(recall (4-11). Suitably restrict this scoring method to a subtest response ', denoting it by
h'(4'). For example, if h(u) = TN, u;/N, then h'(w') = T'ui/N' is the obvious “restriction”,
where N’ is the cardinality of U’ and T’ denotes summation over the components of U'. A
plausible alternative definition of subtest validity consistent with this paper’s emphasis on
the expression of bias at the test level expressed through the test s :ore would be to require

of h'(u') that for all 4, given
ER' (") [(©,n) = (6,1)]

depends only on 6 and not on 7. This assertion is equivalent to asserting for all (6,7) that
ER'(U") | (©,m) = (8,n)] = E[K'(L)]| © = 6]. (4 -22)

(4-22) is appealing as a possible definition of subtest validity because it functions in an
aggregate way at the test level based on the specified test scoring method “restricted” to the
subtest. Evoking the usual empirical interpretation of expectation, (4-22) says that repeated
sampling of examinees from ability groups, both with the same value of § but with any choice
of two different values of n produces on average approximately the same value of A'(U'), as

one would wish a “valid subtest” to do.

Fortunately, however, ‘this alternate and appealing definition is actually equivalent to our Def-
inition 4.8, under the natural and mild regularity condition that A’(x') be strictly increasing
as u; = 0 is increased to u; = 1 for each component u; of &'; that is that A'(x’) must really
depend on each of the valid subtest item responses. This assertion follows from a modifica-
tion of the proof of Theorem 4.2. Thus our definition of subtest validity can be thought of as

operating either at the item level (Definition 4.8) or at the test level ((4-22)).

(iii) Assume a two group representation (4-3). It is perhaps interesting to note it is possible for

all 8 that
E[R' (L) | ©1 = 6] = E[h'(I3) | ©2 = 0] (4 - 23)
and yet subtest validity not hold. Note here that (4-22), equivalent to subtest validity,

implies (4-23); however, (4-23) should not be used as a definition of subtes* validity. As an

extreme example demonstrating this claim, each item of S could be measuring 7 alone with
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n, independent of @, for g = 1 and g = 2 and n, having the same distribution for ¢ = 1, 2.

Subtest validity obviously does not hold here because the supposed-to-be valid items may be

heavily influenced by 5; however,

EW(1)101=6] =

E[E{N(U}) |01 = 8,7,} | Oy = 6]

E[E{N(L}) |n,} | 01 =9

EW'(U}) (4-24)
ER(TL) = ...

E[W(U3) | 02 = 6);

so (4-23) does hold here. The point we have just shown is that the absence of test bias (i.e.,
that (4-23) holds) does not imply test invalidity (i.e., that (4-22) fails). Related to this fact,
note that test validity for the entire test in the sense that (4-22) holds for all (8,7) for some

scoring method h(u) that is increasing in every component u; of % does imply for every § that

no *est bias exists. This follows trivially from the fact that test validity for the entire test

means that every item depends only on 6.

5 Test Bias: The Long Test Case

The theory of test bias presented in Section 4 shows that if there is at least one nuisance dimension

then test bias may be present. It is well known that purely unidimensional tests are rare among

typical aptitude and achievement tests (see Ansley and Forsyth (1985), Humphreys (1984), Reckase,

Carlson, Ackerman, and Spray (1986), and Yen (1984), among others). The position is summarized

well in Humphreys (1984):

The related problems of dimensionality and bias of items are being approached in an

arbitrary and oversimplified fashion. It should be obvious that unidimensionality can

only be approximated. ... The large amount of unique variance in items is not random

error, although it can be called error from the point of view of the attribute that one is

attempting to measure. ... We start with the assumption that responses to items have

many causes or determinants.

How does the empirical reality of multiple determinants on a test interact with our multidimen-

sional model of test bias? There are two cases to consider: either the test is “long” or it is “short”.

By “long” it is meant that the number of items is large enough that asymptotic probabilistic ar-
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guments provide a useful approxiznation to the actual test operating characteristics. For example,
for many purposes a test of 40 items can be classified as “long”.

