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ABSTRACT

As significance testing comes under increasing fire, some

researchers are turning to other indices to evaluate their

findings. Included among the alternative options are the

interpretation of effect size estimates and the evaluation of

sample specificity (sometimes called invariance testing). Using

a hypothetical data set, this study explains one approach to

estimating whether the results in a study are sample specific; that

approach is the jackknife method. The results of a descriptive

discriminant analysis followed by the application of the jackknife

are discussed so that the procedure will be concrete and

understandable.
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Researchers often place exaggerated importance on the

statistical significance of their results. As a consequence, they

neglect to consider other important issues integrally associated

with their results, such as practical significance (or effect size)

and result replicability (or sample specificity). Carver (1978)

ahd Fish (1986a) argue that statistical significance is largely an

artifact of sample size. Thompson (1989) and WelgeCrow, LeCluyse,

and Thompson (1990) provide examples that support this argument.

The research community sometimes loses sight of the fact that

statistical significance does not imply practical significance;

that is, statistical significance does not mean a noteworthy effect

has been discovered. As an example used by WelgeCrow et al.

(1990) illustrates, a trivial difference of .30 between one IQ mean

of 100.15 and another IQ mean of 99.85 will be statistically

significant if sample size is large enough, as it might be in a

large school district. A result such as this suggests that

researchers must also consider the prac;tical significance of their

findings. Practical significance can be thought o-c in terms of

effect size, or the peicent of variance in the dependent variable

accounted for by the independent variables. As Cohen (1977)

describes it, effect size is the "degree to which the phenomenon

exists" (p. 9). Several methods are available for determining

effect size (see Thompson, 1989 for some examples). Effect sizes

range between 0% and 100%, but in the social sciences effect sizes

of about 30% are generally considered large (Thompson, 1989).
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Notwithstanding the importance of practical significance, the

most critical aspect of any research study is the evaluation of

sample specificity or result replicability. Neither statistical

significance nor practical significance provide grounds for

assuming that results will generalize to future studies (Carver,

1978; Thompson, 1989). As Stevens (1986) maintains, a result which

is sample specific and 'cannot be repl'cated, that is, one which

lacks "generalizability, ...is of limited scientific value" (p.

58)--no matter how statistically significant nor how practically

significant the result may be for the sample employed. Stated

another way, study results found to be significant at a stringent

alpha level, even if they are also found to have a substantial

effect size, do little to advance a body of knowledge:- if the

results cannot be replicated.

Result generalizability, sample specificity, replicability,

and invariance testing are often used interchangeably to refer to

the assessment of the likelihood of reproducing research results

in subsequent studi4s. The current paper presents an application

of one invariance procedure, the jackknife statistic, following a

discriminant analysis. To facilitate the reader's understanding

of the jackknife results, a brief interpretation of the

discriminant analysis results will be provided first.

Discriminant Analysis Results

Discriminant analysis is a multivariate technique that can be

used in two ways (Afifi & Clark, 1984; Huberty & Wisenbaker, in

press). One application of this technique is classification,

5
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sometimes referred to as prediction. UPe of this application

allows for individuals to be classified into two or more groups.

Afifi and Clark (1984) explain that "the [groups] are known to be

distinct and each individual belongs to one of them" (p. 247). An

example might be classifying voters as Democrats, Republicans, or

members of some other political party. By using the discriminant

functions developed for making the classification, more accurate

predictions can be made about the classification of future voters.

A second application of discriminant analysis is description.

When used in this way, the technique "characterize[s] the major

differences among. ..groups" (Stevens, 1972, p. 501). This

application is not so much concerned with the accurate

classification of cases, as it is with identifying the variables

or combinations of variables that separate the groups (Afifi &

Clark, 1984) and with examining the extent of group separation

(Huberty & Wisenbaker, in press). Again using voters' party

affiliation as an example, the descriptive application of

discriminant analysis would provide information regarding the

particular variables or variable composites that separated the

voters by political parties. Such variables might include voter

attitudes toward governmont welfare programs, the military, and the

environment. The descriptive application tends to focus on which

variables distinguish the groups and on why they do so.

Discriminant analysis employs factor analytic techniques which

lead to the extraction of orthogonal syntilltic variates (i.e.,

combinations of the original variables each of which is
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uncorrelated with the other combinations). In discriminant

analysis, these synthetic variates take the form of discriminant

functions, and are extracted in such a way that differences among

the groups are maximized (Stevens, 1986).

