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Abstract

This paper discusses the development of the mathematical experiences which make
up the three-term sequence of mathematics courses taken by participants in the Elementary
Mathematics Project (EMP). EMP is a longitudinal study of change in preservice teachers’
perceptions and beliefs about mathematics. For the mathematics courses, the authors
consider both content and teaching. Under mathematical content they dgiscuss the main
topics and mathematical problem solving; under doing mathematics they discuss abstraction,
reasoning, unique answers, and time spent on problems. Mathematical connections are
discussed with a focus on representations and applications. Instruction includes a discussion
of their use of problem situations, development of community, and periodic reflections as
part of the intervention. Throughout the paper, examples are given from the students’
experiences in the courses.
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LEARNING TO TEACH: CONSTRUCTING MEANINGFUL
UNDERSTANDING OF MATHEMATICAL CONTENT

Glenda Lappan and Ruhama Even'

To teach the arithmetic-driven curriculum of the past, one needed little more than
computational skill with the standard algorithms and a text to provide practice. That is no
longer the case. To prepare a teacher dedicated to helping children think mathematically
requires a very different experience with mathematics than the traditional college course
for elementary teachers. With this in mind, a series of innovative mathematics courses,
mathematics education courses, and field experiences has been developed for undergraduate
education majors in Michigan State University’s Academic Learning Program.? The
mathematics content intervention comprises a sequence of three mathematics courses
While the mathematics content of the courses emphasizes the integration and connection of
mathematics as a goal, each course highlights a different area of mathematics. These three
areas were number theory, geometry, and probability and statistics.

As project members set out to design the mathematical component for the
intervention, we identified the obstacles to change that we were likely to face--the beliefs
and dispositions that these students bring with them as a result of 14 years of mathematics
education. Our students tend to believe that (a) the elementary math curriculum is driven
by computational skili as the major goal, (b) mathematical knowledge is ruie-bound and nit
connected, (c) teaching is telling and learning is memorizing. These beliefs and dispositions
are not consisient with a modern set of goals for the study of mathematics nor the needs of
students. In order to challenge these beliefs and dispositions, the mathematics experience
at the university has to cause the students to examine their fundamental beliefs about such
questions as: What is mathematics? What does it mean to know mathematics? What
mathematics do elementary school children need to study? How do we make decisions

'Glenda Lappan 1s a professor in the Department of Mathematics at Michigan State U .iversity She is onlexe fr
a year at the Nanonal Saience Foundation in Washington, D.C., to serve as program director for Teacher Preparatior. Sh¢
15 a senior 1esearcher with the National Center for Research on Teacher Education. Ruhama Even recently finishe* * -
doctorate i mathematics education at MSU. She has returned to Israel where she will join the staff of the Weizm.nn
Institute 1n Rencve:. .While at MSU she was a graduate assistan/curriculum developer on the Elementary Mathema' s
Project.

The Elementary Mathematics Project 1s a longitudinal research project studying the change in preservice teachcrs
perceptions and beliefs about mathematics, what it means to know mathematics, and how mathematics is learred Th-
project 1s studying students who 2re enrolled in t'e elementary part of the Academic Learuing Program Perry Lanier di-ezts
the project. Glenda Lappan 1s associate director of the project and principal designer and instructor for the sequerce ¢
mathematics courses. Pamela Schram and Sandra Wilcox are the project’s researchers. Ruhama Even participated in '™ ¢
conceptualization and development of the sequence of mathematics courses and the research instruments The Acade™:
Learnung Program at Michigan State University 1s an alternative teacher education program designed for highly motix >rc §
prospective teachers. The program emphasizes the development of thorough understanding of subjert matters to be r2.gh
as well as krowledge of how students learn in each subject area and how to teach each subject maiter effectively Fa-h
Academic Learning student has a umque field expenence which involves working with a mentor teacher and a classrrom f
children each term (including student teaching) over a two-year period.
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about what to inciude in the elementary curriculum? How do children learn mathematics?
What is the role of the teacher in the mathematics classroom?

In this paper we describe the sequence of the innovative mathematics courses. The
paper is organized around the joint themes of mathematics and teaching. Under
mathematical content we discuss the main topics and mathematical problem solving; under
doing mathematics we discuss abstraction, reasoning in mathermatics, unique answers, and
time spent on problems. Mathematical connections is discussed with a focus on
representations and applications. Instruction includes a discussion of our use oi problem
situations, community and periodic reflections as part of the intervention.

The Goal: Good Mathematics--Taught Well®

The overall goal of the three mathematics courses was "good mathematics--taught
well” We believe that prospective teachers should experience the learning of good
mathematics in the same way that we want them to teach their own students mathematics.
Preservice teachers’ own experiences provide the data they use to make sense of what
mathematics is and how it should be taught. Hence, the learning env.conment in the three-
term sequence classes had to be constructed in such a way that students experienced
mathematics much as their own students might.

What do we mean by "good matkematics--taught well”? When making decisions of
which mathematical ideas to pursue in the courses we asked ourselves many questions: Is
this good mathematics? Is it important? "What does knowing this idea enable a student 1o
do? To what is it connected? How does it relate to the big mathematical ideas for
elementary/middle school children? How does the content selected represent mathematics
to the preservice teachers? Does the content require students to engage in doing
mathematics--analyzing, abstracting, generalizing, inventing, proving and applying? We were
most concerned with the following three facets of mathematics: mathematical content, doing
mathematics, and mathematical connections, These facets are not independent from each
other but rather are interrelated. Still, each one is important enough to be highlighted
separately.