In the case of a short test, several of the results in Section 4 are important: First, even if
nuisance determinants are present in the items and influence examinee performance, the potential
for bias against a group must exist in order for test bias to be possible. Second, if the amount of
expressed bias at the item level is sufficiently small, then the amount of bias possible at the test
level is bounded above. However, if little or no cancellation occurs, small amounts of bias at the
item level can produce a substantial amount of test bias. Indeed, one can imagine a detrimental
amount of test bias, but with statistical testing for individual item bias being unable to detect
any bias at the item level. Third, the amount of test bias is dependent upon the scoring method,
the scoring method being the link between item and test bias. It is possible that some scoring
methods might be more robust against the detrimental influence of item bias than others. Fourth,
recalling Example 4.1 and the material on item bias cancellation, it is quite possible to minimize,
with the help of an aptly chosen scoring method, the amount of test bias by having different biasing
influences cancelling each other out. For example, (again recall Example 4.1) if approximately equal
numbers of items express approximately equal amounts of bias, respectively against and in favor
of Group 1, then provided the scoring method gives approximately equal weight to the two classes
of items, little or no test bias should occar. intuitively, it serems likely that having many minor
dimensions in addition to § might increase the propensity for cancellation and actually result in
less test bias. However, in spite of certain encouraging aspects of the above remarks, it is surely
the fact, because of the intrinsic multidimensional nature of ability tests. that serious amounts of
test bias are likely when tests are short.

We now turn the discussion to the development of a “long” test scenario. In the study of test
bias in a long test, the theory of essential unidimensionality of a test, as developed by Stout (1987,
1989) and refined by Junker (1989a, b) turns out to be useful. First we summarize the relevant
conce; s of this theory.

A “long” test response [/ y is conceptualized as being the initial observed segment of a potentially
o.servable infinite item pool {U;,# > 1}. It is assumed that whatever process has been used to
construct the first N items of the pool (i.e., the observed test [/ ,y) could have been continued in the

same manner to produce {U;,7 > 1}. With this understanding, in order to do asymptotic statistical
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theory and for foundational purposes, we study {U;,i > 1} instead of Uy = {U;,1 € ¢ £ N},
conceptualizing the item pool {U;,i > 1} as the “test”. A test {U;,i > 1} is defined to be

essentially unidimensional (dg = 1) if it has an IRT representation with monotone IRFs but instead

of requiring local independence (Assumption 3.1), the weaker assumption is required that

Elgio’sN |eov(Us;, U510 = 6))|
N
2

as N — oo for every 8. (The requirement of monotonicity can be weakened somewhat when

-0 (5-1)

modeling items where non-monotonicity is suspected, but we omit discussion here (see Stout, 1989;
Junker, 1989b). When dg = 1, it is shown that the latent ability is unique in the sense that any
other dg = 1 IRT representation has a latent trait that is a monotone rescaling of §. (E.g., a
mathematics test cannot be a test of geography for the reason that there exists no such rescaling,.)

We now must specify a class of scoring methods for the sequence of long tests {Un,N > 1}.
It is convenient to consider a large class of such scoring methods, but less extensive than the non-
decreasing item summaries (4-11). Recall from mathematical analysis that a collection of functions

{kn(z)} is equicontinuous if for every € > 0 there exists § > 0 such that
lkn(z) - kn(y)l < €

for all N and all z, y for which |z — y| < §. Note that the assumed continuity is uniform both in

the argument and in the choice of function.

Definition 5.1. {kn(T!, awiUi)} is called an equicontinuous balanced scoring method provided

(a) kn(z) is defined on [0,1], is non-decreasing, and satisfies
-0 < inf kn(0) € supkn(0) < infhkn(1) < suphn(l) < oo. (5-2)
N N N N
(b) {kn(z)} is equicontinuous, and

(c) {ani : 1 £ i £ N,N 2 1} satisfies 0 < an; < C/N for some C > 0 and for all i, N and
YN, ani = 1dor all N.
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Remarks.

(i) (5-2) and (c) merely guarantee that the “empirical” scale established by kn(ZN, aniUi) does
not shrink to 0 or stretch to oo as N varies. For example, if kny(1) - kn(0) = 0 as N — o0,

then kn(TN., aniUi) for large N is uninteresting.

(i) The an; € C/N guarantees that no single item dominates the score; i.e., the scoring is

“balanced”.

