AUTHOR TITLE	Guerrero, Frank; Stevens, Joy
	Chapter 1 Corrective Mathematics Program 1988-89.
	Evaluation Section Report.
INSTITUTION	New York City Board of Education, Brooklyn, NY.
	Office of Research, Evaluation, and Assessment.
PUB DETE	May 90
NOTE	74p.
PUB TYPE	Reports - Evaluative/Feasibility (142)
	Tests/Evaluation Instruments (16う)
EDRS PRICE DESCRIPTORS	MF01/PCO3 Plus Postage.
	*Computer Assisted Instruction; Course Evaluatiori;
	Educational Assessment; *Mathematics Education;
	Pretests Posttests; Program Effectiveness; Program
	Evaluation: Progriz:i Validation; *Remedial
	Instruction; *Remedial Mathematics; Remedial
	Programs; Review (Reexamination); Secondary
	Education; *Secondary School Mathematics;
	Standardized Iests; Teaching Mrthods
IDENTIFIERS	Education Consolidation Improvement Act Chapter 1

ABSTRACT
The Chapter 1 Corrective Mathematics program provided supplementary individualized instruction in mathematics using both face-to-face instruction and computer-assisted instruction (CAI) for eligible students attending nonpublic schools in New York City. The objective for the 1988-89 Corrective Mathematics Program was that students would achieve statistically significant meān gains in normal curve equivalents (NCEs) on standardized tests. This document provides the findings of this evaluation based on data from document reviews, analyses of mean gains on standardized test scores, site visits, interviews with program teachers, and analyses of the CAI teacher survey given to 20 CAI teachers. The following items are included: (1) a brief introduction to the program and the program evaluation; (Z) a program description; (3) a discussion of the srogram implementation; (4) the results of ti. CAI teacher survey; (5) a summary of student outcomes; and ($\underset{\text { c }}{ }$ corsclusions and recommendations. Appendices include a description of the Chapter 1 Nonpublic School Reimbursable Services, 1988-89; and a copy of the Computer Assisted Instruction Teacher Survey. (KR)

[^0]"PERMISSION TO REPRODUCE THIS material has been granted by

Robert Tobias
to the educational resources information CENTER (ERIC)."

EVELUATION SECTION REPORT

CHAPTER 1
CORRECTIVE MATHEMATICS PROGRAM
1988-89

EVALUATION SECTION REPORT
John Schoener, Chief Administrator
May 1990

EVALUATION SECTION REPORT

CHAPTER 1
CORRECTIVE MATHEMATIES PROGRAM 1988-89

Prepared by
The OREA Instructional Support Evaluation Unit
Frank Guerrero, Unit Manager Joy Stevens, Evaluation Specialist

New York City Board of Education Office of Research, Evaluation, and Assessment Robert Tobias, Director

NEW YCRK CITY BCARD OF EDUCATION

Rcbert f. Wagner, Jr. Presiaent
Irene H. Impellizzeri Vice President
Gwendolyn C. Baker
Amalia V. Betanzos
Stechen R. Franse
james F. Regan
Ediward L. Sadowsky Members
Josenh A. Fernandez Ehancellor

[^1]
BACKGROUND

The Chapter 1 Corrective Mathematics progran provided supplementary, individualized instruction in mathematics to 5,806 eligible students attending 130 nonpublic schools in New York City. The total included 3,689 students receiving face-toface instruction and 2,117 students receiving computer-assisted instruction (C.A.I.). Seventy-one percent of the students participated in the program in 1988-89 for the first time, and 23 percent were in their second year. Almost six percent had participated in the program for three years or longer.

Due to the 1985 Supreme Court decision that instruction by public school teachers on the premises of nonpublic schools was unconstitutional, alternative methods for providing Chapter 1 services were devised. Of the 130 schools which participated in the Corrective Mathematics program,

- fifty-three received services at mobile instructional units, which are robile classrooms parked outside the school being served;
- nineteen received services in designated classrooms in nearby public schools;
- ten received services in leased neutral sites;
- two received services at nonde:iominational schools; and
- forty-six received C.A.I.

Program staff included a coordinator, two field supervisors, and 70 Corrective Mathematics program teachers. Program teachers provided instruction to small groups of students one to five times per week for the entire school year. The length of the sessions ranged from 45 to 60 minutes. More than 85 percent of the students received at ieast two sessions of remedial instruction per week. Funding totaled more than $\$ 5.3$ million.

PROGRAM OBJECTIVES

The objective for the 1988-89 Corrective Mathematics Program was that students would achieve statistically significant mean gains in normal clerve equivalents (N.C.E.s) on standardized tests.

EVALUATION METHODOLOGY

The findings of this evaluation are based on data from document reviews, analyses of mean gains in standardized test scores, site visits, interviews with program teachers, and analyses of a C.A.I. teacher survey given to all 20 C.A.I. teachers.

FINDINGS
Face-to-Face Instruction
Program Implementation. Site observations, review of program documents and staff interviews all indicate that the Corrective Mathematics program was implemented as proposed.

- A Parental Involvement program was in place, which provided materials and take-home kits to 2,781 parents, and which conducted 43 workshops in the course of the school year.
- The staff development program offered multifaceted training on a wide variety of topics. The Chapter 1 teachers utilized a rich repertoire of teaching strategies derived from staff development.

Student Achievement. Except for grades ten and 12, where small numbers of students did not allow for the computation of statistical significance, the students in all grades achieved statistically significant mean gains on all tests, and thus met the program's criterion for success. Student achievement il 1988-89 was consistent with students' gains for the past five years.

Computer Assisted Instruction

In order to comply with the Supreme Court's 1985 ruling, Chapter 1 teachers are not present in the nonpublic school computer labs. Instead, they monitor instruction via modems from the Boald of Education's administrative center. Trained noninstructional technicians are present in the computer labs to operate and maintain the equipment, and ensure order and safety.

Site observations, review of program documents, and staff interviews indicated the necessity of adapting instructional software to settings where a teacher is nut physically present. Observations and interviews also indicated that Chapter 1 teachers must become expert users of the C.A.I. systems for remediation at a distance to be effective.
C.A.I. students received instruction via five different software packages: WICAT, CCC, ESC, and CNS for students in grades two through eight; and CCC and PLATO for students in grades nine through twelve. The majority of these students
received C.A.I.-only instruction, and about one fifth of them received combination services. In this second mode of instruction, the students received C.A.I. twice a week and face-to-face instruction once a week. Combination services were received in grades two through eight by students using ESC and WICAT, and in grades nine through twelve by students using PLATO.

Student Achievement. There were not enough students in grade 12 to compute statistical significance. Thu mean gain for student in grade 11 did not reach statistical significance. With these exceptions,

- The mean gains for all C.A.I. students combined, in both modes of instruction, were statistically significant on all tests, thus meeting the program's criterion for success.

When the mean gains were contrasted for students receiving face-to-face instruction, combination services, and C.A.I.-only instruction, analyses of variance with Scheffe post-hocs revealed that:

- The mean gains for students receiving face-to-face instruction were statistically significantly higher than the mean gains for students receiving C.A.I.-only. However, the mean gains for students receiving combination services were equal to those of students in face-to-face instruction.

RECOMMENDATIONS

Based on the information and analyses presented in this report, the following recommendations are made:

Face-to-Face Instruction

- Since program objectives wexe met by all grades on all tests, staff development and classroom instruction should continue as currently organized.
- Ways of expanding the Parental Involvement program should be explored. Perhaps a newsletter distributed to parents periodically could include parent-child mathematics activities.

Computer-Assisted Instruction

- The achievement of students who receivea combination services was significantly greater than the achievement of students receiving C.A.I.-only. Provided these results hold up for annther year, an effort should be made to expand combination services whenever feasible.
- Efforts should continue to adapt the instructional software for use in settings where a teacher is not physically present. As part of this effort, software companies should be evaluated for their receptivity to input from the Chaprer 1 teachers.
- In the interest of helping teachers acquire the necessary expertise with the C.A.I. systems, software companies should adjust their trainers' schedules to accommodate teachers who spend several days a week in the field.
- C.A.I. staff developers should include sufficient time for previewing lessons and helping teachers gain familiarity with lesson contents.

ACKNOWLEDGEMENTS

The production of this report is the result of a collaborative effort of full-time staff and consultants. In addition to those whose names appear on the cover, Ilan Talmud analyzed the data on which this report is based, and Yvonne Spoerri assisted in the production of tables and typea the final draft. This unit could not have produced this evaluation without their cooperation.

TALLE OF CONTENTS
I. INI'RODUCTION 1
Program Purpose 1
Eligibility 1
Students Served 2 2
Delivery of Chapter 1 Services: Legal Parameters 4 4
Program Objectives 5 5
Program Evaluation 6
Scope of the Report 7
II. PROGRAM DESCRIPTION 8
Program Organization and Funding 8
Face-to-Face Instruction 8 8
Computer Assisted Instruction 10
III. PROGRAM IMPLEMENTATION 16
Staff Development 16
Classroom Observations 18
Staff Development Techniques Observed During the Ressons 20
COMPUTER ASSISTED INSTRUCTION TEACHER SURVEY 22
The Survey 22
Summary of Survey Findings 29
v. STUDENT OUTCOMES 31
Attendance 31
Kethodology 31
Academic Achievement for Students Receiving Face-to-Face Instruction 33
Academic Achievement for Students Receiving Con. uter Assisted Instruction 41
Contrasts of Mean Gains 47
Comparisol with Past Years 50
VI. CONCLUSIONS AND RECOMMENDATIONS 52
Conclusions 52
Recommendations 54
APPENDIX A: Brief Description of Chapter 1 Nonpublic School Reimbursable Sersices, 1988-89 56
APPENDIX B: C.A.I. Teacher Survey 58
PAGE
TABLE 1: Student Participation in the Corrective Mathematics Program by Grade and Number of Years in the Program, 1988-89
TABLE 2: Student Participation in the C.A.I. Corrective Mathematics Program by Grade, Software Package, and Mode of Instruction, 1988-89 11
TABLE 3: Teacher ratings of Software Companies' Responsiveness 28
TABLE 4 Mean N.C.E. Differences on the SESAT TotalScore for Full-Year Face-to-FaceFirst Grade Students in the CorrectiveMathematics Program, 1988-8934
TABLE 5: Mean N.C.E. Differences on the Total Score of the S.A.T. for Full-Year Face-to-Face Students in Grades Two through Eight in the Corrective Mathematics Program, 1988-8s 35TABLE 6: Mean N.C.E. Differences on the Total Scoreof the TASK for Full-Year Face-to-FaceStudents in Grades Nine through Twelve in theCorrective Mathematics Program, 1988-8936TABLE 7: Mean N.C.E. Differences on the ConceptsSubtest of the Stanford Achievement Testfor Full-Year Face-to-Face Students in theCorrective Mathematics Program by Grade,1988-8938
TABLE 8: Mean N.C.E. Differences on the ComputationSubtest of the Stanford Achievement Test forFull-Year Face-to-Fane Students in theVorrective Mathematics Program by Grade,1988-8939
TABLE 9: Mean N.C.E. Differences on the Applications Subtert of the Stanford Achievement Test for Full-Year Face-to-Face Stuaents in the Corrective Mathematiss Program by Grade, 1988-89 40

