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ABSTRACT

The paper explores the factors that influence coefficient alpha as

a lower bound estimate of score reliability. The purpose of the

paper is to communicate the relative influence on alpha of various

factors. Small data sets generated by a computer program are

employed to make the discussion concrete and readily accessible.
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Reliability is critical in detecting effects in substantive

research. For example, if a dependent variable is measured such

that it is perfectly unreliable, the effect size in the study will

unavoidably be zero, and the results will not be statistically

significant at any sample size, including an infinite one. As

Locke, Spirduso and Silverman (1987, p. 28) note, "the correlation

between scores from two tests cannot exceed the square root of the

product for reliability in each test." Thus, if a researcher is

correlating scores having a reliability of .9 with scores having a

reliability of .6, the correlation cannot exceed .73.

Prospectively, researchers must select measures that will allow

detection of effects at the level desired; retrospectively,

researchers must take reliability into account when interpreting

findings.

Meier and Davis (1990), however, recently reported that

published studies often do not adequately report reliability

estimates so that results can be carefully evaluated. This has

historically been the case with.respect to published research. For

example, Willson (1980) found that almost half the published

studies he examined did not report reliability information. The

same pattern seems to occur in dissertation research (LaGaccia,

1991).

The present paper explores the factors affecting a lower-bound

estimate of internal consistency reliability, Cronbach's

coefficient alpha. One aspect of this treatment involved use of a

BASIC computer program (Thompson, 1990) that implements a small
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scale Monte Carlo study for heuriltic purposes.

What is coefficient alpha?

When an estizate of the reliability of scores on a test is

needed and the parallel fares and test-retest approaches are

impractical, researchers typically rely on internal consistency

coefficients such as coeffictent alpha (Feldt, Woodruff, 6 Salih,

1987). Theoretically, coefficient alpha is an estimate of the

correlation expected between two tests drawn at random from a pool

of items like the items in the test under consideration.

Practically, coefficient alpha can be used as an index of internal

consistency, i.e., an index of the degree to which item response

scores (e.g., "0" or "1" in achievement testing) correlate with

total test scores. Crocker and Algina (1986, p. 142) describe

coefficient alpha as

...not a direct estimate of the (theoretical)

reliability coefficient but rather an estimate of

the lower bound of that coefficient-...Alpha is the

mean of ail possible split-half coeffizients that

are calculated.

Alpha, therefore, can be interpreted as the lower bound eetimate of

the proportion of variance in the test scores explainei by common

factors underlying item performance.

Alpha is superior to the use of the split-half estimate of

internal consistency, because for moet tests of any length there

are usually many splits, and the estimates associated with

different splits for the same data may well yield contradictory
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results. As Brownell (1933) pointed out long ago, for a test with

k items, there are (.5(kl))/((.5(k))1]2 splits of the items. For

example, for a test with six items, the number of splits (1,2,3 vs

4,5,6, 1,2,4 vs 3,5,6, etc.) Kuala:

.5 x (6 x 5 x 4 x 1. x 2 x 11 = .5 4 720 = ifig 10

(3 x 2 x 1)4 64 36

For a test with k=2 items there is one unique split. For a

test with k=4 items there are three splits. For a test with six

items, there are 10 splits, as indicated previously. For a test

with 10 items there are 126 splits. Clearly the number of splits

(and the likelihood of contradictory results across splits)

escalates dramatically as items are added, even for relatively

short tests.

Coefficient alpha has the sale value no matter which method of

computacion is used. With this advantage, however, comes some

cautions when interpreting alpha. Crocker and Algina (1986) warn

that a relatively high value of coefficient alpha is not related to

stability of the test scores over time, or to their equivalence to

scores on one specific alternate form of the test, or to the

unidemensionality of test items (i.e., performance on these items

cannot necessarily be explained in terms of a single underlying

factor).

This last limitation actually represents a common

methodological error made by many researchers. A large alpha does

pot indicate that the test is unidimensional, and cannot be factor

analyzed, notwithstanding the propensity of some researchers to

formulate exactly this interpretation.
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Now is goefficiont alpha calculated?

Three procedures used to calculate coefficient alpha

determined from a single administration of a test are (a) Hoyt's

analysis of variance, (b) Cronbach's alpha, and (c) Ruder-

Richardson formula /20. All three methods yield identical results.