(iii) A remark on notation is appropriate. An arbitrary scoring methdd An(Uy) assigns a score
to each test response Uy and hence hn(:) is a function with an N-dimensional domain
(such a score occurs in (4-11)). By contrast, an equicontinuous balanced scoring method
kn (N, aniU;) assigns a score to each linear combination N | aniU; for each N and hence

kn(-) is a function with a unidimensional domain.

A fundamental result of “long” test theory is that of a test {U;,+ > 1} is essentially unidi-
mensional, consistent estimation of 4 is possible in the sense that for any equicontinuous balanced
scoring method, given Qg = 4,

N N
kn (Z aN.'U,'g) — kN (Z aN,-T,-(.9)) ~ 0 (5-3)
i=1 i=1
in probability as N — oo, for ¢ = 1,2 (established by a minor modification of the proof of Theo-

rem 3.2 in Stout (1989)). That is, § is estimated with total accuracy in the limit, using the latent
scale

N
kn (Z aNiTi(o)> :

1=1
Here T;(8) denotes the marginal item response function defined by T,(6) = E[Pi(Q)|© = §]. Ex-
pectation is over both groups here; that is, © is the target ability of a ra.:domly chosen examinee
from the pooled group resulting from combining the two groups. An important special case is that

when dg =1, given O, = 4,
N N
> Uigy/N = Pi(6)/N —0

1=1 1=1

in probability as N — oo, for g = 1, 2.
Armed with the above concepts, a “long-test” definition of test bias is now given. The intuitive

idea is that if the test scoring method being used measures target ability equally well in both groups
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as measured by the convergence in probability behavior as N — oo, then no test bias exists. Let

Eg p— (Ulg, Ve UNg,UN+1.g)“ ')

denote the infinite item pool for Group g and let

_Q.Ng = (Ulg) veey UNg)

denote the finite observed segment of the item pool for g. To study long-test test bias, we make the
assumption that U, has a two group representation of the form (4-4) with (3-4), Assumptions 3.1
and 3.2 holding within each group and with Assumption 4.1 holding. It then follows from the
ordinary weak law of large numbers in probability theory for any equicontinuous balanced test
scoring method that, given @, = 8 and 9, = 4,

kn (Z?’m GN.'Uu) - kn (Zfil GNiPi(Q)) -0

and (5-4)

kn (Z.‘i1 aNiUi2) - kn (Zﬁ:l GN.'P.'(Q)) -0
in probability as N — co. Here § = (6n) where 6 is the target ability and 7 is the nuisance
determinant. Of course, in order to be able to assume local independence for the representation
(4-4) and have good model fit the dimension d of 7 may need to be quite large. It is easy to show
(5-4) also holds for an dg essential dimensional representation of the form (4-4), with dg possibly
mich smaller than d.

Because kN(Zf\.’_=1 an;Ui1) and kN(ZfilaN,'U,'g) have the same limit behavior in probability
(hence (8, n) is measured equally well in both groups), (5-4) seems to suggest that no test bias in
a long-test sense is possible. However, (5-4) is not the same as group-equivalent measurement of
target ability 6 alone. As in the finite test length case of Section 4, the source of bias is that the
conditicnal distributions of (7,|01 = 6) and (n,|©2 = 6) differ, thereby leading to superior limiting
test scores for one group versus another given ©; = 8, @, = 6. An example should clarify this

claim.

Example 5.1. Consider examinee subpopulations from the two groups defined by @; = 6 and
@2 = 0, respectively, i.e., both subpopulations have the same target ability. Suppose that there is
a single nuisance determinant and that

P['r]l =1|0, =46] = 1 P[‘r]2 =1|0; = 0] =

EN]
PN [}

(5-95)
P[?]] = OIOl = 9] =

L [

Pln, = 0|02 = 0] =

L |



Clearly this is a case of potential for bias against Group 1 at 8. Suppose ky(z) = z for all N and
ani = 1/N for all ¢ and N:

kN (Z aN.-u.-) = f:u.'/N.