For the present study, a discriminant analysis was calculated

from a hypothetical data set with 64 cases and two predictor

variables, X and Y. The first 32 cases are from a data set

developed by Fish (1988). Four groups of 16 cases each were

derived. The data set and the SPSSx commands for the discriminant

analysis are contained in Tables 1 and 2, so that the reader is

able to replicate and further explore the analysis. Means,

standard deviations, and Pearson correlations for the data set are

reported in Table 3.

INSERT TABLES 1, 2, AND 3 ABOUT HERE

Several sources of information available from commonly used

statistical packages help in interpreting discriminant results.

One source of information involves the discriminant functions.

Two facts about each function are important; one is the

significance of the discriminant function, the second is the

percent of variance accounted for by the function. As Table 4

indicates, for this data set, tuo functions were found to be

significant at the p - .01 level. The first function accounts for

79% of the variance and the second function for 21%. Because both

functions account for major portions of the variance, both are

useful in interpreting the discriminallt results.

7
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INSERT TABLE 4 ABOUT HERE

A second source of information useful to the researcher is

the standardized function coefficients. These function

coefficients are analogous to beta weights used in regression

analysis. Consulting the standardized function coefficients

presented in Table 5, we find that on Function I, the two variables

have coefficients that are about equal in magnitude, but with

opposite signs (1.55689 and 1.20080 for X and Y, respectively).

This feature of Function I suggests that the contributions of X and

Y to group separation are roughly equal, given that the

coefficients have roughly the same magnitude. The opposite signs

. carried by the function coefficients indicate that individuals

scoring high on one predictor variable and Jow on the other are

members of the same group. With regard to Function II, X and V are

quite different in their respective contributions to group

separation. As seen in Table 5, Y, with a standardized function

coefficient of .99103, strongly contributes to group separation.

On the other hand, X, with a function coefficient of only .01167,

plays a very small role.

INSERT TABLE 5 ABOUT HERE

A third source of information useful in interpreting

discriminant results is the canonical structure coefficients which

are the correlation coefficients between scores on each variable
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and scores on each function. By consulting the structure

coefficients for the present analysis, some interpretative clarity

is gained and some is lost. The structure coefficients reported

in Table 6 indicate that X has a moderate relationship with

Function I (r - .637), while Y has almost no relationship with the

first function (r - .008). Further, the strength of the

relationship between V and Function II is confirmed; Y has a nearly

perfect correlation with scores on Function II (r - .99997).

INSERT TABLE 6 ABOUT HERE

Consideration of the structure coefficients, however, clouds

the role of X in explaining separation of the four groups on

Function II. X has a strong relationship with scores on Function

II (r - .771), the function on whick: its weight was negligible.

This occurrence points to the need for interpreting both function

and structure coefficients. A researcher can be most confident

when both coefficients indicate that a variable is important.

However,when the coefficients suggest conflicting interpretations,

more emphasis is usually placed on structure coefficients for

reasons elaborated by Thompson (1990).

A Rationale for Evaluating Sample Specificity

As has just been demonstrated, the interpretation of results

from a discriminant analysis may prove difficult. However,

regardless of the facility or difficulty encountered in

interpretation, a thoughtful researcher will be wary of investing

much confidence in the findings unless the generalizability of
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results can be empirically demonstrated. As Thompson (1989) notes,

"when results appear to be replicable, the researcher can interpret

the set of results...with more confidence" (p. 4).

Fish (1986b) explains the logic of evaluating sample

specificity, noting that these techniques

attempt to determine how stable the statistical results

are likely to be across different samples. In the

typical invariance procedure an analysis is performed

separately on...subgroups into which the study sample

has been divided, and the results ace compared. When

the results of an analysis are not comparable--i.e, not

invariant--serious doubts about the generalizability of

the results are in order. (pp. 65-66)

The suggestion that researchers evaluate the sample

specificity of their results is based on a problem common to all

statistical techniques. Daniel (1989) describes this problem,

noting that "there is always the possibility that...results may

simply capitalize on artifacts of the sample employed" (p. 1).

"Artifacts of the sample" include such features as outliers and

the chance selection of an atypical sample which differs

substantially from the population. Characteristics such as the

ones just mentioned lead to biased results and hence to the

reporting of inaccurate conclusions. Compounding the problem, the

smaller the sample size is, the greater is the risk of sample

specific results.

