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ABSTRACT

The paper exploraes the factors that influence coefficient alpha as
a lower bound estimate of score reliability. The purpose of the
paper is to communicate the relative influence on alpha of various
factors. Small data sets generated by a computer program are

employed to make the discussion concrete and readily accessible.



Reliability is critical in detecting effects in substantive
research. For example, if a dependent variable is measured such
that it is perfectly unreliable, the effect size in the study will
unavoidably be zero, and the results will not be statistically
significant at any sample size, including an infinite one. As
Locke, Spirduso and Silverman (1987, p. 28) note, "the correlation
between scores from two tests cannot exceed the squaré'root of the
product for reliability in each test." Thus, if a researcher is
correlating scores having a reliability of .9 with scores having a
reliability of .6, the correlation cannot exceed .73.
Prospectively, researchers must select measures that will allow
detection of effects at the level desired; retrospectively,
researchers must take reliability into account when interpreting
findings.

Meier and Davis (1990), however, recently reported that
published studies often do not adequately report reliability
estimates so that results can be carefully evaluated. This has
historically been the case with respect to published research. For
example, Willson (1980) found that almost half the published
studies he examined did not report reliability information. The
same pattern seems to occur in dissertation research (LaGaccia,
1991).

The present paper explores the factors affecting a lower-bound
estimate of internal consistency reliability, Cronbach's
coefficient alpha. One aspect of this treatment involved use of a

BASIC computer program (Thompson, 1990) that implements a small



scale Monte Carlo study for heurisitic purposes.

Yhat is coefficient alpha?

When an estinate of the reliability of scores on a test is
needed and the parallel foras and test-retest approaches are
impractical, researchers typically rely on internal consistency
coefficients such as coefficient alpha (Peldt, Woodruff, & Salih,
1987). Theoretically, coefficient alpha is an estimate of the
correlation expected between two tests drawn at random from a pool
of items 1like the items in the test under consideration.
Practically, coefficient alpha can be used as an index of internal
consistency, i.e., an index of the degree to which item response
scores (e.g., "O0" or "1" in achievement testing) correlate with
total test scores. Crocker and Algina (1986, p. 142) describe
coefficient alpha as

...not a direct estimate of the [(theoretical]

reliability coefficient but rather an estimate of

the lower bound of that coefficient....Alpha is the

mean of all possible split-half coeffi:ients that

are calculated.
Alpha, therefore, can be interpreted as the lower bound estimate of
the proportion of variance in the test scores explained by common
factors underlying item performance.

Alpha is superior to the use of the split-half estimate of
internal consistency, because for most tests of any lengtl: there
are usually many splits, and the estimates associated with

different splits for the same data may well yield contradictory



results. As Brownell (1933) pointed out long ago, for a test with

k items, there are (.5(k!))/[(.5(k))!)? splits of the items. For
example, for a test w!th six items, the number of splits (1,2,3 vs

4,5,6, 1,2,4 vs 3,5,6, etc.) equals:
5 X (6X5x4x3x2x1) = .5%720 = 360 = 10
(3 x2x1) 6 36

For a test with k=2 items there is one unique split. For a
test with k=4 items there are three splits. For a test with six
items, thera are 10 splits, as indicated previously. For a test
with 10 items there are 126 splits. Clearly the number of splits
(and the 1likelihood of contradictory results across splits)
escalates dramatically as items are added, even for relatively
short tests.

Coefficient alpha has the saume value no matter which method of
computacion is used. With this advantage, however, comes some
cautions when interpreting alpha. Crocker and Algina (1986) warn
that a relatively high value of coefficient alpha is not related to
stapility of the test scores over time, or to their equivalence to
scores on one specific alternate form of the test, or to the
unidemensionality of test items (i.e., performance on these items
cannot necessarily be explained in terms of a single underlying
factor).

This last 1limitation actually represents a common
methodological error made by many researchers. A large alpha does
not indicate that the test is unidimensional, and cannot be factor
analyzed, notwithstanding the propensity of some researchers to
formulate exactly this interpretation.
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How is ¢oefficient alpha calculated?