TABLE 10: Mean N.C.E. Differences on the Total Mathematics Score of the S.A.T. for Full-Year C.A.I. Coxrective Mathematics Students in Grades Two through Eight, 1988-89

PAGE

TABLE 11: Mean N.C.E.s Differences on the Total Mathematics Score of the TASK for Full-Year C.A.I. Corrective Mathematics Students in Grades Nine through Twelve, 1988-39

TABLE 12: Mean N.C.E. Differences for Full-Year C.A.I. Corrective Mathematics Students by Grade on the Concepts Subtest of the Stanford Achievement Test, 1988-89

TABLE 13: Mean N.C.E. Differences for Full-Year C.A.I. Corrective Mathematics Students by Grade on the Computation Subtest of the Stanford Achievement Test, 1988-89

Mean N.C.E. Differences for Full-Year C.A.I. Corrective Mathematics Students by Grade on the: Applications Subtest of the Stanfora Achievement Test, 1988-89

TABLE 15: Comparison of Overall Mean N.C.E. Differences for Full-Year Corrective Mathematics Program Students Receiving Face-to-Face Instruction, C.A.I.-only Instruction, and Combination Services, on the Total Score and the Three Subtests of the S.A.T., and on the Total Score of the TASK, ?988-89

ThBLE 16: Mean N.C.E. Gains of Full-Year Face-toFace Corrective Mathematics Students on Norm-Referenced Mathematics Tests, 1984-85 to 1988-89

I. INTRODUCTION

PROGRAM PURPOSE

The Chapter 1 Corrective Mathematics program provides supplementary mathematics instruction to eligible students in nonpublic schools in New York City. The major goals of the program are to deepen students' understanding of mathematical concepts, to improve their ability to perform computations and solve problems, and to assist them in applying this knowledge and three skills to everyday life. Secondary goals include enhancing students' self-esteem and helping them to develop a positive attitude toward mathematics.

ELIGIBILITY

Students are eligible for Chapter 1 services if they live in a targeted attendance area and score below a designated cut-off point on state-mandated or standardized reading tests. When all the students who n met the criteria were placed at a designated site, the program seived additional students who met the residency and mathematics requirements but did not score below the designated cut-off point on the reading test. In addition, the Chapter 1 Evaluation Reporting System specifies that eiigible students may be selected for Chapter 1 programs on the basis of classroom performance, teacher judgement, and achievement test data.

The nonpublic schools' annual testing program is used for preli...nary screening for Chapter 1 eligibility. The majority of the schools use either the Scott-Foresman Test or the

Comprehensive Test of Basic Skills (C.T.B.S.). Students were eligible for Chapter 1 services if they scored at or below a specific grade equivalent on the annual standardized tests.*

The cut-off point for program eligibility ranged from three months below grade level for students in the first grade to two or more years below grade level for students in high school. STUDENTS SERVED

During the 1988-89 schoo, year, the Corrective Mathematics program served 5,806 Chapter 1-eligible students attending 130 nonpublic schools in New York City. The total includes 3,689 students receiving face-to-face only instruction and 2,117 students receiving computer assisted instruction. Tre largest numbers of students, nearly four fifths, were in grades two through six. More than a third of the students were in the third and fourth grades. Fewer than 100 first grade students participated in the "readiness" component of the program (see Table 1). Nearly three quarters of the students participated in the program for the first time in 1988-89, and almost one fourth were in their second year. Almost six percent had participated

[^2]TABLE 1
Student Participation in the Corrective Mathematics Program by Grade and Number of Years in the Program, 1988-89

Grade	$\mathrm{N}^{\text {b }}$	\%	Number of Years in the Program					
			1		$\frac{\text { flaars in the }}{2}$		3	
			N	$\%$	N	$\%$	N	\%
1	96	1.6	96	100.0	0	0.0	0	0.0
2	910	15.7	842	92.5	64	7.0	4	0.4
3	1,080	18.6	761	70.5	308	28.5	11	1.0
4	1,036	17.9	636	62.4	318	30.7	82	7.9
5	855	14.7	503	58.8	256	29.9	96	11.2
6	721	12.4	469	65.0	197	27.3	55	7.7
7	434	7.5	280	64.5	110	25.3	44	10.2
8	238	4.2	147	61.8	59	24.8	32	13.4
9	214	3.7	212	99.1	2	0.9	0	0.0
10	152	2.6	131	86.2	21	13.8	c	0.0
13	45	0.8	27	60.0	15	33.3	3	6.7
12	16	0.3	11	68.8	5	31.2	0	0.0
Total Perce	$\begin{gathered} \text { 5,797 } \\ \text { ntáse } \end{gathered}$	(100\%)	$4,115$	(70.9\%	$.355$	(23.4\%)	327	(5.78)

a Nine students, all of them first year C.A.I. participants, wers ungraded and are not included in these data, making a total of j,806 students.
${ }^{\circ}$ Totals include 3,689 non-C.A.I. and 2,117 C.A.I. stidents.

- Nearly three quarters of the students participated in the program for the first time in 1988-89.
- Neariy one quarter of the students have participated in the program for two years.
- The largest numbers of students, nearly four fifths, were in grades two through six.
- More than a third of the students wer: in the third and fourth grades.
in the program for three years or longer. Each year the program serves students new to elementary school and high school. All first graders and about rine tenths of trs second graders were new to the program: in addition, almost three quarters of the students in :he third grade were new to the program. No ninth, tenth, or twelfth graders had participated in the program for more than two years.

Students ir the Corrective Mathematics program with social or emotional problems that interfered with academic progress also received services through the Clinical and Guidance program. In 1988-89, 2,373 Corrective Mathematics students (41 percent) were referred for Clinical and Guidance services.

DELIVERY OF CHAPTER 1 SERVICES: LEGAL PAPM4'TERS
On July 1, 1985, the Supreme Court held that local ed'lcational agencies' most common method of serving Chapter 1eligible children--instruction by public school teachers on the premises of nonpublic schools--was unconstitutional. As a result, alternative methods for providing Chapter 1 services were devised. Eligible students attending nonpublic schools now receive Chapter 1 services at nobile instructional units (M.I.U.s), public schooi sites, leased neutral sites*, nondenominational schools, and via computer assisted instruction (C.A.I.) in designated rooms in nonpublic schools.

[^3]In order to comply with the Supreme Court ruling, Chapter 1 teachers are not present in the computer labs. Instead, they track student progress through the curriculum and assist the instructional process via modems from the Board of Education's administrative center. Trained non-instructional technicians are present in the computer labs with students to operate and maintain the equipment, and order to ensure safety.

In order to further comply with the Supreme Court ruling, the he iware and software utilized for Chapter 1 students must be non-divertible; that is, it cannot be utilized in the nonpublic schools for anything but the instruction of Chapter 1 students. The hardware/software configurations were put together with this in mind.

PROGRAM OBJECTIVES

As a result of the implementation of the 1988-89 corrective Mathematics program, the following objectives were to be achieved:

- Eirst grade students would achieve a statistically significant mean gain in normal curve equivalent units (N.C.E.S) from pretest to posttest on the Total Mathematics score of the Stanford Early School Achievement rest (SESAT).
- Students in grades two through eight would achieve a statistically significant mean gain in N.C.E.s from pretest

[^4]to posttest on the Computation, Concepts, and Applications subtests and the Total Mathematics score of the Stanford Achievement Test (S.A.T.).

- Students in grades nine through twelve would achieve a statistically significant mean gain in N.C.E.s from pretest to posttest on the Total Mathematics score of the Stanford Test of Academic Skills (TASK).

PROGRAM EVALUATION

The purpose of the 1988-89 evaluation by the Office of
Research, Evaluation, and Assessment/Instructional Support Evaluation Unit (OREA/I.S.E.U.) was to describe the Corrective Mathematics program and to assess its impact on student achievement in mathematics. The following methods were used to conduct this evaluation:

- reviev, of program documents and interviews with program staf: were used to describe the program organization and * funding, the curriculum, and staff development activities;
- collection of data retrieval forms that report information about grade placement, number of years in the program, frequency of contact time, and referrals to the clinical and Guidance program;
- analyses of students' scores on standardized mathematics tests administered in the fall and spring of the school year: correlated t-tests were used to determine whether posttest scores were significantly higher than pretest scores;
- one-way analyses of variance with Scheffe post-hocs were used tc determine whether Face-to-Face instruction, C.A.I.only instruction, or combination services produced the highest mean grins on standardized tests;
- classroom observations and teacher interviews and site observations of staff development conferences were used to gather information on program implementation; and
- analyses of a survey filled out by the C.A.I. Corrective Mathematics teachers provided information on teacher perceptions of the C.A.I. program.

The purpose of this report is to describe the implementation of the 1988-89 Chapter 1 Corrective Mathematics program and assess its effectiveness. The organization and description of the program are presented in Chapter II. Chapter III presents information on program implementation, including observations of staff development workshops and classroom nbservations. Chapter IV reports the results of a C.A.I. teacker survey. Attendance, methodology, and major program outcomes are presented in Chapter V. Conclusions and recommendations are offered in Chapter VI. The Apiendices include a brıef description of Chapter 1 Nonpublic School Reimbursable Services for 1988-89, and a copy of the C.A.I. teacher survey.

II. PPOGRAM DESCRIPTION

PROGRAM ORGANIZATION AND IUNDING

Duril.j 1988-89, the Corrective Mathematics program, funded at more than 5.3 million, provided instruction to $580 \leqslant$ eligible students in 130 New York City nonpublic schools. Of the 130 schools that participated in the program, 53 received services at M.I.U.s, 19 received services at public school sites, 10 received services at leased neutral sites; two schools were nondenominational and 46 received C.A.I. services. Program staff included a coordinator, two field supervisors, and 70 Corrective Mathematics program teachers.

FACE-TO-FACE INSTRUCTION

Using a pull-out approach, Corrective Mathematics teachers provided instruction to small groups of students one to five times per week for the entire school year. The length of the sessions ranged from 45 to 60 minutes. More than 85 percent of the students received at least two sessions of remedial instruction per week.

Curriculum

An interaisciplinary approach to the development of mathematical concepts and skills was an integral part of the curriculum. Instructional methods were designed to accommodate all learning needs.

Eirst Grade. First-grade students participated in a special readiness progran designed to teach them the basic
mathematics concepts considered prerequisites for $i \in a r n i n g$ number computations. Instruction emphasized concepts such as geometric shapes, positional relationships, one-to-one correspondence, patterning, ordering, and money values. The program empiasized "learning by doing" activities in which students manipulated objects.