II
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Evaluating the sample specificity of a study can be

accomplished with a number of procedures. Cooil, Winer, and Rados

(1987) discuss three invariance methods. The first such approach

is frequently called crossvalidation and involves splitting the

sample into two subsets or invariance groups. The coefficients of

concern are determined on one subset and validated on the other

(Cooil et al., 1987, p. 272). A drawback of this procedure is the

further reduction in sample size that results from splitting the

sample. This is especially problematic if the original sample is

small (Daniel, 1989).

A second procedure, termed the 'simultaneous' approach by

Cooil and his colleagues, "simultaneously estimates parameters and

crossvalidates the estimates" (Cooil et al., 1987, p. 273). These

authors provide an example of this technique, noting that their

investigation indicates it "has not been applied...in the social

sciences" (Cooil et al., 1987, p. 271).

The third technique explained by Cooil et al. (1987) is the

sample reuse method of which bootstrap procedures (see Diaconis &

Efron, 1983, for a readable discussion) and the jackknife statistic

are examples. Thompson (1989) explains that the bootstrap

procedure "involves copying a data set over and over again into a

megafile and then repetitively drawing different samples with

different combinations of subjects...to determine how sampling

influences affect results" (p. 3). The jackknife statistic, on the

other hand, involves repetitively eliminating different subsets of

cases from the total sample, calculating the statistic of interest

ia
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on the remaining cases, and then averaging the results across

subsets. The jackknife procedure was applied in the present study

to evaluate the sample specificity of the discriminant analysis

results.

The jackknife is useful with many statistical procedures and

is especially appropriate when sample size is small, thus

overcoming a problem with crossvalidation methods, as noted. When

used with discriminant analysis, the jackknife evaluates "the

stability of the [discriminant function] coefficients" (Crask &

Perreault, 1977, p. 62). This technique was developed by Tukey

based on work by Quenouille and Jones (Fenwick, 1979). Tukey chose

the name 'jackknife' because like a scout's jackknife, it is "a

roughandready instrument capable of being utilized in all

contingencies and emergencies" (Miller, 1964, p. 1594). Crask and

Perreault (1977) note that in discriminant analysis, the jackknife

is useful for "characterizing...the underlying dimensions which

discriminate between groups" (p. 63). Stated another way, the

jackknife statistic evaluates the synthetic variates that separate

the groups. The reader will recall that group separation was the

focus of the interpretation of the discriminant analysis results

previously discussed.

The jackknife statistic is a versatile invariance technique

that is useful with both multivariate and univariate statistical

methods. In addition to being applicable when sample size is small

(Crask & Perreault, 1977), it is also an unbiased estimator

(Quenouille, 1956; Tukey, 1958). On the point of bias, Cooil et

12
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al. (1987) explain that "the jackknife is intended to be a bias

reduction technique" (p. 272). Mantel (1967) added that this

characteristic of the jackknife is "a particularly desirable

property" (p. 570). The capability of producing unbiased

estimators is a feature not characteristic of all approaches to

assessing replicability. This bias reducing tendency makes the

jackknife a particularly useful technique.

Procedure for Calculating the Jackknife Statistic

The jackknife statistic is conceptually and computationally

straightforward. The following explanation will be non

mathematical; readers wishing a mathematical treatment of the

process are encouraged to read Gray and Schucany (1972). To

compute a jackknife, the original sample of size (A0 is divided

into k subsets of equal size (n) such that (N kn). Each subset

may be comprised of as few as one case or may be "as large as the

largest multiplicative factor of Ars (Daniel, 1989, p. 7). The

statistic of interest is computed for the total sample. Then, each

subset is deleted in repetition and a new statistic is computed for

each of the truncated data sets. The result is k values, and the

value derived for the total sample (A). As can be deduced from

this step, the smaller the subsets the greater the number of

repetitions required. There are several advantages to forming

small subsets--the influence of outliers can be more easily

detected, any lack of stability in the results can be more easily

pinpointed, and the researcher can be more certain of the results.

Thus, best practice dictates small subsets.

13
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Having computed the statistic of interest for each truncated

data set, the next step involves the calculation of a coefficient

which is derived from the values obtained thus far. This new value

is called a 'pseudovalue' by Tukey (Miller, 1964) and is the basis

on which the jackknifed coefficient is determined. Indeed, the

mean of the pseudovalues is the jackknifed coefficient. This mean

is computed in the typical manner--the pseudovalues are summed and

that sum is divided by the number of subsets (k).

