
DOCUMENT RESUME

ED 325 452 SP 032 673

AUTHOR Lappan, Glenda; Even, Ruhama
TITLE Learning To Teach: Constructing Meaningful

Understanding of Mathematical Content. Craft Paper
89-3.

INSTITUTION National Center for Research on Teacher Education,
East Lansing, MI.

SPONS AGENCY Office of Educational Research and Improvement (ED),
Washington, DC.

PUB DATE Dec 89
N^TE 29p.

A/AILABLE FROM National Center for Research on Teacher Education,
116 Erickson Hall, Michigan State University, East
Lansing, MI 48824-1024 ($4.75).

PUB TYPE Reports - Descriptive (141)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Curriculum Deve:opment; Elementary Education;

*Elementary Schcol Mathematics; Higher Education;
*Mathematical Concepts; *Mathematical Logic;
*Mathematics Instruction; Preservice Teacher
Education; *Teaching Methods

ABSTRACT
This paper discusses the development of the

mathematical experiences which make up the three-term sequence of
mathematics courses taken by participants in the Elementary
Mathematics Project (EMP), a longitudinal study of change in
preservice teachers' perceptions and beliefs about mathematics. For
the mathematics courses, both content and teaching are considered.
Under mathematical content, the main topics and mathematica2 proLlem
solving are discussed; under doing mathematics, the topics discussed
are abstraction, reasoning, unique answers, and time spent on
problems. Mathematical connections are discussed with a focus on
rE)resentations and applications. Instruction . cludes a discussion
of the use of problem situations, deve1opwnt ol community, and
periodic reflections as part of the intervention. Throughout the
paper, examples are given from the students' experiences in the
courses. (Author/JD)

******************************************************************/:****

Reproductions supplied by EDRS are the best that can be made
from the original document.

************k************************x*********************************



SCOPE OF INTEREST NOTICE

Tee ERiC Fee,1,4 has ass.flne1
ths doc,mest to, OfOCessaKt
tO

tt,)
S J p 1 Atelrsi tl`e (4.,

.af.,.
,pe, a pv

Craft Paper 89-3

Learning to Teach: Constructing Meaningful
Understanding of Mathematical Content

Glenda Lappan and Ruhama Even

National
Center for Research

on Teacher Education

Sponsored kiv the United States ficocrtment ot
Office of Educational Research and troprovernen;

U S DEPAATMENT OT EDUCATION

, 14P,41,( NI tyI 0 I

.
7 ' .



Craft Paper 89-3

LEARNING TO TEACH: CONSTRUCTING MEANINGFUL
UNDERSTANDING OF MATHEMATICAL CONTENT

Glenda Lappan and Ruhama Even

Published by

The National Center for Research on Teacher Education
116 Erickson Hall

MicMgan State University
East Lansing, Michigan 48824-1034

December 1989

This work is sponsored in part by the National Center for Research on Teacher
Education, College of Education, Michigan State University. The National Center for
Research on Teacher Education is funded prinzarit by the Office of Educational Research
and Improvement, United States Department of Education. The opinions -xprdssed in this
paper do not ne,:essarily represent the position, policy, or endorsement of the Office or the
Department.



National Center for Research on Teacher Education

The National Center for Research on Teacher EL ucation (NCRTE) was founded at
Michigan State University in 1985 by the Office of Educational Research and Improwment,
U.S. Department of Education.

The NCRTE is committed to improving teacher education through research on its
purposes, its character and quality, and its role in teacher learning. NCRTE defines teacher
education broadly and includes in its portfolio such diverse approaches as preses, ice,
inservice, and induction programs and alternate routes to teaching.

To further its mission, the NCRTE publishes research reports, issue papers, technical
series, conference procezdings, and a newsletter on contemporary issues in teacher
education. For more information about the NCRTE or to be placed on its mailing list,
please write to the Editor, National Center for Researzh on Teacher Education, 110
Erickson Hall, Michigan State University, East Lansing, Michigan 48824-1034.

Director: Mary M. Kennedy

Associate Directors: Robert E. Floden
0. Williamson McDiarmid

Editor: Sandra Gross

Many papers published by the NCRTE are L sed on the Teacher Education and
Learning to Teach Study, a single mul isite longitudinal study. The researchers -Aho hthe
contributed to this study are listed below:

Marianne Amarel
Deborah Loewenberg Ball
Joyce Cain
Sandra Canis
Barbara Camilleri
Anne Chang
David K. Cohen
Ada Beth Cutler
Sharon Feiman-Nemser
Mary L. Gomez
Samgeun K. Kwon
Magdalene Lampert
Perry Lanier
Glenda Lappan
Sarah McCarthey
James Mead
Susan L Melnick

Monica Mitchell
Harold Morgan
James Mosenthal
Gary Natriello
Barbara Neufeld
Lynn Paine
Michelle 2arker
Richard Prawat
Pamela Schram
Trish Stoddart
M. Teresa Tatto
Sandra Wilcox
Suzanne Wilson
Lauren Young
Kenneth M. Zeichner
Karen K. Zumwalt



Abstract

This paper discusses the development of the mathematical experiences which make

up the three-term sequence of mathematics courses taken by participants in the Elementary
Mathematics Project (EMP). EMP is a longitudinal study of change in preservice teachers'

perceptions and beliefs about mathematics. For the mathematics courses, the authors
consider both content and teaching. Under mathematical content they discuss the main

topics and mathematical problem solving; under doing mathematics they discuss abstraction,

reasoning, unique answers, and time spent on problems. Mathematical conneceons are

discussed with a focus on representations and applications. Instruction includes a discussion

of their use of problem situations, development of community, and periodic reflections as

part of the intervention. Throughout the paper, examples are given from the students'

experiences in the courses.