Grades two Through Twelve. The curriculum for grades two through twelve followed the standard New York City Scope and Sequence.

Parental Involvement

During the 1988-89 school year, the Corrective Mathematics Parencal Involvement project contacted and provided materials and take-home kits to 2,781 parents. In addition, 312 parents attended 43 workshops, which were held throughout the year. The workshops focused on ways that parents, by working with their children at home, could enhance mathematical learning.

Time was set aside during staff development workshops to discuss parental involvement and the preparation of materials for parents.

Staff Development

The Corrective Mathematics staff development program was designed to help teachers enhance their professional development and to promote increased parental irvolvement in the education of their children. Staff development activities included workshops, classroom observations by sup'rvisory staff, and informal information sharing between teachers and supervisory staff.

COMPUTER-ASSISTED INSTRUCTION

Number of Schools online
By June of 1989, 46 schools were on-line with a program of Computer-Assisted Instruction, showing thet $\lambda .5$ schools had been added to the program during the 1988-89 school year. This means that not only was implementation proceeding for schoo. that went on-line in 1987-88, but also installation and staff training were carried out for the entire school year, since new schools were being added from September, 1988 to June, 1989.

Modes of Instruction
C.A.I. was offered via two modes of instruction. Table 2 shows that approximately four fifths of the 2,117 C.A.I. students received C.A.I. only. They worked in the Chapter 1 computer labs in their nonpublic schools from 'ne to four days a week, in sessions lasting from 30 to 50 minutes. Fourteen percent of the students, from 16 schools, received combination services. These students worked two days a week in the computer lab. In addition, once a week they were bused or escorted to a public school, a neutral site, or an M.I.U. for face-to-face instruction by the same Chapter 1 teacher who monitored their progress with C.A.I. Computer Software and Students Served
C.A.I. was offered by five computer software companies: ESC, WICAT, CCC, PLATO, and CNS. The hardware configurations for each of these companies are distinct and noninterchangeable; thus a given school can only work with one software package. Nonpublic

TABLE 2
Student Participation in the C.A.I. Corrective Mathematics Program b) Grade, Software Package, and Mode of Instruction, 1988-89

Grade	WICAT		ccc	ESC		Plato		CNS
	$\begin{aligned} & \text { CAI } \\ & \text { Only } \end{aligned}$	C.S.	$\begin{aligned} & \text { CAI C.S. } \\ & \text { Only } \end{aligned}$	$\begin{aligned} & \text { CAI } \\ & \text { Only } \end{aligned}$	C.S.	$\begin{aligned} & \text { CAI C } \\ & \text { Only } \end{aligned}$		$\begin{aligned} & \text { CAI C.S. } \\ & \text { Only } \end{aligned}$
2	55	19	43	51	36			5
3	105	17	56	125	31			10
4	120	11	40	96	31			9
5	100	12	38	68	23.			5
6	88	12	32	90	22			9
7	35	6	26	80	15			4
8	48		11	44		54	35	
9			89					
10			93			23	24	
$1:$			17			12	7	
12			8			3		
Total ${ }^{\text {b }}$	551	77	453	554	158	92	66	47

a c.S. $=$ combination services .
${ }^{b}$ Seven students were missing information on their software package. Five of them were combination services, and two were C.A.I.-only.
c Information on grade was missing for nine students.
d Information on hiune of Instruction was missing for 102 ESC students and one WICAT student.
e There were a total of 2,117 C.A.I. students.

- Approximately four fifths of the C.A.I. students received C.A.I.-only instruction.
- Less than one fifth of the C.A.I. students received combination services.

School principals selected the software/hardware configurations for their schools. Table 2 shows the number of students served, by grade, with each of the software packaces, in each mode of instruction.

Monitoring Instructior At A Distance
In order to comply with the Supreme Court ruling, Chapter 1 teachers monitor student progress and intervene in the instructional process from computer rooms at the Board of Education's administrative center. One room is shared by ESC and CCC teachers, and another room by WICAT, PLATO, and CNS teachers. The computer rooms have work stations which include both computers and printers. The computer work stations are shared with C.A.I. teachers from the ESL and the Corrective Reading programs. Not liy are the computers connected via modems to the NPS Chapter I computer labs, but there are also telephones in each room to allow the chapter I teachers to speak to the noninstruccional technicians 'ho are located at the NPS sites.

The software companies provide teacher manuals which are kept in the computer rooms. These manuals, which vary considerably among software packages, contain information on the operation of the systems, software curriculum contents, and the interpretaicion of printouts of individual and class progress reports.

The teachers' time in the computer rooms is used for:

- reading printouts of student progress and deciding what, if any, teacher intervention with the software is required;
- previewing student lessons;
- communicating with noninstructional technicians; and
- staff development in C.A.I.

Adapting C.A.I. For NDS Chapter 1 Students

All five software packages were originally designed for learning situations that include a teacher who is physically present as students work on the computers. Therefore, a major task of both the software companies and the chapter 1 staff has been to find ways of adapting these learning systems to situations in which teachers are not physically present. Teachers must not only learn the system, but they also must work with the software representatives to try to improve remediation and discover ways in which software needs to be amended. Thus for two years, as C.A.I. ras been implemented in the nonpublic schools, teacher feedback has contributed in varying degrees to this process.

C.A.I. Staff Development

Besides participating in the stafi development of the Corrective Mathematics program, the C.A.I. teachers also received staff development directly from the computer software companies in C.A.I. The software company representatives scheduled training sessions throughout the school year on specific topics, and were available in person and by phone for individual problems. The software comp ..lies also provided training to the non-instru-tional technicians; and hotlines were available for technical assistance.

Since schools were being brought on-line throughout the school year, the training task was made more complex by the differing levels of knowl.dge of the C.A.I. teachers. The availability, flexibility, and responsiveness of C.A.I. trainers was thus of great ixiortance.
C.A.I. Teacher Expertise. WICAT Systems has prepared a learning improvement plan for Chapter 1 teachers, which is based on a model of three stages that teachers go through to become proficient users of C.A.I. The following is an abbreviated version of these stages.
stage 1. NOVICES use the system default settings and leave control of instruction to the system.

Stage 2. PRACTITIONEFS guide students inrough the systems, utilize reports, and control the seguence of on-line instructios.

Stage 3. INTEGRATORS and EXTENDERS solve learning problems and create learr ing opportunities beyond the normal use patterns of the system's inatryctional design. They find ways to use materials suich as w-aktoo\%s and homework assignments along with the C.A.I. in order to better meet the needs of individual students.

As can te seen from the above, successful adaptation of the C.A.I. systems to the learning needs of Chapter 1 NPS students requires that the C.A.I. teachers progress to stage 3 .

C.A.I. curriculum: corrective Mathematics

The Corrective Mathematics curriculum Varies accorciing $=0$ tine software package, but basically follows the New York City curriculum. Since Chapter 1 students are below grade level in reading, C.A.I. for the lower grades includes an audio componer.t.

The students wear headphones as they sit at the computers, and thus their instruction does not depend on their reading ability.

The importance of an audio component for the younger Corrective Mathematics students is underscored by the following example of face to face instruction in an M.I.U. A non-C.A.I. teacher was observed teaching a lesson on graphs and numbers to second graders. A work sheet with word problems was part of the lesson. In one of the questions on the work sheet, "How many children in all chose their favorite food?", the children were unable to read the underlined words.

Summary

The 1988-89 Corrective Mathematics program provided face-toface instruction, C.A.I., and combination services to eligible students from nonpublic schools. In addition, the staff development program provided activities to enhance teachers' professional development and promote increased parental involvement in the education of their children.

III. PROGRAM IMPLEMENTATION

STAFE DEVELOPMENT

Staff development activities for the 1988-89 school year consisted of the following:

- classroom observations of Chapter 1 teachers by field supervisors and postobservation supervisor/teacher conferences;
- staff development conferences given throughout the school year; and
- informal information sharing between the Chapter 1 teachers and staff.

Field Supervisic.

Classroom observations of Chapter 1 Corrective Mathematics teachers were done either by the program coordinator or the field supervisor. Observations were followed by individual conferences in which supervisory staff provided teachers with helpful feedback and suggestions. For example, one of the teachers showed an OREA observer a teacher-made, brightly colored number line used to communicate place value concepts. The program coordinator suggested this modification of a standard number line after conducting a classroom observation. Staff Development Topics

Twelve days were set aside for staff development conferences from September 6, 1988 to May 4, 1989. A review of agendas for these conferences shows that, in addition to procedural matters, the distribution of materials, and presentations by mathematics textbook publishers, the following topics were presented:
reorientation and rogram overview;

- an introduction to a mathematics laboratory;
- a report on the Parental Involvement Project;
- materials available at the Bronx Mathematics Resource Center;
- Link'n Learn workshops which accommodate different learning styles by connecting auditory and visual inputs;
- teaching mathematics through manipulatives;
- teaching measurement with common househcld objects;
- a hands-on approach to problem exploration in transformation geometry;
- sharing of "Ideas that work" by Chapter 1 corrective Mathematics teachers;
- a "Make and Take" workshop;
- the construction of a first grade assessment;
- the preparation of parental involvement materials;
- an update on mathematics today; and
- factoring and fractions.

Observations of Staff Development

In most conferences, separate topics were covered in the morning and afternoon sessions. Seven of 12 conferences set aside time for networking.

OREA Observers went to five staff development conferences held from November 1, 1988 to Feliruary 24, 1989. Attendance ranged from 25 to 40 teachers per conference. Teachers actively and enthusiastically participated in both hands-on activities and group discussions. In the conferences which were observed:

- a guided tour was given of the Bronx Mathematics Resource center. Handouts were distributed for a variety of mathematics activities and games which provided drill and practice in addition, subtraction, multiplication, and division;
c a presentation was given on teaching measurement with common household objects;
- Chapter 1 teachers presented "Ideas that Work", teaching strategies which utilized games and math manipulatives in creative ways;
- = presentation was given on the C.A.I. mathematics curriculum included in the ESC software; and
- a mathematics textbook publisher gav $=$ a presentation about texts and teaching materials.

Informal Inforration Sharing

Chapter I teachers in the Corrective Mathematics Program communicated with one ancther and with program staff not only during formal conferences, but also informally during lunch and after work. An OREA observer saw one teacher using common rousehold objects-an orange container, a bleach container, a potato chips tin, and a measuring cup-tc teach a third grade class about weights and measures. After the class, the observer mentioned to the teacher that she had seen the staff develorment conference that dealt with using household objects to teach measurement. The teacher replied that while she had been unable to attend the conference, one of her colleagues had called her that evening to tell her about it.