But "good mathematics” is not enough. Good mathematics has to be taught well.
In plannirg the instruction for the series of math courses we were guided by three main
principles: the use of problem situation, periodic reflections, and an emphasis on the
community. A detailed description of the main themes that guided us in the developme .
of the courses, both mathematicsi and instructional, follows.

*The phrase "Good Matheratic .aught well” was first used in the Middle Grades Mathematics Project's MGMP)
Final Repore to the National Science I'.andation for grant #MDR 8318218, MGMP is a broad-based research, curnculum
devslopment, and teac™ier erhzrcement projoct dedicated to the improvement of mathemauics education at the muddie schoui
lewe), grades 5-8,




Good Mathemativs
Mathematical Content

Part of mathematical knowledge includes understanding particular topics, procedures
and concepts, and the relationships among them. This is what most people usually refer to
when they talk about mathematical knowledge. Since this aspect of knowledge of
mathematics is fairly familiar we describe it very briefly.

Main topics. We took an overall integrated approach to mathematics, but each term
had a major emphasis that allowed us to probe ideas in depth. The three main themes
represent important topics in the discipline of mathematics as well as in a desired
elementary/middie school curriculumn (e.g., NCTM’s C.rriculum and Evaluation Standards
for School Mathematics, 1989). The first term centered on the structure of number and
number relationships. However, these ideas were approached through varied situations.
Some situations were basically numerical; others geometric; and others arose from networks
or the analysis of real data. In the second term the main theme was geometry, but, as
before, many experiences with numbers were embedded in geometric contexts. In the last
term, the emphasis shifted to data analysis, intespretation, and decision making. In each
term, connections among number, geometry, probability and statistics were made.

Mathematics and problem solving. Many "mathematics for elementary teachers"
textbooks start with a chapter on problem solving. After dealing with some in.eresting
problem. the following chapters concentrate on differert topics (number sets, operations
on numbers, geometry, probability and statistics, to name the most common). This approach
seems to imply that problem solving and mathematics are two difierent things: Fi.~* you
do problem solving and then you do mathematics. We wanted to send the message that
problem solving and mathematics are not separate issues. Therefore we started with a
problem which was big enough to serve as a "problem-solving" situation, but its solution was
closely related to the mathematical topic to be taught-r.umber theory. This problem--the
Locker Problem--is discussed later in the paper. Throughout the three courses, we used the
strategy of presentin, to our students "big problems” which were related to the mathematical
topic at haud. Even though the problems were related to the main topics being studied, .hey
were still "protiems" in that there was not a direct, immediate, one way to solve them. So
problem solving was integrated naturally into the courses.

Doing Mathematics

Another part uf mathematical knowledge includes understanding what it means to
do mathematics. Many prospective elementary teachers think that knowing mathematics
means mastering a given set of facts, rules and procedures (Ball, 1988; Madsen-Nasox, 1988:
Stodolsky, 1987; Thompson, 1984). If one secs mathematics this way, doing mathematics
means recalling the appropriate fact, rule or procedure. If the situation does not look
familiar, one cannot use recall, and ieels unable te solve the sroblem. On the other hand,
if the situation looks familiar, recalling facts, without understanding, may lead to misuse of
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the recalled information. Belief that mathematics is more than mastering a given set of
facts, rules and procedures is not sufticient. Preservice teachers need to have ideas about
how to structure classroums so that understanding can be developed. Since experience is a
powerful teacher, it makes sense that these preservice teachers need to learn by experiencing
mathematical ways of thinking, reasoning, analyzing, .bstracting, generalizing, proving and
applying in environments that model good instruction.

Abstraction. Abstraction is a major component of doing mathematics. The objects
of study in mathematics are abstract creatures: aumbers, shapes, functions, struciures, and
so fortl., as npposed to objects of study in other disciplines suct as matter, plants, animals
or human beings. Mathematical concepts are abstract and “coming to know" in mathematics
means, in many cases, abstracting, from a variety of models and situations, the important
characteristics of a concept while ignoring the irrelevaat ones. This approach guided us in
our work. The students were provided, in many cases, with concrete materials with which
to work, and were presented with various situations in which they encountered the same
concept. The following example dealing with the concept of distance illustrates this point.

Everybody knows what a distance between two poin:s means. For example, given
the following points on a grid (Figure 1), the distance between A and B is 4 units.
The distance between A and C--/34--is a little harder to calculate; the
Pythagorean Theorem is needed. But suppose the grid represents a map of city
streets. You are in place A and need to get to place C. Now what’s the distance
between A and C? Is using the Pythagorean Theorem appropriate in this case?

Fig. 1
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Our students decided that "distance" in ‘taxicab geometry" should be defired to be
the shortest path betweer. two points. This definition is, of course, appropriate for dittanc..
both in Euclidian geometry as weil as taxicab geometry even though the distance. may differ.
By having to consider the same concept in two different geometries, one of which is
unfamiliar, the students needed to abstract the meaning of distance, reaching < higher level
of understanding of a concept they have taken for granted.

