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INFERENTIAL ASPECTS OF ADAPTIVE ALLOCATION RULES

by

Donald A. Berry , School of Statistics
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Key Words and Phrases: Adaptive methods, Statistical inference, Scientific
method, Early stopping, Sequential analysis, Bayes's theorem, Likelihood.

ABSTRACT

Many adaptive allocation procedures have been proposed for clinical trials.
Few trials have used adaptive assignment. A principal reason is the inability
to use classical statistical inferences with adaptive procedures. The general
problem of making inferences in clinical trials, whether randomized, adaptive,
or open, is discussed. Bayesian inference is described and illustrated in three
actual trials, each with a different design.

1. Introduction
The focus of adaptive allocation methodology is on design. A principal

reason such methodology is so infrequently used in actual clinical trials is the
difficulty in making classical frequentist inferences when using an adaptive
design. The focus of this paper is on inference. So I will address designs
other than adaptive; these include open studies and other studies that do not
have a particular design.

The design of an experiment is the set of actions taken by the investigator
during the course of the experiment. The design is adaptive if these actions
can depend on results that are observed while the experiment is in progress. It
is nonadantive if they cannot (that is, if actions are constant functions of
results). Few clinical trials have adaptive designs.

In a typical randomized clinical trial (RCT), half the patients are randomly
assigned to an experimental therapy and the other half serve as controls. The
number of patients in the trial is part of the design. P-values are calculated
by adding the probabilities of results more extreme than those observed,
assuming no treatment difference. This calculation requires that the planned
design was actually followed, otherwise what is "extreme" changes and so does
the P-value, perhaps in an unknown way. In general, deviations from the design
invalidate classical statistical inferences.

Practically every clinical trial deviates from its design in one way or
another--the most common deviation is probably a different number of patients
from that planned. It seems ludicrous not to be able to draw conclusions from
data honestly collected. So in calculating P-values, for example, we pretend
that the resulting design was the one planned! I see nothing really wrong with
this practice. The problem is that many statisticians fail to see that

*
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essentially every P-value that's ever been calculated is necessarily flawed as a
measure of inference. A consequence is that when it comes to other closely
related but better understood and more openly discussed practices, they take P-
values too seriously.

These latter practices are controversial and include adjusting for multiple
comparisons, multiple tests, and interim analyses (O'Brien 1983, Berry 1985,
1987, 1988a, 1988b). The analogs of calculations based on the resulting design
are P-values that ignore multiplicities; these are called nominal P-values.

Interim analyses are especially appropriate in any discussion of adaptive
methods. Accumulating data are analyzed periodically with the possibility of
early stopping. But interim analyses must be plaaned in advance so "more
extreme" results can be specified, and the probability of such data calculated
under the various hypotheses. If they are not planned then literally correit P-
values and literally correct confidence intervals cannot be calculated, even if
early stopping did not occur (Dupont 1983). Nominal P-values can of course be
calculated. These serve as perfectly fine descriptive statistics. But, as
Brown (1983) and Canner (1983) make clear, nominal P-values are irrelevant as
measures of inference. We've already seen that essentially every P-value ever
calculated is similarly flawed, though perhaps not as openly or obviously. It
is splitting hairs to object in some instances and not in others.

The subject of this session is adaptive allocation. Adaptive allocation
means that the therapy assigned to the next patient, or therapies assigned :-.o
the next group of patients, depend on results obtained thus far in the trial.
Most published adaptive allocation procedures tend to assign therapies that have
been performing better (for many examples see the Bibliography of Berry and
Fristedt 1985).

Current biostatistical practice dictates that analyses of clinical trial
data are tied as closely as possible to the trial's design As I indicated
earlier, classical frequentist measures of inference are difficult oi impossible
to calculate when a trial's design is adaptive--with the accent on "impossible"
when allocation is adaptive. This is one of many reasons adaptive allocation is
so infrequently used in actual trials. Some of the other reasons given by Simon
(1977), Armitage (1985), and Peto (1985), among others, are quite valid. These
latter reasons substantially limit the practical usefulness of adaptive
allocation methods. But the fact that classical inference is impossible in a
legitimate scientific enterprise means to me that we should abandon classical
inference rather than abandoning the enterprise!

I will expand on this statement in the next section, showing that classical
inference is counter to the scientific method. In Section 3 I will describe how
Bayesian inference applies to adaptive designs. And in Section 4 I will give
some examples of Bayesian analysis.