-~

Three procedures used to calculate coefficient alpha
determined from a single administration of a test are (a) Hoyt's
analysis of variance, (b) Cronbach's alpha, and (c) Kuder-
Richardson formula #20. All three methods yield identical results.
Hoyt's method (Hoyt, 1941) is based on the analysis of variance,
treating perscas and items as sources of variation. Cronbach's
alpha (Cronbach, 1951) uses item variance, total test variance, and
the length of the test to compute an estimate of the incernal
consistency of items which are either di:hotomously scored (i.e.,
scored either "0" or "1"), or which have a wide range of scoring
weights. Cronbach's alpha is computed by the formula:

a=_k_*[1-}:11§]
k-1 Op

(002 > 0, k > 1)
where k is the number of items on the test, 2012 is the sum of item
variances, and o,2 is the total test variance.

The Kuder-Richardson formulat #20 (Kuder & Richardson, 1937)
is equivalent to Cronbach's alpha; however, KR 20 can only be used
with dichotomously scored items. The KR 20 formula is identical to
Cronbach's except the sum of item variances can be computed by
using a simplified formula, 012 = pq, where p is the proportion of
subjects correctly answering a given item (sometimes called item
difficulty) and q (the proportion of subjects answering the item

wrong) is 1 - p:
a=k * [1- ]
o

For a complete algebraic proof of the formula, 012 = pq, for



dictomously scored items, see Crocker and Algina (1986, pp. 90-92).

FPor dichotomously scored items, item difficulty (p) can only
range between 0 and 1 inclusive, since for a given item j no fewer
than a proportion of 0 (or 0%) of the subjects can get the item
right and no more than a proportion of 1 (or 100%) of the subjects
can get the item right. Though it is perhaps counter-intuitive,
larger p-values indicate easier items, and smaller p-v¢lues
describe more difficult items. KR 20 will be used to calculate
coefficient alpha in this study because all of the test items used
are dichotomously scored.
¥hat factors affect cocefficient alpha?

Both the characteristics of the person sample selected and the
characteristics of the test items can affect coefficient alpha.
For example, if a group of examinees is homogeneous with respect to
knowledge about physics, that is they have similar competencies in
this area, then one would expect them to score about the same on a
test of physics concepts. 1In this example, the variability of
total test scores would be small because most examinees would have
a similar score. This would result in dividing each item variance
by a smaller number, yielding a larger result that is then
subtracted from one, and thereby yielding a smaller estimated
reliability, as can be seen by examining the KR 20 formula. Thus,
though it is not widely recognized by researchers, the nature (and
even the size) of the sample of subjects can impact the estimated
classical reliability coefficient.

In considering the characteristics of the test that may affect




coefficient alpha, it is important to note that a test is not

reliable or unreliable; rather, "reliability is a property of the
scores on a test for a particular group of examinees"™ (Crocker &
Algina, 1986, p. 144, enphasis added). Depending on the types of
items added, increasing the length of the test usually increases
coefficient alpha, that is if (and only if) the items are of equal
or better quality than the other items on the test. The more items
that are selected from the "pool of items," the lers likely that
the item sample will be biased, or will underestimate the
theoretical coefficient alpha.

In the computaticnal equation for coefficient alpha, the k/ (k-
1) term corrects for this bias; when the number of items on the
test, k, increases, then this correction term gets smaller and
smaller. For example, for a 2-item test, the correction multiplier
would be (2//2-1)) or 2; with a 10-item test, k equals 1.11; with
a 100-item test, k equals 1.0101. There is a point when adding
items will help less and less to increase coefficient alpha as
regards this correction aspect of the formula.

Three of the factors that affect coefficient alpha, total test.
variance, sum of item variarces, and homogeneity of item
difficulty, p, will be examined in the present study using a mini
Monte Carlo model. The Monte Carlo method is a technique for
obtaining an approximate solution to certain mathematical and
logical problems; it characteristically invelves randomly sampling
from some specified and known universe. The process is usually

done on a computer, as it was in this study.



Characteristics c¢f the modelled items sets are easily
manipulated using this method; the method allows use of a wide
variety of item set types to help increase the generalizability of
the results. For tne present study, four population target matrices
or models were used to manipulate the combination of (a) total test
variance, (b} sum of item variances, and (c) homcgeneity/
heterogeneity of item difficulty for a hypothetical 7-itenm,
dichotomously scored test with 10 examinees. The purpose of this
Monte Carlo modeling was to investigate tre relative effects of
total test variance, item variance, and homogeneity of item
difficulty with respect to their influences on reliability.