Hoyt's method (Hoyt, 1941) is based on the analysis of variance,

treating persons and items as sources of variation. Cronbach's

alpha (Cronbach, 1951) uses item variance, total test variance, and

the length of the test to compute an estimate of the inz.ernal

consistency of items which are either dizhotomously scored (i.e.,

scored either "0" or "1"), or which have a wide range of scoring

weights. Cronbach's alpha is computed by the formula:

* g - Zgi2]
k-1 aT7 (aT2 > 0, k > 1)

where k is the number of items on the test, La12 is the sum of item

variances, and aT2 is the total test variance.

The Ruder-Richardson fornulat /20 (Ruder & Richardson, 1937)

is equivalent to Cronbach's alpha; however, KR 20 can only be used

with dichotomously scored items. The KR 20 formula is identical to

Cronbach's except the sun of item variances can be computed by

using a simplified formula, a12 = pq, where p is the proportion of

subjects correctly answering a given item (sometimes called item

difficulty) and q (the proportion of subjects answering the item

wrong) is 1 - p:

DM]
k-1 aT4

For a complete algebraic proof of the formula, a12 = pq, for
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dictomously scored items, see Crocker and Algina (1986, pp. 90-92).

For dichotomously scored items, item difficulty (p) can only

range between 0 and 1 inclusive, since for a given item j no fewer

than a proportion of 0 (or 0%) of the subjects can get the item

right and no more than a proportion of 1 (or 100%) of the subjects

can get the item right. Though it is perhaps counter-intuitive,

larger p-values indicate easier items, and smaller p-vrlues

describe more difficult items. KR 20 will be used to calculate

coefficient alpha in this study because all of the test items used

are dichotomously scored.

What factors affect coefficient alpha?

Both the characteristics of the person sample selected and the

characteristics of the test items can affect coefficient alpha.

For example, if a group of examinees is homogeneous with respect to

knowledge about physics, that is they have similar competencies in

this area, then one would expect them to score about the same on a

test of physics concepts. In this example, the variability of

total test scores would be small because most examinees would have

a similar score. This would result in dividing each item variance

by a smaller number, yielding a larger result that is then

subtracted from one, and thereby yielding a smaller estimated

reliability, as can be seen by examining the KR 20 formula. Thus,

though it is not widely recognized by researchers, the nature (and

even the size) of the sample of subjects can impact the estimated

classical reliability coefficient.

In considering the characteristics of the test that may affect

5
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coefficient alpha, it is important to note that a test is not

reliable or unreliable; rather, "reliability is a property of the

scores on a test for a particular group of examinees" (Crocker &

Algina, 1986, p. 144, emphasis added). Depending on the types of

items added, increasing the length of the test usually increases

coefficient alpha, that is if (and only if) the items are of equal

or bettcr quality than the other items on the test. The more items

that are selected from the "pool of items," the less likely that

the item sample will be biased, or will underestimate the

theoretical coefficient alpha.

In the computational equation for coefficient alpha, the k/(k-

1) term corrects for this bias; when the number of items on the

test, k, increases, then this correction term gets smaller and

smaller. For example, for a 2-item test, the correction multiplier

would be (2/12-1)) or 2; with a 10-item test, k equals 1.11; with

a 100-item test, k equals 1.0101. There is a point when adding

items will help less and less to increase coefficifnt alpha as

regards this correction aspect of the formula.

Three of the factors that affect coefficient alpha, total test

variance, sum of item variances, and homogeneity of item

difficulty, p, will be examined in the present study using a mini

Monte Carlo model. The Monte Carlo method is a technique for

obtaining an approximate solution to certain mathematical and

logical problems; it characteristically involves randomly sampling

from some specified and known universe. The process is usually

done on a computer, as it was in this study.

6
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Characteristica cf the modelled items sets are easily

manipulated using this method; the method allows use of a wide

variety of item set typos to help increase the generalizability of

the results. For tne present study, four population target matrices

or models were used to manipulate the combination of (a) total test

variance, (b) sum of item variances, and (c) homogeneity/

heterogeneity of item difficulty for a hypothetical 7-item,

dichotomously scored test with 10 examinees. The purpose of this

Monte Carlo modeling was to investigate tte relative_effects of

total test variance, item variance and homogeneity of item

difficulty with respect to their influences on _reliability.