With the jackknifed coefficient determined, the next step is

interpretation. Invariance testing is a relatively new field,

consequently, criteria for interpreting results are still

developing. Because the jackknifed coefficient has been found to

have approximately a normal distribution (Crask and Perreault,

1977; Miller, 1964), critical values and confidence intervals can

be derived. A standard error of the mean is determined for the

pseudovalues and a t-statistic is calculated by dividing the

jackknifed coefficient by the standard error. The critical t-value

is obtained from the t-distribution, with degrees of freedom

equalling the number of subsets minus one (k 1). The stability

of the jackknifed coefficient can be evaluated either directly, or

through the construction of confidence intervals (Crask &

Perreault, 1977; Daniel, 1989). Other information, such as the

range of the pseudovalues, can also aid in interpretation.

Application of the Jackknife Statistic

A jackknife statistic was computed to evaluate the sample

specificity of the discrimin&nt analysis results presented earlier.
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A jackknife cannot be calculated through SPSSx; however, the

repetition of runs on each truncated data set can be performed with

SPSSx. The pseudovalues and jackknifed coefficient can then be

computed with a spreadsheet program. The SPSSx program commands

for the repetitions of discriminant analyses used in the present

study are found in Table 7. The variable 'Subset' contained in the

data set in Table 1 was included to partition the sample into eight

subsets for computing the jackknife. As noted earlier, the

jackknife statistic is of maximum value when the subsets are small.

For heuristic purposes in this example, eight subsets of eight

cases each were used so that the explanation would not be unduly

complicated and readers would be able to replicate the results with

relative ease. Best practice, however, would entail much smaller

subsets and, thus, many more discriminant runs.

INSERT TABLE 7 ABOUT HERE

Applying the technique to the hypothetical data in the present

study involved the following steps:

(a) a standardized discriminant function coefficient was

computed for both variables associated with both functions using

the total sample of 64 cases. These function coefficients are

presented in Table 8;

(b) the sample was divided into eight subsets of equal size

using the variable 'Subset;'
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(c) each subset of cases was deleted in repetition and

standardized discriminant functions were computed for each of the

eight truncated data sets, as reported in Table 8;

(d) pseudovalues for X and Y were computed for both functions

for each of the eight truncated data sets using the formula,

k(01) - (k-1)60is

- 1, 2, 3,..., k

(Crask & Perreault, 1977, p. 62)

where 19' is the function coefficient derived from the entire

sample, kis the number of subsets, is the function coefficient

derived from a truncated data set, and J10' is the pseudovalue--

these pseudovalues are presented in Table 9;

(e) the jackknifed coefficient for X and Y on both

discriminant functions was derived by averaging the pseudovalues

using the formula,

J(W) EJ1(9' )/k

- 1, 2, k

(Crask & Perreault, 1977, p. 62)

where J(0') is the jackknifed coefficient. The jackknifed

coefficients are presented in Table 9.

INSERT TABLES 8 AND 9 ABOUT HERE

Results

As Table 9 indicates, for Function I, the jackknifed

coefficients for X and Y, respectively, are d(W) - 1.52438 and

we') - -1.16857. With a standard error for X of sg - .19 and for

16
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Y of sr .37, the respective t-values on Funct.ion I are tuac

8.023 for X, and talc -3.158 for Y. The critical value for t at

2 .05 with df- 7 is tcrit - 2.365. The calculated t-values exceed

the critical values for both variables on Function I.

Table 9 provides the same type of information for Function

II. The jackknifed coefficients for X and Y, respectively, are

J(W) - .00944 and J(w) - 1.01644. The standard error was found

to be sR .269 for X and si - .213 for Y. The resulting talc -

.035 for X failed to exceed the critical value of tun - 2.365.

However, for Y, the obtained t-calc - 4.77 was significant at the 2

- .05.

Table 10 provides confidence intervals for both variables on

both functions. In all four instances the original coefficients

fall within the bounds of the confidence intervals established.

INSERT TABLE 10 ABOUT HERE

Discussion

Table 9 shows that the calculated t-value for three of the

four jackknifed coefficients exceeds the critical value; the

exception is X on Function II. Fish (1986a) makes a cogent

argument that it is somewhat illogical to propose invariance

testing as an alternative to strict reliance on significance

testing and then to judge the results of an invariance test

strictly on statistical significance. Consequently, we can look
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elsewhere in the data to understand the jackknife results more

fully.