Each population target model creates the conditions necessa:y
to maximize, minimize or moderate each of the three factors that
affect coefficient alpha. As part of the random sampling process,
a probability is specified to influence the degree to which random
samples will reflect each parameter in the population. For
example, if the assigned probability is .2 for item 2 of person 2,
then when a random number is generated to determine whether the
score for this item in a given random sample will be a "0” or a
"1," on the average 20 percent of the time thit item will be scored
1 and 80 percent of the time this item will be scored a 0. Table

1 presents the four population models used in the study.

Insert Table 1 about here

As can be determined by consulting Table 1, the four models

create various patterns in the total test variance, sum of item




variances, and homogeneity/heterogeneity of item difficulty. Model

1 produces maximum total score variance, maximum item variance, and
homogeneous item difficulty. Model 2 generates minimum total score
variance, maximum item variance, and homogeneous item difficulty.
Model 3 produces moderate total score variance, moderate sums of
the item variances, and heterogeneous item difficulty. Model 4
generates minimum total variance, moderate sums of items variances,
and heterogeneous item difficulty.
to nax 42

on a 7-item, dichotomously scored test with 10 examinees, the
total test score for each examinee ranges from 0 to 7. Figure 1
uses histograms to illustrate various total +est score combinations
and their corresponding total test variance. When everyone gets a
score of "1" for each item, each examinee's total test score is 7.
The item difficulty, p, for each item in this example is 1 and the
total test variance, o,z, is 0, because there is no n"spreadoutness"®
in the scores. Similarly, when ev:ryone gets a score of 0 for each
item, each examinee's total ecore is 0, item difficalty, p, for
each item is 0, and once again, total test variance, 0.2, is 0,

because there is no "spreadoutress" in the scores.

Insert Figure 1 about here

The third histogram in Figure 1 shows that when each examinee
earns a different score (i.e., all of the possible total test
scores are represented), then the total test variance is

approximately 3. The maximum total test variance possible on a 7-

b
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item, dichtomously scored test with 10 examinees, however, is much

higher than 3. Total test variance is maxinized when the sum of

squares is maximized. This occurs when the total test scores are

wgpreadout® the most, or in other words, wvhen half of the examinees

earn the lowest posaible total score (here it's 0) and half earn
the highest possible total score (here it's 7). When half of the

examinees get all of the items “correct" and half "miss® all of the
items, then the total test variance is maximized as 12.25. The
range of the total test variance on a 7-item dichotomously-scored
test, then, is from 0 to 12.25.

By examining the total test scores of the expected or
population model in Table 2b, one can determine that Model 1 will
maximize the total test variance, because half of the examinees in
the population earn total test scores of 0 and half earn total test
scores of 7. Table 3b shows that Model 2 produces a minimal total
test variance, because half of the examinees earn a total test
score of 3 and the other half earn a total test score of 4. The
minimal "spreadoutness® yeilds a total ‘est variance of .25 in the
actual population from which the 10 random samples for Model 2 were

drawn.

Insert Tables 2 and 3 about here

Table 4b demonstrates that Model 3 yeilds a moderate total
test variance of 3.36, because half of the examinees in the
population earn a total test score of 0, one-forth earn a total

test score of 3, and one-forth earn a total test score of 4. Table

| SYAY
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5b shows that Model 4, like Model 2, minimizes the total test
variance. In the population from which the 10 data sets were
randomly drawn for lodel 4, all of the examinees earn a total test
score of 2. With no "spreadoutness® in the scores, the total test

variance is 0.

Insert Tables 4 and 5 about here

arl na

A method similar to the one just described to find maximum
total test variance can be used to determine the maximum sum of
item variances. Consider the scores on a given item j to be
analoguus to the scores on the total test. To maximize the
variance of a single item j, one must maximize the "spreadoutﬁess”
of scores which is measured by using the the sum of squires. From
the previous discussion, it was shown that if half cf the scores
are at one extreme of the range and half are at the other extrenme,
then the.sun of squares, and therefore, the variance, is maximized.
Siace th; possible scores for sach examinee on a given item j are
either "0" or "1", then to maximize the item's variance, half of
the examinees would earn a 0 and half would earn a 1.