Reasoning in mathematics. Genera’.zation- starting from specific cases and finding
a general rule--is an activity that is central to doing mathematics. One way to lock at
algebra, for example, is as generalized arithmetic. But generalization is not limited to
algebra. Whenever we deal with relationships and look for paiterns we deal with
generz'izations. The general rules can be described algebraically, geometrically, graphically,
or verbally. Investigating a situation by checking specific cases is a very powerful strateg)
Many discoveries are made by induct've reasoning. Looking at specific cases helps in
understanding a situation and in seeing why a conjectured rule should hold.

Looking for patterns and describing the general rules by using inductive reasoning
was an important part of all of the mathematics courses. From our experience, many
prospective elementary teachers try to solve problems by sea.ching for the "appropriate”
formula. Their beliefs about what mathematics is, how one solves a math problem, and
their conception of themselves in relation to mathematics shape this behavior. We wanted
our students to experience inductive reasoning as a tool for solving problems in mathematics
for two reasons: (a) we think that this is an important and powerful strategy in
mathematics; ard (b) w2 wanted to change their view of mathemat.zs and what it means to
do mathematics. Therefore, gathering data, checking specific examples, looking for patterns
and making conjectures based on generalizations were an important part of the courses. We
wanted students to see mathematics as an empirical science in order to fully appreciate
mathematics as a deductive science. The following example called the Locker Problem
serves as an illustration (for a thorough discussion of this problem see House, 1980).

In a certain high school there were 1000 students and 1000 lockers. Each year
for homecoming the students lined up in alphabetical order and performed the
following ritual: The first studen: opened every locker. The second student went
to every second locker and closed it. The third student went to every third locker
and changed it (ie, if the lockcr was open, he closed it; if it was closed, he
opened it). In ¢ similar manner, the fourth, fifth, sixth, . . . student changed every
fourth, fifth, sixth, . . . locker. After all 1000 students had passed by the lockers,
which lockers were ope 17

Th~ locker problem is really a "problem.” For our students there is no way to solve
it by recall since the lucke: problem does not luok like any familiar type of “story problem.”




The only way to solve it is by doing mathematics. One might guess and check--popular
guesses are prime number lochers, the first locker and/or the last locker. It is easy to check
that the first lacker remains open, but how about the last one? Prime numbers also don't
seem to work (check 3 or 7, for example). It is clear that we have a problem. Someone in
the class suggests that we see what will happen with 10 lockers. The class agrees that
solving a simpler and .nore manageable problem might lead to some understanding of
“what’s going on here?” Working in small groups they "open” and “close” 10 lockers: lockers
1, 4, and 9 remained open. Then they do the same with 20 lockers--1, 4, 9, and 16 are open.
Suoner or later each small group in ‘he cliss has a conjecture: Either that all the open
lockers are syuare numbers or that the diffe ences between the open lockers are consecutive
odd numbers.

Most prospective teachers are quite happy with their surprising solution and are
willing to predict at this point what all the open lockers are. Since inductive reasoning is
used ia every day :ife as a mean for making predictions (e.g., Martin and Harel, 1989), most
students s ¢ this stage as the final stage of the solution of the problem. But can we really
be sure that the pattern continues? Why? To make sure that this is the casc, deductive
reasoning should be uscd to construct a supporting argument that is c< avincing,

The questions mentioned above, in addition to some others that explure the
relationship between a student’s number and the lecker numbers visited, are assigned a,
homework. The next day a whole-group discussion takes place. Many students discover
that the relationship between student numbers and the locker numbers visited by them can
be described as the relationship be‘ween factors and multipies. Throughout the discussion
it becomes clearer that open lockers are the ones tha: have an odd nur.ber of factors. Do
all square numbers have an odd number of factors? Why? Why do nonsquare numbers
have an even number of factors? Investigating these questions by exploring factor pairs for
some specific numbers (e.g.. factor pairs for 24 are 1 and 24, 2 and 12, 3 and 8, 4 and 6.
Factor pairs for 25 are 1 and 25, 5 and 5) makes it clcarer why square numbers (and only
square numbers) have an odd number of factors.

How about the other coniecture? Are the differences between tie open lockers
consecutive odd numbers? Can we show that this is true? Proving by mathematical
induction that the sum of consecutive odd numbers, starting from 1, is a square numbcr, is
not appropriate in this ~catext. But a pictorial representation (see Figure 2) can provide .
convincing argLment. Te number 1 is represented by one dot at the upper left corner. By
adding the number 3 which is represented by three dots, we can form the nusuoer 4--a
square of 2 x 2. Tnen, by adding the number S (five dots), the numbe: nine can be
formed--square of 3 x 3. One can verify that this process can continue for any given sum of
consecutive odd number starting with 1. The result is always a square number.

et
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Fig. 2

From - .is point the clas: continues to explore number structure, classification of whole
numbers, to discuss prop2rties of different groups of numbers and other related ideas. The
locker problem i3 thex revisited and discussed in relation to prime numbers, least comr..on
multiple and greatest common factor.