1=1
Suppose local independence with respect to (8,7) with

Pi(6,1) = %,7(6,0) = 3

for all . Then, (5-4) specializes to

El— Ui - z:,a _’3

given O; =6, n, = 1 and O2 = 6, n, = 1, respectively, in probability as N — oco. Also

N
ZimUn Eﬁﬁﬂ_*l
N 3 3

given Oy = 6, n, = 0 and O2 = 8, 9, = 0, respectively, in probability as N — co. But, conditioning
on O, = 0 and O2 = 4, it follows using (5-5) that

N )
> lw Ua _, 2 with probability; and (5 - 6)
Zi,’ Ua _, % with probability%

as N — oo, as contrasted with
N oy
E-&y—" — £ with probability3 and (5-7)
POLL N % with probability
as N — 0. Clearly Group 2 is favcred among examinees of target ability 8. It may be interesting

to note that

£|E5fuio <o <3441 3= (5-5)
for all N, while
[E'“l —0, —-6] EREN At (5-9)
Thus, in a trivial manner not dependent on N,
N )
LimNnooo £ [%m, = 9] [Zml '2162 = 0} < 0. (5-10)
0

We will use the idea embodied in (5-10) to define large sample test bias.
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Definition 5.2. Let 6 denote target ability.

(i) There is no long-test test bias at § with respect to an equicontinuous balanced scoring method

e Soont)

1=1

provided

N N
E {kN (z aN.'Uu) |0: = 0] -E [kN <Z aNiUiz) |92 = 9} -0 (5-11)
=1 i=1

as N — o0,
(ii) If for every 6, there is no long-test test bias at 8, then there is no long-tesy test bias.
(iii) If at 6

E

N
kn (Z aNiUil) |0, = 9] -E

=1

N
kn (Z aN;U.'g) |©g = 9] <SC<0 (5-12)

=1
for all sufficiently large N and some C, then long-test test bias exists at § against Group 1.

0o

We first show that if there is no long-test test bias in the empirical sense that among examinees
with the same target ability 6 neither group is favored in their stochastic test score behavior as

N — 0, then long-test test bias in the sense of Definition 5.2 holds.

Theorem 5.1. Suppose, given ©, = 6 and O, = 0 that for an equicontiauous balanced scoring
method,

(5 - 13)

kn (TN aniliy) = eni(8) = 0 and
kn

N
=1 aniUiz

in probability for some cyy(8),cn2(8), as N — oo. Then (5-11) holds; that is, there is no long-test

- cn2(8) = 0
test bias at @ for the given scoring method.

Remark. Note that it is not required that the centering functions cxy(#) have to be the same for
g = 1,2. What is required is the existence of a centering function dependent on # alone and not
7 for each g, as contrasted with (5-4). Of course, the case where the centering functions are the
same is of special interest and is the main motivation for the theorem, as the remark immediately

prior to the statement of the theorem indicates.

O ‘ 35 ‘.) L)




Proof. By (5-2), |kn(z)| < C for some C > 0. Thus |eng(8)] £ C + D for some D > 0. By the
Lebesgue dominated convergence theorem (see p. 11, Serfling, 1980), using (5-13)

N
E Y aniliy - cng(8)|0, = 8] — 0 (5 - 14)

i=1
as N — oo, for ¢ = 1,2. Now, trivially, the conclusion (5-13) holds given ©; = 8, n, = 1 and
Q2 = 0, n, = n for all n. Thus, subtracti g the two results in (5-13),

cn1(8) — ena2(8) — 0

as N — oo. Let cn(8) = cni1(8). It then follows from (5-14) that

N
E [2 an;Uiy ~ eN(8)|Og = o] -0
1=1

as N — oo for g = 1,2. Subtracting these two limits yields

N N
E [Z aniUa|0; = o] ~E [Z aniUia|@z = o] =0

=1 1=1

as N — o0, i.e., no long-test test bias exists at 6. 0

Remark. We claim that (5-13), (and hence the similar condition (5-3)), is inappropriately strong

to use as a definition of lack of long-test bias. To see this, modify Example 5.1 by assuming
Pln, = 0|0y = 6] = %,P[‘qg =1|0, = 0] = §,

for ¢ = 1,2. Hence no potential for bias exists. However note that, given @, =6 and ©, =6

Zﬁ:l UNy -

119 _ 2~ 0 with probability }

and
N

Z Ung — 3 — 0 with probability 3
1=1

for both g = 1 &nd g = 2. Thus (5-13) is precluded and thus long-test bias would be said to exist
(even though no potential for bias exists) if (5-13) was made the basis for deciding on the existence
of long-test test bias. Note that the above convergence in probability behavior is identical for both
groups. Intuitively, in this example the estimation of 8 by TN, Ung/N as N — o0 is equally bad
for both groups in the sense that convergence in probability at @ fails to occur in exactly the same
manner in both groups. Thus one would not wish to claim that test bias is occurring.