LEARNING TO TEACH: CONSTRUCTING MEANINGFUL
UNDERSTANDING OF MATHEMATICAL CONTENT

Glenda Lappan and Ruhama Even'

To teach the arithmetic-driven curriculum of the past, one needed little more than
computational skill with the standard algorithms and a text to provide practice. That is no
longer the case. To prepare a teacher dedicated to helping children think mathematically
requires a very different experience with mathematics than the traditional college course
for elementary teachers. With this in mind, a series of innovative mathematics courses,
mathematics education courses, and field experiences has been developed for undergraduate

education majors in Michigan State University's Academic Learning Program.' The

mathematics content intervention comprises a sequence of three mathematics course,
While the mathematics content of the courses emphasizes the integration and connection uf
mathematics as a goal, each course highlights a different area of mathematics. These three

areas were number theory, geometry, and probability and statistics.
As project members set out to design the mathematical component for the

intervention, we identified the Jbstacles to chanp that we were likely to face--the beliefs
and dispositions that these students bring with them as a result of 14 years of mathematic,
education. Our students tend to believe that (a) the elementary math curriculum is dri% e
by computational skill as the major goal, (b) mathematical knowledge is rule-bound and i it
connected, (c) teaching is telling and learning is memorizing. These beliefs and dispositions

are not consistent with a modern set of goals for the study of mathematics nor the needs of

students. In order to challenge these beliefs and dispositions, the mathematics experience

at the university has to cause the students to examine their fundamental beliefs about such

questions as: What is mathematics? What does it mean to know mathematics? What
mathematics do elementary school children need to study? How do we make decisions

'Glenda Lappan is a professor in the Department of Mathematics at Michigan State V iversity She is on 1ec r r

a year at the National Science Foundation in Washington, D.C., to serve as program director for Teacher Preparatior,
is a seruor iesearcher with the National Center fur Research on Teacher Education. Ruhama Even recently finishe-'
doctorate m mathematics education at MSU. She has returned to Israel -where she will join the staff of the Wetzct.,,n
Institute ui Reitztre:. -While at MSU she was a graduate assistant/curriculum developer on the Elementary Mathe-+.3.

Project.

2The Elementary Mathematics Project is a longitudinal research project studying the change in preservice teac$,c
perceptions and beliefs about mathematics, what it means to know mathematics, and how mathematics is learned .1"."'

project is studying students who pre enrolled in the elementary part of theAcademic Learning Program Perry Larier d-rts
the project. Glenda Lappan is associate director of the project and principal designer and instructor for the seque":e r

mathematics courses. Pamela Schram and Sandra Wilcox are the project's researchers. Ruhama Even participated in

zonceptualuanon and development of the sequence of mathematics courses and the research instruments The Acade;
Larr.ing Program at Michigan State University is an alternative teacher education program designed for highly lir ris
prospecuve teachers. The program emphasizes the development of thorough understanding of subject matters to be .-.:g$,r
as well as klowledge of how students learn in each subject area and how to teach each subject matter effectively F3 $,

Academie Learning student has a unique field experience which involves working with a mentor teacher and a classr^,- r

children each term (including student teaching) over a two-year period.



about what to inckide in the elementary curriculum? How do children learn mathematics?
What is the role of the teacher in the mathematics classroom?

In this paper we describe the sequence of the innovative mathematics courses. The
paper is organized around the joint themes of mathematics and teaching. Under
mathematical content we discuss the main topics and mathematical problem solving; under
doing mathematics we discuss abstraction, reasoning in mathematics, unique answers, and
time spent on problems. Mathematical connections is discussed with a focus on
representations and applications. Instruction includes a discussion of our use problem
situations, community and periodic reflections as part of the intervention.

The Goal: Good Mathematics--Taught Well3
The overall goal of the three mathematics courses was "good mathematics--taught

well." We believe that prospective teachers should experience the learning of good
mathematics in the same way that we want them to teach their own students mathematics.
Preservice teachers' own experiences provide the data they use to make sense of what
mathematics is and how it should be taught. Hence, the learning enfonment in the three-
term sequence classes had to be constructed in such a way that students experienced
mathematics much as their own students might.

What do we mean by "good mathematicstaught weir? When making decis1/2ns of
whkh mathematical ideas to pursue in the courses we asked ourselves many questions: Is
this good mathematics? Is it important? What does knowing this idea enable a student tu
do? To what is it connected? How does it relate to the big mathematical ideas for
elementary/middle school children? How does the content selected represent mathematics
to the preservice teachers? Does the content require students to engage in doing
mathematicsanalyzing, abstracting, generalizing, inventing, proving and applying? We were
most concerned with the following three facets of mathematics: mathematical content, doing
mathematics, and mathematical connections. These facets are not independent from each
other but rather are interrelated. Still, each one is important enough to be highlighted
separately.

But "good mathematics" is not enough. Good mathematics has to be taught well.
in planning the instruction for the series of math courses we were guided by three main
principles: the use of problem situation, periodic reflections, and an emphasis on the
community. A detailed description of the main themes that guided us in the developmc.
of the courses, both mathematicai and instructional, follows.

3The phrase "Good Mathernatir taught well" was first used in ihe Middle Grades Mathematm Project's (MGM?)
Finil Repott to the National Science nddndation for grant #MDR 83/8218. MGMP is a broad-based research, cumcuium
development, and teaeler entrarctrtent project dedicated to the improyement of mathermuics education at the middle school
level, grades 5-8.
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Good Mathematks
Mathematical Content

Part of mathematical knowledge includes understanding particular topics, procedures
and concepts, and the relationships among them. This is what most people usually refer to

when they talk about mathematical knowledge. Since this aspect of knowledge of
mathematics is fairly familiar we describe it very briefly.