2. The Scientific Method and Adaptation
The process of scientific research is given in the following six steps:

1. Ask a question or pose a problem.
2. Assemble and evaluate the relevant information.
3. Based on current information, design an investigation or an experiment

(perhaps the null experiment) to address the question posed in step 1.
Consider costs and benefits--including information content--of the available
experiments. Recognize that step 6 is coming.

4. Carry out the investigation or experiment.

4
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5. Use the evidence from step 4 to update the previously available information;
draw conclusions, if only tentative ones.

6. Repeat steps 3 through 5 as necessary.

Questions addressed in clinical research usually deal with the effectiveness
of therapies. The set of available experiments includes clinical trials. Costs
are in terms of time and resources, just as in other scientific research. But,
and this sets clinical research apart from other scientific research, costs also
include ineffective medical therapy--for patients in and out of the trial.

In this scientific process, learning takes place as the experimental results
accrue. Suppose an experiment can be decomposed into two separate experiments
with no additional costs. After the first of these is carried out the available
information is updated (suppose at no or negligible cost). Based on this rew
information the second half of the original experiment may now be unnecessary,
or perhaps a radically different next experiment is appropriate. Continue in
this way to partition a contemplated "experiment" into its smallest possible
pieces, with information updated continuously. There is a net benefit provided
by the possibility of deviating fmm the original plan. (To see this notice
that one option that's always available is to stick with the origiaal plan.)
This assumes that updating is costless. In clinical trials this assumption is
at best approximately true. But the assumption may be reasonable in those
clinical trials where the cost of ineffective treatment far outweighs other
costs. It also assumes that there j information that accrues during the trial;
in some trials the responses are not observed until the trial is over (though in
survival studies at least partial information becomes available at each analysis
epoch).

The scientific process described here is the motivation behind the
recommendations to use adaptive allocation procedures. In standard approaches
to RCTs investigators are supposed to close their eyes to accumulating data,
and that seems unscientific. Adaptive procedures seem more scientific. But
most adaptive allocation procedures are as arbitrary and as unscientific as
RCTs. For example, consider the play-the-winner rule: the same therapy is used
after a success and therapy is switched after a failure. The investigator has
eyes open, but is made to wear glasses that induce extreme myopia. Throwing out
all previous knowledge and remembering only the last thing learned is hardly
what I mean by updating.

What kind of adaptive procedures are scientific? In deciding which
experiment to carry out the investigator should consider costs anu benefits
explicitly. For the sake of discussion let's restrict cost considerations to
effective therapy. The question is, effective for whom? The answer gives rise
to the "patient horizon", N, introduced by Anscombe (1963). The patient horizon
is the number of patients (in the trial and not) who are in the population being
treated and who will eventually be treated with one of the competing therapies.
Anscombe describes the solution by dynamic programming. This is consistent with
the scientific method. (He describes it in context of adaptive stopping, bv.t
the method applies as well to adaptive allocation.) The current experiment is
designed knowing ;hat later experiments are possible (cf. step 6). The value of
information to be gained in an experiment--information that will help treat
later patients--is weighed against the possibility of ineffective treatment of
patients involved in the experiment.

The patient horizon is never perfectly known. And it clearly depen& on the
safety and effectiveness profiles of the competing therapies, which are also
unknown. If one of the therapies turns out to be very effective then, while
still unknown, N will be larger than otherwise. This makes allocations to the
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apparently inferior therapy more worthwhile. This effect is ignored by all the
adaptive methods I have seen proposed.

It is not my objective to recommend particular adaptive allocation
procedures, nor to -utline a possible role for such procedures in clinical
trials. But I venture the opinion that adaptive allocations will never be
widely used in clinical trials, and that this is appropriate. When ethical
considerations are not primary and N is large, the RCT is quite a satisfactory
design (Berry and Eick 1989), but good RCTs are much smaller than those
typically carried out. And in those settings where ethical considerations are
of prime importance, which can be accommodated by taking N 1, well-documented
open studies are best, and I believe they will be used increasingly (Berry
1989b). Open studies are scientific, but they are at least as problematical for
classical inference as are adaptive studies. Bayesian inference may be possible
in open studies, depending on the degree of documentation, par*icularly as
regards reasons for treatment assignment.