Inductive reasoning, impcrtant as it is to mathematical activity, is not enough as an
explanation for the existence of a rule nor is it a proof (unless we can check all cases--a
strategy that is 1seq more and more in modern mathematics with the power of new
technology). In order to transform a conjecture to a theurer: when checking all cases is
not appropriate, one needs to use mathematically appropriate and ac~eptable ways to
construct either a logical verification or a counterexample. "Deductive reasoning is the
method by which the truth of a mathematical assertion is finally e<tablished” (NCT*
Curriczlum and Evaluation Standards for School Mathematics, 1989, p. 143). But many
prospective teachers do not see the need for deductive reasoning (Even, 1989; Martin and
Harel, 1989).

Providing a sound mathematical explanation was an important part of the courses.
The questions "why?" and "how do you know that?" were asked often. We were not afier
a formal proof that uses the "appropriate” format as is often the case with high school
Euclidean geometry, but rather we wanted to develop mathematical ways of thinking and
reasoning at a more informal level. The observation that lockers with square numbers
rernain open when 30 lockers are checked does not prove that this will always be the case.
Showing that square numbers have an odd number of factors and relating this to the
preblem does provide a convincing argument for the conjecture.

Throughout the courses we insisted that the prospe-tive teachers reason
mathematically. In contrast, as is also the case in the discipline of mathematics, some
findings remained as conjectures only, without proof or refutation. This happened either
because proof required tools which were too sophisticatzd at that stage or because we (the
class—-sti.dents and teacher) did not know how to go about proving it. At any rate we
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distinguished between conjectures and thecrems, using mathematical reasoning but without
the formalism that in so many cases hinders understanding instead of fostering it.

Unique answer. A common misconception among elementary teachers is that every
math problem has oxe and only one answer, and there is only one way to get this answer.
Not only is this a false representation of mathematics, but this way of thinking causes
difficulties with the learning of mathematics. It encourages recall and memorization of the
right way to solve problems instead of creativity and independent thinking. We encouraged
diverse approaches and views of a problem situation throughout the courses, starting f.om
the first meeting. The arswer to the Locker Problem is an example. The solution can be
described in (at least) two different ways: (a) The open lockers are all the square lockers,
or (b) the difference between the nth open locker and the (n - 1)th open locker is tke ath
odd number or 2n - 1.

While the two answers to the locker problem are two different descriptions of .he
same relationship, we also presented problems which lead to completely different solutions.
For example, the students were presented with the following figure (Figure 3) on the
overhead projector and were asked:

Assume the edge of the small squares is 1 unit in length. Add squares so that
the figure has a perimeter of 18. When squares are added they must meet along
at least one edge of the figure exactly.

Fig. 3

After overcoming the tendency to look for a formula which will produce the perimeter
of the given figure, the class counts the units around and agrees that the perimeter is 12
units. From now on each small group, using plastic unit squares to model the situation, :ries
to add squares to the given figurs until they have a new figure with perimeter of 18.
Surprising:, .0 manv people, the fact that the perimeter is fixed does not imply that the
shape of the solution figure is fixed nor that all solution figures have the same area. For
example, two figures from many that work are given in Figure 4.




Fig. 4

Experience with problems that have more than one solution raised questions such as, "Are
there any solutions that are more interesting than the others? Are there solutions that have
special aspects such as largest or smallest? If so, is there a special significance to these
solutions?” Since problems that arise in the real world are often ill defined or have more
than one interpretation or solution, these problems show an aspect of mathematics that is
very important, but rarely experienced in traditional mathematics courses.

Time spent on a problem. A common belief about solving problems in mathematics
is that if one cannot solve a problem in a very short time, one will not be able to solve that
oroblem at all (e.g,, Schoenfeld, 1988). Again, this belief is shaped by the experiences one
had when studyiag mathematics at school. If, as is usually the case with school mathematics,
one is always expected to solve tens of exercises and "problems” everyday, and one is never
expected tc think of a problem and struggle with its solution for more than 30 minutes at
most, then one is not ready to solve problems in mathematics.

In order to change this false belief about mathematics we provided many
opportunities for the prospective teachers where they had to spend much more time solving
one problem. We did it in two different but complementary ways. One way was * spend
several class periods on the same problem. We called these problems "big problems" and
used this strategy throughout the courses. But having intending teachers experience different
mathematics in class is not enough. Accustomed to give up on problems very quickly, they
had to be encouraged to change their behavior outside class as well




To hielp our students we occasionally chose an important or interesting problem from
their homework assignment and asked about its solution in class. We were not after the
final answer. Rather, we wanted people to discuss their attempts, findings and difficulties
in order to help them make some progress towards a solution. Still, we did not attempt to
solve the problem nor to evaluate students’ attempts. This process continued un.il the
problem was solved. Spending time discussing work that had been done on the problem but
without providing a solution or even an evaluation of students’ attempts to solve the
problem, made it clear to the students that giving up after a short trial was not "part of the
game" in these cources; that they were responsible for solving the problem. The latter also
implies that they can do it and therefore should try. The infinite forest problem illustrates
this idea. The problem was posed as follows:

Suppose that you have an infinite geoboard and that on each one uf the latiice
points except the one at the origin there is a tree with a trunk that is only as wide
as a line. You are standing on the origin. Is there a straight line path that you can
take from the origin that will ailow you to walk forever in the forest and not hit
a tree?