Main topics. We took ah overall integrated appruach to mathematics, but each term
had a major emphasis that allowed us to probe ideas in depth. The three main themes
represent important topics in the discipline of mathematics as well as in a desired
elementary/middie school curriculum (e.g., NCTM's C-rriculum and Evaluation Standards
for School Mathematics, 1989). The first term centered on the structure of number and

number relationships. However, these ideas were approached through varied situations.
Some situations were basically numerica% others geometric; and others arose from networks

or the analysis of real data. In the second term the main theme was geometry, but, as
before, many experiences with numbers IA ere embedded in geometric contexts. In the last
term, the emphasis shifted to data analysis, intezpretation, and decision making. In each
term, connections among number, geometry, probability and statistics were made.

Mathematics and problem solving. Many "mathematics for elementary teachers"
textbooks start with a chapter on problem solving. After dealing with some in,eresting
problem- the following chapters concentrate on diffetert topics (number sets, operations
on numbers, geometry, probability and statistics, to name the most common). This approach

seems to imply that problem solving and mathematics are two different things: Fi..-4 you

do problem solving and then you do mathematics. We wanted to send the message that

problem solving and mathematics are not separate issues. Therefore we started with a
problem which was big enough to serve as a "problem-solving" situation, but its solution was
closely related to the mathematical topic to be taught--r.umber theory. This problem--the

Locker Problem--is discussed later in the paper. Throughout the three courses, we used the
strategy of presenting to our students "big problems" which were related to the mathematical

topic at hand. Even though the problems were related to the main topics being studied, :hey

were still "protiems" in that there was not a direct, immediate, one way to solve them. So
problem solving was integrated naturally into the courses.

Doing Mathematics
Another part of mathematical knowledge includes understanding what it means to

do mathematics. Many *prospective elementary teachers think that knowing mathematics

means mastering a given set of facts, rules and procedures (Ball, 1988; Madsen-Nason, 1988:

Stodolsky, 1987; Thompson, 1984). If one secs mathematics this way, doing mathematics
means recalEng the appropriate fact, rule or procedure. If the situation dies not look
familiar, one cannot use recall, and ieels unable te solve the problem. On the other hand,

if the situation looks familiar, recalling facts, without understanding, may lead to misuse of

3

WW.M.AWIIIMINVNIMA.



the recalled information. Belief that mathematics is more than mastering a given set of
facts, rules and procedures is not sufficient. Preservice teachers need to have ideas about
how to structure classrooms so that understanding can be devdoped. Since experience is a
powerful teacher, it makes sense that these preservice teachers heed to learn by experiencing
mathematical ways of thinking, reasoning, analyzing, bstracting, generalizing, proving and
applying in environments that model good instruction.

Abstraction. Abstraction is a major component of doing mathematics. The objects
of study in mathematics are abstract creatures: numbers, shapes, functions, strucaires, and
so forth, as opposed to objects of study in other disciplines suci as matter, plants, animals
or human beings. Mathematical concepts are abstract and "coming to know" in mathematics
means, in many cases, abstracting, from a variety of models and situations, the important
characteristics of a concept while ignoring the irrelevant ones. This approach guided us in
our work. The students were provided, in many cases, with concrete materials with which
to work, and were presented with various situations in which they encountered the same
concept. The following example dealing with the concept of distance illustrates this point.

Everybody knows what a distance between two poilas means. For example, given
the following points on a grid (Figure I), the distance between A and B is 4 units.
The distance between A and C--./34--i5 a little harder to calculate; the
Pythagorean Theorem is needed. But suppose the grid represents a map of city
streets. You are in place A and need to get to place C. Now what's the distance
between A and C? Is using the Pythagorean Theorem appropriate in this case?

6
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Our students decided that "distance" in taxicab geometry" should be defined to be
the shortest path between tv, o paints. This definition is, of course, appropriate for dittanc,
both in Euclidian geometry as well as taxicab geometry even though the distance. may differ.
By having to consider the same concept in two different geometries, one of which is
unfamiliar, the students needed to abstract the meaning of distance, reaching a higher les el
of understanding of a concept they have taken for granted.

Reasoning in mathematics. Generazation- starting from specific cases and finding
a general rule--is an activity that is central to doing mathematics. One way to look at
algebra, for example, is as generalized arithmetic. But generalization is not limited to
algebra. Whenever we deal with relationships and look for patterns we deal with
generalzations. The general rules can be described algebraically, geometrically, graphically,
or verbally. Investigating a situation by checking specific cases is a very poWerful strategy

Many discoveries are made by induct:ve reasoning. Looking at ipecific cases helps in
understanding a situation and in seeing why a conjectured rule should hold.

Looking for pattenis and describing the general rules by using inductive reasoning
'...:3s an important part of all of the mathematics courses. From our experience, many
prospective elementary teachers try to solve problems by sea, ching for the "appropriate"
formula. Their beliefs about what mathematics is, how one solves a math problem, and
their conception of themselves in relation to mathematics shape this behavior. We %anted
our students to experience inductive reasoning as a tool for solving problems in mathemati:s

for two reasons: (a) we think that this is an important and powerful strategy in
mathematics; and (b) v,e wanted to change their view of mathemats and what it means to
do mathematics. Therefore, gathering data, checking specific examples, looking for patterns
and making conjectures based on generalizations were an important part of the courses. We
wanted students to see mathematics as an empirical science in order to fully appreciate
mathematics as a deductive science. The following example called the Locker Problem
serves as an illustration (for a thorough discussion of this problem see House, 1980).

In a certain high school there were 1000 students and 1000 lockers. Each year
for homecoming the students lined up in alphabetical order and performed the
following ritual: The first studenl opened every locker. The second student went
to every second locka and closed it. The third student went to every third locker
and changed it (Le., if the lockcr was open, he closed it; if it was closed, he
opened it). In a .;itnilar manner, the fourth, fifth, sirth, . . . student changed every
fourth, fifth, sixth, . . . locker. After all 1000 students had passed by the lockers,
which lockers were opt r?