Figure 2 shows that items with moderate difficulty (i.e., p =
.5) maximize item variance and items that are either easier (e.g.,
p = 1) or harder (e.g., p = 0) tend to minimize item variance.
Item variances can range from 0 to .25; therefore, the maximum sum
of item vari.nces for a 7-item, iichotomously scored test is (.25

times 7) or 1.75.

10
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Insert Figure 2 about here

Table 2b shows that the expected or pcpulation model for Model
1 yeilds the maximum sum of item variances (1.75) because half of
the exaninees on euch item earn a 0 and half earn a 1. Similarly,
Table 3b shows that Model 2 maximizes the sum of item variances by
the same method. Table 4b indicates that Model 3 produces a
moderate sum of item variances (Zs;? = .96), because on half of the
items everyone earned a 0 and on the other half, half of the
examinees earned a 0 and half earned a 1. A similar procedure vas
used in Model 4 (Table 5b) to yield a moderate sum of item
variances ($o.? = 1.0).

What does homogeneous p and heterogenesus p mean?

Homogeneous p, or difficulty leve), means that all the items
have the same or similar difficulty level. This is equivalent to
having the standard deviation of p be either zero or be very small.
Models 1 and 2 both illustrate homogeneous p, because for each
item, p equals .5. This means that half of the examlnees earn a 0
on each item and half earn a 1.

Item difficulty, p, is heterogeneous when the items vary in
difficulty, and thus, the standard deviation of p would be large.
Both Models 3 and 4 illustrate heterogeneous p because half of the

items have a p-value of .5 and the other half have a p-va'ue of 0.

How do total test variance, sum of item variances., and
[

Using the mini Monte Carlo method, 10 random samples of the
population models were generated to examine the affects on

11
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coefficient alpha of manipulating the three target factors: (a)
total test variance, (b) sum of item variance, and (b) homogeneity/
heterogeneity of item difficulty. Table 6 displays the results of
the study, listing the mean of the alpha coefficients generated by
the 10 random samples for each population model, along with the
standard deviation, and minimum and aaximum values for the sampled
alphas. The table also lists the mean, standard deviation, and
minimum and maximum values for the total test variances (TESTVAR),
the sums of the item variances (IVARSUM), and the standard

deviation of the item difficulties (ITEMPSD).

Insert Table 6 about here

Model 1 (maximum TESTVAR, maximum IVARSUM, small ITEMPSD)
tended to yeild the highest alpha coefficients. The mean of the 10
alphas for Model 1 was .94, with a very snall standard deviation of
.026, indicating that most of the alpha coefficients clustered
close to .94. Model 2 (moderate TESTVAR, moderate IVARSUM, small
ITEMPSD) produced the second highest alpha coefficients (@ = .656,
g = .138). Model 2 (minimum, maximum, homogeneous) and Model 4
(minimum, moderate, heterogeneous) yielded the lowest coefficient
alpha levels. In fact, both of these mean alpha values were

negative (Model 2, @ = -.146, SD = .377; Model 4, @ = -.232, SD =
.509) .

These last two results make the point that alpha can be
negative. Indeed, the population model reported :. Table 3b yields

a value of -7.0. These results make the point that alpha is a

12




lower bound on a true raliability estimate, since the coefficient
does not behave as a correlation coefficient would.

From these results several tentative conclusions can be drawn.
First, moderate to maximum totzl test variance is important to
maximize coefficient alpha. It appears that total test variance
accounts for much of the variance that explains coefficient alpha.
Second, total test variance appears to have more affect on alpha
that the sum of item variances. Third, the homogeneity/
heterogeneity of item difficulty, p, seems to have minimal effect
on alpha. To further define these tentative conclusions, the
relationship of total test variance, sum of item variances, and

item difficulty must be considered.

How can the relationship of total “est variance, sum of item
verisnces, and item difficulty be investigated?

To determine the portion of variance of alpha explained by
each of the factors alone across the 40 sets of results (4 models
X 10 rardom samples of results for each), the bivariate
correlations between alpha and each of the factors separately can
be computed. If Y is alpha, X, is total test variance, X, is svm
of item variances, and X, is the standard deviatiorn of item
difficulties, then for the data in the present study r., is .772,

ryxz 18 .083, and ry,, is -.317. By squaring each of these

yx
bivariate correlation coeffic:ents, one can determine the percent
of variancae that each uniquely contributes to alpha.