After this problem was posed it hung around and was discussed by the class for parts
of several meetings before one student put forward an idea that stimulated the class to
consider what it would imply if, as you walked, you did hit a tree. From this point on the
solution was easy for the class. They said that if you hit a tree that implied that your path
hit another lattice point. This meant that the path had a rational slope. They then
constructed a .ength equal to the square root of 2 perpendicular to the x axis at the point
(1,0). This gives a path that has an irrational slope which implies that it cannot hit another
lattice point.

One of the amazing things about these long-term problems is what they often reveal
to students about their own thinking. On this problem, several students put forward ideas
that revealed misconceptions that were sitting there in their mathematical memory
unchallenged to this point. An example was a student’s notion that you couid never step off
the origin because the angle of any path you choose was constantly growing as you moved
away from (0,0). The class probing revealed that this student and others were stii, confused
about what it means to measure an angle! This c.lled for a side trip into measurement to
work on developing a more solid understanding of angles. These whole-class processing
sessions were very instruc.ive in helping students to see the value of big problems and of
reflecting on how these problems often required us to put togetner ideas from several
students as well as different areas to get a solution.
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Mathematical Connections

Another characteristic of mathematical knowledge is nch ccruections (e.g., Hiebert
and Lefevre, 1985). One cannut understand 2 mathematizal concept in isolation.
Connections to other concepts, psocedures and pieces of inforr . fion deepens and broadens
one’s knowledge. Two impurtant aspects of this issue that we e mphasized in our courses
were the use of different representations and applications both within mathematics and
between mathematics and other areas of study.

Representations. Representing ideas and problems in different ways--geometrically,
verbally, numerically, algebraically or physically--allowed the students to see how differeat
representaiions give different insight; into problemsituations (e.g., Dufour-Janvier, Bednarz,
and Belang. 7, 1987; Lesh, Post, ana Behr, 1987). Developing flexibility in representing ideas
in different ways and interpreting among different representations was for us an important
part of eveloping mathematical power. The continued work on the "perimeter 18" problem
illustrates multiple representations and their power. After sharing and discussing the
different solutions the class found, related questions arose:

What is the fewest number of squares that must be added to make the perimeter
18? What is the most number of squares that you can add and keep the perimeter
18?

A close analysis of what happens to the perimeter when one square is added to &
figure shows that if only one edge of the square touches one edge of the figure, the
perimeter grows by exactly two units. For example, in the following case (Figure 5) the
perimeter grew from 12 to 14.

Fig. §
If the square is addzd in a "corner” and two edges touch two edges of the figure, the

perimeter does not change (although the area does). For example, in the following case
(Figure 6) the perimeter of both figures is 14.
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Fig. 6

Sometimes the perimeter may get smaller. It will get smaller by two units when taree edges
of the added square touch three edges of the figure as in the following case (Figure 7)
where the perimeter went down from 18 to 16.

Fig. 7

Us:ng this information it becomes clear that the shape of the resulting figure with
the most squares should be a rectangle. But which one? Using tiles the students construct
the following rectangles, all with perimeter of 18: 1x8,2x7,3x6,4 x 5. They check and
find out that the 4 x 5 rectangle has the most area--20. Therefore, the most squares one can
add to the given figure and still get a perimeter of 18 is 14.

Is this the answer to the problem? Weil, it depends on the domain in which we a.e
working. For the given plastic tiies the 4 x 5 rectangle is the figure with most squares (area)
that still has perimeter of 18. But what if we allow the dimensions of the rectangle to be
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any real numbers? Further investigation of the four whole-dimension rectangles with a
perimeter of 18 shows that as the bottom edge and the side edge of the rectangles become
closer in length, the area grows. This leads students to conjecture that the solution figure
is a square. What is the length of the square’s side? Some suggestions from students were
45 and /20. But most students were not sure.

Graphing area vs. length of each of the rectangles (Figure 8) suggests an answer.

A

area
25
20 ° .

15

10

1 2 3 4 5 6 7 8 length

Fig 8

The graph seems symmetric and suggests that the maximum area is midway between 4 and
5--4.5. A rectangle with perimeter 18 and length 4.5 is, of course, a square with area
452 = 2025. This answer seems reas nable but can we really be sure that the maximum
area is obtained at 4.5? Maybe between 4 and 5 the graph goes down? Maybe it just seems
to be a parabola but it is actually not?

An algebraic representation can provide a definite answer to this dilemma about
where the maximum occurs, without using calculus. We did it by comparing the area of
the square with perimeter 18 to the area of any rectangle with perimeter 18 (Figure 9).
Let’s call the width of the rectangle x, then the length is 9-x. The square has side 4.5. The
square is composed of parts A and B. The rectangle of parts B and C. Since part B is
common to both, we need to show that the area of part A is greater than the area of part C.

13 s




A 4.5-x%

Fig. 9

Or, 4.54.5 - x) > x(9 - x - 4.5).

This can be rewritten as 4.5(4.5 - x) > x(4.5 - x).

Since x<4.5 (the width of the rectangle is shorter than the side of the square), the above
inequality holds. That means that among all rectangles with perimeter 18, the square has
the largest area.

The above was an example of a problem situation wherc moving from one
representation to another contributed to a construction of richer and deeper knowledge
about perimeter, area and the relaticaships between them; about characteristics of area of
a family of rectangles--knowledge which was impossible to achieve from one representation
only.