Th. lock,...r problem is really a "problem." For our students there is no way to solve
it by recall since the locker problem does not look like any familiar type of "story problem."

5



The only way to solve it is by doing mathematics. One might guess and checkpopular
guesses are prime number lockers, the first locker and/or the last locker. It is easy to check
that the first locker remains open, but how about the last one? Prime numbers also don't
seem to work (check 3 or 7, for example). It is cicar that we have a problem. Someone in
the class suggests that we see what will happen with 10 lockers. The class agrees that
so!iing a simpler ark! .nore manageable problem might lead to some understanding of
"what's going on here?" Working in small groups they "open" and "close" 10 lockers: lockers
1, 4, and 9 remained open. Then they do the same with 20 lockers-4, 4, 9, and 16 are open.
Suoner or later each small group in '.he class has a conjecture. Either that all the open
lockers are square numbers or that the diffe ences between the open lockers are consecuti,e
odd numbers.

Most prospective teachers are quite happy with their surprising solution and are
willing to predict at this point what all the open lockers are. Since inductive reasoning is
used in every day life as a mean for making predictions (e.g., Martin and Flarel, 1989), most
students s e this stage as the fmal stage of the solution of the problem. But can we really
be sure that the pattern continues? Why? To make sure that this is the case:, deductive
reasoning should be uscd to construct a supporting argument that is cc wincing.

The questions mentioned above, in addition to some others that explore the
relationship between a student's number and the lo:ker numbers visited, are assigned a.,
homework. The next day a whole-group discussion takes place. Many smdents discoNer
that the relationship between student numbers and the locker numbers visited by them can
be described as the relationship brween factors and multyies. Throughout the discussion
it becomes clearer that open lockers are the ones that have an odd nur,ber of factors. Do
all square numbers have an odd number of factors? Why? Why do nonsquare numbers
have an even number of factors? Investigating these questions by exploring factor pairs fur
some specific numbers (e.g., factor pairs for 24 are 1 and 24, 2 and 12, 3 and 8, 4 and 6.
Factor pairs for 25 are 1 and 25, 5 and 5) makes it cltarer why square numbers (and only
square numbers) have an odd number of factors.

How about the other conecture? Are the differences between trie open lockers
consecutive odd numbers? Can we show that this is true? Proving by mathematical
induction that the sum of consecutive odd numbers, staring from 1, i$ a square numbcr, is
not appropriate in this ,:entext. But a pictorial representation (see Figure 2) can provide
convincing argt.ment. The number 1 is represented by one dot at the upper left corner. By
adding the number 3 which is represented by three dots, we can form the nunmer 4--a
square of 2 x 2. Then, by adding the number 5 (five dots), the numbei nine can be
formedsquare of 3 x 3. One can verify that this process can continue for any given sum of
consecutive odd number starting with 1. The result is always a square number.

6
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From ,iis point the clas: continues to explore number structure, classification of whole
numbers, to dtscuss prop .trties of different groups of numbers and other related ideas. The
locker problem :: then revisited and discussed in relation to prime numbers, least comr.:on
multiple and gxeatest common factor.

Inductive reasoning, important as it is to mathemaical activity, is not enough as an
explanation for the existence of a rule nor is it a proof (unless we can check all cases--a
strategy that is Bet; more and more in modern mathematics with the power of new
technology). In order to transform a conjecture to a theurern when checking all cases is
not appropriate, one needs to use mathematically appropriate and Lc-!ptable ways to
construct either a logical verification or a counterexample. "Deductive reasoning is the
method by which the truth of a mathematical assertion is filially egablished" (NCTM
Curriculum and Evaluation Standards for School Mathematics, 1989, p. 143). But many

prospective teachers do not see the need for deductive reasoning (Even, 1989; Martin and

Harel, 1989).
Providing a sound mathematical explanation was an important part of the courses.

The questions "why?" and "how do you know that?" were asked often. We were not afier
a formal proof that uses the "appropriate" format as is often the case with high school
Euclidean geometry, but rather we wanted to develop mathematical ways of thinking and
reasoning at a more informal level. The observation that lockers with square numbers
remain open when 30 lockers are checked does not prove that this will always be the case.
Showing that square numbers have an odd number of factors and relating this to the
problem does provide a oonvincing argument for the conjecture.

Throughout the courses we insisted that the prosoeqive teachers reason

mathematically. In contrast, as is also the case in the discipline of mathematics, some
findings remained as conjectures only, without proof or refutation. This happened either
because proof required tools which were too sophisticated at that stage or because we (the

classsmdents and teacher) did not know how to go about proving it. At any rate we

7
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distinguished between conjectures and theorems, using mathematical reasoning but without
the formalism that in so many cases hinders understanding instead of fostering it.

Unique answer. A common misconception among elementary teachers is that every
math problem has corie and only one answer, and there is only one way to get this answer.
Not only is this a false representation of mathematics, but this way of thinking causes
difficulties with the learning of mathematics. It encourages recall and memorization of the
right way to solve problems instead of creativity and independent thinking. We encouraged
diverse approaches and views of a problem situation throughout the courses, starting f.orn
the first meeting. The arswer to the Locker Problem is an example. The solution can be
described in (at least) two different ways: (a) The open lockers are all the square lockers,
or (b) the difference between the nth open locker and the (n - 1)th open locker is the ath
odd number or 2n - 1.

While the two answers to the locker problem are two different Oescriptions of ,he
same relationship, we also presented problems which lead to completely different solutions.
For example, the students were presented with the following figure (Figure 3) on the
overhead projector and were asked:

Assume the edge of the small squares is 1 unit in length. Add squares so that
the figure has a perimeter of 18. Ken squares are added they must meet along
at least one edge of the figure exact4P.