For example, the confidence intervals presented in Table 10

include the original function coefficients in every instance,

including X on Function II. Further, information in Table 9 alerts

us to a problem with X. Note that the jackknifed coefficient for

X is remarkably small on Function II. Note further that the

pseudovalues for this variable fluctuate more radically (SD- .269)

than those for the other variables. From these three pieces of

information, it can be deduced that while the X is like_y to

replicate in future research, the replication will involve function

coefficients that vary between 1 and +1, and thus are unlikely to

be particularly important. This problem with X might have been

anticipated based on the results reported in Table 8. As can be

seen, the magnitude of the function coefficients derived from the

truncated data sets for X on Function II approaches zero. In

addition, we find both positive and negative val.ues among these

function coefficients.

Interpreting all of the evidence from the jackknife procedure

suggests that the sample findings are likely to replicate in

subsequent research, but that X will produce erratic results that

range near zero and are, therefore, not very noteworthy. Based on

the jackknife results, the researcher has reason to believe that

the study findings are stable under variations in sampling

configuration and, thus, are not sample specific. Stated another

way, both X and Y appear to be valid discriminators among groups,
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with characteristics that generalize to the population. However,

the findings also suggest that caution should be exercised in

interpreting the discriminant analysis regarding X on Function II.

These jackknife results are interesting. The reader will

recall the discriminant analysis results. Those findings indicate

that X had the greater association of the two variables with

Function I, but that it also had a strong correlation with Function

II, as noted in the structure coefficients reported in Table 6.

Nonetheless, the relationship betkmen X and Function II the was

weaker than that of Y and Function II. In interpreting the results

of the discriminant analysis, the almost perfect structure

correlation between Y and Function II overshadowed the

contributions of X. Thus, the jackknife results in this case

suggest that the seemingly contradictory finding regarding the role

of X on Function II may be unimportant, since the variable's

behavior on this function appears to be erratic.

One final note on the jackknife findings. As explained

earlier, a reason for developing small subsets is to provide

greater ease in detecting unique cases. The behavior of subset

four suggests that there may be outliers in data that are captured

by this subset. Subset four manifests unusual results in three of

the four sets of pseudovalues: it produced by far the smallest

pseudovalue for X on Function I, the only positive value for Y on

the same function, and the largest pseudovalue for Y on Function

II. This subset may well have one or more unique cases and should

be examined for this possibility.

1 q
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Summary

The jackknife statistic is a tool for evaluating the sample

specificity of results. Fish (1986a) counsels that invariance

procedures like the jackknife provide information about the

reproducibility of research findings, not about the interpretation

of those findings. As noted previously, results obtained from

evaluating the sample specificity of study findings inform the

researcher about the degree of confidence with which the

interpretation can be made.

The versatility of the jackknife procedure allows for it to

be used with both univariate and multivariate statistical

techniques. A reminder is in order, however. Parameters for

interpreting invariance coefficients such as jackknifed

coefficients have yet to be established (Thompson, 1984). Until

practice evolves to the point that parameters can be established,

"the interpretation of invariance results [will be] a matter of

the researcher's judgment" (Fish, 1986a, p. 16). In the meantime,

Thompson (1984) recommends that at least one invariance procedure

be included in every research report.
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Table 1
Hypothetical Data Set

Subset* Case Group X V Subset
1 1 4 2 5 49 4 1 7 4
2 1 5 3 8 50 4 1 2 3
3 1 4 4 2 51 4 1 1 2
4 1 4 5 3 52 4 2 2 8
5 1 3 4 4 53 4 2 3 3
6 1 6 5 6 54 4 2 3 1
7 1 5 6 7 55 4 3 2 7
8 1 7 5 2 56 4 3 3 4
9 1 6 6 1 57 4 3 4 7

10 1 8 6 8 58 4 4 5 6
11 1 7 6 1 59 4 4 4 5
12 1 9 7 5 60 4 4 5 4
13 1 8 7 4 61 4 4 6 2
14 1 8 8 3 62 4 5 6 1

15 1 9 8 7 63 4 5 7 8
16 1 9 9 6 64 4 5 7 6
17 2 1 2 8
18 2 3 3 4 *Subset was used to separate
19 2 3 5 3 the cases into groups for
20 2 3 5 6 the jackknife procedure; it
21 2 2 5 5 was not used in the
22 2 4 6 4 discriminant analysis
23 2 4 5 2 itself.
24 2 5 6 5
25 2 6 6 6
26 2 6 6 1