Each population target model creates the conditions necessa-y

to maximize, minimize or moderate each of the three factors that

affect coefficient alpha. As part of the random sampling process,

a probability is specified to influence the degree to which random

samples will reflect each parameter in the population. For

example, if the assigned probability is .2 for item 2 of person 2,

then when a random number is generated to determine whether the

score for this item in a given random sample will be a "On or a

"1," on the average 20 percent of the time this. item will be scored

1 and 80 percent of the time this item will be scored a 0. Table

1 presents the four population models used in the study.

Insert Table 1 about here

As can be determined by consulting Table 1, the four models

create various patterns in the total test variance, sum of item

7
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variances, and homogeneity/heterogeneity of item difficulty. Model

1 produces maximum total score variance, maximum item variance, and

homogeneoua item difficulty. Model 2 generates minimum total score

variance, maximum item variance, and homogeneous item difficulty.

Modll 3 produces moderate total score variance, moderate suns of

the item variances, and heterogeneous item difficulty. Model 4

generates minimum total variance, moderate sums of items variances,

and heterogeneous item difficulty.

BOW can total test variance be siaziniseil

On a 7-item, dichotomously scored test with 10 examinees, the

total test score for each examinee ranges from 0 to 7. Figure 1

uses histograms to illustrate various total test score combinations

and their corresponding total test variance. When everyone gets a

score of "1" for each item, each examinee's total test score is 7.

The item difficulty, p, for each item in this example is 1 and the

total test variance, 07.2, is 0, because there is no "spreadoutness"

in the scores. Similarly, when evqryone gets n score of 0 for each

item, each examinee's total Ecore is 0, item diffialty, p, for

each item is 0, and once again, total test variance, aT2, is 0,

because there is no "spreadoutness" in the scores.

Insert Figure 1 about here

The third histogram in Figure 1 shows that when each examinee

earns a different score (i.e., all of the possible total test

scores are represented), then the total test variance is

approximately 3. The maximum total test variance possible on a 7-
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item, dichtomously scored test with 10 examinees, however, is much

higher than 3. Total test variance is maximized when the sum of

squares is maximized. This occurs when the total test scores are

"spreadout" the most, or in other words, when half or the examinees

liaraLths_Witst, it's 0) and half earn

the highest ggssible total score (here it's 71. When half of the

examinees get all of the items "correct" and half "miss" all of the

items, then the total test variance is maximized as 12.25. The

range of the total test variance on a 7-item dichotomously-scored

test, then, is from 0 to 12.25.

By examining the total test scores of the expected or

population model in Table 2b, one can determine that Model 1 will

maximize the total test variance, because half of the examinees in

the population earn total test scores of 0 and half earn total test

scores of 7. Table 3b shows that Model 2 produces a minimal total

test variance, because half of the examinees earn a total teat

score of 3 and the other half earn a total test score of 4. The

minimal "spreadoutnesi" yeilds a total test variance of .25 in the

actual population from which the 10 random samples for Model 2 were

drawn.

Insert Tables 2 and 3 about here

Table 4b demonstrates that Model 3 yeilds a moderate total

test variance of 3.36, because half of the examinees in the

population earn a total test score of 0, one-forth earn a total

test score of 3, and one-forth earn a total test score of 4. Table
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5b shows that Model 4, like Model 2, minimizes the total test

variance. In the population from which the 10 data sets were

randomly drawn for Model 4, all of the examinees earn a total test

score of 2. With no "spreadoutness" in the scores, the total test

variance is O.

Insert Tab es 4 ana 5 about here

A method similar to the one just described to find maximum

total test variance can be used to determine the maximum sum of

item variances. Consider the scores on a given item j to be

analoqJus to the scores on the total test. To maximize the

variance of a single item j, one must maximize the "spreadoutness"

of scores which is measured by using the the sum of squlres. From

the previous discussion, it was shown that if half of the scores

are at one extreme of the range and half are at the other extreme,

then the sum of squares, and therefore, the variance, is maximized.

Since the possible scores for each examinee on a given item j are

either "0" or "1", then to maximize the item's variance, half of

the examinees would earn a 0 and half would earn a 1.

Figure 2 shows that items with moderate difficulty (i.e., p =

.5) maximize item variance Ind items that are either easier (e.g.,

p = 1) 2r harder (e.g., p = 0) tend to minimize item variance.