I want to make one additional point about design and the scientific method.
Partitioning an experiment as described earlier means that it is better to
rethink the experimental process as frequently as possible. (I'm assuming that
thinking is costless--which it's not--and I'm assuming that the thinker is not
constrained by an unscientific process of inference.) In particular, large
trials that don't allow adaptation are bad, and small trials are good.
Stringing together small trials is flexible. The design of the next trial can
be based on the results from previous studies, or the experimental plan can be
abandoned. Using small studies is zloballv adaptive. Small studies are frowned
upon by classicists (Peto et al. 1976). Making inferences requires analyzing
data from various studies, each with its own peculiar characteristics:
metaanalysis. The tiayesian approach is ideally suited to this endeavor
(DuMouchel 1989). (However, publication bias and other similar biases can make
correct inferences difficult or impossible in any approach: if I hide the
smallest numbers in a variable sequence from you, and you think you've got the
whole sequence, you're not going to do well in guessing how the sequence was
generated! Of course, a Bayesian who understands that there may be publication
bias will tend to do better than one who does not.)

3. Flexibility of Bayesian Inference
I indicated in the introduction that the problem of multiplicities makes

classical frequentist inference unsuited for adaptive designs; this statement
applies for other scientifically valid designs as well. On the other hand, the
scientific process outlined in the previous section is ideally suited for
Bayesian inference. For example, updating one's state of knowladge is a
Bayesian notion. Also, step 3 requires evaluating the information content of
possible experiments. Information content usually depends on the results of an
experiment. Predictive prdbability distributions of Observable results are
anathema to classical inference, but they are easily and naturally formulated
using Bayesian methods. I don't want to rule out the possibility that there are
other approaches that are consistent with the scientific method described in the
previous section, but classical frequentist methods are not.

In the Bayesian approach the design used is irrelevant once the data are at
hand (Berger 1985; Berger and Berry 1988a, 1988b; Berry 1987, 1988b). Here I
mean "data" in the broadest possible sense; in particular, in an open study the
data includes all information about the patients available to the clinician who
assigned therapy. (The only problem I see with this is the impossibility of
quantifying some types of such information. For example, the clinician might
sense characteristics of a patient that are difficult to communicate and use as
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covariates. A possible solution is to have the clinician who assigns therapy be
different from the one who diagnoses.)

Consider the following trial. There are two possible therapies, A and B,
and two responses, success (S) and failure (F). Patients in the trial are
assumed to be exchangeable insofar as their anticipated response is concerned.
The following are the results:

Therapy AAABBBBBBAAA
Response SSFFSFFSFSSS

In the Bayesian approach the only information needed to analyze these
results are the sufficient statistics: 5 of 6 successes on A and 2 of 6
successes on B. (The assumption of exchangeability is critical here.) In
particular, the design is irrelevant. Many different designs could have
produced these data, here are a few:

(i) An RCT planned for 12 patients assigned randomly in blocks of six, three
on each therapy.

(ii) Randomized play-the-winner assignment (see Example 1 below for a
description) where sampling stops as soon ar the absolute difference in
sample success proportions is at least 1/2.

(iii) An open study in which the clinician plans to use 3 A's, 6 B's, 6 A's, 6
B's, etc., until concluding alit further use of either therapy would be
unethical, or until becoming tired.

(iv) An open study in which the clinician assigns thelapy in an arbitrary
fashion, with some lance in mind, and the data given ,re interim
results.

The only reservation I have about the design affecting my conclusions is that
there might be hidden data that would violate the assumption of exchangeability.
For example, in design (iv) I would worry that the clinician might have assigned
therapy to patients based on covariates to which I am not privy (not that it's
wrong to do this, it's .1ust that I want to know about it); had this happened
then I could not draw conclusions from the data unless I were told what the
covariates were (and perhaps not even then!). Similarly, in design (iii) I
would worry that the clinician had juggled the order of admission to, in effect,
assign the sicker patients to one of the therapies.

We A2 need to know the design to calculate P-values (and confidence
intervals). For design (i) I get 1P 0.12 (exact test). For (ii), the
probability that A wins if there is no difference in therapies is 1P 1/2. P-

values cannot be calculated for designs (iii) and (iv).

6. Examples

In this section I will alustrate Bayesian analyses of adaptive and othel
studies in the context of examples. The examples I give are clinical trials
with dichotomous responscs; the ideas generalize easily to other types of
trials.