Fig. 3

After overcoming the tendency to look for a formula which will produce the perimeter
of the given figure, the class counts the units around and agrees that the perimeter is 12
units. From now on each small group, using plastic unit squares to model the situation, tries
to add squares to the given figure until they have a new figure with perimeter of 18.
Surprisingl, Ja many people, the fact that the perimeter is fixed does not imply that the
shape of the solution figure is fixed nor that all solution figures have the same area. For
example, two figures from many that work are given in Figure 4.

8



Fig. 4

Experience with problems that have more than one solution raised questions such ac, "Are
there any solutions that are more interesting than the others? Are there solutions that ha e
special aspects such as largest or smallest? If so, is there a special significance to these
solutions?" Since problems that arise in the real world are often ill defmed or have more
than one interpretation or solution, these problems show an aspect of mathematics that is
very important, but rarely experienced in traditional mathematics courses.

lime spent on a problem. A common belief about solving problems in mathematics
is that if one cannot solve a problem in a very short time, one will not be able to solve that
problem at all (e.g., Schoenfeld, 1988). Again, this belief is shaped by the experiences one
had when studying mathematics at school. If, as is usually the case with school mathematics,

one is always expected to solve tens of exercises and "problems" everyday, and one is neN,er

expected tc think of a problem and struggle with its solution for more than 30 minutes at
most, then one is not ready to solve problems in mathematics.

In order to change this false belief about mathematics we provided many
opportunities for the prospective teachers where they had to spend much more time solving

one problem. We did it in two different but complementary ways. One way was spend

several class periods on the same problem. We called these problems "big problems" and
used this strateg throughout the courses. But having intending teachers experience different

mathematics in class is not enough. Accustomed to give up on problems very quickly, they
had to be encouraged to change their behavior outside class as well.

9
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To help our students we occasionally chose an important or interesting problem from
their homework assignment and asked about its solution in class. We were not after the
final answer. Rather, we wanted people to discuss their attempts, findings and difficulties
in order to help them make some progress towards a solution. Still, we did not attempt to
solve the problem nor to evaluate students' attempts. This process continued umil the
problem was solved. Spending time discussing work that had been done on the problem but
without providing a solution or even an evaluation of students' attempts to solve the
prbblem, made it clear to the students that giving up after a short trial was not "part of the
game" in these courses; that they were responsible for solving the problem. The latter also
implies that they can do it and therefore should try. The infinite forest problem illustrates
this idea. The problem was posed as follows:

Suppose that you have an infmite geoboard and that on each one uf the lattice
points except the one at the origin there Ls. a tree with a trunk that is on4, as wide
as a line. You are standing on the origin. Is there a straight line path that you can
take from the origin that will allow you to walk forever in the forest and not hit
a tree?

After this problem was posed it hung around and was discussed by the class for parts
of several meetings before one student put forward an idea that stimulated the class to
consider what it would imply if, as you walked, you did hit a tree. From this point on the
solution was easy for the class. They said that if you hit a tree that implied that your path
hit another lattice point. This meant that the path had a rational slope. They then
constructed a length equal to the square root of 2 perpendicular to the x axis at the point
(1,0). This gives a path that has an irrational slope which implies that it cannot hit another
lattice point.

One of the amazing things about these long-term problems is what they often reveal
to students about their own thinking. On this problem, several students pot forward ideas
that revealed misconceptions that were sitting there in their mathematical memory
unchallenged to this point. An example was a student's notion that you cou:d never step off
the origin because the angle of any path you choose was constantly growing as you moi,ed
away from (0,0). The class probing re% ealed that this student and others were stih confused
about what it means to measure an angle! This (..111ed for a s:de trip into measurement to
work on developing a More solid understanding of angles. These whole-class processing
sessions were very instruc.ive in helping students to see the value of big problems and of
reflecting on how these problems often required us to put togetner ideas from several
students as well as different areas to get a solution.

10



Mathematical Connections
knother characteristic of mathematical knowledge is rich ccnnections (e.g., Hiebert

and Lefevre, 1985). One cannot understand a mathematal concept in isolation.

Connections to other concepts, pocedures and pieces of infor2 ,..tion deepens and broadens

one's knowledge. Tv o important aspects of this issue that we emphasized in our courses

were the use of different representations and applications both within mathematics and
between mathematics and other areas of study.

Representations. Representing ideas and problems in different waysgeometrically,
verbally, numerically, algebraically or physicallyallowed the students to see how different
representadons give different insight; into problem situations (e.g., Dufour-Janvier, Bednar,
and BelangLr, 1987; Lesh, Post, ann Behr, 1987). Developing flexibility in representing ideas

in different ways and interpreting among different representations was for us an important

part of developing mathematical power. The continued work on the "perimeter 18" problem

illustrates multiple representations and their power. After sharing and discussing the
different solutions the class found, related questions arose:

What is the fewest number of squares that must be added to make the perimeter
18? nat is the most number of squares that you can add and keep the perimeter
18?

A close analysis of what happens to the perimeter when one square is added to a
figure shows that if only one edge of the square touches one edge of the figure, the
perimeter grows by exactly two units. For example, in the following case (Figure 5) the
perimeter grew from 12 to 14.

Fig. 5

If the square is addcd in a "corner" and two edges touch two edges of the figure, the

perimeter does not change (although the area does). For example, in the following case
(Figure 6) the perimeter of both figures is 14.

11



Fig. 6

Sometimes the perimeter may get smaller. It will get smaller by two units when three edges
of the added square touch three edges of the figure as in the following case (Figure 7)
where the perimeter went down from 18 to 16.

.., avow..

Fig. 7

Us:ng this information it becomes dear that the shape of the resulting figure with
the most squares should be a rectangle. But which one? Using tiles the students construct
the following rectangles;.all with perimeter of 18: 1 x 8, 2 x 7, 3 x 6, 4 x 5. They check and
fmd out that the 4 x 5 rectangle has the most area--20. Therefore, the most squares one can
add to the given figure and still get a perimeter of 18 is 14.