Item variances can range from 0 to .25; therefore, the maximum sum

of item varLinces for a 7-item, iichotomously scored test is (.25

times 7) or 1.75.
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Insert Figure 2 about here

Table 2b shows that tho expected or population model for Model

1 yeilds the maximum sum of item variances (1.75) because half of

the examinees on et:ch item earn a 0 and half earn a 1. Similarly,

Table 3b shows that Model 2 maximizes the sum of item variances by

the same method. Table 4b indicates that Model 3 produces a

moderate sum of item variances (Eoi2 = .96), because on half of the

items everyone earned a 0 and on the other half, half of the

examinees earned a 0 and half earned a 1. A similar procedure was

used in Model 4 (Table 5b) to yield a moderate sum of item

variances (Eat2 = 1.0).

What does homogeneous p and hetorogenemas D mean?

Homogeneous p, or difficulty level, means that all the items

have the same or similar difficulty level. This is equivalent to

having the standard deviation of p be either zero or be very small.

Models 1 and 2 both illustrate homogeneous p, because for each

item, p equals .5. This means that half of the examinees earn a 0

on each item and half earn a 1.

Item difficulty, p, is heterogeneous when the items vary in

difficulty, and thus, the standard deviation of 2 would be large.

Both Models 3 and 4 illustrate heterogeneous p because half of the

items have a p-value of .5 and the other half have a p-value of 0.

do total tes var ana s
homogeneity/heterogeneity of item difficulty affect alpha?

Using the mini Monte Carlo method, 10 random samples of the

population models were generated to examine the affects on
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coefficient alpha of manipulating the three target factors: (a)

total test variance, (b) sum of itea variance, and (b) homogeneity/

heterogeneity of item difficulty. Table 6 displays the results of

the study, listing the mean of the alpha coefficients generated by

the 10 random samples for each population model, along with the

standard deviation, and minimum and maximum values for the sampled

alphas. The table also lists the mean, standard deviation, and

minimum and maximum values for the total test variances (TESTVAR),

the sums of the item variances (IVARSUM), and the standard

deviation of the item difficulties (ITEMPSD).

Insert Table 6 about here

Model 1 (maximum TESTVAR, maximum IVARSUM, small ITEMPSD)

tended to yeild the highest alpha coefficients. The mean of the 10

alphas for Model 1 was .94, with a very small standard deviation of

.026, indicating that most of the alpha coefficients clustered

close to .94. Model 2 (moderate TESTVAR, moderate IVARSUM, small

ITEMPSD) produced the second highest alpha coefficients (5 = .656,

a = .138). Model 2 (minimum, maximum, homogeneous) and Model 4

(minimum, moderate, heterogeneous) yielded the lowest coefficient

alpha levels. In fact, both of these mean alpha values were

negative (Model 2, 5 = -.146, SD = .377; Model 4, -et = -.232, SD =

.509).

These last two results make the poipt that alpha can be

negative. Indeed, the population model reported !A Table 3b yields

a value of -7.0. These results make the point that alpha is a
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lower bound on a true raliability estimate, since the coefficient

does not behave as a correlation coefficient would.

From these results several tentative conclusions can be drawn.

First, moderate to maximum total test variance is important to

maximize coefficient alpha. It appears that total test variance

accounts for much of the variance that explains coefficient alpha.

Second, total test variance appears to have more affect on alpha

that the sum of item variances. Third, the homogeneity/

heterogeneity of item difficulty, p, seams to have minimal effect

on alpha. To further define these tentative conclusions, the

relationship of total test variance, sum of item variances, and

item difficulty must be considered.

ROM can the relationshtp of total test variance. sun of item'
variances, and item difficulty be inveetiqated?

To determine the portion of variance of alpha explained by

each of the factors alone across the 40 sets of results (4 models

x 10 random samples of results for each), the bivariate

correlations between alpha and each of the factors separately can

be computed. If Y is alpha, X3 is total test variance, X2 iS Sflat

of item variances, and X1 is the standard deviation of item

difficulties, then for the data in the present study ryx3 is .772,

r7x2 is .083, and ryx1 is -.317. By squaring each of these

bivariate correlation coeffie.ents, one can determine the percent

of variance that each uniquely contributes to alpha.