CLASSROOM OBSERVATIONS

OREA observers conducted a series of site observations, during the 1988-89 school year in order to gather data on program implemertation and to identify linkages between
classroom teaching and staff development. Two Corrective Mathematics teachers were observed during three class sessions each, on three separate occasions, over a four month period. Since both teachers worked in M.I.U.'s, an additional observation was conducted in November at a leased neutral site. At the end of each set of observations, teachers were interviewed about staff development.

Physical Settings

In both the M.I.U. and the leased neutral instructional sites, examples of childrens' work-as well as a variety of instructional tables and problem-solving charte-were prominently displayed. In addition to the above, classrooms contained multiplication tables as well as various measurement, place value, and other instructional charts. Both M.I.U.s had displays of names and photographs of students as well as seasonal displays ranging from snowmen with winter hats to shamrocks to Easter bunnies. There was less physical space in the M.I.U.s than at the leased neutral sice, but it was well utilized. Class Size and Schedules

Class size at both the leased neutral and tro M.I.U. instructional sites ranged fiom six tc ten students. Ciasses met two, three, or four days a week for 45 to 60 minutes.

Student Behavior

In àll lessons observed by the OREA team, teachers organized the class time and kept the students engaged-in such a way that, with a few exceptions, students were attentive and well behaved.

Upon entering the classroom, students generally setiled down within a short time. Teachers taught until the very end of the sessions so that time on task was very high. Teachers used a variety of mathematics games, math manipulatives, teacher-made materials, and creative strategies to keep children engaged. Most students raised their hands frequently and volunteerad answers. Overall-as evidenced by their participation-students seemed to enjoy the lessons.

Individualized Instruction

In all of the classes observed, instructors effectively tailored their presentations to the individual needs of the Chajicer 1 students. Some of the strategies observed included:

- the use of a variety of concrete examples to illustrate concepts;
- connecting the subject matter to the everyday lives of students;
- the use of games to provide enjoyable drill and practice exercises in basic skills and mathematical facts; and
- the use of: frequent positive feedback, both verbal and in the form of checkmarks, stars, or bright red apples pasted ontc students' work.

STAFF DEVELOPMENT TECHNIOUES OBSERVED DURING THE LESSONS
Or the 19 lessons OREA staff observed, 11 utilized ideas presented at staff development conferences during the 1988-89 school year. They were as follows:

- in one lesson, weights and measures were taught using common household objects;
- in six lessons, a mathematics game called multiplication bingo was used in grades three through five;
- in two lessons, problem-solving strategies based on a textbook publisher's presentation were utilized;
- one lesson on money was taught using an Addison-Wesley math manipulatives kit with plastic coins;
- in one lesson, a betting game with math manipulatives was used.

In addition, teacher interviews revealed that the problemsolving charts observed in all three classrooms, the use of questions as a teaching strategy, a lesson on graphing, and lessons with calculators were influenced or shaped by staff development conferences held during the 1987-88 school year.

Observations of staff development conferences and classroom teaching, as well as teacher interviews, indicate that Chapter 1 teachers have a rich repertoire of teaching strategies derived from staff development. Moreover, they are keenly interested in and receptive to incorporating new ideas into their lesson plans.

THE SURVEY
A survey (see Appendix B) was sert to 20 Corrective Mathematics teachers at the end of the 1988-89 school year, in order to gather information on their perceptions of the Corrective Mathematics C.A.I. Program. All 20 teachers returned the survey. of the five software packages that were used by these 20 teach'rrs, seven used ESC, four used WICAT, four used CCC, and one used PLATO: two used more than one software package. The remaining two did not specify the software package they used, so CNS, the fifth software package, is not included in these results.

Teacher Experience

The majority (75 purcent) of the C.A.I. Corrective Mathematics teachers had extensive Chapter 1 teaching experience (ten or more years). Nonc of them had any experience with C.A.I. prior to the implementation of this program. Sixty-iive percent did have prior computer experience, and this mainly consisted of informal computer training and college level computer coursework. For eighty-five percent of the teachers the 1988-89 school year was their second year ói participation in C.A.I. instruction. The other three teachers were C.A.I. novices. Grade Levels and Teacher Assignments

Grades one through 1 is participated in the C.A.I. Corrective Mathematics Program, t'ie majority of students were in grades two through eight. Ninety-five percent of th 20 teachers were
responsible for at least six grade levels．This meant that teachers who were very familiar with their own lesson plans in non－C．A．I．curricula at a variety of grade levels had to become acquainted with new unfamiliar lesson contents contained in the computer software．The more grade levels a C．A．I．teacher was responsible for，the greater the task was of becoming familiar with these lesson coistents．

Teacher ass：gnments included the following modes of instruction：C．A．I．－only，combination services，and Non－C．A．I． Instruction．Some teachers had mixed assignments which inv．ded non－C．A．I．as well as C．A．I．students．

The majority of teachers had mixed assignments，so that one to four days a week were spent at various instructional sites where they taught in the face－to－face mode of instruction．Their remaining time was spent monitoring．

Communication with Non－Instructional Technicians and Students
Although half of the teachers worked with one non－ instructional technician，the other half worked with two through six technicians since their students were spread out over more than one school．Teachers geneically spoke to their technicians several times per week，for a variety of reasons．The two mos＇c frequently cited reasons vere：
－to resolve technical and mechanical problems；and
－to $\because こ こ ミ \ddagger!$ attendance．
Teachers had three ways to communicate with their students： by telephone，electronic mail，and face to face．Most teachers
communicated with an average of 20 students per week.
Of the seven teachers who taught combination Services, three reported that their weekly face-to-face instructional day was their sole means of direct communication with their students. Four teachers. in addition to face-to-face communication, called their students on the telephone. Only one of the combination Servises teachers occasionally used electionic mail.

Of the 14 teachers tho taught C.A.I.-Ol.ly students, fiftyseven percent relied solely on the telephone to communiciate with their students. Others occasionally used electronic mail.

When teachers were asked how they thought communication with their students and non-instructional technicians could be improsed, nine suggested additional conference time with their technicians and students. Other suggestions included:

- adiditional telephones and computers; and
- teaching students to reach teachers by phone or computer mail.

Software Generatec: Reports

The majority of the teachers believed the softwaregenerated reports adequately tracked student progresr. All of them reported that principals in their schools were satisfied with the progress reports; however, five teachers reported that principals' most frequently asked questions about the reports had to do with their interpretation.

Previewing Lessons

Ir: order for the Chapter 1 Corrective Mathematics teachers to become familiar with tise C.A. X . lesson contents, they must
preview the student lessons on the computer at the Board of Education's administrative center.

The C.A.I. teachers reported previewing from 20 percent to 43 percent of their lessons.

One can infer from these data that CAI teachers have varying levels of familiarity with software lesson contents. There may also be features of the individual software packages which make them more or less easy for teachers to preview. Fiacement into the Software curriculum

All of the teachers knew that their software package provideci 3 . initial placement test. Half of them used the software placement test, and the rest reported placing the students into the curriculum by means of standardized testing at the beginning of the school year. Initial placement into the software curriculum is important since students must work at an appropriate level of difficulty in order for learning to occur. If the initial placement is accurate, then les, time will be taken up with finding the proper difficulty level. Thus placement impacts not only on the amount of instructional time, but also on the benefit students derive from instruction. There may be differences in the placement tests for each software package which make them more or less easy to use. Adjusting Software Difficu_ty Level

Although the four software packages differ with respect to both lesson content and the way that the content is orgar ized (i.e., lesson modules of varying length and different groupings
o: subject matter), there is one organizational principle that they share. That is, the lesson sequences are determined by the difficulty level of the material. They roughly follow the scope and sequence of New York City schools, with a tocus on basic skills in the lower grades and more complex skills in the higher grades. Problem solving and word problems are treated differently by the different software packages.

In addition to this organizational principle, the four software packages have in common a principle of mastery learning. That is, a student must sufficiently master the information at one level of difficulty before moving on to the next. The level of mastery required to move from one lesson or set of lessons to another varies according to the software. Generally, aboui 80 percent or more of the questions in a module must be answered correctly for the student to move on. If a student consistently fails to meet the mastery criteria, or if the criteria is consistently exceeded, then the dsisiculty level of the lessons must be adjusted in order for learning to occur.

While in some cases it is possible for the software to make this adj:ıstment, automatic difficulty adjustments do not always meet the needs of the individual learner. Therefore, this is an area where Chapter 1 teachers can provide useful input into the learning progress. The teachers at the odministrative center can monitor student progress by looking at printouts. Then, if necessery, they can fine tune the difficulty level of the student lessons.

Teachers reported adjusting software difficulty levil once a month or less often.

Responsiyeness of Scftware Companies

Sixteen teachers rated the four software companies on their responsiveness to teacher requests and suggestions. While the number of teachers was not evenly distributed, Table 3 shows that all but one teacher rated their software companies as somewhat to moderately responsive to teacher requests and suggestions. The one PLATO teacher gave a rating of very responsive.

Teacher ruggestions for Improving Lesson content

Sixteen teachers offered suggestions for improving lesson Contents. Among the suggestions were:

- There should be greater detail in pointing out errors in problem-solving activities.
- The sequencing of materials should be improved.
- More word-problems should be included
- Reinforcement of basic skills should be improved.
- The way the software corrects errors needs to be improved.
- One teacher said that the software needs more "branching". If a student gets a wrong answer, the software re-presents the question in a different form. However, if the student keeps getting a particular type of question wrong, there are not enouyn alternate forms, or "branc" s" for effective remediation.
- Lessons should relate more to classroom wori.
- Concepts should be developed more fully.
- The graphics of the money-related lessons should be improved.

Teacher Ratings of Software Companies' Responsiveness

Responsiveness	Number of Responges			
	$\underset{(N=7)}{\overline{E S C}}$	$\begin{aligned} & \text { WICAT } \\ & (N=4) \end{aligned}$	$\begin{gathered} \text { CCC } \\ (N i=4) \end{gathered}$	$\begin{aligned} & \text { PLATO } \\ & (N=1) \end{aligned}$
Very Responsive to Requests and Suggestions				1
Moderately Responsive	1	2		
Somewhat Responsive	6	2	4	
Not At All Responsive				

- Twelve out of 16 teachers perceived their software companies as only somewhat responsive to their requests and suggestions.
- An increase of problem solving activities, which should include help options, is needed.
- There are insufficient remedial lessons and activities, in the upper grades, and these should be improved.

Combination Services

Use of Face-to-Face Instructional Time. Teachers reported using their face-to-face instructional time to zeinforce basic skills. They also reported dealing with:

- concept development;
- error analysis; and
- drill and practice.

Differences Between C.A.I. and Non-C.A.I. Instruction

When teacners compared the face-to-face with the C.A.I. instruction for combination services students, they all offered this single main contrast:

- Face-to-face instruction includes the use of hands-on manipulatives to enhance the understanding of concepts and skills; they are constantly revised and developed according to student interest and responses. In contrast, the C.A.I. curriculum is preprogrammed and changes are made only after printouts reveal problems, if then.