The following theorem states that essential unidimensionality is a sufficient condition for ensur-

ing that no long-test test biac exists.
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Theorem 5.2. Suppose dg = 1 for target ability § in the combined popvlation consisting of
Group 1 and Group 2 examinees. Then, with respect to all equicontinuous balanced scoring meth-

ods, no long-test test bias exists.

Proof. Let {kn(ZN, aniU;)} be an arbitrary equicontinuous balanced scoring method. We need
to prove (5-11) for every 8. Fix 6. By work of Stout (1989), dg = 1 implies (5-3) for g = 1,2; i.e.,
(5-13) holds with cxy(8) = kn(T aniTi(6)). Thus, by Theorem 5.1, the desired result holds. O

By contrast, if the potential for bias exists at 6, then it follows that there exist balanced scoring

methods for which long-test test bias at 8 does exist.

Theorem 5.3. Assume that IRFs are differentiable in 7. Let 6 denote target ability, n denote the
nuisance determinant and assume potential for bias against Group 1 at . Assume there exists a
balanced scoring method {an;} (i.e., kn(z) = z in Definition 5.1) such that at 6,

d

P %{aN,-P,-(G,n) > e >0 (5-15)

for all ny and all N. Then long-test test bias exists at 6 against Group 1.

Proof. For § = (6,7), (5-4) holds given ©; = 8, n, = n; O; = 6, 7, = n. Now, letting Fy(7|6)
denote the cdf of 7,|@, = 6 and using (5-15) and integration by parts
E(T], aniUa|0:1 = 6] - E[TN., anilUiz|0; = 0]
= J2o{ZE a8, )Y (1) - Fa(n}6)]
= = [Zoo{ & LIk ani (0, n) R (nl8) = Fa(nl6))dn

< 2% en[F1(n]6) = Fy(n]8)]dn
< _C(o)a

where ¢(d) > 0 by the assumption of potential for bias ag.inst Group 1. Since this holds for all &V,
the result is proved by Definition 5.2. a

How is the finite test length definition of test bias (Definition 4.6) related to the long-test test
bias definition (Definition 5.1)7 The answer is that lack of finite length test bias for all finite length

test Uy from the item pool {U;,i > 1} implies lack of long-test test bias for all equicontinuous

balanced test scores.

Theorem 5.4. Assume an IRT representation for {Ui,i 2 1} of the form (4-4) for § = (8,7). Let

{kN(Zf\;, aniU;)} be an equicontinuous halanced scoring method. Assume no finite length test
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bias exists; that is, (4-13) holds for all N. Assume regularity Assumption 4.2. Then there is no
long-test test bias; that is, (5-11) holds.

Proof. Trivial from examination of (4-13) and (5-11). 0

Remark. Of course, long-test test bias holding is less restrictive than finite length test bias
holding. Nonetheless it seems an appropriate way to describe biasedness of a test when the test is
long.

From the long test perspective, the need to produce a long-test definition of a valid subtest needs
to be addressed. Previously in the short test case, our definition of a valid subtest S with response
U was stated to be equivalent to (4-22) holding for all (6,7). Just as the short-test version of no
test bias ((4-13)) is modified for the long-test version of no test bias ((5-11)), a similar modification
of (4-22) yields an appropriate definition of a valid subtest. We consider only equicontinuous
balanced scoring methods for subtests U’y of Uy. That is, we consider scoring kj (¥’ aniUs) where

Definition 5.1 holds, for each ki (5>’ an;U;) where T’ denotes summation over the indices of the

components of Uy,

Definition 5.3. Let the item pool {U;,i > 1} have IRT representation (3-7) with the usual

accompanying assumptions. Let Uy C Uy denote a subtest of Uy for each N. Denoting the

cardinality of 2 set A as card (A), assume

/
i"%zcw (5 - 16)

for some C and for all N > Ny for some fixed Ny (Ng will be small in all applications). Then

Un C U1

{Un,N > 1} is said to be a collection of valid subtests with respect to a specified equicontinuous

balanced scoring method {k} (3" aniUi)} provided there exists a function cn(8) such that for all

8,1,
Elki(Z'aniUs) | ©,n) = (6,7)] — en(6) = 0 (5-17)

as N - 0.