The factor, total test variance, explains 60% of the variance

of alpha (r2 = .5959); the factor, sum of item variances, explains

less than 1% of the variance of alpha (r2 = .0069); and the

13



standard deviation of item difficulties explains 10% of the

variance of alpha (r2 = .10). From this brief analysis, it appears

that total test variance has the greatest affect on alpha, followed

by the standard deviation of item difficulties, and finally, the

sum of itftm variances.

A multiple regression analysis can assist in investigating the

c,ollective and separate contributions of the three independent

variables, total test variance, sum of item variances, and the

standard deviation of item difficulties, to the variation of the

dependent variable, coefficient alpha (Howell, 1982, pp. 414-419).

The multiple R correlation coefficient expresses the magnitude of

the relation between the best possible combination of all

independent variables (X1, X2, X3) and the dependent variable (Y)

(Kerlinger, 1979, pp. 171-172). R2, which is similar to r2, is the

proportion of variance of Y accounted for by the regression

combination of all the independent variables, excluding double

counting of any area of Y jointly predicted by two or more of the

predictors. Since in the present example R2 was .73298, then 73%

of the variance of alpha is explained by the combination of X1 and

X2 and X3.

The regresBion equation or prediction equation from the data

in this study is:

V =4 .189984 Y.3 - 1.067318 X2 + .57629 X1 + 1.092742

where Y' is predicted alpha, X3 is total test variance, X2 is sum

of item variances, and X1 is the standard deviation of item

difficulties. These results seem to suggest the incorrect

14



conclusion that the sum of the itea variances is the best predictor

of alpha.

But the B-weight coefficients for each of the independent

variables cannot boa compared because their units do not have the

same scales of measurement. To alleviate this problem, the

regression equation can be written in 2-score form (Howell, 1982,

pp. 419-420). By converting the B-weights to 8-weights by using

the formula 8 b (SIMSDI,), the effects of the different

measurement scales are washed out, and the 8-weight coefficients

can be compared. The new regression equation in 2-score form is:

2'y im 1.014169 Z3 - .395216 Z2 + .053201 Zl + 0

The unthoughtful researcher may wish to discuss the relative

influence each independent variable has on alpha by considering

only the 8-weight coefficients; however, Thompson and Borrello

(1985) point out that especially with small to moderate sample

sizes, 8-weight coefficients will fluctuate. This fluctuation is

due to the back and forth distribution of shared variance among

independent variables. In any case, these weights are influenced by

the correlation among the predictor variables, and should not be

the sole basis for interpreting regression results.

When predictor variables are correlated with each other, as

most are, then "collinearity" or "multicollinearity" exists.

Kerlinger (1979, p. 165) notes that "independent variables [in

educational psychology research]...are almost always correlated,

often substantially so." In this study, the independent variables

are correlated with each other, and thus the 8-weight coefficients

15
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sbould not be th only indices to use when interpreting relative

influence on alpha of these three factors. Pedhazur (1982, p. 246)

reiterates this point by stating that "the presence of high

multicollinearity poses serious threats to the interpretation of

regression coefficients (8-weights] as indices of effects."

Thompson and Borello (1985, p. 208) note that "structure

coefficients are not suppressed or inflated by collinearity "

These coefficients, unlike B-weight coefficients, can be used to

describe the dependent variable in terms of its relationships with

the independent variables. The structure coefficient for a

predictor variable is equal to the bivariate correlation between

the predictor variable and the dependent variable divided by the

multiple R correlation coefficient:

structure coefficient of Xi = ryxi/R

The structure coefficients for each of the independent variables in

this study were .90172 fcr Y3, .09695 for X2, and -.37027 for Xl.

Table 7 presents the rank orders of the influences on the 40

alphas for each factor using B-weight coefficients and structure

coefficients. Both coefficients suggest that total test variance

is the most important influence on alpha. The structure

coefficients indicate that the standard deviation of item

difficulties ranked second in influence and the sum of item

variaaces ranked third.

Insert Table 7 about here

By using the three predictor variables of total test variance,

16



sum of item variances, and the standard deviation of item

difficulties, coefficient alpha was reasonably accurately predicted

(R2 73.3%) for these 40 sets of data. Figure 3 illustrates the

relatively close fit between the 40 observed and predicted alpha

values.