Example 1 (Bartlett t al. 1985)
This is one of the few clinical trials in whirh adaptive allocation has been

used. The analyses I present here are far from the final word. More complete
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analysis is forthcoming in Berry and Hardwick (1989). A randomized play-the-
winner scheme was carried out as follows. An A and a B were placed in an urn
(figuratively speaking). One was selected randomly and the corresponding
therapy administered, A experimental (ECHO) and B control (conventional
therapy). If the response was survival (S) then the treatment letter was
replaced in the urn and another letter of the same type was addedresponse time
was effectively immediate. If the response was death (F) then the treatment
letter was replaced and a letter of the other type added. Stopping was to have
taken place when ten balls of either type had been added to the urn. The second
phase of the study was to be nonrandomized, with all patients assigned to the
therapy that performed better in the first place.

The responses reported by Bartlett et al. were as follows:

TherapyABAAAAAAAAAA
ResponseSFSSSSSSSSSS
(Note the deviation from the stopping rule.) After the trial, 8 more patients
were administered A and all survived, and 2 more were administered B and both
died

Suppose the patient population is homogeneous, so the patients are tegarded
to be exchangeable. Let pA and pB be the probabilities of success on treatments

A and B. (In the next example I will describe a model in which these
probabilities depend on the patients' prognoses.)

Taking the classical frequentist point of view, Ware and Epstein (1985)
observe that the Bartlett et al. trial had a "50% false positive rateTM, or type
I error rate: if the null hypothesis pA ps is true, then the probability of

obtaining 10 more A's than B's is 1/2. They say this rate is "unacceptably
highTM. This is an instance of what I mean by taking hypothesis testing too
seriously; in particular, it applies no matter how strongly the actual data
favors either therapy. Ware and Epstein conclude: "Further randomized clinical
trials using concurrent controls...will be difficult but remain necessary."
(Hence the study described in Example 2.)

A Bayesian apr-rnrIti requires a prior distribution on (pA,pB). For

illustrative purposes only, suppose this is uniform. Such an assumption is
consistent with assuming the treatments to be exchangeable and independent a
priori, with little information available about either. (None of these
assumptions is correct--see below.) The posterior density cori the unit square)
given data from the trial is then

f(pA,pB) 24 p11 (1-pB).

Consider the conditiona1 relative improvement due to ECHO (compareu with
conventional therapy): pA-pB. Define the (unconditional) relative improvement

to be the probability that this is greater than c:
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RI(c) flc 4-cf(x,y)dx

7

90 2 2 2 13 1 14
91 13c c + 13c + 91c

This is labeled with an asterisk in Figure 1; in particular, the posterior
probability that ECMO is better than conventional therapy is RI(0) -- 90/91.

Consider also the 10 patients reported by Bartlett et al. that were treated
after the trial. According to the protocol, all 10 should have been assigned to
ECMO. My understanding is that all met the eligibility criteria for the study
but the ECMO device was not available for the two who were assigned to
conventional therapy. Considering these 10 to be exchangeable with the patients
in the trial means that

f(p
A
,p
B

) 80p
A
19

(1-p
B

)
3

.

The relative improvement function, RI(c), for this density is labeled with a
double asterisk in Figure 1; now RI(0) -- 0.9999.

Bartlett et al. claim that the patients in thc trial would have had at least
an 80% death rate on conventional therapy. A Bayesian analysis can incorporate
historical contrc-s (Berry and Hardwick 1989)--indeed, the scientific method
requires using all available information. But in an ostensibly scientific
report, any such statement should be backed up by evidence. In this instance
the issue is critical. If pB Is known to be 0.2, say, then

RI(c) f
1

f(p
.2+c A

)dp
A'

this is 1-(.2+c)
12

for 11 successes out of 11 patients on A, and 1-(.2+c) 20
for

19 successes out of 19 on A. These are shown in Figure 2, using the same
labeling system as in Figure 1. The relative improvement of A is dramatic under
this assumption. For example, in the second case, RI(0.5) > 0.999, so ECMO is
very likely to save an additional 50% of the patients as compared with
conventional therapy.

The patients in this trial were not actually eAchangeable. (Not
incl!lentally, the patient who received conventional therapy in the randomized
phase happened to be the sickest of the 12.) Berry and Hardwick (1989) carry
out a Bayesian analysis accounting for the patients' characteristics, as well as
incorporating historical controls.

9



0.5

Figure 1. Relative improvement for A over B assuming
independent uniform priors for p

A
and pB.

1

( e)

0.5

0.3 1

Figure 2. Relative improvement for A over B assuming
pB = 0.2 and uniform prior for pA.