SUMMARY OF SURVEY FINDINGS

At the end of the 1988-89 school year, 20 C.A.I. teachers completed a survey of their perceptions of the C.A.I. program. Some of the key findings of this survey were:

- While the majority of C.A.I. teachers had extensive Chapter 1 teaching experience, they were inexperienced with C.A.I.
- Most of the teachers had mixed assignments, which included C.A.I. as well as non-C.A.I. students. This meant their time was divided between teaching at various instructional sites, and monitoring progress in C.A.I. from the Board of

Education's administrative center.

- C.A.I. teachers communicated with non-instructional technicians several times a week to verify attendance, and to deal with a variety of technical problems.
- C.A.I.-only teachers chiefly relied on the telephone to comunicate with their students; and combination services teachers relied on their day of face-to-face instruction.
- The majority of C.A.I. teachers (14 out of 15 responcents) believed that software-generated reports adequately tricked student progress, and reported that school principals were satisfied with the reports. However, principals' most srequently asked questions had to do with report interpretation.
- Teachers reported previewing from 20 percent to 43 percent of their lessons.
- Half of the teachers reported using software placement tests, the rest placed students into the software curriculum by means of standardized tests at the beginning of the school year.
- Overall, teachers adjusted the difficulty level of the software lessons at intervals varying from twice a month to less often than once a month. None made weekly adjustments.
- The majority of teachers rated their software companies as somewhat to moderately responsive to teacher requests and suggestinns.
- One of the teachers said that if a student gives a wrong answer, the software ioes not have enough 'braisches' or alternate ways to re-present the question, for effective remediation.
- A major feature of C.A.I. which distinguisties it from face-to-face instruction is the absence of hands-on math manipulatives, which can be va ied according to student needs and interests.

V. STUDENT OUTCOMES

Abstract

ATTENDANCE Students in the Corrective Mathematics program attended class one to five times per week for sessions lasting from 45 to 60 minutes. Most students, 92 percent, attended classes lasting 45 minutes or longer. Moreover, most students, more than 75 percent, attended class two times per week, and another 18 percent of students attended class three or ore times per week. The average rate of attendance for program students was 93.7 percent*.

METHODOLOGY

The impact of the 1988-89 Corrective Mathematics program on student achievement was determined by analyzing scores on standardized tests administered in the fall of 1988 and the spring of 1989. Only students who participated in the program for at least five months, and ior whom both pretest and posttest scores were available, were included in the analyses.

The main objective for the 1988-89 Corrective Mathematics procizam was a statistically significant mean gain from pretest to posttest. To measure whether the program reached this goal, students' raw scores were converted to N.C.E.S, and statistical analyses were carried out on these converted scores. Correlated t-tests were used to determine whether the mean gains were

[^5]statistically significant. Statistical significance indicates whether the changes in achievement are real or occurred by chance. However, statistical significance can be exaggerated by large sample size or depressed by small sample size.

Furthermore, statistical significance does not address the issue of whether the achievement changes are important to the students' educational development. Thus, ar effect size (E.S.)* is reported for each result to indicate the educational meaningfulness of each mean gain or loss, independent of the sample size.

One-way analyses of variance with Scheffe post-hoc were aiso used to compare the mean gains for students in different modes of instruction.

Standardized Tests Used to Measure Achievement

First graders took the mathematics section of the SESAT. Second through eighth graders took tre Concepts, Computation, and Applications subtests of the S.A.T. For the second grade only, the Computation and Applications subtest.s were combined. Ninth through twelfth graders took. the mathematics section of the Stanford Test of Academic Skills (TASK). Therefore, analyses are presenteci for:

- the total SESAT score;
- the total S.A.T. score;

[^6]- the scores of the individual S.A.T. subtests; and
- the total TASK scere.

ACEDEMIC ACHIEVEMENT FOR STUDENTS RECEIVING FACE-TO-FACE

INSTRUCTION

Tables 4 through 9 present the achievement results for students who received face-to-face irstruction. Except for grades ten through 12, where the small numbers of students did not allow the computation of statistical signisicance, the students in all grades met the program's criterion for success.

Total Scores of Norm Referenced Tests

Tables 4, 5 and 6 present the results for the Total scores, on the SESAT, the S.A.T., and the TASK for students in grades one through 12.

The SESAT. Table 4 shows that:

- The mean gain of 26.6 N.C.E.s for first grade students on the SESAT was statistically significant, and represented an educationally meaningful efiect size.

The Total Score of the S.A.T. Table 5 shows that:

- The mean gain of $13 . \mathrm{s}$ N.C.E.s for students in grades two through eight on the total score of the S.A.T. was statistically significant, and represented an educationally meaningful effect size.
- Mean gains ranged from 5.8 N.C.E.s for the eighth grade to 20.4 N.C.E.s for the second grade.
- The effect sizes for grade five and eight were moderate. All other effect sizes were educationally meaningful.

The TASK. Table 6 shows that:

- The overall mean gain of 10.4 N.C.F.s for student in grades nine through 12 was statistically significant, and represented an educationally meaningful -ffect size.

Mean N.C.E. Differences on the SESAT Total Score for Full-Year Face-to-Face First Grade Students in the Corrective Mathematics Program, 1988-89

Grade	N	Pretest		Posttest		Difference*		Effect Size
		Mean	S.D.	Mean	S.D.	Mean	S.D.	

$\begin{array}{lllllllll}1 & 88 & 11.8 & 10.8 & 38.4 & 15.4 & 26.6 & 15.2 & 1.8\end{array}$
*This mean difference was statistically sigaificant at the $\mathrm{p} \leq .05$ level.

- First graders achieved a mean gain of 26.6 N.C.E.s on the total mathematics score of the SESAT.
- Their mean gain was statistically significant, ana it represented an educationally meaningful effect size.

TABLE 5

Mean N.C.E. Differences on the Total Score of the S.A.T. for Full-Year Face-to-Face Students in Grades Two through Eight in the Corrective Mathematics Program, 1988-89

- All mean differences were statistically significant at the ps. 05 level.
- The overall mean gain of 13.9 N.C.E.s was statistically significant and represented an educationally meaningful effect size.
- Mean gains ranged from 5.8 N.C.E.s for eighth grade students to 20.4 N.C.E.s for second grade students.
- Effect sizes for the fifth and sixth grades were moderate. All other effect sizes were educationally meaningful.

Mean N.C.E. Differences on the Total Score of t.ee TASK for Full-Year Face-to-Face Students in Grades Nine through Twelve in the Correctiv: Mathematics Program, 1! .8-89

Grade	N	Pretest		Posttest		Differerse*		Effect Size
		Mean	S.D.	Mean	S.D.	Mean	S.D.	
9	21	25.C	9.7	35.6	12.6	10.6	6.7	1.6
10	9	24.6	14.0	34.0	11.5	9.4	10.9	NA
11	4	15.8	6.5	27.0	1.6	11.2	5.0	NA
12	2	10.5	13.4	22.0	4.2	11.5	9.2	NA
Total	36	23.1	11.2	33.5	11.4	10.4	7.6	1.4

- Except for grades 10 through 12, with small numbers of students, mean differences were statistically significant at the $\mathrm{p} \leq .05$ level.
- The overall mean gain of 10.4 N.C.E.s was statistically significant and represented an educationilly meaningfu? effect size.
- Mean gains ranged from 9.4 N.C.E.s for tenth grade students t.o $11.5 \mathrm{~N} . \mathrm{C} . \mathrm{E} . \mathrm{s}$ for twelfth grade students.
- The effect size for grade nine, and tise overall effect size were educationally meaningful.
- The numbe of students in grades 10 through 12 were too small to compute statistical significance.
- The mean gain of 10.6 N.C.E.s for students in the ninth grade was statistical significant, and represented an educationally meaningful effect size.

The concepts Subtest of the S.A.T.

Table 7 presents the results for students in grades two through eight who took the Concepts subtest of the S.A.T.

- The overall mean gain of 16.4 N.C.E.s (S. $D_{2}=20.6$) was statistically significant, and represcnted an educationally meaningful effect size.
- Mean gains ranged from 7.5 N.C.E.s (S.D. $=15.7$) for eighth grade students to 22.5 N.C.E.s (S. $D_{1}=21.5$) for second grade students.
- Effect sizes for grades five, seven, and eight were moderate. All other effect sizes were large and educationally meaningful.

The computation Subtest of the S.A.T.
Tabie 8 presents the results for students in grades two through eight who took the Computation subtest of the S.A.T.

- The overall mean gain of 19.8 N.C.E.s ($S_{2} D_{2}=23.8$) was statiscically significant, and represented an educationally meaningful effect size.
- Mean gains ranged from 9.4 N.C.E.s (S.D. $=19.7$) for seventh grade students to 24.4 N.C.E.s (S.D. $=22.2$) for second grade students.
- The effect sizes for grades five, seven, and eight were mocierate. All other effect sizes were educationally meaningful.
- The mean posttest score of 48.4 N.C.E.s (S. $D_{\sim}=26.8$) for fourth grade students was only 1.6 N.C.E.s away from grade level performance.

The Applications Subtest of the S.A.T.
Table 9 presents the resuics for students in grades three through eight who took the Applications subtest of the S.A.T.

TABLE 7
Mean N.C.E. Differences on the Concepts Subtest of the Stanford Achievement Test for Full-Year Face-to-Face Students in the Corrective Mathematics Program by Grade, 1988-89

Gracie	N	Pretes ${ }^{+}$		Posttest		Difference*		Effect Size
		Mean	S.D.	Mean	S.D.	Mean	S.D.	
2	629	11.9	12.9	34.4	23.7	22.5	21.5	1.0
3	652	15.5	12.8	31.3	21.9	15.8	19.7	0.8
4	640	19.1	14.7	38.0	24.7	19.0	21.6	0.9
5	522	22.9	16.5	33.8	22.8	10.9	19.8	0.6
6	406	21.9	16.8	37.1	21.4	15.2	29.4	0.8
7	223	26.3	15.6	40.0	17.8	13.7	18.5	0.7
8	117	22.9	14.8	30.4	19.2	7.5	15.7	0.5
Total	3189	18.6	15.3	35.0	22.7	16.4	20.6	0.8

* All mean differences were statistically significant at the ps. 05 level.
- The overall mean gain of 16.4 N.C.E.s was st.tistically significant and :epresented an educationally meaningful effect size.
- Mean gains ranged from 7.5 N.C.E.s for eighth grade students to 22.5 N.C.E.s for second grade students.
- Effect sizes for grades five, seven, and eight were moderate. All other effect sizes were large and educationally meaningful.