Insert Figure 3 about here

=MAU
Using data generated by a mini Monte Carlo method BASIC

computer program, the present study examined three factors (total

test variance, sum of item variances, and the standard deviation of

item difficulties) that affect coefficient alpha. By considering

bivariate correlation, multiple R correlation, 8-weight, and

structure coefficients, total test variance was shown to account

for the most variance of coefficient alpha, followed by the

standard deviation of item difficulties, and the sum of item

variances.

There are two reasons to suspect that these results will

generalize. The first reason is empirical. The four population

models represent a wide range of possible results that can occur in

practice, suggesting that the ballpark of possibilities was covered

in the mini Monte Carlo study. The second reason is tAeoretical. As

can be surmised by examining the formula for KR 20, because total

test variance can range widely in numerical values especially as

test length increases, it should be expected that total test

variance can dominate alpha. Thus, the results and the expository

17
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treatment here uggest that researdhers and practitioners should

generally focus on total score variance when they are trying to

saxisise alpha.
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Table 1

Four Models that Manipulate Factors Affecting Coefficiont Alpha

Factor Model 1 Model 2 Model 3 Model 4

Total Test Variance MAX MIN MOD MIN

Sus of Item Variances MAX MIA MOD MOD

Homogeneity/ HOM MOM HET HET

Heterogeneity of p

2 1
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Table 2

Probability Target Matrix (a), Population Model Matrix (b) , and One
of the 10 Randomly Sampled Matrices (c) for Model 1

a. MAX TEST VAR (G), MAX ITEM VAR
PROBABILITY TARGET MATRIX

(B), HOMOGENEOUS p (G)

1 .1 .1 .1 .1 .1 .1 .1

2 .1 .1 .1 .1 .1 .1 .1

3 .1 .1 .1 .1 .1 .1 .1

4 .1 .1 .1 .1 .1 .1 .1

5 .1 .1 .i .1 .1 .1 .1

6 .9 .9 .9 .9 .9 .9 .9

7 .9 .9 .9 .9 .9 .9 .9

8 .9 .9 .9 .9 .9 .9 .9

9 .9 .9 .9 .9 .9 .9 .9

10 .9 .9 .9 .9 .9 .9 .9

b. MAX TEST VAR (G), MAX ITEM VAR
Known Results for the Population

(B), HOMOGENEOUS p (G)

n 1 2 3 4 5 6 7 TOTAL
1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 1 1 1 1 1 1 1 7

7 1 1 1 1 1 1 1 7

8 1 1 1 1 1 1 1 7

9 1 1 1 1 1 1 1 7

10 1 1 1 1 1 1 1 7

P.5 .5 .5 .5 .5 .5 .5

vari .25 .25 .25 .25 .25 .25 .25 12.25
ALPHA = 1.166667 TINSS (1 - (1.75 / 12.25)) = 1

c. MAX TEST VAR
n 1 2

(G), MAX ITEM VAR (B),
3 4 _5 6

HOMOGENEOUS p (G)
7 TOTAL

1 0 0 0 0 0 1 0 1

2 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 1

4 o 0 0 0 0 0 0 0

5 0 0 0 1 0 0 0 1

6 1 1 1 1 1 1 0 6

7 1 1 1 1 1 1 1 7

8 1 1 1 1 1 1 1 7

9 1 1 1 1 1 1 1 7

10 1 1 1 1 1 1 1 7

P .6 .5 .5 .6 .5 .6 .4

vari .24 .25 .25 .24 .25 .24 .24 9.809999 ALPHA
1.166667 TIMES (1 - (1.71 / 9.809999)) = .9633028
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Table 3

Probability Target Matrix (a), Population Model Matrix (b), and One
of the 10 Randomly Saspled Matrices (c) for Model 2

a. MIN TEST VAR (B), MAX ITEM VAR (B),
PROBABILITY TARGET MATRIX

HOMOGENEOUS p (G)

1 .6 .1 .6 .1 .6 .1 .6

2 .2 .8 .2 .8 .2 .8 .2

3 .8 .2 .8 .2 .8 .2 .11

4 .2 .8 .2 .8 .2 .8 .2

5 .8 .2 .8 .2 .8 .2 .8

6 .2 .8 .2 .8 .2 .8 .2

7 .8 .2 .8 .2 .8 .2 .8

8 .2 .8 .2 .8 .2 .8 .2

9 .8 .2 .8 .2 .e .2 .8

10 .4 .9 .4 .9 .4 .9 .4

b. MIN TEST VAR (B), MAX ITEM VAR (B), HOMOGENEOUS p (G)
Known Results for the Population