Example 2 CWare 19E21
Experimental (A) and control (B) were the same as in Example 1. The tripl

was in two phases. Phase 1 was balanced randomized and would stop when either
therapy accumulated 4 deaths. The oLher therapy would be used exclusively in
phase 2, which would end when this other therapy accumulated a total of 4
deaths. (In view of the Bartlett study (Example 1) and other available
information on ECMO aild conventional therapy, I think this trial--or any trial
randomizing to conventional therapy--was unethical; cf. Berry 1989b.)

The results are shown in Table 1. Note that phase 2 stopped with only one
ECMO death. See Ware (1989) for the way he gets around this obvious stumbling
block for classical inference.

19
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Table 1. Data from Ware (1989)
*

Patient
number

Treatment Initial **
prognosis

Response P(p
A
>p

B
ldata)

1 A 0.754 S 0.59
2 13 0.695 S 0.48
3 A 0.899 S 0.51
4 3 0.747 S 0.46
5 B 0.720 F 0.71
6 A 0.882 S 0.74
7 A 0.886 S 0.77
8 B 0.842 S 0.74

ASE 9 B 0.937 S 0.73
1 10 13 0.844 F 0.87

11 A 0.874 S 0.88
12 A 0.877 S 0.90
13 B 0.788 F 0.950
14 A 0.902 S 0.956
15 A 0.922 S 0.961
16 B 0.826 S 0.949
17 B 0.874 S 0.940
18 A 0.871 S 0.948
19 B 0.838 F 0.974

20 A 0.900 S 0.978
21 A 0.716 F 0.918
22 A 0.960 S 0.922
23 A 0.902 S 0.931
24 A 0.826 S 0.943
25 A 0.801 S 0.954
26 A 0.854 S 0.960
27 A 0.874 S 0.965
28 A 0.774 S 0.971

COE 29 A 0.941 S 0.973
2 30 A 0.615 S 0.981

31 A 0.825 S 0.984
32 A 0.865 S 0.985
33 A 0.775 S 0.988
34 A 0.832 S 0.989
35 A 0.792 S 0.990
36 A 0.874 S 0.991
37 A 0.770 S 0.992
38 A 0.735 S 0.994
39 A 0.921 S 0.994

*
The ordtr of patient reponses and covariates used to calculate prognoses are

not givea in Ware (1989); Professor Ware was kind enough to provide these to me.

* *
Predicted probability of success on treatment A from Toowasian et al. (1988).

11
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Table 1 also shows the individual patients' prognoses. The method of
computing these was taken from Toomasian et al. (1988) who report on a national
registry of 715 ECMO cases and calculate a logit Lor survival success).
Their model is

log(1.--rd 20.054 - .918(hirthweight)

- 2.465(pH) - .386(MAS)

+ .597(renal failure) + .304(female).

The last three variables are indicators; MAS means meconium aspiration syndrome
as primary diagnosis; renal failure was defined as creatinine 1.5. Since I
did not have access to the last two variables, I used only the first four terms.
(Dropping the last two would have no effect if all ehe patients were male and
none had renal failure--about 10 percent of the 715 cases reported by Toomasian
et al. had renal failure.)

There was evidence that ECMO was more effective than conventional therapy--
see Example 1 and Ware (1989). But I calculated RI(0) P(pA > pBldata) in

Table 1 assuming that A and B were exchangeable initially, and using a technique
proposed by Berry (1989a) with a 2. All previously treated patient responses,
treatments, and prognoses are included in "data". Such a measure can be
calculated at Lny time during the trial, even if it may result in early
stopping, without compromising the eventual conclusions (Berry 1985, 1987).

The probabilities in Table 1 are not P-values. Rather, they have a direct
interpretation concerning the two therapies. Namely, P(pA > pBldata) is the

probability that therapy A is the better treatment to assign to the next
patient.

The probabilities in Table 1 assume tha the prior distribution of

remains unchanged during the trial. Any evidence that becomes available from
outside the trial can be used to update the current distribution of (pA,pB).

The ECMO patients in phase 1 had better prognoses (on ECMO therapy) than did
their counterparts on control: averages of 0.126 and 0.189, respectively. So

the probabilities in the rightmost column of Table 1 are larger than they would
be had the covariates been ignored.