The factor, total test variance, explains 60% of the variance
of alpha (r2 = .5959); the factor, sum of item variances, explains
less than 1% of the variance of alpha (z'2 = ,0069); and the

13




standard deviation of item difficulties explains 10% of the
variauce of alpha (r? = .10). From this brief analysie, it appears
that total test variance has the greatest affect on alpha, followed
by the standard deviation of item difficulties, and finally, the
sum of itam variances.

A multiple regression analysis can assist in investigating the
collective and separate contributions of the three independent
variables, total test variance, sum of item variances, and the
siandard deviation of item difficulties, to the variation of the
dependent variable, coefficient alpha (Howell, 1982, pp. 414-419).
The multiple R correlation coefficient expresses the magnitude of
the relation between the best possible combination of all
independent variables (X,, X;, X;) and the dependent variable (Y)
(Kerlinger, 1979, pp. 171-172). R?, which is similar to r?, is the
proportion of variance of Y accounted for by the regression
combination of all the independent variables, excluding double
counting of any area of Y jointly predicted by two or more of the
predictors. Since in the present example R? was .73298, then 73%
of the variance of alpha is explained by the combination of X, and
X, and X,.

The regression equation or prediction equation from the data
in this study is:

Y' = .189984 Y3 - 1.067318 X, + .57629 X; + 1.092742
where Y' is predicted alpha, X; is total test variance, X, is sum
of item variances, and X, is the standard deviation of item

difficulties. These results seem to suggest the incorrect

14




conclusion that the sum of the item variances is the best predictor
of alpha.

But the B-weight coefficients for each of the independent
variables cannot be compared because their units do not have the
same scales of measurement. To alleviate this problem, the
regression equation can be written in Z-score form (Howell, 1982,
pp. 419-420). By converting the B-weights to B-weights by using
the fcrmula B = D (SD,/SDY), the effects of the different
measurement scales are washed out, and the B-weight coefficients
can be compared. The new regression equation in Z-score form is:

2'y = 1.014169 2, - .395216 2, + .053201 2; + O

The unthoughtful researcher may wish to discuss the relative
influence each independent variable has on alpha by considering
only the B-weight coefficients; however, Thompson and Borrello
(1985) poiut out that especially with small to moderate sample
sizes, B-weight coefficients will fluctuate. This fluctuation is
due to the back and forth distribution of shared variance among
independent variables. In any case, these weights are influenced by
the correlation among the predictor variables, and should not be
the sole basis for interpreting regression results.

When predictor variables are correlated with each other, as
most are, then "collinearity" or "multicollinearity" exists.
Kerlinger (1979, p. 165) notes that "independent variables (in
educational psychology research]...are alamost always correlated,
often substantially so." In this study, the independent variables

are correlated with each other, and thus the B-weight coefficients
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should not be the only indices to use when interpreting relative
influence on alpha of these three factors. Pedhazur (1982, p. 246)
reiterates this point by stating that "the presence of high
multicollinearity poses serious threats to the interpretation of
regression coefficients (£-weights] as indices of effects."

Thompson and Borello (1985, p. 208) note that "structure
coefficients are’ not suppressed or inflated by collinearity "
Thege coefficients, unlike B-weight coefficients, can be used to
describe the dependent variable in terms of its relationships with
the independent variables. The structure coefficient for a
predictor variable is equal to the bivariate correlation between
the predictor variable and the dependent variable divided by the
multiple R correlation coefficient:

structure coefficient of X; = r,,;/R

The structure coefficients for each of the independent variables in
this study were .90172 fcr ¥;, .09695 for X;, and -.37027 for X;.

Table 7 presents the rank orders of the influences on the 40
alphas for each factor using B-weight coefficients and structure
coefficients. Both coefficients suggest that total test variance
iz the most important influence on 1ilpha. The structure
coefficients indicate that the standard deviation of item
difficulties ranked second in influence and the sum of item

varia.aces ranked third.

Insert Table 7 about here

By using the three predictor variables of total test variance,

16




sum of item variances, and the standard deviation of item
difficulties, coefficient alpha was reasonably accurately predicted
(R? = 73.3%) for these 40 sets of data. Figure 3 illustrates the
relatively close fit between the 40 observed and predicted alpha

values.