Is this the answer to the problem? Well, it depends on the domain in which we a, e
working. For the given plastic tries the 4 x 5 rectangle is the figure with most squares (area)
that still has perimeter of 18. But what if we allow the dimensions of the rectangle to be

12



any real numbers? Further investigation of the four whole-dimension rectangles with a
perimeter of 18 shows that as the bottom edge and the side edge of the rectangles become
clJser in length, the area grows. This leads students to conjecture that the solution figure

is a square. What is the length of the square's side? Some suggestions from students were

4.5 and But most students were not sure.
Graphing area vs. length of each of the rectangles (Figure 8) suggests an answer.

area

25

20

15

10

1 2 3 4 5 6 7 8 length

Fig. 8

The graph seems symmetric and suggests that the maximum area is midway between 4 and
5-4.5. A rectangle with perimeter 18 and length 4.5 is, of course, a square with area
4.52 = 20.25. This answer seems reas ,nable but can we really be sure that the maximum

area is obtained at 4.5? Maybe between 4 and 5 the graph goes down? Maybe it just seems

to be a parabola but it is actually not?
An algebraic representation can provide a definite answer to this dilemma about

where the maximum occurs, without using calculus. We did it by comparing the area of
the square with perimeter 18 to the area of any rectangle with perimeter 18 (Figure 9).

Let's call the width of the rectangle x, then the length is 9-x. The square has side 4.5. The
square is composed of parts A and B. The rectangle of parts B and C. Since part B is

common to both, we need to show that the area of part A is greater than the area of part C.

13
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Or, 4.5(4.5 - > x(9 - x - 4.5).
This can be rewritten as 4.5(4.5 - x) > x(4.5 - x).
Since x<4.5 (the width of the rectangle is shorter than the side of the square), the above
inequality holds. That means that among all rectangles with perimeter 18, the square has
the largest area.

The above was an example of a problem situation where moving from one
representation to another contributed to a construction of richer and deeper knowledge
about perimeter, area and the relationships between them; about characteristics of area of
a family of rectanglesknowledge which was impossible to achieve from one representation
only.

Applications. One characteristic of problem solving is application. We thought of
applications as pr2b1ems that require mathematical thinking in their solution and that come
out of a real world situation. Such problems may call for problem solving that is as creatie
and as challenging as those that wear the label "problem solving." The distinction for us is
the requirement of context. The situation out of which the problem arises should involve
other disciplines or real world phenomena.

We paid special attention to this issue since having to apply wdsting knowledge in a
new situation, whether inside or outside mathematics, sheds a new light on old knowledg,,
and creates new connections and relationships between different pieces of knowledge. We
posed many problems for which students needed to integrate and apply their knowledge.
For example, in the last course of the I ,!quence the students learned new ways of looking
at and interpreting data. Then, they were asked to discuss and agree upon a related set of
questions that data could help answer. The class then designed a questionnaire to gather
the data, planned and carried out the data gathering, analyzed the data, and organized the
data for presentation of what the data said about their original problem. The class decided
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that they wanted to know something about the typical MSU female and male student. They
stated their questions as: Who are you Mr. MSU? and Who are you Ms. MSU?

--Taught Well
"Good mathematics" is a necessary component of a desired mathematics course. Bat

it is not sufficient. "Good mathematics' should be taught well. Telling students that all
square numbers have an odd number of factors and therefore the square number lockers are
the ones that remained open at the end wouldn't have the same learning effect as the
experience we described earlier. Some of the principles that guided us were implicitly
described when we talked about the mathematical aspect of the sequence. Here we would
like to discuss three main aspects that characterized the instruction of these courses. These
were the use of problem situations, periodic reflections, and an emphasis on the community.

Problem Situations
In the traditional mathematics curriculum, mathematical facts and procedures are

often studied until mastered and then applied to a specified set of problem types. The
organization of texts frequently gives the learner clues that reduce problem solving to
matching a pattern in a given example. The results of this kind of mathematics education
are all too often students who have computational skills but have no idea when to use these
skills or what the results mean in a given context. An example from the 1983 National
Assessment of Educational Progress (Carpenter, Lindquist, Matthews and Silver, 1983)
illustrates this problem very well:

An army s holds 36 soldiers. If 1128 soldiers are being bussed to their training
site, how many buses are needed?

About 70 percent of the students correctly divided 1128 by 36 and obtained a quotient of
31 and a remainder of 12. However, less than one third of these students concluded that
tne nurr'xr of buses needed is 32. More than one thied said that the number of buses
needed is "31 remainder 12."

In our courses we took as a primary goal to embed the mathematics in situations or
contexts that help give the resulting concepts, rules, or procedures meaning. Research in

human learning gives support to the notion that humans process information and are more
likely to be able to recall and use this information if it is contextualized. Brown, Collins,
and Duguid (1989), for example, argue that

The activity in which knowledge is developed and deployed . . . is not separable
from or ancillary tl learning and cognition. Nor is it neutral. Rather, it is an
integral part of what is learned. Situations might be said to co-produce
knowledge through activity. Learning and cognition . . . are fundamentally
situated. (p. 32)
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The examples given in this paper illustrate this point. The locker problem, the
perimeter of 18 problem--these settings became an often-used way uf referring to _

problem. Our students would make comments like, 'This one is the Magic .1&-1.,un
problem!" This usually meant that the student saw a connection between the models of
the Magic problem and the problem that they were trying to solve. Aruther result of this
approach was the complete absence of comments like, "Why do we net.d to know this?"
"What's this good for?" Students develop a very diffeient notion of what mathematics is
about if they are constantly confronted with situations from whi:h mathemecs arises rather
than being given the record of other peoples rules and algorithms in an abstract form
(Dewey, 1904). The NCTM Curriculum and Evaluation Standards for School Mathematics
(1989) has two overall goals for students: (a) to learn to value mathematics and (b) to
become confident their ability to do mathematics. Situated mathematics can contribute to
each of these goals by presenting the students with interesting and meaningful mathematics
in context as well as being open to various solutiois and therefore enables different students
to reach different levels of solutions.