Applications. One characteristic of problem solving is application. We thought of
applications as pr~blems that require mathematical thinking in their solution and that come
out of a real world situation. Such problems may call for problem solving that is as creative
and as challenging as those that wear the label "problem solving." The distinction for us is
the requirement of context. The situation out of which the problem arises should involve
other disciplines or real world phenomena.

We paid special attention to this issue since having to apply existing knowledge in a
new situation, whether inside or outside mathematics, sheds a new light on old knowledg:,
and creates new connections and relationships between different pieces of knowledge. We
posed many problems for which students needed to integrate and apply their knowledge.
For example, in the last course of the :~quence the students learned new ways of locking
at and interpreting data. Then, they were asked to discuss and agree upon a related set of
questions that data could help answer. The class then designed a questionnaire to gather
the data, planned and carried out the data gathering, analyzed the data, and organized the
data for presentation of what the data said about their original problem. The class decided
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that they wanted to know something about the typical MSU female and male student. They
stated their questions as: Who are you Mr. MSU? and Who are you Ms. MSU?

--Taught Well

“Good mathematics" is a necessary component of a desired mathematics course. But
it is not sufficient. "Good mathematics” should be taught well. Telling students that all
square numbers have an odd number of factors and therefore the square number lockers are
the ones that remained open at the enc wouldn’t have the same learning effect as the
experience we described earlier. Some of the principles that guided us were implicitly
described when we talked about the mathematical aspect of the sequence. Here we would
like to discuss three main aspects that characterized the instruction of these courses. These
were the use of problem situations, periodic reflections, and an emphasis on the community.

Problem Situations

In the traditional mathematics curriculum, mathematical facts and procedures are
often studied until mastered and then applied to a specified set of problem types. The
organization of texts frequently gives the learner clues that reduce problem solving to
matching a pattern in a given example. The results of this kind of mathematics education
are all too often students who have computational skills but have no idea when to use these
skills or what the results mean in a given context. An example from the 1983 National
Assessmen. of Educational Progress (Carpenter, Lindquist, Matthews and Silver, 1983)
illustrates this problem very well:

An anmy s holds 36 soldiers. If 1128 soldiers are being bussed to their training
site, how many buses are needed?

About 70 percent of the students correctly divided 1128 by 36 and obtained a quotient of
31 and a remainder of 12. However, less than one third of these students concluded that
tne nuoYer of buses needed is 32. More than one third said that the number of buses
needed is "31 remainder 12."

In our courses we took as a primary goal to embed the mathematics in situations or
contexts that help give the resulting concepts, rules, or procedures meaning. Research in
human learning gives support to the notion that humans process information and are more
likely to be able to recall and use this information if it is contextualized. Brown, Collins,
and Duguid (1939), for example, argue that

The activity in which knowledge is developed and deployed . . . is not separable
from or ancillary ¢~ learning and cognition. Nor is it neutral. Rather, it is an
integral part of what is learned. Situations might be said to co-produce
knowledge through activity. Learning and cognition . . . are fundamentally
situated. (p. 32)
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The examples given in this paper illustrate this point. The locker problem, the
perimeter of 18 problem--these settings became an often-used way of referring to .
problem. OQur students would make comments like, "This one is the Magic Joh...un
problem!™ This usually meant that the student saw a connection between the models of
the Magic problem and the problem that they were trying to solve. Anbther result of this
approach was the complete absence of comments like, "Why do we necd to know this?"
“What's this good for?" Students develop a very diffeient notion of what mathematics is
about if they are constantly confronted with situations from whi-h mathemat’cs arises rather
than being given the record of other peoples rules and algorithms ir an abstract form
(Dewey, 1904). The NCTM Curriculum and Evaluation Standards for School Mathematics
(1989) has two overall goals for students: (a) to learn to value mathematics and (b) to
become confident their ability to do mathematics. Situated mathematics can contribute to
each of these goals by presenting the students with interesting and meaningful mathematics
in context as well as being open to various solutior.s and therefore enables different students
to reach ditferent levels of solutions.

Community

While communication of mathematical ideas is an important part of the experiences
that all students should have in mathematics classrooms, for intending teachers this seemed
to us to be critical. These students of ours needed to iearn mathematics, but they also
needed to become sensitive to the role of communication in clarifying one’s thoughts and
in expanding one’s repertoire of ways of thinking. In addition, we wanted our students learn
to listen to others and to try to make sense of their ideas. This led us to structure ou.
classroom as a community of learners with considerable responsibility for judging, validatin;;,
and helpiug others. The teacher was not the one who gave final verification that the ideas
put forward were the “"correct” ones. This was the responsibility of the whole group.

The teacher’s role was to pose interesting mathematical tasks for the students to
consider individually, in small groups, and as a whole class. She also asked questions that
helped the class to learn to value convincing arguments and to demand that mathematics
make sense. At times in the whole-class processir.3 of a problem, the instructer’s role was
relegated by the class to observer. The class took over and directed the discussion
themselves. Oae particularity vivid example of the class assuming responsibility for
processing the mathematics was the day tne lights went out. The room in which the class
met was an interior room with no windows. The class was involved in azn intense discussion
of the following probability problem (Figure 10) when there was instant darkness.