Insert Figure 3 about here

Sunnary

Using data generated by a mini Monte Carlo method BASIC
computer program, the present study examined three factors (total
test variance, sum of item variances, and the standard deviation of
item difficulties) that affect coefficient alpha. By considering
bivariate correlation, multiple R correlation, B-weight, and
structure coefficients, total test variance was shown to account
for the most variance of coefficient alpha, followed by the
standard deviation of item difficulties, and the sum of item
variances.

There are two reasons to suspect that these results will
generalize. The first reason is empirical. The four population
models represent a wide range of possible results that can occur in
practice, suggesting that the ballpark of possibilities was covered
in the mini Monte Carlo study. The second reason is theoretical. As
can be surmised by examining the formula ror KR 20, because total
test variance can range widely in numerical values especially as
test length increases, it should be expected that total test

variance can dominate alpha. Thus, the results and the expository
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treatment here sujgest that researchers and practitioners should

genarally focus on total score variance when they are trying to

maximize alpha.
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Table 1

Four Models that Manipulate PFactors Affecting Coefficiant Alpha

Factor Model 1 Model 2 Model 3 Model 4
Total Test Variance MAX MIN MOD MIN
Sum of Item Variances MAX MX MOD MOD
Homogeneity/ HOM HOM HET HET

Heterogeneity of p
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Table 2

Probability Target Matrix (a), Population Model Matrix (b), and One
of the 10 Randomly Sampled Matrices (c) for Model 1

a. MAX TEST VAR (G), MAX ITEM VAR (B), HOMOGENEOUS p (G)

PROBABILITY TARGET MATRIX
1 i .1 i i .1 i .1
z 5 .1 .1 3 .1 i .1
3 I 1 i 5 .1 5 i
4 .1 .1 -1 5 .1 I § .1
5 .1 1 .1 i .1 -1 .1
6 .9 .9 .9 .9 .9 .9 .9
7 .9 .9 .9 .9 .9 .9 .9
8 .9 .9 .9 .9 .9 .9 .9
S .9 .9 .9 .9 .9 .9 .9
10 .9 <9 .9 .9 .9 .9 .9
b. MAX TEST VAR (G), MAX ITEM VAR (B), HOMOGENEOUS p (G)
Known Results for the Population
n 1 2 3 4 5 [ i TOTAL
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 7
7 1 1 1 1 1l 1 1 7
8 1 1 1 1 1 1 1 7
9 1 1 1 1 1 1 1 7
10 1 1 1 1 | 1 1 7
p .5 .5 .5 .5 .5 .5 .5
var; .25 .25 .25 .25 .25 .25 .25 12.25

ALPHA = 1.166667 TIMES (1 - (1.75 / 12.25)) = 1

o]

MAX TEST VAR (G), MAX ITEM VAR (B), HOMOGENEOUS p (G)

n 1 2 3 4 5 6 . TOTAL
1 0 0 0 0 0 1 0 1
2 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0
5 0 0 0 1 0 0 0 1
6 1 1 1 1 1 1 0 6
7 1 1 1 1 1 1 1 7
8 1 1 1 1 1 1 1 7
9 1 1 1 1 1 1 1 7
10 1 1 1 1 1 1 2 7
p .6 .5 .5 .6 .5 .6 4
var; .24 .25 .25 .24 .25 .24 .24 9.809999 ALPHA =

i
1.166667 TIMES (1 - (1.71 / 9.809999)) = .9633028
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Table 3

Probability Target Matrix (a), Population Model Matrix (b), and One

of the 10 Randomly Sampled Matrices (c) for Model 2

a. MIN TEST VAR (B), MAX ITEM VAR (B), HOMOGENEOUS p (G)

PROBABILITY TARGET MATRIX

1 .6 .1 .6 .1 .6
2 .2 .8 .2 .8 .3
3 .8 .2 .8 .2 .8
4 .3 .8 .3 .8 .2
5 .8 .2 .8 .2 .8
6 .2 .8 .2 .8 .2
7 .8 .2 .8 .2 .8
8 .2 .8 .3 .8 .2
9 .8 .2 .8 .2 .8
10 .4 .9 .4 .9 .4