L 2 a_ 4 5 6 7 TOTAL
1 1 0 1 0 1 0 1 4

2 0 1 0 1 0 1 0 3

3 1 0 1 0 1 0 1 4

4 0 1 0 1 0 1 0 3

5 1 0 1 0 1 0 1 4

6 0 1 0 1 0 1 0 3

7 1 0 1 0 1 0 1 4

8 0 1 0 1 0 1 0 3

9 1 0 1 0 1 0 1 4

10 0 1 0 1 0 1 0 3

P .5 .5 .5 .5 .5 .5 .5

vari .25 .25 .25 .25 .25 .25 .25 .25

ALPHA = 1.166667 TIMES (1 - (1.75 / .25)) = -7

c. MIN TEST VAR (B), MAX ITEM VAR (B), HOMOGENEOUS p (G)1 234 267TQTAL
1 1 0 1 0 1 0 1 4

2 1 1 0 1 0 1 0 4

3 1 1 1 0 1 1 1 6

4 1 1 0 1 0 1 0 4

5 1 0 1 0 0 0 1 3

6 0 1 0 1 0 1 0 3

7 1 0 1 1 1 1 1 6

a 0 0 1 0 0 1 0 2

9 1 0 1 1 1 1 1 6

10 0 1 0 1 0 1 1 4

P.7 .5 .6 .6 .4 .8 .6

vari .21 .25 .24 .24 .24 .16 .24 1.76
ALPHA = 1.166667 TIMES (1 - (1.5b / 1.76)) = .1193182
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Table 4

Probability Target Matrix (a), Population Model Matrix (b), and One

of the 10 Randouly Sampled Mateces (c) for Model 3

a. MOD TEST VAR (N), NOD ITEM VAR (X),
PROBABILITY TARGET MATRIX

HETEROGENEOUS p (B)

1 .1 .1 .1 .1 .1 .1

2 .1 .1 .1 .1 .1 .1

3 .1 .1 .1 .1 .1 .1

4 .1 .1 .1 .1 .1 .1 .1

5 .1 .1 .1 .1 .1 .1 .1

6 .1 .1 .1 .9 .9 .9 .9

7 .1 .1 .1 .1 .9 .9 .9

8 .1 .1 .1 .9 .9 .9 .9

9 .1 .1 .1 .1 .9 .9 .9

10 .1 .1 .1 .9 .9 .9 .9

b. MOD TEST VAR (M), MOD ITEM VAR (M),
Known Results for the Population

HETEROGENEOUS p (B)

n 1 2 3 4 56 7 TSZEMd

1 0 0 0 0 0 0 0 0

2 0 0 0 0 J 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 1 1 1 1 4

7 0 0 0 0 1 1 1 3

8 0 0 0 1 1 1 1 4

9 0 0 0 0 1 1 1 3

10 0 0 0 1 1 1 1 1

P 0 0 0 .3 .5 .5 .5

vari 0 0 0 .21 .25 .25 .25 3.36

ALPHA = 1.166667 TIMES (1 - (.9600001 / 3.36)) = .8333333

c. MOD TEST VAR (M), MOD ITEM VAR (M), HETEROGENEOUS p (B)

n 1 2 3 4 56 7 Traia1

1 0 0 0 0 1 1 0 2

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0 0

C 0 0 0 1 1 0 1 3

7 0 0 1 0 1 1 1 4

8 0 0 0 1 1 1 1 4

9 0 0 0 0 0 1 0 1

10 1 0 it 1 1 1 1 5

P. 2 0 . .3 .5 .5 .4

vari .16 0 .09 .21 .25 .25 .24 3.2

ALPHA = 1.166667 TIMES (1 - (1.2 / 3.2)) = .7291666
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Table 5