In clinical trials in which on:. therapy is used exclusively for a period of
time (phase 2 in the example), one worries that there may be a time trend in the
patient population which then is confounded with treatment. (Indeed, this is a
standard argument against using adaptive allocation.) The calculations shown in
Table I adjust for any time trends that are manifest in the covariates used to
calculate prognoses. Of course, it does not account for "iilent" covariates.
(The average prognosis in phase 2 is 0.173, giving an over411 average of 0.158
for ECM0 patients, so there seems to be at most a slight time trend in the
example data.)

Table 2 gives the updated prognosis of patients on A and B using maximum
A

likelihood (see Berry 1989a). The fact that pA(x) < x means that the ECHO

patients in the current study had better results than did their counterparts in
the national registry. (This difference cannot be the result of dropping "renal
failure" and "female" from the logit model since their coefficients are
positive.)

12
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Publishing the results of this trial can include an updated prognosis for
both therapies, such as given in Table 2. If RI(c) or any other characteristic
of the current distribution of (pA,pB) is published, the prior distributior of

(pA,pB) should alao be rublished. It is also incumbent on the authors to

indicate the sensitivity of the current distribution to the prior with, perhaps,
an indication of what the current distribution would be for different priors.

A

Table 2. Updhced prognosis p(x) based on data from Table 1; x - initial
prognosis.

A

p
A
(x)

A

p
B
(x)

0.95 0.991 0.863
0.90 0.980 0.750
0.80 0.956 0.571
0.70 0.928 0.437
0.60 0.892 0.333
0.50 0.846 0.250
0.40 0.785 0.182

Therapies A and B are very different. ECM) is radical, invasive therapy
whose use could itself result in death. So it seems reasonable to assume
P(pA pB) - 0, as I have dc.c.e in this example. But this assumpt',Nn seems less

appropriate in most settings, in particular, in that of the next example.

fxample 3 (Dixon et al. 1989)

This is a balanced randomized trial comparing two treatments for adult acute
leukemia: A - amsacrine/cytosine arabinoside and B - mitoxantrone/cytosine
arabinoside. The responses are reported in Table 3. Success (S) is complete
remission and failure (F) is any response other than S. Initial prognosis in
the probability of complete remission based on a logistic model. The
calculation of P(pA < pBldata) uses Berry (1989a), as in Example 2.

The stopping rule used oy Dixon et al. (1989) was based on a Bayesian
calculation after pairing A and B patients on the basis of prognosis. Their
method has the advantage of being easy to understand: 4 of 8 preferences for A
with the other 4 pairs tied. The method of Berry (1989a) does not assume
exchangeability of pairs, and L does not require matching patients on
prognosis. (Berry (1989a) gives an extension of the method to analysis of
survival times with the possibility of censoring.)

1 3
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Table 3. Data from Dixon et al., (1989)

Patient
number

Treatment Tnitial
*

prognosis
Response P(pA>pBidata)

1 B 0.93 S 0.46
2 A 0.78 S 0.:...4

3 B 0.59 F 0.77
4 A 0.44 S 0.89
5 B 0.81 S 0.84
6 A 0.68 S 0.88
7 B 0.87 S 0.86
8 A 0.87 S 0.87
9 B 0.49 F 0.933

10 A 0.78 S 0.945
11 B 0.87 F 0.982
12 B 0.74 S 0.971
13 A 0.59 S 0.982
14 A 0.50 S 0.989
15 B 0.40 F 0.993
16 A 0.93 S 0.994

*
Predicted probability of success.

5. Conclusion

Scientific research is planning and learning. Learning is adaptive. The
scientific method prescribes how learning takes place efficiently. Bayesian
inference is consistent with the scientific method. ln particular, it is an
ideal prescription for learnint Classical frequentist inference is
inconsistent with the scientific method.

Adaptive allocation may not have a place in indical research Trials in
whinh there are no ethical concerns are perhaps best carried out with
randGmixed, concurrent controls. But these trials should be small. This allows
for g1212.0], adaptivity, rethinking and modifying strategies between trials, which
can save time, resources, and increase the chance of delivering effective
medical therapy to more people.

Wuen ethical concerns rule out RCTs, treatment should be assigned in an open
fashion, with patients followed to ascertain effect. Correct inferences are
difficult in open studies, at least in part because of the possibilities of bias
in assigning treatment. Classical frequentist methods are not available;
Bayesian inferences may be possible, but adjusting for covariates is essential.
These inferences will be better if base,' on control information from historical
data. Appropriately weighing historical data is one of the biggest challenges
iz the analysis of clinical trials.
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