.6
.2
.8
.2
.8
.2
.8
.2
.8
.4

b. MIN TEST VAR (B), MAX ITEM VAR (B), HOMOGENEOUS p (G)

Known Results for the Population

n 1 2 3 4 -] _6 7 TOTAL
1 1 0 1 0 1 0 1 4
2 0 1 0 1 0 1 0 3
3 1 0 1 0 1 0 1 4
4 0 1 0 1 0 1 0 3
5 1 0 1 0 1 0 1 4
6 0 1 0 1 0 1 0 3
7 1 0 1 0 1 0 1 4
8 0 1 0 1 0 1 0 3
9 1 0 1 0 1 0 1 4

10 0 1 0 1 0 1 0 3

P .5 .5 .5 .5 .5 .5 .5

var, .25 .25 .25 .25 .25 .25 .25 .25

ALPHA = 1.166667 TIMES (1 - (1.75 / .25)) = -7

c. MIN TEST VAR (B), MAX ITEM VAR (B), HOMOGENEOUS p (G)

ALPHA = 1.166667 TIMES (1 - (1.56 / 1.76)) = .1193182

rd

P

n 1 2 3 4 5 6 7 TOTAL
1 1 0 1 0 1 0 1 4
2 1 1 0 1 0 1 0 4
3 1 1 1 0 1 1 1 6
4 1 1 0 1 0 1 0 4
5 1 0 1 0 0 0 1 3
6 0 1 0 1 0 1 0 3
7 1 0 1 1 1 1 1 6
8 0 0 1 0 0 1 0 2
9 1 0 1 1 1 1 1 6

10 0 10 1 0o 1 1 4

p .7 .5 .6 .6 .4 .8 .6

var, .21 .25 .24 .24 .24 .16 .24 1.76



Table 4

Probability Target Matrix (a), Population Model Matrix (b), and One
of the 10 Randomly Sampled Matrices (c) for Model 3

a. MOD TEST VAR (M), MOD ITEM VAR (M), HETEROGENEOUS p (B)
PROBABILITY TARGET MATRIX

1l .1 .1 .1 el . el .1
2 o1 el .1 .1 .1 .1
3 .1 el o1 .1 - .1 I §
4 .1 .1 o1 .1 i .1 ' §
5 o1 .1 .1 .1 .1 .1 o1
6 .1 .1 .1 .9 .9 .9 .9
7 .1 .1 .1 .1 .9 .9 .9
8 .1 .1 .1 .9 .9 .9 .9
9 .1 .1 .1 .1 .9 .9 .9
10 .1 .1 .1 .9 .9 .9 .9

b. MOD TEST VAR (M), MOD ITEM VAR (M), HETEROGENEOUS p (B)

L Known Results for the Population

] 1 2 3 4 —2 S 7 TOTAL
) § 0 0 0 0 0 0 0 0
2 0 0 0 0 J 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 o 0 0 0 0 0
6 0 0 0 b § b § 1l 1l 4
7 0 0 0 0 b § b § ) § 3
8 0 0 0 1 b § 1 b § 4
9 0 0 0 0 b § ) § b § 3

10 0 0 0 1 1 1 1 4

P ) ) ) 3 .5 .5 .5

var; 0 0 0 .21 .25 .25 .25 3.36

ALPHA = 1.166667 TIMES (1 - (.9600001 / 3.36)) = .8333333

c. MOD TEST VAR (M), MOD ITEM VAR (M), HETEROGENEOUS p (B)

n 1 2 3 4 5 6 7 TOTAL
1 0 0 0 0 1 1 0 2
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0
¢ 0 0 0 1 1 0 1 3
7 0 0 1 0 1 1 1 4
8 0 0 0 1 1 1 1 4
9 0 0 0 0 0 1 0 1

10 1 0 o 1 1 1 1 5

P .2 0 . .3 .5 .5 .4

var, .16 o .09 .21 .25 .25 .24 3.2

ALPHA = 1.166657 TIMES (1 - (1.2 / 3.2)) = .7291666
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Tablas 5