TABLE 8
Mean N.C.E. Differences on the Computation Subtest of the Stanford Achievement Test for Full-Year Face-to-Face Students in the Corrective Mathematics Program by Grade, 1988-89

Grade	N	Pretest		Posttest		Difference ${ }^{\text {a }}$		Effect Size
		Mean	S.D.	Mean	S.D.	Mean	S.D.	
$c^{\text {b }}$	614	12.8	13.2	37.2	24.3	24.4	22.2	1.1
3	652	17.7	17.4	38.1	28.0	20.4	24.7	0.8
4	640	22.9	18.4	48.4	26.8	25.5	25.4	1.0
5	523	19.2	$15^{\circ} .0$	35.7	26.1	16.5	24.5	0.7
6	407	18.6	1 $\therefore 8$	34.7	22.8	16.1	20.3	0.8
7	223	25.8	15.6	35.2	17.5	9.4	19.7	0.5
8	117	21.7	15.7	32.3	21.5	10.5	19.7	0.5
Total	3176	18.9	16.4	38.7	25.7	19.8	23.8	0.8

- All mean differences were statistically significant at the $\mathrm{p} \leq .05$ level.
${ }^{b}$ Szcond grade stadents took a combined computations and Applications subtest.
- The overall mean gain of 19.8 N.C.E.s was statistically significant and represented an educationally meaningful effect size.
- Mean gains ranged from 9.4 N.C.E.s for seventh grade students t:o $24.4 \mathrm{~N} . \mathrm{C} . \mathrm{E} . \mathrm{s}$ for second grade students.
- Effect sizes for grades five, seven and eight were moderate. All other effect sizes were educationally meaningful.
- The mean posttest score of $48.4 \mathrm{~N} . \mathrm{C} . \mathrm{E} . \mathrm{s}$ for fourth grade students was only 1.6 N.C.E.s away from grade level performance.

Mean N.C.E. Differences on the Applications Subtest of the Stanford Achievement Test for Full-Year Face-to-Face Students in the Colrective Mathematics Program by Grade', 1988-8;

Grade	N	Pretest		Posttest		Difference ${ }^{\text {b }}$		$\begin{gathered} \text { Effect } \\ \text { Size } \end{gathered}$
		Mean	S.D.	Mean	S.D.	Mean	S.D.	
3	650	12.8	13.0	29.4	21.6	16.6	19.5	0.9
4	637	18.7	13.7	30.6	19.8	11.9	16.7	0.7
5	523	14.1	12.4	25.4	20.8	11.2	18.8	0.6
5	407	16.5	14.6	2э. 7	20.0	13.2	18.5	0.7
7	223	22.2	13.3	38.9	19.8	16.7	19.0	0.9
8	118	20.9	14.4	30.9	20.6	10.0	15.9	0.6
Total	2558	16.3	13.7	29.8	20.8	13.5	18.5	0.7

- Second grade students took a combined Computation and Applica 'ons test.
b All mean differences were statistically significant at the p. . 05 level.
- The overall mean gain oi 13.5 N.C.E.S was statistically significant and represented a moderate effect size.
- Mean gains ranged from 10 N.C.E.s for the eighth grade to 16.7 N.C.E.s for the seventh grade.
- The effect sizes for grader three and seven were educationally meaningiul. Other effect sizes were moderate.
- The overall mean gain of 13.5 N.C.E.s (S. $D_{2}=18.5$) was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 10.0 N.C.E.s ($\mathcal{E}_{2} D_{2}=15.9$) for the eighth grade to 16.7 N.C.E.s ($S_{.} D_{2}=19.0$) for the seventh grade.
- The effect sizes for grades three and seven were e.jucationally meaningful. Other effect sizes were moderate.

ACADEMIC ACHIEVEMENT FOR STUDENTS RECEIVING COMPUTER ASSISTED

INSTRUCTION

The Corrective Mathematics program C.A.I. students received instruction ria five different software packages. There were also two different modes of instruction used, which have been described earlier: C.A.I.-only, and combination services. In this section we will first present the results for all C.A.I. students, across software packages and modes of instruction.

Finally, we will present the following se of contrasts:

- Overall achievement (across software packages) will be compared for C.F.I.-only, and combination services, and Face-to-Face instruction.

Achievement For All C.A.I. Students

Tables 10 through 14 present the achievement results for all of the C.A.I. students. Except for grade 12, where the small number of students did not permit the computation of statistical significance; and also for grade 11, whose mean gain on the TASK was not significant, the mean gains for all. grades on all test scores met the program's criterion for success.

Total Scores on Norm-Referenced Tests. Tables 10 and 11 present the results for students in grades twn through eight on the total score of the S.A.T., and for grades nine through 12 on

Mean N.C.E. Differences on the Total Mathematics Score of the S.A.T for Full-Year C.A.I. Corrective Mathematics Students in Grades Two through Eight, 1988-89

Gract	N	Pretest		Posttest		Difference*		Effect Size
		Mean	S.D.	Mean	S.D.	Mean	S.D.	
2	180	18.9	13.0	35.9	17.4	17.0	15.0	1.1
3	303	22.0	11.2	29.7	15.2	7.7	12.5	0.6
4	279	27.0	10.5	36.3	14.5	ค. 3	-2.1	0.7
5	220	25.9	11.2	29.4	16.9	3.5	12.8	0.3
6	224	25.0	10.5	30.3	14.7	5.3	11.9	0.5
7	140	31.7	9.1	35.3	7.3	3.6	9.0	0.4
8	92	28.8	10.7	31.1	12.5	2.3	10.1	0.2
Total	1,438	25.0	11.5	32.4	25.2	7.4	13.0	0.6

* All mean differences were statistically significant at the p $\leq .05$ level.
- The overall mean gain of 7.4 N.C.E.s was statistically significant, and represenced a moderate effect size.
- Mean gains ranged from 2.3 N.C.E.s for the eighth grade to 17.0 N.C.E.s for the second grade.
- The effect size for the second grade was educationally meaningful. Other effect sizes were smail to noderate.

Mean N.C.E. Differences on the Total Mathematics Score of the TASK for Full-Year C.A.I. Corrective Mathematics Students in Grades Nine through Twelve, 1988-89

Grade	N	Pretest		Posttest		Difference		Effect Size
		Mean	S.D.	Mean	S.D.	Mean	c.v.	
9	165	30.5	10.0	37.2	12.0	6.7^{*}	11.1	0.6
10	137	34.3	9.7	38.9	9.9	$4.6{ }^{\text {a }}$	9.6	0.5
11	29	29.2	9.4	31.7	9.8	2.5	10.0	0.3
12	5	26.0	10.1	28.8	:1.6	2.8	4.3	n.a.
Total	336	31.8	10.0	37.3	11.2	5.5*	10.4	0.5

* These mean differences were statistically significant at the $\mathrm{p} \leq .05$ level.
- The overall mean gain of 5.5 N.C.E.s was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 2.5 N.C.E.s for the eleventh grade to 6.7 N.C.E.s for the ninth grade.
- Effect sizes were small to moderate.
the total score of the TASK. There were no C.A.I. first grade students who were both pre- and posttested on the SESAT.

The Total Score of the S.A.T. Table 10 shows that:

- The overall mean gain of 7.4 N.C.E.s on the S.A.T. for C.A.I. students in grades two through eight was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 2.3 N.C.E.s for the eighth grade tc 17.0 N.C.E.s for the second grade.
- The $e^{f} \quad t$ size for the second grade was educationally meanis _ul. All other eifect sizes were small or moderate.

The TASK. Table 11 shows that:

- The overall mean gain of 5.5 N.C.E.s for C.A.I. students in grades nine through 12 on the TASK was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 2.5 N.C.E.s for the eleventh grade to 6.7 N.C.E.s for the ninth grade.
- The effect sizes were moderate or small.

The concepts Subtest of the S.A.T. Table 12 presents the results for students in grades two through eight on the conce.pts subtest of the S.A.T.

- The overall mean gain of 10.5 N.C.E.s (S.D. $=20.4$) was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 5.3 N.C.E.s (S.D. $=18.0$) for the seventh grade to 20.6 N.C.E.S (S.D. $=0.9$) for the second grade.
- The effect size for the second grade was educationally meaningful. Other effect sizes were small or moderate.

The Computation Subtest of the S.A.T. Table 13 presents the results for the combined Computation-Applications subtest for the second grade, and also the Computation subtest for students in grades three through eight.

Mean N.C.E. Differences for Full-Year C.A.I. Corrective Mathematics Students by Grade on the Concepts Subrest of the Stanford Achievement Test, 1988-89

Grade	N	Pretest		Posttest		Difference*		Effect Size
		Mean	S.D.	Mean	S.D.	Mean	S.D.	
2	182	12.8	13.9	33.4	26.2	20.6	23.0	0.9
3	311	16.5	13.2	25.5	20.8	9.0	17.7	0.5
4	284	19.4]5.3	35.3	23.9	15.9	21.5	0.7
5	225	22.1	16.1	28.3	23.6	6.2	20.1	0.3
6	226	21.6	16.3	28.2	20.5	6.6	18.8	0.3
7	141	25.9	15.5	31.2	15.3	5.3	18.0	0.3
8	92	21.4	15.8	28:0	21.0	6.6	18.3	0.4
Total	1461	19.5	15.5	30.0	22.4	10.5	20.4	0.5

* All mean differences were statistically significant at the $p \leq .05$ level.
- The overall mean gain of 10.5 N.C.E.s was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 5.3 N.C.E.s for the seventh grade to 20.6 N.C.E.s for the second grade.
- The effect size for the second grade was educationally meaningful. Uther effect sizes were small or moderate.

TABLE 13

1. an N.C.E. Differences for Full-Year
C.A.I. Corrective Mathematics Students by Grade on the Computation Subtest of the Stanford Achievement Test, 1988-89

Grade*	N	Pretest		Posttest		Difference ${ }^{\text {b }}$		Effect Si.
		Mean	S.D.	Mean	S.D.	Mean	S.D.	
2	180	12.5	12.9	31.2	22.6	18.7	21.6	0.9
3	310	17.9	15.8	28.6	25.7	10.7	25.0	0.4
4	? 84	23.6	18.1	40.7	26.5	17.1	26.6	0.6
5	225	20.2	17.9	28.2	26.4	8.0	24.9	0.3
6	227	20.3	16.1	25.8	20.9	5.5	18.6	0.3
7	141	22.4	13.8	25.0	15.8	2.6	15.2	0.2
8	92	17.8	14.9	22.5	16.7	4.7	13.1	0.4
Total	1459	19.5	16.4	30.0	24.2	10.5	23.2	0.5

- Second grade students took a combined Computation-Applications subtest.
${ }^{b}$ All mean differences were statistically significant at the $\mathrm{p} \leq .05$ level.
- The overall mean gain of 10.5 N.C.E.s was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 2.6 N.C.E.s for the seventh grade to $18.7 \mathrm{~N} . \mathrm{C} . \mathrm{E} . \mathrm{s}$ for the second grade.
- The effect size for the second grade was educationally meaningful. The other effect sizes were small or moderate.
- The overall mean gain of 10.5 N.C.E.s (S.D. $=23.2$) was statistically significant, and represented a moderate effect size.
- Mean gains ranged from 2.6 N.C.E.s (S. $D_{2}=15.2$) for the seventh gradk to 18.7 N.C.E.s $\left(S_{2} D_{2}=21.6\right)$ for the second grade.
- The effec size for the secc grade was educationally meaningful. The other effect sices were smail or moderate

The Applications Subtest of the S.A.T. Table 14 presents the achievement results for students in grades three through eight on the Applications subtest of the S.A.T.