“The Magic Johnson problem 1 as a long-term comparison of Magic's salary with a rovkie who agrees to be paid S1
the first year, $2 the sccond year, $4 the third, and so on with the rookie s salary doubling cach year. In this problem
students saw how quickly exponential growth can overcome otaer types of growth.
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Three students are spinning to get purple (red and blue) on the given spinners.
Mary chooses to spin twice on Spinner A; John ckooses to spin twice on Spinner
B; and Susan chooses to spin first on Spinner A and then on Spinner B. Who
has the best charice of getting a red and a blue?

] '/’”
yellow
/
red yellow red / green
}

green blue

%

/
Spinner A Spinner B

Fig. 10

blue

The student in front of the class immediately sa’d. "Let’s practice our visualizatior.
Be very descriptive in telling us about how you sulved the problem.” The discussion went
on for several mirutes with one studen: after another talking about their solution. When
one very interesting suggestion was made, the class decid :d that they needed to see what
the student had in mind. They moved the blackboard out into the foyer and gathered
around to exarnine their classmate’s idea. The student suggested that eact of Mary’s, John’s,
and Susan’s spins be analyzed with a grid. She suggested that the analysis for each spin be
drawn on a sheet of transparency paper (Figure 11) and then superimposed to show the
results of the two spins. Figure 12 shows the suggested analysis for Susan.

R B G Y

R GY B B B

Fig. 11
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R G Y B B B

Fig. 12

The stadent argued that this shows the independence cf the spins and t*¢ product of tte
probabilities in a very concretc fashion. At this stage the ciass brc'e out into applause.
For a full 20 minutes the instructor had said not a word, i.nd yet the class was fully engaged,
on task and in full coatrol cf verifying the mathematics put forcword.

Creating a cla:sroom that had this aspect of commurity was aot .. simpie task. Our
students’ history dictated to them what math class should look like. Moving them to a ne.,
desired, active role was very difficult. it was the long-term involvement with these student.
that allowed us to move them from frastratic~ at wunting "the answer” to not oaly an
acceptar.ce that this was different and the demau Is were different, but to being unwilling tv
"take the teacher’s word". The students have chauged durirg the time from the first term
to the third one. They took responsibility icr solving problems and did not consider the
teacher as the authority of right answers. Asking the teacher to verify their answers or
provide the right answers, which wa very common in the first term, became rare during the
last term. These students insisted on understanding--on making sense o, the mathematics.
They had learned to value small-gioup work, individual effort and the power of the
community of the ciass as a whole n resolving what to accept as valid in our growing
repertoire of mathematical kncwledge.

Periodic Reflections :

Even if one does not think of mathematics as an arbitrary collection of biis and
pieces of facts and procedu.es, but rather takes an overall integrated approaci. to
mathematics, one cannot integrate everything at once. One may think ¢ mathematics as
a large picture (tais does not imply that we think of mathematics as static!). In order =
study the picture one nceds to look at the picture very closely to see all the rich detal.
However, as one gets closer, one sees more details but 1.9 longer sees the whole victure.




Therefore, after a ciose examination of a specific and meaningful part of the picture, the
time comes to step back anc i..2.. at how all the d:tails are connected to create that specific
piece of the pi..are. Then one should step back mo.. and look at the whole picture from
a distance, examining the relationships bet...en the studied part and other parts of the
picture as well as the whole picture.

In the mathe .aatics. courses thi. ...tegrating reflection was a regular feature. While
questions were asked on 2 daily basis thzt fouused the students attention on connections to
what had been studied and to whit was coming tp, we also ook the time to reflect
periodicaity as a group on .he mathematics being studied. This took tue form of creating
concept maps of dom..ns of knowiedge, gene:==ing lists of the curreat working “theorems”
ard the conjectures that s*'Il remained to be supported or refuted, and developing different
forms of representation of ideas and concepts that we had studied alorg with considering
what each representation did to hel,. us understand or explain a problem situation. These
reflection iimes often :ncluded looking at tihe kinds of situations that the ways of thinking
we had developed would iixely help us so'e. This tock us into the realm of the real world
and problem situations that 2r¢ an important part of our societ; To summarize, these
reflection periods were to support t.c dev.iopment of well integrated, connected knowledge
of mathematics. They were 0. /ery gererative natuz= The goal was not to produce a list
of :ucts or procedures studied; it was to find new ways ‘o organize and conceptualize the
mathematical experiences that the class as a grovp lad shared.

Conclusion

the overall purpose of school includes preparing young people for full participation
in he saciety and culture of the modern world. Examining the role of mathematical
th: (kirg in our society forces us to reconsider the existing goals of the mathematics
curriculum K-:2. In particular, ihe goals of the elementary mathematics curriculum that
center on developing computational proficiency with paper and pencil algorithms must
change. Matiematics is a dynamic cultural invention that grows and changes as the needs
and iaterests of sc-iety evolve. In the modern world this evolution of mathematical
knowledge and society s dependence on mathematical ideas has become a revolution
Spurred by the invention of computing devices that make approaches to mathematics
possible that we.c unthought of in the past, there has been a veritable explosion of
r.athematical thoght and invention. This change in mathematics has mirrored a change in
our society and culture :hat makes the mathematical currency of the modern woild the skill
and disposition to see the world mathematically--to create mathematical models of problem
situations, *c manipulate these models (often with the aide of a computer), and to interpret
the results as iey relate to the original problem.
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The NCTM's new publication Curriculum and Evaluation Standards for School
Mathematics (1989) describes a K 8 mathematics curriculum that is conceptually oriented,
actively involves children in doing mathematics, and emphasizes the development of
children's mathematical thinking and reasoning abilities. According to the Standards, a
desired elementary/middle school curriculum should also emphasize the application of
mathematics and include a broad range of content. How can we achieve this change in
school mathematics? There is not, of course, a simple answer to this question, nor is it a
new issue. The following excerpt, taken from Dienes’s 1960) book Building up Mathematics,
is as relevant now as it was 30 years ago:

Let us face it: the majority of children never succeed in understanding the
real meanings of mathematical concepts. At best they become deft technicians
in the art of manipulating complicated sets of symbols, at worst they are
baffled by the impossible situations into which the present mathematical
requirements in schools tend to place them. (p. 13)

From the beginning of this century, Moore (1903/1926), Brownell (1935, 1947), Van-Engen
(1953), Bruner (1960, 1961), Dienes (1960), Biggs and McLear, (1969), Skemp (1978) and
others called for change in school mathematics. Stil, the way mathematics is taught at
school has changed very little.

The diffic.!ty in making such fundamental charge has been documented by many
modemn researchers (Joyce and Showers, 1981; McLaughin 2nd Marsh, 1978 ). While a
desired elementary mathematics curriculum should include. new content as well as refocusing
old content, changing the emphasis of the r.athematical content is not enough. Good
curriculum materials are necessary. But curriculum materiais are not sufficient, as we can
learn from the unsuccessful 1950s "new math” and 1970s individualized instruction reforms
(e.g., Erlwanger, 1973; Fey, 1978). The teacher has a key role in setting mathematical goals
and creating a classroom environment in which these goals are pursued (Romberg, 1988,
Shulman, 1986). The routine of math class instructinn as described, for example, by Welch
(1978) needs to change. Going over the previous day’s homework, giving a brief explanation
of sew material and 7ving around the room answering questions as students work
individually on the homework, will not make the desired change in school mathematics even
when done wi:s new content. As emphasized in the Cwriculum and Evaluatior Standurds
for School Matl'zematics, (NCTM, 1989), teachers “need to create an environment that
encourages children to explore, develop, test, discuss, and apply ideas. They need to Listen
carefully to children and to guide the development of their ideas" (p. 17).

Change in teaching and learning depends heavily on the teacher. On the other hand,
teaching, by its very nature, includes fundamental barriers to change (Cohen, 1988).
Teaching, Cohen says, is a practice of human improvement where one human being tries
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to improve the ideas, capacities, emotional states, or organizaticn cf o*hers. Practices of
human improvement are hard to manage. T..erefore, most practitioners and clients tend
toward conservative strategies. Most practiticners of human improvement, such as therapists
and organization consultants, have some protection--they can choose their clients and are not
expected to succeed without the cooperation . f :heir clients. But teachers face the internal
problems of teaching with little or no such protection. Therefore, the tendency toward
conservative approaches to practice is even stronger. Cohex concludes that the internal
problems of teaching that are the result of teaching being a practice of human improvement,
compounded by various exteraal conditions such as finance and organizations, cause great
difficulties for teachers attempting to implement instructional reforms.

While sutstantial change in teaching is difficult to achieve, there are some changes
that lend themselves to implementation, such as, "effective teaching" strategies. These
strategies are aimed at "methodologicai refinement” {Aronowitz and Giroux, 1985): They
provide aa algorithmic approach to improving instruction--the -efore are easy to adopt, thcy
do not challenge existing authority structeres in classrooms and schools. Still, using
"effective teaching” strategies may change teacher behavior in some wav, but by themselves
do not cause teachers to teach for understanding nor do they make shident learning
meaningful. Past unsuccessful reforms and the internal and external barriers to change in
mathematics curriculum and teaching show us that ibstantial change in school mathematics
canuwot occur easily. A good preservice education for teachers is a necessary (althou,h not
sufficient) aspect of learning to teach in ways that will enable teachers to create new
desirable learning environments for stucents. To be effective the mathematical experiences
must cause preservice teachers to build powerful mathematical schemas and to examine their
deeply held beliefs about mathematics as a discipline, how it is learned and what the role
of the teacher is.

Recognizing that change in beliefs and practices is very di""-ult to effect, we have
worked from the premise that teachers need what we want for students. If students in
elementary/middle school are to learp in environm .nts that support the developzuent of
mathematical power as described in the Curriculum and Evaluation Standards, teachers
themselves need to know mathematics and experience learning in ways that build a deep
and flexible understanding of what mathematics is and what it means to do mathematics.
As an intervention, we developed an entire coordinated program for the A~ademic Learning
students which centered around the three mathematics courses described. Some of the
results of the overall study are reported in Schram, Wilcox, Lanier, and Lappan, 1988, 1989).
This paper is intended to give a picture of the development process and « f the kind of
experiences that the courses provided for our students. We hope that it widl be of benefit
to others that engage in research and development of preservice teachers of mathematics.
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