Probability Target Matrix (a) Population Model Matrix (b) and One

of the 10 Randomly Sampled Matrituts (c) for Model 4

a. MIN TEST VAR (B), MOO ITEM VAR (M), HETEROGENEOUS p (B)
PROBABILITY TARGET MATRIX
1 .1 .1 .1 .2 .7 .2 .7

2 .2 .2 .2 .2 .8 .2 .8

3 .2 .2 ,2 .2 .8 .2 .8

4 .2 .2 .2 .2 .8 .2 .8

5 .2 .2 .2 .2 .8 .2 .8

6 .2 .2 .2 .8 .2 .8 .2

7 .2 .2 .2 .8 .2 .8 .2

8 .2 .2 .2 .8 .2 .8 .2

9 .2 .2 .2 .8 .2 .8 .2

10 .3 .3 .3 .8 .3 .8 .3

b. MIN TEST VAR (B), MOD ITEM VAR (M), HETEROGENEOUS p (B)

Known Rc.sults for the Population

_D 1_ 2 3 4 5 6 7 Torn
1 o o o o 1 o 1 2

2 0 0 0 0 1 0 1 2

3 0 0 0 0 1 0 1 2

4 4̂ 0 0 0 1 0 1 2

5 0 0 0 0 1 0 1 2

6 0 0 0 1 0 1 0 2

7 0 0 0 1 0 1 0 2

8 0 0 0 1 0 1 0 2

9 0 0 0 1 0 1 0 2

10 0 0 0 1 0 1 0 2

P 0 0 0 .5 .5 .5 .5

vari 0 0 0 .25 .25 .25 .25 0

ALRRA = 1.166667 TIMES (1 - (1 / 0)) = -999

c. MIN TEST VAR (B), MOJ ITEM VAR (M), HETEROGENEOUS p (B)

1_ 2 3 4 5 6 7 TOTAL

1 0 0 0 1 1 0 1 3

2 0 0 0 0 1 0 1 2

3 0 0 0 0 1 0 1 2

4 0 0 0 0 1 1 0 2

5 0 0 0 1 0 1 1 3

6 0 0 1 1 0 1 0 3

7 0 0 0 0 0 1 0 1

8 1 0 0 1 0 1 0 3

9 0 0 0 0 0 1 0 1

10 1 0 1 1 0 1 0 4

P .2 0 .2 .5 .4 .7 .4

vari .16 0 .16 .25 .24 .21 .24 .84

ALPHA = 1.166667 TIMES (1 - (1.26 / .84)) = -.5833333
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Table 6
Results from the Four Models Using the Monte Carlo Method

VARIABLE MEAN STD DEV MINIMUM MAXIMUM N

Nodal 1 (MAXIMUM, MAXIMUM, HOMOGENEOUS)
ALPHA
TESTVAR
IVARSUM
ITIMPSD
$odel 2

.940
8.884
1.702
.074

(MINIMUM,

.026 .906
1.134 7.610
.029 1.660
.021 .035

MAXIMUM, HOMOGENEOUS)

.984
11.050
1.740
.105

10
10
10
10

ALPHA -.146 .377 -.718 .537 10

TESTVAR 1.564 .585 1.040 3.040 10

IVARSUM 1.606 .053 1.520 1.6 80 10

ITEMPSD .134 .026 .099 .1 75 10

Model 3 (MODERATE, MODERATE, HETEROGENEOUS)
ALPHA .656 .138 .292 .7 78 10

TESTVAR 2.876 .475 1.600 5.2 00 10

IVARSUM 1.210 .083 1.030 1.3 2C 10

ITEMPSD .187 .024 .139 .2 15 10

Model 4 (MINIMUM, MODERATE, HETEROGENEOUS)
ALPHA -.232 .509 -.833 .5 39 10

TESTVAR 1.295 .536 .760 2.2 50 10

IVARSUM 1.353 .178 1.100 1.5 80 10

ITEMPSD .186 .043 .120 .2 51 10

Table 7
Rank of Influence of Factors Affecting Coefficient Alpha

Coefficient Used First

0-weight
Structured

Second

X2b
Xl

Third

Xic
X2

X2 = IVARSUM
b X1 = ITEMPSD
c X3 = TESTVAR
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Figure 1
Histograms illustrating total test variance with a 7-item,

dichotomously scored test with 10 examinees
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Figure 2

The 11 Possible Variances for a Dichotomously-Scored Item
Completed by 10 Examinees
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Figure 3
Linear regression line for predicted alpha versus observed alpha
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