Community
While communication of mathematical ideas is an important part of the experiences

that all students should have in mathematics classrooms, for intending teachers this seemed
to us to be critical. These students of ours needed to iearn mathematics, but they also
needed to become sensitive to the role of communication in clarifying one's thoughts and
in expanding one's repertoire of ways of thinking. In addition, we wanted our students learn
to listen to others and to try to make sense of their idns. This led us to structure ou.
classroom as a cummunity of learners with considerable responsibility for judging, validatin,;,
and helphig others. The teacher was not the one who gave final verification that the ideas
put forward were the "correct" ones. This was the responsibility of the whole group.

The teacher's role was to pose interesting mathematical tasks for the students to
consider individually, in small groups, and as a whole class. She also asked questions that
helped the class to learn to value convincing arguments and to demand that mathematics
make sense. At times in the hole-class processir4 of a problem, the instructor's role was
relegated by the class to observer. The class took over and directt.,1 the discussion
themselves. One particularity vivid example of the class assuming responsibility for
processing the mathematics was the day tne lights went out. The room in which the class
met was an interior room with no windows. The class was involved in an intense discussion
of the following probability problem (Figure 10) when there was instant darkness.

'The Magic Johnson problem as a long-term companion of Magic's salary with a rookie who agrees to be paid SI
the first year, $2 the second year. $4 the third, and so on with the rookie s salary doubling eah year. In this problem
students saw how quickly exponential growth can overcome otner types of growth.
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Three students are spinning to get putple (red and blue) on the given spinners.
Maly chooses to spin twice on Spinner A; John chooses to spin twice on Spinner
B; and Susan chooses to spin first on Spinner A and then on Spinner B. Who
has the best chance of getting a red and a blue?

red

blue /
---

Spinner A

Fig. 10

Spinner B

The student in front of the class immediately said. "Let's practice our visualizatior.
Be very descriptive in telling us about how you solved the problem." The discussion went
on for several minutes with one studenZ after another talking about their solution. When
one very interesting suggestion was made, the class decid :d that they needed to see what
the student had in mind. They moved the blackboard out into the foyer and gathered
around to examine their classmate's idea. The student suggested that ea& of Mary's, John's,
and Susan's spins be analyzed with a grid. She suggested that the analysis for each spin be
drawn on a sheet of transparency paper (Figure 11) and then superimposed to show the
results of the two spins. Figure 12 shows the suggested analysis for Susan.
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The student argued that this shows the independence cf the spins and t!...e. product of tte
probabilities in a very concret:: fashion. At this stage the aass bre-e out into applause.
For a full 20 minutes the instructor had said not a word, Lnd yet the class was fully engag,d,
on task and in full control cf verifying the mathematics put foreword.

Creating a claLsroom that had this aspect of community was aot simple task. Our
students' history dictated to them what math class should look like. Moving them to a ner
desired, active role was very difficult. It was the long-term involvement with these student,
that allowed us to move them from frustratic- at wanting "the answer" to not only an
acceptatce that this was different and the demauis were different, but to being unwilling to
"take the teacher's word". The students have chauged during the time from the first term
to the third one. They took responsibility icr solving problem:, and did not consider the
teacher as the authority of right answers. Asking the teacher to verify their answers o7
provide the right answers, whkh wa very common in the first term, became rare during the
last term. These sr.:dents insisteA on understanding--on making sense o; the mathemati,s.
They had learned to value small-group work, individual effort and the power of the
community of the class as a whole m resolving what to accept as valid in our growing
repertoire of mathematical knowledge.

Periodic Reflections
Even if one does not think of mathematics as an arbitrary collectiou of bits and

pieces of facts and procedules, but rather takes an overall integrated approach to
mathematics, one cannot integate everything at once. One may think c : mathematic, as
a large picture (this does not imply that we think of mathematics as static:). In order
study the picture one nceds to louk at the picture very closely to see all the rich detail.
However, as one gets closer, one sees more details but rio longer sees the whole Picture.

4. 0
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Therefore, after a ciose examination of a specific and meaningful part of the picture, the
time comes to step back and at how all th ! d:tails are connected to create that specific
piece of the pLare. Then one should step back Mo ... and look at the whole picture from
a distance, examining the relationships het,...en the studied part and other parts of the
picture as well as the whole picture.

In the mathe.aatic- courses th:.. .tegrating reflection was a regular feature. While
questions were asked on a daily basis that foudsed the studentE attention on connections to
what had been studied and to what was coming up, vie also Jok the time to reflect
periodicalty as a group on lie mathematics being studied. This took the form of creating
concept maps of dorn..ns of know:edge, genet ,,t:ng lists of the curreat working "theorems"
arid the conjectures that s11 remained to be supported or refuted, and developing different
forms of rcpresentation of ideas and concepts that we had stw.ed along with considering
what each representation did to hel, us understand or explain a pmblem situation. These
reflection times often :ncluded looking at the kinds of situations that the ways of thinking
we had developed would likely help us so!,.e. This tock us into the realm of the real world
and problem situations that are an important part of our society To summarize, these

reflection periods were to support del,...:opment of well integrated, connected knowledge

of mathematics. They were oi rery generative natu::r The goal was not to produce a list
of tc.cts or procedures studied; it was to find .aew ways to organize and conceptualize the
mathenutical experiences ths,t the class as a group tad shared.