Remark. Recall that short-test bias validity, i.e., (4-22) hold for all (8,7}, for scoring method

N an,Uy) say, simp!v means that, for 6
m(6,n) = Elkn(Zanly)1(0,n) = (8,n)]
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depends only on 4 and not on 7. By contrast the long-test subtest validity just defined by (5-17)
weakens this to asserting that m(6,7) for all 8 is asymptotically not dependent on nas N — oo.
That is, intuitively, for large fixed N, m(8, ) for all 8 is approximately constant as 7 varies.

As with long-test test bias, the theory of essential unidimensionality is useful in studying long-

test subtest validity:

Theorem 5.5. Assumedg = 1 with latent ability 0 being target ability for subtests {Uly, N > 1}
satisfying (5-16). Then (5-17) holds for all equicontinuous balanced scoring methods; i.e., subtest

validity holds for all equicontinuous halanced scoring methods.

Proof. It follows from a minor modification of the proof of Theorem 3.2 in Stout (1989) that for
all (6, 1)

En(Sanili) - en(8) = 0 (5-18)

in probability as N — oo. But [\ (3 an,U;| € C for sume constant C < 0. It is a standard result
fromn the theory of convergence in probability that convergence in probability and the boundedness

Just stated together imply convergence in expectation. That is, for all (8,n),
E[k}v(E'aN,'U.') | @,Q) = 0,12] ~cn(8) =0

as N — 0. Le, (5-17) holds. 0

Stout (1987) has developed a statistical test for essential unidimensionality. Clearly this could

be applied to a subtest to assess whether it can be used as a valid subtest in the case of a “long”

test.

6 Test Bias as a Function of Target Ability

Sections 4 and 5 focus on test bias for fixed values of target ability 6. In these sections it was
argued that test bias (item bias also) is a phenomenon that expresses itself at each 8. In particular,
it is the comparison of the distributions of (1,101 = 0) and (7|02 = 6) that dictates whether test
bias is possible at § and if such bias is possible, in which direction (biased in favor of or biased
against Group 1) it occurs. Mathematically, without further assumptions, one cannot infer what

the character of the bias at §’ # 8 is from the character of the bias at §. This section develops
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the concept of considering test bias aggregated over target ability. We return to the convention of

suppressing N in the notation when appropriate; eg. U = Uy.

Definition 6.1, Let h([l) be a test scoring method and [ be a test response as in (3-1). The
expected test bias at 0 against Group 1 using test scoring method h(U) is given by

B(6) = E[h(U,)|02 = 8] — E[h(U,)|0; = 6]. (6-1)

0o

Remarks.

(i) Note that B(#) > 0 indicates test bias against Group 1 at .

(ii) Several special cases are of interest. If h(u) = TN ui/N, then B(6) is the difference of

(marginal) test characteristic curves (average of marginal IRFs):

B(o) = Z{.J:l]g’ﬂ(o) 2 11311( ) (6 - 2)

If () = u;, then
B(6) = Tiz(9) - Tia (6),

the amount of item ¢ bias against Group 1 at 6.

Probably the most common pattern in the potential for bias as a function of 8 is unidirectional

potential for bias:

Definition 6.2. If potential for bias exists against the same group at every § then unidirectional

potential for bias is said to exist against the group. 0

Another less common, but still important pattern in the potential for bias as a function of 8 is

that the “direction” of the potential for bias changes from one end of the #-continuum to the other:

Definition 6.3. Suppose for some fixed 6y that the potential for bias against one group exists for
all 8 < 8, and the potential for bias exists against the other group for all § > 8o. Then bidirectional

potential for bias is said to exist. o

The verbal analogies example of Section 2 is an obvious practical example of unidirectional
potential for bias. For, it seems likely that the potential for test bias against German immigrants

will hold regardless of the level of verbal analogies ability being conditioned on.
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As an example of bidirert?. » -+ wo yijal for bias, suppose @; and O are both uniformly dis-
tributed on the intsi-wi {~1,1). Suppose that in Group 1, ©; and m, are statistically independent
with 1, w.sormly distributed on [-1,1]. Suppose in Group 2 that (1,/@2 = 6) has a uniform dis-
tribution on the interval with end points 0 and 24. That is, perhaps because of cultural differences,
in Group 2 it follows that © and 7 are highly positively correlated while © and 7 are uncorrelated
in Group 1. Elementary computation show that if =1 < 8 < 0, (4-10) holds, yet if 0 < 6 < 1, (4-9)
holds. That is, potential for bias against Group 2 holds for § < 0 and potential for bias against
Group 1 hold if 8 > 0; i.e., bidirectional potential for bias holds.