- The overall mean gain of 6.8 N.C.E.s (S.D.2 17.2) was statistically significant, and represented a small effect size.
- Mean gains ranged from 4.3 N.C.E.S (S.D. $=17.4$) for the fifth grade to 7.6 N.C.E.s ($S_{2} D_{1}=16.3$) for the seventh grade.
- All effect sizes were small or moderate.

CONTRASTS UF MEAN GAINS

This next section contrasts the overall mean gains of students receiving Face-to-Face instruction, C.A.I.-onl.y and combination services.

Contrasts Between Modes of Instruction

Table 15 presents contrasts of the overall mean gains on the subtests and total score of the S.A.T., and also the total score of the TASK, for students receiving instruction in three different modes.

Face-to-Face vs. C.A.I.-only vs. Combination Services fable 15 shows that it is important to distinguish between students who received C.A. i.-only instruction, and students who received combination services.

TABLE 14
Mean N.C.E. Differences for Full-Year C.A.I. Corrective Mathematics Students by Grade on the Rpplications Subtest of the Stanford Achievement Test, 1988-89

Grade ${ }^{\text {a }}$	N	Pretest		Postiest		Difference ${ }^{\text {b }}$		Effect Size
		Mean	S.D.	Mean	S.D.	Me ${ }^{\text {an }}$	S.D.	
3	309	14.0	13.4	22.6	19.0	8.6	18.7	0.5
4	281	18.1	12.4	23.7	18.9	5.6	16.2	0.4
5	225	14.7	13.5	19.0	19.9	4.3	17.4	0.3
6	224	13.6	12.3	21.9	19.0	8.3	16.1	0.5
7	139	20.2	13.5	27.8	14.9	7.6	16.3	0.5
8	91	16.2	15.2	21.1	17.6	4.8	17.2	0.3
Total	1269	15.8	13.3	22.6	18.6	6.8	17.2	0.4

2 For grade two, the Computation and Applications subtests were combined, and their results are on the computation subtest table.
© All mean differences were statistically significant at the $\mathrm{p} \leq .05$ level.

- The overall mean gain of 6.8 N.C.E.s was statistically significant, and represented a small effect size.
- Mean gains ranged from 4.3 N.C.E.s for the fifth grade to 7.6 N.C.E.s for the seventh grade.
- Effect sices were moderate or small.

TABLE 15
Comparison of Overall Mean H.C.E. Differences for Full-Year Corrective Mathematics Program Students Receiving Face-to-Face Instruction, C.A.I.-only Instruction, and Combination Services, on the Total Score and the Three Subtests of the S.A.T., and on the Total Score of the TASK, 1988-89

		Face-to-Face Instruction		C.A.I.-only ${ }^{\text {b }}$ Instruction		Combinati Service	
Subtest	N	Mean Difference S.D.	N	Mean Difference S.D.	N	Mean Difference	S.D

Grades Two Through Eight

Total	3,156	13.9*	13.3	1226	$6.0{ }^{\text {a }}$	12.4	212	15.3"	13.5
Concepts	3,189	16.4*	20.6	1241	9.1"	19.9	220	18.3"	21.7
Comput.	3,176	$19.8{ }^{\text {® }}$	23.8	1242	9.3"	23.0	217	17.9*	23.3
Applic.	2,558	$13.5{ }^{\text {a }}$	18.5	1102	$5.8{ }^{\text {® }}$	16.3	167	12.8*	19.4

Grades Nine Through Twelve

Total Score									
On TASK	36	10.4^{2}	7.6	278	4.2^{2}	10.1	58	11.4^{2}	9.8

" These mean gains were statistically significant at the $\mathrm{p} \leq .05$ level.
b These totals include students using WICAT, ESC, and CCC in grades two through eight; and PLATO and CCC in grades nine through twelve.
${ }^{c}$ These totals include students usirg WICAT and ESC in grades two through eight, and CCC and PLATO in grades nine through twelve.

- For all grades, un all tests, analyses of variance revealed that there was no significant ($\mathrm{p} \leq .05$) difference in mean gains between Face-to-Face instruction and combination services.
- For all grades, on all tests, analyses of variance revealed that the mean gains of students who received C.A.I.-only instruction were significantly ($\mathrm{p} \leq .05$) lower than the mean gains for both the combination services and Face-to-Face instruction.
- For all grades, on all tests, analyses of variance revealed that there was no significant ($\mathrm{p} \leq .05$) difference in mean gains between Face-to-Face instraction and combination services.
- For all grades, on all tusts, analyses of variance revealed that the mean gains of students who received C.A.I.-only instruction were significantly (ps.05) lower than the mean gains for both Combination Services and Face-to-Fase instruction.

These results show that. C.A.I. alone does not impact as strongly on student achievement as face-to-face instruction. However, for this sample of students, C.A.I. in the form of combination services does equal the effectiveness of face-toface instruction.

COMPARISON WITH PAST YEARS

Table 16 shows that the mean N.C.E. Gains for Corrective Mathematics proyram students in grades one through twelve for the last four school years, 1984-85 through 1988-89, were statistically significant, and effect sizes were large and educationally meaningful. These gains remained relatively stable for this period at nearly three times the program objective of a five N.C.E. gain up until 1988-89, when the objective was changed to statistical significance.

Since this is the first year of evaluating the achievement of C.A.I. students, yearly comparisons of C.A.I. student achievement will begin with the 1989-90 evaluation report.

Mean N.C.E. Gains of Full-Year Face-to-Face Corrective Mathematics Studsnts on Norm-R iferenced Mathematics Tests, 1984-85 to 1988-89

Year	Number of Students	Mean Gain	Standard Deviation	Effect Size
$1984-85$	8,215	14.4	13.3	1.1
$1985-86$	7,600	14.5	13.1	1.1
$1986-87$	3,877	16.8	13.3	1.0
$1987-88$	3,699	14.2	14.0	1.2
$1988-89$	3,290		13.5	1.1

* The overall mean gain for 1988-89 does not inlcude the 1,774 C.A.I. students who were both pretested and posttested. Their mean gain was 7.1 N.C.E.s. which represented a molerate effect size. Yearly comparisons of the mean gains for C.A.I. students will begin with the 1989-90 evaluation report.
${ }^{6}$ All differences were statistically significant at the $\mathrm{p} \leq .05$ level.
- The mean gains for each of the five school years remained basically stable.
- The effect sizes for each of the five school years were large and educationally meaningful.

VI. CONCLUSIONS AND RECOMMENDATIONS

CONCIUSIONS

During the 1988-89 school year, the Corrective Mathematics program, in addition to offering face-to-face instruction, was in its second year of implementing a Computer Assisted Instruction (C.A.I.) component. The C.A.I. program expanded into 25 new schools, and the number of C.A.I. students more than doubled from 955 students in 1987-88 to 2,117 students in 198889.

Face-to-Face Instruction

Program Implementation. Site observations, review of program documents, and staff interviews all indicated that the Corrective Mathematics program was being implemented as proposed.

- A Parental Involvement program was in place, which provided materials and take-home kits to 2,781 parents, and which conducted 43 workshops in the course of the school year.
- The goals of the program were all oeing addressed by the Chapter I teachers' instructional strategies.
- The staff development program offered multifacced training on a wide variety of topics. The Chapter I teachers utilized a rich repertoire of teaching strategies derived from staff development.

Student Achievement. Analyses of standardized mathematics tests show that the mean gains for students in grades one through nine on all tests reached statistical significance, and thus met the program's criterion of success.

Computer-Assisted Instruction

Program Implementation. Site observation and staff
interviews indicated that the instructional software used for C.A.I. must be specially adapted for use in settings where a teacher is not physically present; and also that a high level of teacher expertise with the C.A.I. systems is essential for effective remediation.

- Teachers have the ability to adjust the difficulty level of the software as they monitor instruction from the Board of Education's administrative center; after examining printouts and speaking to non-instructioncl technicians, they can move students into harder or easier lessons.
- If the software cannot easily re-present topics for additional practice or explanations, then students must repeat entire lessons. In order to avoid this, the software must be adapted and/or teachers must find ways of getting the students the practice and explanations they need.

Teacher Expertise. WICAT Systems has developed a learning
model for teachers who use C.A.I., in which teachers progress through three stages of expertise. This highlights the necessity for Chapter 1 teacners to become expert users of C.A.I., if remediation at a distance is to be effective.

- C.A.I. teachers, as part of gaining expertise, must become familiar with software lesson contents. The more grade levels for which they are responsible, the more lesson contents there are to learn.
- Since the software companies' staff de elopers were not at Baltic Street five days a week, and since the majority of teachers were in the field from one to four days a week, there is a good possibility that some teachers received more C.A.I. training than others. However, strong networking between the Corrective Mathematics program teachers and staff may have compensated for this.

The responses of $20 \mathrm{C} . \mathrm{A} . \mathrm{I}$. teachers to a C.A.I. survey indicated that:

- Since the majority of teachers had mixed assignvents that included being in the field from one to four days a week and since 19 out of 20 respondents were responsible for at least six grade levels, eeachers had many lessons to preview within the number of days determined by their teaching assignments.
- Since all but che of the C.A.I. respondents rated their software companies as only somewhat to moderately responsive c 0 teacher input and suggestions, it is likely that softiare companies could benefit from additional teacher input as they continue to adapt their software.

Student Achievement. There were not enough students in the twelfth grade to compute statistical significance; and the mean gain on the TASK for all eleventh grade students (who used either CCC or PLATO software) was not significant. There were no first grade students. However,

- The overall mean gains of all C.A.I. students combine., on all tests, in grades two through ten, on all tests, reached statistical significance and thus met the program's criterion for success.

Contrasts of Mean Gains. The following conclusions may be drawn from contrasts of mean gains between modes of instruction:

- Results of analyses of variance show that C.A.I.-only instruction does not impact as strongly on student achievement as does face-tc-face instruction. However, for this sample of students, C.A.I. in the form of combination services is equal in effectiveness to face-to-face instruction.