27 2 6 7 7

28 2 7 7 8
29 2 7 7 2
30 2 8 9 3
31 2 8 9 7

32 2 9 9 1

33 3 4 1 8
34 3 4 2 6
35 3 3 2 3
36 3 2 4 5
37 3 5 3 2
38 3 7 4 1

39 3 4 5 7
40 3 5 4 5
41 3 7 5 8
42 3 9 5 6
43 3 6 5 4
44 3 5 6 1

45 3 7 6 7

46 3 9 7 3
47 3 8 6 5
48 3 8 5 2

21
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Table 2
SPSSx Commands for Discriminant Analysis

FILE HANDLE DT/NAME-'DISCRMNT.DAT'
DATA LIST FILE-DT/CASE 1-2 GROUP 7 X 12 Y 17 SUBSET 20
LIST VARIABLES CASE TO SUBSET
DISCRIMINANT GROUPS-GROUP(1,4)
/VARIABLESX Y
/STATISTICS

Table 3
Group Means, Standardized

Deviations, and Correlations

X
Group Mean SD Mean SD rxy

1 6.38 2.03 5.69 1.89 .833
2 5.13 2.36 6.06 1.98 .923
3 5.81 2.14 4.28 1.67 .657
4 3.06 1.44 4.19 2.01 .643

Table 4
Discriminant Functions

Percent of
Function Variance Significance

78.75 .0000
II 21.25 .0047
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Table 5
Standardized Function Coefficients

Function I Function II

X 1.55589 .01167
-1.2G080 .99103

Table 6
Canonical Structure Coefficients

Function I Function II

X .63652 .77126
-.00750 .99997

Table 7
SPSSx Commands to Generate Data for

Jackknife Calculations

TEMPORARY'
DO IF (SUBSET EQ 1)
COMPUTE GROUP..5
END IF
DISCRIMINANT GROUPS-GROUP(1,4)
/VARIABLES-X Y
/STATISTICS

TEMPORARY
DO IF (SUBSET EQ 2)

St

COMPUTE GROUP-5
END IF
DISCRIMINANT GROUPS-.GROUP(1,4)
/VARIABLES-X Y
/STATISTICS

The commands to obtain the data for the jackknife immediately
follow the program commands found in Table 2.

'As can be seen, the series of commands that follows TEMPORARY are
identical except that the (SUBSET EQ #) changes to delete each
of the eight subsets one at a time. Because the commands are
the same, all eight will not be listed here.
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Table 8
Standardized Discriminant Function Coefficients

for the Jackknife Subsets

Group
Deleted

Function I Function II
X Y X Y

(none) 1.55689 -1.20080 .01167 .99103
1 1.56334 -1.21857 .02623 .97970
2 1.54426 -1.16118 -.02421 1.01833
3 1.46279 -1.09874 .04494 .96672
4 1.71091 -1.50572 .19439 .83535
5 1.61345 -1.24890 -.02809 1.02189
6 1.52628 -1.05436 -.15854 1.11490
7 1.57848 -1.29292 .11018 .91218
8 1.49277 -1.06311 -.06899 1.05020

Table 9

Group
Deleted

Fseudov .cts, Jackknifed Coefficients,
and t-values

Function I Function II
X Y X Y

1 1.51174 -1.07641 - .09025 1.07034
2 1.64530 -1.47814 .26283 .79993
3 2.21559 -1.91522 - .22122 1.16120
4 .47875 .93364 -1.26737 2.08079
5 1.16097 - .86410 .28999 .77501
6 1.77116 -2.22588 1.20314 .12394
7 1.40576 - .55596 - .67790 1.54298
8 2.00573 -2.16463 .57629 .57684

Jackknifed
Coefficient 1.52475 -1.16834 .00944 1.01644
sr .19 .37 .269 .213
t,.ai167)c

(401

8.025* -3.158* .035 4.772*

tau
ip...05)

2.365 2.365 2.365 2.365

*Indicates coefficient stability
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Table 10
95% Confidence Intervals for
the Jackknifed Coefficients

Function I Function II

25

X Y X
Original
coefficients 1.5b689 -1.20080 .01167 .99103

Jackknifed
coefficients 1.52475 -1.16834 .00944 1.01644

Lower bound 1.15235 -1.89354 -.51780 .59896

Upper bound 1.89715 .44314 .53668 1.43392
Note: The formula used for the confidence interval is:
CI - J(0') + zsp For example, the interval for X on Function I
is CI - 1.52475 + 1.96(.19) - 1.15235 to 1.89715.