Test bias (and item bias) can be undirectional or bidirectional.

Definition 6.4. If test bias (either in the ordering sense of Definition 4.6 or in the long-test sense

of Definition 5.2) exists against the same group at every 8, then unidirectional test bias against

that group is said to hold.

Definition 6.5. If for some 0y test bias in the sense of Definition 4.6 holds against one group for

all § < 8 and against the other group for all § > 8, then bidirectional test bias is said to occur. O

A long-test version of Definition 6.5 is easy to give but is omitied for simplicity. The following

results relate unidirectional potential for bias to unidirectional test bias.

Theorem 8.1. Suppose test bias exists against Group 1 at some 6 in the sense of Definition 4.6,
and suppose unidirectional potential for bias. Assume a test scoring method of the form (4-11).
Suppose for every §' that there is some i (possibly dependent on ') for which h(u) is strictly
increasing as u; = 0 increases to u; = 1 and for which P,~(0’,_r_;) is strictly increasing in 7. Then

unidirectional test bias against Group 1 holds.

Proof. By Theorem 4.3, the potential for bjas against Group 1 at 8 holds. By assumption of
unidirectional potential for bias, the potential for bias against Group 1 thus holds for all &', Apply

Theorem 4.2 together with the remark (i) following it. 0

Theorem 6.2. Assume IRFs are differentiable in n. Suppose long-test test bias exists against

Group 1 at some § in the sense of Definition 5.2 for a balanced scoring method {ay,} and suppose
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unidirectional potential for test bias. Assume for every ¢'

ZGN. ,77 >f">0

for all n (without loss of generality assumed unidimensional here). Then unidirectional (long-test)

test bias against Group 1 holds in the sense of Definition 6.4.

Proof. Same as that of Theorem 6.1 except Theorem 5.3 is used in place of Theorem 4.2. O
In order to study bidirectional test bias,.attention is restricted to balanced scoring methods.

For an arbitrary balanced scoring method Ef\f__l an;Ui, letting

Fy(n|8) = P[n, < 1|0, = 6]

and assuming differentiability of IRFs and a unidimensional nuisance determinant, the following

formula for B(6) of (6-1) obtained by integration by parts is useful

B(0) =/ {Zamd Pi(8,n) }[Fx(nlf?) — F3(n|6)] dn. (6 -3)

Theorem 6.3. Assume a balanced scoring method with differentiable IRFs. Assume a unidi-
mensional nuisance trait 7. Assume for each 8, there exists some i (possibly varying with 8) for

which

%P;(O,n) > 0 for all n > 0. (6 -4)

Then bidirectional potential for test bias holds if and only if bidirectional test bias holds.

ay; > 0,

Proof. By Assumption 4.2, for fixed 6 either

Fi(4|8) = Fa(n|6) > 0 for all 7 (6 - 5)

or
Fy(n|8) — F2(n|8) < 0 for all 7. (6 - 6)

Thus, using (6-3), (6-4) and the strict monotonicity of every Pi(8,7) in n, B(8) > 0 or B(f) < 0
accordingly as (6-5) or (6-6) holds. Potential for bias at § means that either (6-5) or (6-6) holds at
8. The desired result follows. 0

Assume number correct scoring, which implies (6-2) and hence that test bias is controlled by

the (marginal) item response functions with respect to target ability. Graphically, bidirectional

4:)
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test bias under this scoring method is shown in Figure 3. Note the effect is that the test displays
higher discrimination for Group 2 than for Group 1. That is, bidirectional test bias is expressed as
differing test discriminations for the two groups. By contrast, under (6-2), unidirectional test bias
is shown in Figure 4. Unidirectional test bias is not linked to differing test discriminations across
group. Indeed the two test characteristic curves shown in Figure 4 can even be translates of one

another; e.g., for some ¢ > 0 for given T;;(6) = T;(6)

N N
D Tu(0)/N =5 T8+ c)/N
i=1 i=1

for all . That is, items could be uniformly more difficult for Group 2 examinees at every 6.
There is a debate about whether from the cognitive perspective, differing discriminations across

group is more the essence of bias than differing difficulties across group. Also, some practitioners

claim that bidirectional test bias can be important in practice while others discount its importance.