RECOMMENDATIONS

Based on the information and ana'yses presented in this report, the following recommendations are made:

Face-to-Face Instruction

- Since program objectives were met by all grades on all tests, staff development and classroom instruction should continue as currently organized.
- Ways of expanding the Parental Involvement program should be explored.
- Ways or expanding the Parental Involvement program should be explored. Perhaps a newsletter distributed to parents periodically could include parent-child mathematics activities.

Computer-Assisted Instruction

- The achievement of students who received cominination services was significantly greater than the achievement of students leceiving C.A.I.-only. Provided these resultz hold up for another year, an effort should be made to expand combination services whenever feasible.
- Efforts should continue to adapt the instructional software for use in settings where a teacher is not physically present. As part of this effort, software companies should be evaluated for their receptivity to input from the Chapter 1 teachers.
- In the interest of nelping teachers acquire the necessary expertise with the C.A.I. systems, software companies should adjust their trainers' schedules to accommodate teachers wiso spend several days a week in the field.
- C.A.I. staff developers should incluae sufficient time for previewing lessons and helping teachers aain familiarity with lesson contents.

APPENDIX A

Brief Description of Chapter 1 Nonpublic School Reimbursable Services, 1933-89

Chapter 1 Nonpurilic School Reimbursable progiams provide supplementary, individualized ibstruction to students sttending nonpublic schools in New York City. students are eligible for Chapter 1 services if they live in targeted atcendance area and score below a designated cutoff point on state-mandated standardized reauing tests.

On July 1, 1985, the Supreme Court held that instruction by public school teachers on the premises of nonpublic schools-local educational agencies' most common method of serving Chapter l-eligible chiliren--* is unconstitutional. As a result, alternative methods for prov:ing Chapter 1 services to eligible nonpublic school students were devised. Students attending nonpublic schools now receive Chapter 1 gervices at menile instruction units, public school sites, leased neutral sites, and nondencminational schools and via computer-assisted instruction in designated classrooms in nonpublic schools.

CORRECTIVE READING PROGRAM
The Corrective Reading program provides instruction ir. reading and writing. The goal is to enable students to re3ch grade level in reading. During 1988-89, the program served 7,943 students in grades kindergarten through twelve in 162 nonyublic s. 101s. The total included 3,287 students receiving computerassisted instruction and 4,656 students receiving face-to-face instruction. Program staff incladed a coordinator, three fisid supervisors, and 90 Corrective Reading teachers. Instruction was providel to small groups of students, one to five days fer week, in sessions ranging from 30 to 60 minites. Chapter 1 "uiaing totaled $\$ 7.8$ million.

READING SKILLS CENTER PROGRAM
The Reading Skills Center program provides instrliction in reading and writing to students in grades four thiough eight. The goal is to enable students to reach grade level in reading. During 1988-89, the program served 176 students from four zonpublic schools. Program staff included a coordinator and seven teachers. Instruction was provided to small gre, ps of about five students, three to five dajs per week, for sissio.s lasting from 45 to 60 minutes. Chapter 1 funding totaled \$552,903.

CORRECTIVE MATHEMATICS PROGRAM

The Corrective Mathematics program provides instruction in mathematics. The goals are to deepen students; understanding of mathematical concepts and to improve their ability to perform computations and solve problems. During 1988-89, the program served 5,806 students attending 130 nonpublic schools. The total included 3,689 students receiving face-to-face instruction and 2,117 students receiving computer-assisted instruction. Prograr staff included a coordinator, two field supervisors, and 70 Corrective Mathematics program teachers. Instruction was provided to small groups of students, one to five days per week, in sessions ranging from 45 to 60 minutes. Chapter 1 funding totaled more than $\$ 5.3$ million.

ENGLISH AS A SECOND LANGUAGE

The English as a Second Language program provides intensive English language instruction to limited English proficient students. The goal of the program is to help students gain the listening, speaking, reading, and writing skills necessary to improve their performance in school. During 1988-89, the program served 2,445 students in kindergarten through eighth grade in 69 nonpublic schools. Two thousand and twelve of these students received face-to-face instruction, and 433 of them computerassisted instruction. In addition, a Read-Along component provided some students with tape recorders, storybooks, and audio tapes for home use. Program staff included a coordinator, two field supervisors, and 42 teachers. Instruction was provided to small groups of students, two to three days a week, in sessions ranging from 30 to 60 minutes. Chapter 1 funding totaled $\$ 2.7$ million.

CLINICAL AND GUIDANCE PROGRAM

The Clinical and Guidance program provides diagnostic and counseling services to students enrolled in Chapter 1 nonpublic school programs--Corrective Reading, Reading Skills Center, Corrective Mathematics, and English as a Second Language. The goal of the program is to alleviate emotional or social problems that interfere with the sth. ents' ability to profit from remedial education. During 1988-89, the program served 5,707 students from 123 nonpublic schools. The staff included two coordinators, two field supervisors, 58 guidance counselors, 36 psychologists, one psychiatrist, and 12 social workers. Chapter 1 funding totaled $\$ 5.8$ million.

OFFICE OF RESEARCH, EVALUATION, AND ASSESSMENT
 INSTRUCTIONAL SUPPORT EVALUATION UNIT
 E.C.I.A. - Chapter 1, NPS, C.A.I. 1988-89

TEACHER QUESTIONNAIRE
Computer Program \qquad Subject (check one): Corrective Mathematics \qquad Corrective Reading ESL \qquad
I. Background Information
A. Teacher Experience

1. Years of Chapter 1 teas: 1 experience
2. When did your very first C.A.I. class go online? Month \qquad Year
3. Did you have previous C.A.I. experience (prior to the 1986-87 school year)? Yes \qquad No a) If yes, specify: \qquad
\qquad
4. Did you have previous experience with computers? \qquad Yes \qquad No a) If yes, specify \qquad
B. Students Served
5. Please check off/fill out whatever applies to yon.
a) \qquad CAI Only \qquad days per week \qquad minutes per day
b) \qquad days per week Face-to- \qquad days per week Services: \qquad minutes per day Face: minutes per day
c) \qquad Non-C.A.I., Face-to-face only \qquad days per week \qquad minutes per day
6. Please list the number of C.A.I. students (including combination services) for whom you are responsible:

Grades: K \qquad 3 6 9 \qquad 12 \qquad
\qquad

10 \qquad
3. Please list the number of non-C.A.I., face-to-face only students for whom you are responsible:

Grades:

12

II Communication with C.A.I. Schools
A. Comunication with NPS Principals and classroom teachers

What C.A.I. reports do you provide, and how often do you provide them, to principals and classroom teachers?

Reports
Provided to: How often?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
B. Communication with Non-Instructional Technicians

1. With how many Non-instructional technicians do you work? \qquad
2. How often do you speak to them? \qquad
3. Describe the purpose, (purposes) of a typical communication(s):
\qquad
\qquad
\qquad
\qquad
C. Communication with Students
4. What percentage of your communications with students are:

By TElephone
By Computer Mail Face-to-Face
\qquad \%

100\%
2. On the average, with how many students do you ommunicate each week?
D. How ean your communication with students and non-instructional technicians at C.A.I. sites be improved? \qquad

III Perceptions of Software

A. Usefulness of reports

1. Are software-generated reports adequate for tracking student progress? Yes No
a) Is there any information about student proyress which you would ike added to the reports? \qquad
\qquad
\qquad
2. Are principals satisfied with the reports? Yes No a) What is the most frequently asked question from a principal about a report? \qquad
\qquad
\qquad
B. Lesson Contents
3. Approximately what percentage of the C.A.I. lessons covered by your students have you had a chance to preview?
a) Approximately what percentage of your time do you use for previewing lessons?
4. Pleasa rate the foliowing software features:

Excellent Good Fair Poor

a) Factual accuracy
b) Appropriateness of lessons to program's educational objectives
c) Correlation of lesson contents with subject area's curriculum objectives
d) A developmentally logiral approach to the sequencing of material
e) Explanations provided as a result of errors

1) Kaintains student interest and motivation
g) Explanation of concepts
h) Enchances problem solving and critical thinking ability
i) Graphics component
j) AL-2io component
k) Pacing of lessons
2) Reinforcement of concepts and stills
m) Reviews of lesson content
3. Does the software provide an initial placement test? \qquad Yes \qquad No a) If yes, have you used it? Yes No
b) If no, how did you place your students in the software curriculum?
\qquad
\qquad
\qquad
\qquad
4. How ofien, on the average, do you have to adjust the d.fficulty level of the software? Weekly Bi-Monthly
Monthly Less Often
5. How responsive is the software company to your requests and suggestions?
\qquad Moderately \qquad Somewhat \qquad Not. at all
6. What suggestions do you have for the improvement of lesson contents?
\qquad
IV. Combination Services Information
A. How do you utilize your face-to-face instructional time?
\qquad
\qquad
\qquad
\qquad
\qquad
B. How do your C.A.I. teaching techniques and curriculum content differ from non C.A.I.?
\qquad
\qquad
\qquad
\qquad
\qquad
c. Describe the quality and frequency of the feedback you receive regaraing your students' computer-based learning.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END

U.S. Dept. of Education Office of Education Research and Improvement (OERI)

ERIC

Date Filmed

March 29, 1991

[^0]: **

 * Reproductions s'pplied by EDRS are the best that can be made
 * from the original document.

[^1]: age "gncicceznj cancition marie stc"us sexwe sientation \because sex in its eaucarionat ragrams activities and empicumer. ccice! ss !eaviezavisw inv cerson wro ceneves ne oi sne nas deen aiscriminated aganst should contac: his of rer soce

[^2]: *The grade equivalent is a calvulation of the grade placement, in years and months, of students for whom a certain score is typical. It represent.s the level of work a student is capable of doing. However, a ninthgrade student who achieves a test score that is 11.6 grade equivalents does not belong in the eleventh grade; rather, the 11.6 grade equivalent score indicates that the student scored as well as a typical eleventh grader would have scored on the ninth grade test.

[^3]: * Public school sit:e: are des ignated classrooms in public schools; leased neutral sites are classrooms in public buildings such as community centers; mobile instructional units are mobile classrooms generally parked outside the school being served.

[^4]: *Normal Curve Equivalent scores are similar to percentile ranks but, unlike percent ranks, are based on an equal-interval scale. The N.C.E.s are based on a scale ranging from one to 99, with a mean of 50 and a standard deviation of approximately 21. Because N.C.E. scores are spaced equally, arithmetic and statistical calculations such as averages are meaningful. In addition, comparisons of N.C.E. scores may be made across different achievement tests.

[^5]: *Aggre:zte attendance information was provided by the Chapter 1 pror, ram administraticn.

[^6]: *The effect size, developed by Jacob Cohen, is the ratio of the mean gain to the standard deviation of the gain. This ratio provides an index of improvement irrespective of the size of the sample. According to cohen, .2 is a small effect size, .5 is a moderace effect size, and . 8 is a large effect size. Only effuct sizes of .8 ana above are considered educationally meaningful.