Conclusion
the overal purpose of school includes preparing young people for full participation

in die society and culture of the modern world. Examining the role of mathematical
tnt ilc;ng in our society forocs us to reconsider the existing goals of the mathematics
curriculum K-i2. In particular, the goals of the elementary mathematics curriculum that
center on developing computational proficiency with paper and pencil algorithms must
change. Mathematics is a dynamic cultural invention that grows and changes as the needs
and iaterests of sciety evolve. In the modern world this evolution of mathematical
knowledge and society s dependence on mathematical ideas has become a revolution.
Spurred by th, invention of computing devices that make approaches to mathematics
possible that wet.: unthought of in the past, there has been a veritable explosion of
n,athematical thovght dnd invention. This change in mathematics has mirrored a change in

our society and culture that makes the mathematical currency of the modern world the skill

and disposition to see the world, mathematicallyto create mathematical models of problem

situations, t:. manipulate these models (often with the aide of a computer), and to interpret

the results as they relate to the original problem.
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The NCIltifs new publication Cuniculum and Evaluation Standards for School
Mathematics (1989) describes a K 8 mathematics curriculum that is conceptually oriented,
actively involves children in doing mathematics, and emphasizes the development of
children's mathematical thinking and reasoning abilities. According to the Standards, a
desired elementary/middle school curriculum should also emphasize the application of
mathematics and include a broad range of content. How can we achieve this change in
school mathematics? There is not, of course, a simple answer to this question, nor is it a
new issue. The following excerpt, taken from Dienes's ;1960) book Building up Mathematics,
is as relevant "DIN as it was 30 years ago:

Let us face it: the majority of children never succeed in understanding the
real meanings of mathematical concepts. At best they become ieft technicians
in the art of manipulating complicated sets of symbols, at worst they are
baffled by the impossible situations into which the present mathematical
requirements in schools tend to place them. (p. 13)

From the beginning of this cer.2tiry, Moore (1903/1926), Brownell (1935, 1947), Van-Engen
(1953), Bruner (1960, 1961), Dienes (1960), Biggs and McLean, (1969), Skemp (1978) and
others called for change in school mathematics. Stilt, the way mathematics is taught at
school has changed very little.

The diffic.).ty in making such fundamental change has been documented by many
modern researchers (Joyce and Showers, 1981; McLaughin and Marsh, 1978 ). While a
desired elementary mathematics curriculum s!-,ould include, new content as well as refocusing
old content, changing the emphasis of the mathematical content is not enough. Good
curriculum materials are necessary. But curriculum materials are not sufficient, as we can
learn from the unsuccessful 1960s "new math" and 1970s individualized instruction reforms
(e.g., Erlwanger, 1973; Fey, 1978). The teacher has a key role in setting mathematical goals
and creating a classroom environment in which these goals are pursued (Romberg, 1988,
Shulman, 1986). The routine of math class instruction as describeJ, for example, by Welch
(1978) needs to change. Going over the previous day's homework, giving a brief explanation
of hew material and .wing around the room answering questions as students work
individually on the homework, will not make the desired change in school mathematics eN en

when done wLi new content. As emphasized in the Cuniculum and Evaluatio!. Standards
for School Mathematics (NCTM, 1989), teachers "need to create an environment that
encourages children to explore, develop, test, discuss, and apply ideas. They need to Ester.
carefully to children and to guide the development of their ideas" (p. 17).

Change in tea...hing and learning depends heavily on the teacher. On the other hand,
teaching, by its very nature, includes fundamental barriers to change (Cohen, 1988).
Teaching, Cohen says, is a practice of human improvement where one human being tries
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to improve the ideas, capacities, emotional states, or organization of ohcrs. Practices of
human improvement are hard to manage. Tnerefore, most practitioners and clients tend
toward conservative strategies. Most practiticners of human impro%ement, st.ch as therapists
and organization constiltants, have some protection--they can choose their clients and are not
expected to succeed without the cooperation . f their clients. But teachers face the internal
problems of teaching with little or no such protection. Therefore, the tendency toward
conservative approaches to practice is even stronger. Cohen concludes that the internal
problems of teaching that are the result of teaching being a practice of human improvement,
compounded by various exteroal conditions such as finance and organizations, cause great
difficulties for teachers attempting to implement instructional reforms.

While sutistantial change in teaching is difficult to achieve, there are some changes
that lend themselves to implementation, such as, "effective teaching" strategies. These
strategies are aimed at "methodological refinement" (Aronowitz and Giroux, 1985): They
provide aa algorithmic approach to improving instnction--tht:efore are easy to adopt, thcy
do not challenge existing authority structures in classrooms and schools. Still, using
"effective teaching" strategies may change teacher behavior in some way, but by themsehes
do not cause teachers to teach for understanding nor do they make student learning
meaningful. Past un.successful reforms and the internal and external barriers to change in
mathematics curriculum and teaching show us that abstantial change in school mathematics
cannot occur easily. A good preservice education for teachers is a necessary (althou! not
sufficient) aspect of learning to teach in ways that will enable teachers to create new
desirable learning environments for studencs. To be effective the mathematical experiences
must cause preservice teachers to build powerful mathematical schemas and to examine their
deeply held beliefs about mathematics as a discipline, how it is learned and what the role
of the teacher is.

R.:cognizing that change in beliefs and practices is very dr7alt to effect, we have
worked from the premise that teachers need what we want for students. If students in
elementary/middle school are to learn in environm .nts that support the development of
mathematical power as described in the Curriculum and Evaluation Standards, teachers
themselves need to know mathematics and experience learning in ways that build a deep
and flexible understanding of what mathematics is and what it means to do mathematics.
As an intervention, we developed an entire coordinated program for the A,ademic Learning
students which centered around the three mathematics courses described. Some of the
results of the overall study are reported in Schrarn, Wilcox, Lanier, and Lappan, 1988, 1989).
This paper is intended to give a picture of the development process and t- f the kind of
experiences that the courses provided for our students. We hope that it wiil be of benefit
to others that engage in research and development of preservice teachers of mathematics.
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