It is hoped that Section 6 helps illuminate these issues.

7 Discussion ard Summary of Results

The central position of this paper is that bias should be conceptualized, studied, and measured at
the test level rather than at the item level. A multidimensional but non-parametric IRT model
of test bias is presented and a number of important properties derived. Qur theory of test bias
includes the often used unidimensional IRT bias approach as a special case.

The model hypothesizes a target ability intended to be measured by the test as well as other
dimensions called nuisance determinants, not intended to be measured. Informally, test bias occurs
when the test under consideration is .neasuring nuisance determinants in addition to the target
ability, and moreover the two groups do not possess equal amounts of the nuisance determinants.
Our view, an outgrowth of the classical predictive validity viewpoint of bias, is that bias is really
something expressed at the test level via the particular test score in use and that bias rests in the
across-group differences in the relationship betwesn test scores and criterion. For us the “criterion”
is internal to the test and is expressed by a “valid” subtest known to consist of items measuring only
target ability. In nrder to statistically detect test bias, a valid subtest must exist and be identified.

In Section 3, the multidimensional non-parametric IRT model is presented. The notion of the

marginal IR with respect to target ability is introduced.
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In Section 4, test bias is carefully defined using the IRT model introduced in Section 3. Test
bias originates w'*h the potential for test bias at a particular value of  of target ability existing
against a group in the sense of Definition 4.3. This potential for bias against Group 1 gets expressed
at the item level if any of the marginal group IRFs satisfy T};(8) < Ti2(8). The potential for test
bias and a strictly increasing IRF in 7 implies expressed item bias (Theorem 4.1).

The main focus of this paper is on biased items acting in concert. Three components combine to
produce test bias: (a) potential for bias, (b) dependence of the IRFs on 7, and (c) the test scoring
method, which transmits-simultaneous expressed item bias into test bias. Test bias is formally
defined in (4-12). It is shown that test bias at  implies the potential for bias at § (Theorem 4.3).
The central result of Section 4 (Theorem 4.2) shows that potential for bias at § translates into test
bias at 6 provided the scoring method depends on at least one item that has a strictly increasing
IRF in 7 at 6.

The important topic of item bias cancellation is taken up in Section 4.4. Example 4.1 illustrates
how cancellation can actually decrease the amount of item bias that gets expressed at the test level.
That is, the potential for bias need not be strongly transmitted to the test level because in fact -
considerable cancellation can occur as the result of multidimensional nuisance determinants. By
contrast, small and perhaps undetectable amounts of bias at the item level can be translated inte
a substantial amount of bias expressed at the test level when no cancellation occurs. Section 4.5
formalizes the notion nf a valid subtest, which must exist for text bias to be detected. Shealy and
Stout (1990) present a statistical test of test bias, making the question of whether test bias does
exist for a particular data set an answerable one.

Section 5 presents a long-test viewpoint of test bias, making heavy use of Stout’s theory of essen-
tial unidimensionality. No long-test test bias holding is defined. It is shown that if an equicontinuous
balanced test score (a laree class of reasonable to use test scores are such) displays appropriate con-
vergence in probability behavior separately in each examinee group, then there can be no long-test
test bias. Essential unidimensionality (dp = 1) of a test with target ability as the latent trait
is shown to exclude long-test test bias. Because one can statistically test for essential unidimen-
sionality (Stout, 1987), this is a potentially very useful result. Theorem 5.3 is important as the

'ong-test analogue to Theorem 4.2. It links potential for bias and scoring method to the existence

of long-test test bias.



A long-test viewpoint of subtest validity is also present in Section 5. Informally stated, the
main result is that dg = 1 for a subtest with the latent trait being target ability implies subtest
validity for all equicontinuous balanced scoring methods.

Section 6 considers test bias aggregated over target ability. The important concepts of unidirec-
tional and bidirectional test bias are introduced. The relationship between differing discriminations
across groop and bidirectional test bias is explicated.

It is hoped that the above theory of test validity proves useful to theoreticians and practitioners

alike.
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