Probability Target Matrix (a), Population Model Matrix (b), and One
of the 10 Randomly Sampled Matvrices (c) for Model 4

a. MIN TEST VAR (B), MOD ITEM VAR (M), HETEROGENEOUS p (B)
PROBABILITY TARGET MATRIX

1l .1 .1 .1 .2 o7 .2 .7
2 .2 .2 .2 .2 .8 .2 .8
3 .2 .2 ¥ ] .2 .8 .2 .8
4 .2 .2 .2 .2 .8 .2 .8
5 .2 .2 .2 .2 .8 .2 .8
6 .2 .2 .2 .8 .2 .8 .2
7 .2 .2 .2 .8 .2 .8 .2
8 .2 .2 .2 .8 .2 .8 .2
9 .2 .2 .2 .8 .2 .8 .2
i0 .3 .3 .3 .8 .3 .8 .3

b. MIN TEST VAR (B), MOD ITEM VAR (M), HETEROGENEOUS p (B)
Known Rczults for the Population

n 1 2 3 4 s 6 7 _TOTAL
1 0 0 0 0 1 0 1 2
2 0 0 0 0 *1 0 1 2
3 0 0 0 0 1 0 1 2
4 o 0 0 0 1 0 1 2
5 0 0 0 0 1 0 1 2
6 0 0 0 1 0 1 0 2
7 0 0 0 1 0 1 0 2
8 0 0 0 1 0 1 0 2
9 0 0 0 1 0 1 0 2

10 0 0 0 1 0 1 0 _2

P 0 0 0 .5 .5 .5 .5

var 0 0 0 .25 .25 .25 .25 0

ALP.ﬁA = 1.166667 TIMES (1 - (1 / 0)) = -999

c. MIN TEST VAR (B), MCco ITEM VAR (M), HETEROGENEOUS p (B)
n 1 2 3 4 5 6 7 TOTAL
1 0 0 0 1 1 0 1 3
2 0 0 0 0 1 0 1 2
3 0 0 0 0 1 0 1 2
4 0 0 0 0 1 1 0 2
5 0 0 0 1 0 1 1 3
6 0 0 1 1 0 1 0 3
7 0 0 0 0 0 1 0 1
8 1 0 0 1 0 1 0 3
9 0 0 0 0 0 1 0 1

10 1 0 1 1 0 1 0 4

P .2 0 .2 .5 .4 .7 .4

var; .16 0O .16 .25 .24 .21 .24 .84

ALPHA = 1.166667 TIMES (1 - (1.26 / .84)) = -.5833333
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Table 6

Results from the Four Models Using the Monte Carlo Method
_ - .
VARIABLE MEAN STD DEV MINIMUM MAXIMUM N
iaa;i 1 (MAXIMUM, MAXIMUM, HOMOGENFOUS)

.340 . 026 .906 .984 10
TESTVAR 8.884 1.134 7.610 11.050 10
IVARSUM 1.702 .028 1.660 1.740 10
ITEMPSD 074 .021 .035 .105 10
Model 2 (MINIMUM, MAXIMUM, HOMOGENEOUS)
ALPHA -.146 377 -.718 537 10
TESTVAR 1.564 .585 1.040 3.040 10
IVARSUM 1.606 .053 1.520 1.680 10
ITEMPSD .134 .026 .099 .175 10
Model 3 (MODERATE, MODERATE, HETEROGENEOUS)
ALPHA .656 .138 .292 .778 10
TESTVAR 2.876 .475 1.600 3.200 10
IVARSUM 1.210 .083 1.030 1.32C 10
ITEMPSD .187 .024 .139 225 10
Model 4 (MINIMUM, MODERATE, HETEROGENEOUS)
ALPHA -.232 .509 -.833 .539 10
TESTVAR 1.295 .536 .760 2.250 10
IVARSUM 1.353 .178 1.100 1.580 10
ITEMPSD .186 .043 .120 .251 10

Table 7
Rank of Influence of Factors Affecting Coefficient Alpha
Coefficient Used First Second Third

B~weight X X0 X,©
Structured X, X, X,

T°X, = IVARSUM
b x, = ITEMPSD
¢ X3 = TESTVAR
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Figure 1
Histograms illustrating total test variance with a 7-itenm,
dichotomously scored test with 10 examinees
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Figure 2

The 11 Possible Variances for a Dichotomously-Scored Item
Completed by 10 Examinees
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Figure 3
Linear regression line for predicted alpha versus observed alpha
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